Animal source food consumption in young children from four regions of Ethiopia: association with religion, livelihood, and participation in the Productive Safety Net Program

Kaitlin S. Potts¹,², Afework Mulugeta³, Alessandra N. Bazzano¹*

Author Affiliations:
¹Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA 70112; abazzano@tulane.edu; kstorck@tulane.edu
²Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA 70112; kstorck@tulane.edu
³Department of Nutrition and Dietetics, School of Public Health, College of Health Sciences, Mekelle University, Ethiopia 231; afework.mulugeta@gmail.com

*corresponding author: +1 504 988 2338; abazzano@tulane.edu

Abstract

Introduction: Child undernutrition remains a challenge globally and in the geographically diverse country of Ethiopia. Improving dietary diversity and consumption of animal source foods are important for improving child nutrition and corresponding health outcomes.

Objective: The objective of the study was to identify household and community factors associated with consumption of animal source foods among 6 to 36-month-old children from four regions of Ethiopia.

Methods: A cross-sectional survey using multistage probability sampling in eight geographic zones and four regions of Ethiopia took place in 2015 with parents/caretakers of 6 to 36-month-old children. Data was collected on demographic information, proxy indicators of socioeconomic status, and food consumed by the child the day before the survey.

Results: Increased child age, pastoral livelihood, Muslim religion, and participation in the Productive Safety Net Program were associated with increased consumption of animal source foods. Odds of animal source foods consumption increased 8% with each 3-month age increase. Children from pastoralist households were the most likely to have consumed animal source foods in the preceding 24 hours as compared with those in agro-pastoralist households (0.21 times as likely) or those in agriculturalist/farming households (0.15 times as likely). The odds of consumption of animal source foods for families with food aid or safety net support was 1.7 times greater among those receiving traditional support from the Productive Safety Net Program and 4.5 times greater for those in the direct support arm of the program.

Conclusions: The findings illustrate the importance of accounting for local context and community characteristics, such as livelihood and religion, when undertaking programming designed to improve diversity of children’s diets through increasing animal source foods. In addition, the Productive Safety Net program may be a critical determinant of dietary diversity for young children in these regions.

Keywords: child nutrition disorders; animal source foods; diet, food and nutrition; dietary diversity; food assistance
Introduction

Child undernutrition remains a challenge worldwide. In 2017 over 20% of the world’s children under the age of five were stunted and 7.5% suffered from wasting. Maternal and child undernutrition is estimated as the largest underlying risk factor of mortality and morbidity for children less than five worldwide. Estimates have identified undernutrition as the underlying cause of up to 45% of under-five deaths. In addition to impaired physical and cognitive development, undernutrition in childhood is linked to poor reproductive outcomes, metabolic and cardiovascular health issues, and diminished economic prospects later in life. Addressing the challenge of child undernutrition has long been considered an urgent priority and remains at the top of the world’s agenda as noted by the second United Nation’s Sustainable Development Goal, “Zero Hunger”.

Ethiopia has made great strides in improving the nutritional and health status of children over recent decades. Child stunting in the country has decreased by 20 percentage points since 2000, but 38% of children under-five remain stunted as of 2016, with 10% wasted, suffering from chronic and acute hunger and food insecurity. This varies greatly by region with 46% of under-five children stunted in Amhara and nearly 18% wasted in Afar. The economic cost is high and it is estimated that Ethiopia annually incurs 4.7 billion USD in losses to health, education, and productivity, or 16.5% of GDP, due to child undernutrition.

Following recommended standards for feeding is essential for improving nutritional outcomes for children. Complementary feeding in addition to continued breastfeeding beginning at six months of age is necessary for continued and adequate physical and cognitive growth in young children. Sufficient quantity and diversity of high quality foods is essential for the provision of adequate micro- and macronutrients to the child. Dietary diversity has been shown to contribute positively to nutritional status. Animal source foods (ASF) including meats, eggs, and dairy are an excellent source of protein, calories, and necessary micronutrients and have been linked to improved nutritional status in children, including reduced stunting. In addition to anthropometric benefits, a systematic review reported consuming ASF including milk to be linked to improved cognitive function among undernourished children in low-income settings. ASF comprise three of the seven food groups used to determine sufficient dietary diversity in children as measured by the World Health Organization’s (WHO) indicators of infant and young child feeding (IYCF) status. Similar to dietary diversity, ASF consumption is low among Ethiopian children based on the Ethiopia Demographic and Health Survey (EDHS) reports.

Access to and availability of ASF is often limited for many children in resource poor and low and middle-income settings due to higher costs. Food insecurity has been associated with child undernutrition in Ethiopia and other countries, and nutritional status also differs among livelihoods, especially comparing pastoralists to other livelihood groups, in this part of Africa. Availability of ASF to children may also be impacted by other factors such as local culture and religion.

Achieving optimal dietary diversity for children in Ethiopia has been a challenge until fairly recently due to economic and geographic factors. In 2011 a staggeringly low 4% of children ages 6 to 23 months met the recommendation for dietary diversity, while this has improved, still only 14% were receiving adequately diverse diets in 2016, with as few as 2.6% of children from Afar region achieving this. Given the definition of adequate dietary diversity, low consumption of...
ASF is an important contributor—only 8% of breastfed children ages 6 to 23 months reported consumption of meat, fish, or poultry and only 17% reported egg consumption in the 24 hours prior to the interview for the 2016 EDHS.

Approaches to address child undernutrition with improved complementary feeding and dietary diversity include nutrition education through behavior change communication strategies, as well as provision of additional complementary foods. Both approaches have been effective in improving nutritional status of children in food insecure areas, but given the multifaceted nature of undernutrition, multiple strategies operating simultaneously are needed to make sustained improvements. A systematic review of complementary feeding interventions illustrated their effectiveness at improving nutritional status, especially when educational components were combined with provision of food.

Ethiopia has demonstrated commitment to tackling the problem of undernutrition with its Food and Nutrition Policy, National Nutrition Program, Nutrition Sensitive Agriculture Strategy, and Seqota Declaration released in 2017 with the goal of eliminating child undernutrition by 2030. The Community Based Nutrition Program (CBN), the Targeted Supplementary Feeding Program, and the Productive Safety Net Program (PSNP) in Ethiopia combine to offer evidence-based interventions for the improvement of infant and young child feeding, including dietary diversity. Evaluation of the CBN program has shown positive impact on child malnutrition. Additionally, exposure to these programs in Ethiopia has been associated with improved complementary feeding, including intake of ASF.

While much research has looked at dietary diversity in Ethiopian children, there has been less focus on identifying factors associated with consumption of ASF in children. Minimal research has attempted to identify how individual characteristics relate to the feeding of children. Ethiopia is a large and diverse country of almost 100 million people with different cultures, languages, livelihoods, and religions. The diversity inherent in the Ethiopian population may impact child feeding and nutrition, but limited research (predominantly from the grey literature) has looked into this. Using formative research to identify cultural factors related to optimal child feeding improves the effectiveness of interventions, thus more research in this area is warranted.

The present study aimed to address a gap in the literature relating to ASF consumption among children in diverse settings of rural Ethiopia. The objective of the present study was to determine factors associated with ASF consumption among 6 to 36 months old children in the study areas from Ethiopia.

Methods

Study setting
The study was conducted in eight zones and four regions in Ethiopia: Afar, Amhara, Benishangul-Gumuz and Tigray from October through December 2015. Geographic remoteness and resource limitations necessitated limiting the survey to two zones per region. The zones were purposively selected based on IYCF factors identified from previous research to capture a range of experiences within region. The eight zones surveyed were: Zone 1 and 4 in Afar, South Wollo and West Gojjam in Amhara, Asosa and Metekel in Benishangul-Gumuz, and Eastern and North Western Zones in Tigray. Afar region in the northeastern part of Ethiopia is a predominantly pastoralist region. Afar is a region where the highest burden of underweight (36%) and second highest burden of wasting (18%) in under-five children was reported. Amhara, Benishangul-Gumuz and Tigray are largely agrarian regions. The Amhara region is characterized
by the highest prevalence of stunting in Ethiopia where 46% of the under-five children in the region are stunted 7. The second highest prevalence of stunting among under-five children is reported from Benishangul-Gumuz 7. About 39, 23 and 11% of the under-five children from Tigray are stunted, underweight and wasted, respectively 7.

Study design

The data in the present study were collected for operation purposes by an international non-governmental organization, and analyzed separately by the study authors as strictly de-identified. A cross-sectional study design was employed to conduct the study on ASF consumption in 6 to 36 months old children from the four regions of Ethiopia. The inclusion criteria included children less than 36 months of age living in the households of interviewed mothers/caretakers in rural areas. Because the outcome of interest (ASF) should not be given to children younger than 6 months of age based on international recommendations, this analysis excluded children in the sample younger than 6 months of age.

Sample size

A multi-stage sampling technique was used to select study participants. The sample size was calculated to detect a 10% change at household level in receipt of nutrition services across the sampled zones with the anticipation of a follow up survey. One hundred simulations were conducted to determine the sample size using the R package clusterPower 40 with 80% power and type-I error rate of 5%. Between-cluster variance was assumed to be 0.1 in all survey rounds and sample size simulations. The results indicated sampling of ten clusters per zone with fifteen households per cluster would allow equal probability of selection for all households that met the inclusion criteria per zone. Minimum samples of 143 households per zone were indicated to detect the identified change. In order to preserve internal validity, 12 clusters per zone were used so that the minimum sample sizes could be met without the need for replacement of non-responsive households or unreachable clusters. These methods were employed to eliminate sampling bias as much as possible. Although the initial sample size was calculated for a different outcome, the sample was amply large to detect the hypothesized differences in the present study.

Sampling

As required by the local government partner, the Ethiopian Central Statistical Authority (CSA) used probability proportion to size random sampling to select twelve clusters in each zone from the 2007 census listing of rural enumeration areas. These were sampled without replacement if the cluster was deemed unreachable during data collection due to unfavorable field conditions. Upon arrival in each cluster, the survey team consulted community leaders (e.g. health extension workers) to define the geographical confines of the cluster, which corresponded to a local village. The last stage of sampling began with the full enumeration of the cluster to develop a listing of all eligible households (those with 0-36 month old children) in the area. The survey team leader then used a random number table to randomly sample fifteen households. Enumerators were instructed to revisit sampled households three times before it was considered non-responsive. Each household completed only one household level survey, based on the youngest child living in the house, so the household survey gives data on one child/caregiver dyad.

Data collection methods and tools

The household survey questionnaire included sections on demographics, water and sanitation, reproduction, breastfeeding, complementary feeding, nutrition services, maternal and child health, and food security. The questionnaires were developed in English, translated to Amharic for Amhara, Afar and Benishangul-Gumuz regions and Tigrigna for Tigray, back translated to English, and pre-tested. Experienced enumerators who spoke the languages of the surveyed areas implemented the study and trained on the survey protocol and tools during a four-day training.
session held in Addis Ababa prior to data collection. The enumerators conducted the household surveys in the homes of caregiver participants. Paper questionnaires were used for data collection. The completed questionnaires were then entered into a database by separate data entry persons and converted into excel spreadsheets.

Ethics
Verbal informed consent was obtained from all participants prior to data collection during fieldwork. The authors received approval from the Tulane University Health Sciences Institutional Review Board for secondary analysis of data collected by a non-governmental agency.

Measures
Outcomes
The primary outcome measure for the present analysis was consumption of ASF by 6 – 36 months old children. The questionnaire asked parents/caretakers what types of foods the child had eaten in the 24 hours prior to the survey. These questions were matched to those used in the 2011 EDHS 25 and the respondent stated if the child consumed any amount of foods from a predefined list. The animal source foods in the list include eggs, fish, yogurt, cheese, milk, meat (including beef, poultry, pork, lamb and any other meat not mentioned), and organ meats (e.g. liver).

As a secondary outcome of interest, minimum dietary diversity (MDD) was calculated to identify if a positive relationship between ASF and MDD was present in this sample. MDD was defined according to the WHO definitions of IYCF indicators 19, requiring a minimum consumption of four out of seven pre-defined food groups in the previous 24 hours for the child’s diet to be considered adequately diverse. The seven food groups include: grains, roots, and tubers; legumes and nuts; dairy products (milk, yogurt, cheese); flesh foods (meat, fish, poultry, and liver/organ meat); eggs; vitamin-A rich fruits and vegetables; and other fruits and vegetables 19. Since three of the seven food groups are ASF, it was anticipated that ASF consumption contributed to dietary diversity in the sample.

A group of cases from the region of Benishangul-Gumuz were identified to have answered the dietary recall questions in a way that did not meet the requirements of the study protocol. This resulted in the need to exclude 50 participants to eliminate introducing bias in the measurement of the outcome of interest.

Independent variables
Child and household characteristics included in this analysis were child sex and age; respondent age, education and occupation; and household total number of children, assets, livelihood, religion, and livestock ownership. Education is a dichotomous variable identifying caretakers reporting any versus no formal or informal (e.g. religious schooling that includes learning to read) education. Occupation was reduced to a three-level variable to include farmer, housewife (defined as having no employment outside the home), and other occupations. Household asset ownership was determined from a set of twelve assets (equivalent to those asked on the EDHS) including electricity, a watch or clock, a radio, a television, a mobile telephone, a non-mobile telephone, a refrigerator, a table, a chair, a bed with a mattress (cotton/sponge/spring), an electric mitad (a grill or cooktop used for preparing injera or bread), and a kerosene lamp/pressure lamp. Ownership of these assets were summed to assign a score of asset ownership to households. Livelihood was determined from three questions: ownership of agricultural land, use of land to grow crops to consume or sell, and movement for the purpose of obtaining food or water for livestock. Households were categorized as agriculturalists if they own land and used it to grow crops for consumption or to sell but did not move in search of food or water for livestock. Participants that
grew crops for sale or consumption on their land and moved in search of food and water for livestock were categorized as agro-pastoralists. Moving in search of food or water for livestock, but not owning land used to grow crops for sale or consumption, were classified as pastoralist households. Religion was constructed as a three-level variable to identify Ethiopian Orthodox Christians, Muslims, and other religions (including other Christian faiths). Livestock ownership was assessed as number of animals owned.

Occupation and livelihood were highly correlated (Pearson correlation coefficient=0.650) since the farmer occupation and agriculturalist livelihood captured almost the same group. So, these were combined to eliminate issues of multi-collinearity in the multivariable logistic regression model, and allowed for fewer missing cases. Participants/caregivers who reported their occupation as housewife or other but were assigned to pastoralist or agro-pastoralist livelihoods were analyzed as pastoralist or agro-pastoralist, not as housewives or other occupation.

Food security was assessed using a portion of the Household Food Insecurity Access Scale (HFIAS) developed by the Food and Nutrition Technical Assistance Project in 2007. Time limitations prevented the full set of HFIAS questions from being included on the questionnaire. The questions used were intended to measure insufficient food intake and its physical consequences, defining severe food insecurity by the HFIAS. These asked about the occurrence (yes/no) and frequency (rarely, sometimes, often) during the previous month of the following food insecure events: was there ever no food in the household, did they ever go to bed hungry because there was not enough food to eat, and did they ever go a whole day and night without eating because they did not have enough food. A severe food insecurity score was calculated per the full HFIAS questionnaire, by summing the frequency of occurrence (0 for never, 1 for rarely, 2 for sometimes, and 3 for often) of each event, giving a score ranging from 0, indicating the household had not experienced any severe form of food insecurity to 9 indicating all three severe food insecurity events happened often.

Participants were asked about receipt of food aid and participation in the PSNP during the previous year. PSNP provides food, cash, or a combination in exchange for labor on public works projects supported by the Agriculture Extension Program. Direct support from PSNP where no labor is required was also evaluated. Pregnant and lactating women, and those with children suffering from acute malnutrition qualify for temporary direct support from the PSNP with some conditionalities of antenatal care and nutrition education.

Analysis
Data was transferred into SPSS Statistics, version 24 (IBM Corp, Armonk, N.Y., USA) for analysis. Descriptive characteristics are given as proportions (%) or means for categorical and continuous variables, respectively. Bivariate analysis of ASF consumption with independent variables was conducted using Pearson’s Chi Square test of independence for categorical variables, and independent samples t-test and Wilcoxon rank-sum test for continuous variables.

Multivariable logistic regression was used to calculate adjusted Odds Ratios (OR) and 95% Confidence Intervals (CI). Two adjusted models are presented. The first is adjusted for age only. The second adjusted model includes age, livelihood, religion and the food aid/safety net variable. The model building strategy was similar to that outlined by Hosmer and Lemeshow. The initial selection of variables was based on a priori thought of their relation to the outcome and their availability in the data. The initial multivariable model included all effects that were associated with the outcome in unadjusted analysis at p<0.25, then those that were not significantly improving the model (p>0.05 based on likelihood ratio tests) were removed until a final parsimonious model was reached with stable parameter estimates. Variables that had unadjusted
significant associations with ASF but had been removed were re-entered into the final model to check again for significant contribution in the smaller model. None were retained at this point. Child sex was not included in the final model since it was not associated with ASF consumption, but when it was included it did not alter the results. Interactions among the variables in the final model were not tested due to small cell sizes that would result. The final model did not show indication of poor fit, based on Hosmer and Lemeshow’s test for goodness of fit using deciles (p=0.6736)\(^4\). All adjusted ORs from the final model are presented regardless of statistical significance.

Missing values were limited for the majority of variables used and were excluded from analyses that used those variables but were not excluded across all other analyses in order to preserve sample size. Imputation was not used for multiple logistic regression.

Results

A total of 1,299 households were surveyed across 8 zones from 88 clusters, of which 10 children had missing age and 230 were younger than 6 months and thus excluded from analysis. Among the 1,059 remaining, 50 were excluded cases with compromised dietary recall questions. Finally, a sample size of 1,009 was used for analysis.

Participant characteristics

Among the 1,009 children in the sample, 53% were male and were on average 19.6 months of age (Table 1). The average age of parents/caregivers was 29 years and most (97%) said they were the mothers of the index children and one-third reported having attained any formal education. The surveyed households predominantly belonged to two religious groups, Ethiopian Orthodox and Islam at 41% and 54% respectively. The sampled households had only 1.4 assets (out of potential 8) on average. Pastoralists comprised 20%, 29% reported both pastoral and agricultural activities, and 42% were agriculturalists (farmers). Those respondents who did not fall into one of these livelihood categories reported being housewives (3.5%) or had other occupations (5.8%). Households owned an average of 11 animals. The average severe food insecurity score was 0.7, and the majority (62%) said they had not received any food aid, nor had they participated in the PSNP in the past year. About 11% said they had received non-PSNP related food aid, 20% said they had participated in PSNP (not direct support), and 8% said they had been the beneficent of PSNP direct support during the past year (Table 1).

<table>
<thead>
<tr>
<th>Variable (missing)</th>
<th>ASF consumption</th>
<th>p-value</th>
<th>Total n (col %) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child Characteristics</td>
<td>No n (row %) a</td>
<td>Yes n (row %) a</td>
<td></td>
</tr>
<tr>
<td>Sex of child (6)</td>
<td>257 (48.7)</td>
<td>271 (51.3)</td>
<td>0.6995 b</td>
</tr>
<tr>
<td>Male</td>
<td>237 (49.9)</td>
<td>238 (50.1)</td>
<td>475 (47.4)</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age of child in months (0)</td>
<td>18.6 (8.84)</td>
<td>20.7 (8.45)</td>
<td>0.0001 c</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>17 (10, 25)</td>
<td>21 (13, 27)</td>
<td></td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Caretaker and household characteristics
<table>
<thead>
<tr>
<th>Category</th>
<th>Mean (SD)</th>
<th>Median (Q1, Q3)</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respondent age in years (39)</td>
<td>29.0 (6.3)</td>
<td>28 (25, 32)</td>
<td>0.0979c</td>
<td>0.0979c</td>
</tr>
<tr>
<td>Total number of children (168)</td>
<td>4.0 (1.9)</td>
<td>4 (3, 5)</td>
<td>0.8391c</td>
<td>0.8391c</td>
</tr>
<tr>
<td>Respondent Education (8)</td>
<td>3.9 (2.0)</td>
<td>4 (2.5, 5)</td>
<td>0.5721d</td>
<td>0.5721d</td>
</tr>
<tr>
<td>Number of HH assets (29)</td>
<td>1.5 (1.6)</td>
<td>1 (0, 2)</td>
<td>1.4 (1.5)</td>
<td>1.4 (1.5)</td>
</tr>
<tr>
<td>Religion (3)</td>
<td></td>
<td></td>
<td><0.0001b</td>
<td><0.0001b</td>
</tr>
<tr>
<td>Livelihood/Occupation (0)</td>
<td></td>
<td></td>
<td><0.0001b</td>
<td><0.0001b</td>
</tr>
<tr>
<td>Livestock ownership: number of animals owned (23)</td>
<td>6.2 (22.4)</td>
<td>1 (1, 6)</td>
<td><0.0001c</td>
<td><0.0001c</td>
</tr>
<tr>
<td>Food Insecurity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food aid or PSNP participation (0)</td>
<td></td>
<td></td>
<td><0.0001b</td>
<td><0.0001b</td>
</tr>
<tr>
<td>Minimum dietary diversity (28)</td>
<td></td>
<td></td>
<td><0.0001b</td>
<td><0.0001b</td>
</tr>
</tbody>
</table>

*Respondent age in years (39) Mean (SD) 29.0 (6.3) 29.6 (6.3) 0.0979c 29.3 (6.3)
**Median (Q1, Q3) 28 (25, 32) 30 (25, 34) 29 (25, 33)
**Total number of children (168) Mean (SD) 4.0 (1.9) 3.9 (2.0) 0.8391c 4.0 (1.9)
**Median (Q1, Q3) 4 (3, 5) 4 (2.5, 5) 0.5721d 4 (3, 5)
**Respondent Education (8) No education 322 (47.9) 351 (52.2) 673 (67.2)
**Any education 170 (51.8) 158 (48.2) 328 (32.8)
**Number of HH assets (29) Mean (SD) 1.3 (1.4) 1.5 (1.6) 0.0261c 1.4 (1.5)
**Median (Q1, Q3) 1 (0, 2) 1 (0, 2) 0.0395d 1 (0, 2)
**0 186 (51.1) 178 (48.9) 364 (37.1)
**1 135 (53.2) 119 (46.9) 254 (25.9)
**2-4 137 (43.8) 176 (56.2) 313 (31.9)
**5-8 18 (36.7) 31 (63.3) 49 (5.0)
**Religion (3) Muslim 220 (40.2) 327 (59.8) 547 (54.4)
**Orthodox 246 (59.6) 167 (40.4) 413 (41.1)
**Other 28 (60.9) 18 (39.1) 46 (4.6)
**Livelihood/Occupation (0) Pastoral 30 (15.2) 167 (84.8) 197 (19.5)
**Agro-pastoral 155 (53.1) 137 (46.9) 292 (28.9)
**Agricultural/Farmer 272 (63.9) 154 (36.2) 426 (42.2)
**Housewife 16 (45.7) 19 (54.3) 35 (3.5)
**Other 22 (37.3) 37 (62.7) 59 (5.8)
**Livestock ownership: number of animals owned (23) Mean (SD) 6.2 (22.4) 16.2 (27.5) <0.0001c 11.3 (25.7)
**Median (Q1, Q3) 1 (1, 6) 7 (1, 18) <0.0001d 3 (1, 12)
**0 47 (59.5) 32 (40.5) <0.0001b 79 (8.0)
**1-4 279 (60.8) 180 (39.2) 459 (46.6)
**5-10 70 (48.0) 76 (52.1) 146 (14.8)
**10 or more 83 (27.5) 219 (72.5) 302 (30.6)

Food Insecurity

<table>
<thead>
<tr>
<th>Severe food insecurity score (12)</th>
<th>Mean (SD)</th>
<th>Median (Q1, Q3)</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>0.6 (1.5)</td>
<td>0.8 (1.6)</td>
<td>0.0357c</td>
<td>0.7 (1.6)</td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>0 (0, 0)</td>
<td>0 (0, 1)</td>
<td>0.0055d</td>
<td>0 (0, 1)</td>
</tr>
<tr>
<td>0</td>
<td>385 (51.5)</td>
<td>362 (48.5)</td>
<td>0.0008b</td>
<td>747 (74.9)</td>
</tr>
<tr>
<td>1-3</td>
<td>83 (43.7)</td>
<td>107 (56.3)</td>
<td>190 (19.1)</td>
<td></td>
</tr>
<tr>
<td>4-6</td>
<td>10 (24.4)</td>
<td>31 (75.6)</td>
<td>41 (4.1)</td>
<td></td>
</tr>
<tr>
<td>7-9</td>
<td>13 (68.4)</td>
<td>6 (31.6)</td>
<td>19 (1.9)</td>
<td></td>
</tr>
<tr>
<td>No food insecurity</td>
<td>385 (51.4)</td>
<td>362 (48.5)</td>
<td>0.0124b</td>
<td>362 (48.5)</td>
</tr>
<tr>
<td>Any food insecurity</td>
<td>106 (42.4)</td>
<td>144 (57.6)</td>
<td>0.0979c</td>
<td>0.7 (1.6)</td>
</tr>
</tbody>
</table>

Food aid or PSNP participation (0)

<table>
<thead>
<tr>
<th>Food aid or PSNP participation (0)</th>
<th>No food aid or PSNP participation</th>
<th>Food aid (no PSNP)</th>
<th>PSNP (not direct support)</th>
<th>PSNP direct support</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>372 (59.4)</td>
<td>42 (39.3)</td>
<td>68 (34.0)</td>
<td>13 (17.1)</td>
<td>0.0001b</td>
<td>0.0001b</td>
</tr>
<tr>
<td>Median (Q1, Q3)</td>
<td>254 (40.6)</td>
<td>65 (60.8)</td>
<td>132 (66.0)</td>
<td>63 (82.9)</td>
<td>626 (62.0)</td>
<td>107 (10.6)</td>
</tr>
<tr>
<td>0</td>
<td>200 (19.8)</td>
<td>76 (7.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum dietary diversity (28)
The recommended minimum dietary diversity of 4 or more different types of foods the previous day was met by 18% of the surveyed children and 51% had consumed ASF (Table 1). The most commonly consumed ASF was milk (48%) whereas meat was consumed by 11% of children on the day before the survey (Figure 1). Less than 1% of the children had eaten fish but the study took place in predominantly non-fishing communities. Only 3% had eaten organ meats such as liver. Twelve and 11% had consumed yogurt and cheese in the previous 24 hours, respectively.

Those children who consumed ASF during the previous day were more likely to meet the recommended minimum dietary diversity. Of those who had eaten ASF, 31% met the minimum dietary diversity compared to only 4% of those who had not consumed ASF.

Unadjusted associations
Increased ASF consumption was associated with increasing child age, household assets, religion, livelihood, livestock ownership, severe food insecurity score, and food aid or safety net participation (Table 1). The unadjusted relationship between ASF and severe food insecurity score was not in the anticipated direction; those with a higher score indicating more severe food security have a greater likelihood of eating ASF.
insecurity experiences had consumed more ASF. The limited nature of the severe food insecurity score, as described in the methods section, likely contributed to this. The direction of the unadjusted associations between ASF and child age, household assets, and livestock ownership are in the expected directions as older children eat more foods, increased household assets may be a proxy for improved SES, and increased livestock ownership may indicate higher SES as well as improved access to some ASF including milk. Child sex, total number of children and respondent education were not associated with ASF consumption, while caregiver’s age had a moderate association with ASF in the positive direction (Table 1).

Muslim children had consumed ASF (60% of Muslim children) at a higher rate than Orthodox children (40%) and those from other religions (39%, Table 1). Among the different livelihood and occupation groups more children of pastoralist households had eaten ASF the previous day (85% of pastoralists) than agro-pastoralists (47%) and agriculturalists/farmers (36%). Children from households receiving food aid or participating in PSNP consumed more ASF than children in households without these types of assistance (Table 1).

Adjusted associations

In the adjusted model, associations with ASF were retained with child age, religion, livelihood/occupation, and food aid/PSNP participation (Table 2). The livelihood/occupation groups of “housewife” and other were combined during the multivariable analysis given the small numbers of people in them. Household assets and livestock ownership were no longer significantly associated with ASF consumption when adjusted for these other variables so they were not included in the final model.

Table 2: Adjusted odds ratios for consumption of animal source foods by religion, livelihood, and food aid or safety net participation (n = 1006).

<table>
<thead>
<tr>
<th></th>
<th>Age-adjusted OR (95% CI)</th>
<th>Fully Adjusted * OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of child – per 3-month increase</td>
<td>1.09 (1.04, 1.14)</td>
<td>1.08 (1.03, 1.13)</td>
</tr>
<tr>
<td>Religion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muslim</td>
<td>Referent group</td>
<td>Referent group</td>
</tr>
<tr>
<td>Orthodox</td>
<td>0.45 (0.35, 0.59)</td>
<td>0.70 (0.53, 0.94)</td>
</tr>
<tr>
<td>Other</td>
<td>0.44 (0.24, 0.82)</td>
<td>0.61 (0.31, 1.18)</td>
</tr>
<tr>
<td>Livelihood/Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pastoral</td>
<td>Referent group</td>
<td>Referent group</td>
</tr>
<tr>
<td>Agro-pastoral</td>
<td>0.16 (0.10, 0.25)</td>
<td>0.21 (0.13, 0.35)</td>
</tr>
<tr>
<td>Agricultural/Farmer</td>
<td>0.10 (0.07, 0.16)</td>
<td>0.15 (0.09, 0.23)</td>
</tr>
<tr>
<td>Housewife and other</td>
<td>0.26 (0.15, 0.46)</td>
<td>0.32 (0.18, 0.58)</td>
</tr>
<tr>
<td>Food aid or PSNP participation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No food aid or PSNP</td>
<td>Referent group</td>
<td>Referent group</td>
</tr>
<tr>
<td>Food aid (no PSNP)</td>
<td>2.26 (1.482, 3.45)</td>
<td>1.10 (0.68, 1.77)</td>
</tr>
<tr>
<td>PSNP (not direct support)</td>
<td>2.82 (2.017, 3.94)</td>
<td>1.74 (1.21, 2.52)</td>
</tr>
<tr>
<td>PSNP direct support</td>
<td>6.89 (3.71, 12.82)</td>
<td>4.47 (2.33, 8.56)</td>
</tr>
</tbody>
</table>

* Fully adjusted model included age of child, religion, livelihood/occupation, and food aid or PSNP participation.

Children from Orthodox households were 30% less likely to have consumed ASF the day prior to the survey than children from Muslim households (Table 2). Compared with children of pastoralist livelihood families, those from agro-pastoralist households were 79% less likely to have eaten ASF, children from agriculturalist families were 85% less likely, and those with housewife and other occupations were 68% less likely compared to the pastoral families. Finally,
those receiving non-PSNP related food aid were not significantly more likely to have consumed ASF based on the adjusted model, but those who had participated in PSNP during the past year were. Children from families who had participated in PSNP as regular participants (doing public works) were 74% more likely, and those who had participated in PSNP as direct support recipients were 4.47 times as likely, to have consumed ASF the day before the survey, compared to those who did not receive any food aid and did not participate in PSNP during the previous year (Table 2).

Discussion

Dietary diversity was adequate in less than 20% of the children in this study and only around half had consumed any ASF, including milk, milk products, and eggs in the 24 hours preceding the interview. The results confirmed the hypotheses that ASF consumption among children in the rural areas studied in Ethiopia is associated with certain household and community characteristics including religion and livelihood. The factors associated with the consumption of ASF in 6 – 36 months old children from the four regions of Ethiopia were child age, religion, livelihood/occupation, and participation in the safety net program. Children of Ethiopian Orthodox households were less likely to have consumed ASF than children from Muslim households. Pastoralist children were more likely to consume ASF compared to children from agricultural households or other livelihoods. Additionally, children in households with PSNP support, whether by traditional participation or as direct support recipients, consumed more ASF than children in households without such support.

The finding that consumption of ASF increases with age is not surprising given both improved feeding skills and increased caloric needs of children in this age range. Since the study design did not include a method to measure total energy intake, it was not possible to control for this during analysis. However, previous research has indicated that parents and community members do not feel young children are ready for meats and other non-dairy animal products often until later ages 37,44.

Ethiopian Orthodox Church doctrine includes fasting days throughout the year including most Wednesdays and Fridays and extended periods of the Great Lent Fast (Hudaddie Tsom) of 55 days and Fast of the Prophets (Tsome Nebiyat) of 43 days when adults abstain from ASF 45. This may impact children’s consumption of ASF, even if children are not required to fast, due to limited availability of ASF during extended fasting times. Caregivers who are fasting may be hesitant to prepare non-fasting foods for children out of fear of contamination. A recent study among Orthodox Christian households in Ethiopia found lower dietary diversity in children whose mothers reported that they did not want to serve ASF to their children while adults in the household were fasting due to fear of contamination 46. A recent unpublished study reported by Alive & Thrive in Amhara during the extended Lenten fasting period found fear of contamination of family foods to be a significant barrier to optimal IYCF and feeding ASF to children in Orthodox families 47. Authors reported partnering with religious leaders via cascade training to improve knowledge regarding the importance of ASF for children’s diets.

Reduced presence of ASF in children’s diets during fasting times may not negatively impact health status, however. A study by Gashu et al. found low prevalence of iron-deficiency anemia in school children in Amhara region, Ethiopia, despite a predominantly plant-based diet 21. Similarly, an Alive & Thrive report assessed religion and infant and young child feeding through analysis of 2005 and 2011 EDHS and found Orthodox children were more likely to consume iron
rich foods, yet less likely to meet the dietary diversity recommendation or consume ASF than children of other religions, confirming the findings of this study.\(^48\)

By contrast, Muslims engage in fasting for only a one-month period, Ramadan. A crucial difference is that consumption of ASF is permissible by Muslims during the evening meal throughout the month of Ramadan. The dates of data collection for this study did not include the month of Ramadan.

The hypothesis that pastoralist livelihood positively contributes to ASF consumption is based on increased access to fresh milk, and at times meat, for children of livestock herders. Reports have estimated that pastoralists in some parts of Ethiopia may consume between 20 - 50% of dietary energy from milk and animal products, and that young children are especially reliant on the milk sources and prioritized for consuming available milk.\(^49-51\). Formative research conducted by the Milk Matters program among Ethiopian pastoralists in 2009 identified a strong perceived benefit of animal milk among pastoralists and belief in its importance for preventing child malnutrition.\(^36\) This could be protective for pastoralist children during fasting, even if they are in Orthodox communities. Evaluation of the Milk Matters intervention found that supporting milking animals resulted in increased milk availability and consumption among children, and stabilized nutritional status during the dry season.\(^32\) Heavy reliance on milk and ASF for children in pastoralist communities increases vulnerability to dry seasons when availability from livestock decreases, emphasizing the seasonality of the food source and livelihoods.\(^23,36,53\) However, other evidence suggests that the diets of pastoralist children remain inadequate despite higher milk consumption. Mengistu found low consumption of ASF other than milk in pastoralist communities in Ethiopia,\(^54\) coupled with inadequate energy intake, multiple micronutrient deficiencies, and a high prevalence of stunting. The current study similarly found that only 11% of participants had consumed flesh foods the day before the study, compared to 48% having had milk.

Increased ASF consumption in this study among children of PSNP-supported households indicates the potential positive impact of food and cash transfers, coupled with nutrition counseling on child feeding. Cash transfers may free up resources for acquisition of nutritionally valuable foods including ASF.\(^55-58\) Low household income has been associated with low dietary diversity in children in a recent study among Orthodox Christian households in North West Ethiopia.\(^40\) There is evidence that access to PSNP has increased household average caloric intake and child dietary diversity and nutritional status.\(^39,60,61\) One recent study challenged the effectiveness of the program at improving dietary diversity and nutritional status, using an econometric approach to data from the Ethiopian Socioeconomic Survey, however, the methods were not equivalent to those used in thus study, nor to any others, limiting comparability.\(^62\)

Strengths and Limitations

This study had several strengths, including that sampling resulted in equal probability of selection for households that met the inclusion criteria within the study areas and internal validity of the resultant large sample size. The diversity of sample population allowed for adequate proportions within the sample to test the main hypotheses and draw inference in rural Ethiopia. The careful modeling strategy allowed the most important effects to emerge in a parsimonious model giving adjusted ORs to understand the findings.

Limitations included: exclusion of participants due to errors during data collection, lack of comprehensive measures of socioeconomic status, and difficulty in interpreting food insecurity due to limited scope of questions included in the survey. It should be noted that the majority of
The households reported no severe food insecure events in the past 30 days, and the study took place at the onset of a severe drought that had begun in 2015, so it is possible that some participants were experiencing mild to moderate food insecurity. However, the reporting of food aid and safety net participation may have compensated for this. Finally, the cross-sectional design also limits the study findings.

Nonetheless, findings are likely representative of patterns in rural areas of the four regions in which the study took place. Generalizability beyond these regions in Ethiopia may be more limited, but further research in other regions would support the reliability of these results. Additional research into the associations between religion, livelihood, and PSNP participation with consumption of ASF while adequately controlling for socioeconomic factors and food security would improve upon these findings. Studies of the effectiveness of the PSNP to improve dietary diversity, including consumption of ASF, and nutritional status of children with proper evaluation designs should be pursued.

These results imply the need to account for specific community characteristics such as religion and livelihood in interventions. Methods to maximize the quality of children’s diets with vegetarian-based fasting foods should be further explored in fasting communities and potentially incorporated into program messaging. Behavior change related to ASF for children among households during fasting periods may have limited effect unless issues such as contamination and children’s exemptions from fasting are highlighted. Engagement of religious leaders is likely to be beneficial. Pastoralist communities may not need to increase consumption of ASF, especially milk, but may lack access to other nutritionally diverse foods. It is essential to protect pastoral livestock in times of drought in order to maintain this essential food source for children. Livestock resiliency piloted by the Milk Matters program provides a useful strategy. Participation in PSNP appears to benefit children in terms of consumption of ASF and should be expanded to additional geographic areas and households in need, while continuing to evaluate its effectiveness at improving dietary and nutritional status outcomes in children of food insecure households.

Household, family, and community characteristics play an important role in child feeding habits and norms. This study found that in addition to child age, the family’s religion, livelihood/occupation, and participation in the PSNP were significantly associated with child consumption of ASF’s. Such household and community factors should be considered when designing and targeting programs to improve child dietary diversity, nutritional status and health.

Funding

The study was funded by UNICEF Ethiopia and the United Kingdom Department for International Development.

Acknowledgements

The authors wish to acknowledge all those involved in the research, especially the mothers and children who participated in data collection. We are deeply grateful to John B. Mason (1944-2018) for initiating and supervising the study.
References

