Delineation of Cocoa Agroforests Using Multi-Season Sentinel-1 SAR Images: Low Grey Level Range Reduces Uncertainties in GLCM Texture-Based Mapping

Frederick N. Numbisi 1, 2,*, Frieke M. B. Van Coillie 1 and Robert De Wulf 1

1 Ghent University, Laboratory of Forest Management and Spatial Information Techniques, Coupure Links 653, 9000 Gent, Belgium; (Frederick.NkeumoeNumbisi, Frieke.Vancoillie, Robert.DeWulf) @UGent.be
2 World Agroforestry Centre (ICRAF), West and Central Africa Regional Programme, P. O. Box 16317, Yaoundé, Cameroon; f.nkeumoe@cgiar.org
* Correspondence: frednumbisi@gmail.com; Tel.: +49-178-310-7190

Abstract: Delineating the cropping area of cocoa agroforests is a major challenge for quantifying the contribution of the land use expansion to tropical deforestation. Discriminating cocoa agroforests from tropical transition forests using multi-spectral optical images is difficult due to a similarity in the spectral characteristics of their canopy; moreover, optical sensors are largely impeded by the frequent cloud cover in the tropics. This study explores multi-season Sentinel-1 C-band SAR image to discriminate cocoa agroforests from transition forests for a heterogeneous landscape in central Cameroon. We use an ensemble classifier, random forest, to average SAR image texture features of GLCM (Grey Level Co-occurrence Matrix) across seasons; next, we compare classification performance with results from RapidEye optical data. Moreover, we assess the performance of GLCM texture feature extraction at four different grey level quantization: 32bits, 8bits, 6bits, and 4bits. The classification overall accuracy (OA) of texture-based maps outperformed that from an optical image; the highest OA of 88.8% was recorded at 6bits grey level. This quantization level, in comparison to the initial 32bits in SAR images, reduced the class prediction error by 2.9%. Although this prediction gain may be large for the landscape area, the resultant thematic map reveals the decrease and fragmentation of forest cover by cocoa agroforests. According to our classification validation, the Shannon entropy (H) or uncertainty provides a reliable validation for class predictions and reveals detail inference for discriminating inherently heterogeneous vegetation categories. The texture-based classification achieved a reliable accuracy considering the heterogeneity of the landscape and vegetation classes.

Keywords: mapping cocoa agroforests; Congo Basin rainforest; sentinel-1; SAR; GLCM textures; grey level quantization; random forest algorithm; machine learning; classification uncertainty

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.
1. Introduction

The mapping of cocoa commodity cropland is essential to quantify its ecosystem services, and as well the disservices related to tropical forest cover loss. Agricultural land expansions, predominantly for oil palm, rubber, and cocoa plantations, contribute significantly to tropical deforestation [1–3]. Moreover, these commodity cropping lands, amongst others, provide different ecological services in terms of carbon sequestration, habitat provision, conservation of biodiversity [4,5]. Thus, a reliable and recurrent mapping of such cropping area is crucial for customizing forest landscape management to the respective land use expansion.

Agroforestry has been suggested as an agricultural option for sustainable cocoa production; Cocoa Agroforestry refers to the system of growing cocoa tree crop in the understory of multi-strata canopy trees [6], which comprise a diversity of timber, fruits, and NTFP (Non-Timber Forest Product) producing tree species [5,7,8]. Cocoa is a tree crop of high economic importance, and particularly in tropical sub-Saharan Africa [2,9] that contributes about 70% of global cocoa dry beans export [10]. Regrettably, the expansion of cocoa production lands contributes significantly to the loss of forest cover [11,12]. Such expansions are somewhat specific to countries and production landscapes [13–16]; therefore, some are more destructive to forests than others. On a global scale, cocoa production was responsible for 57% of the global agricultural land expansion rate of 132,000 ha y⁻¹ in the period 2000–2013 [17]. However, such figures need validation, at national levels, through mapping of actual cropping lands.

From an ecological standpoint, compared to the intensive mono-stratum cocoa plantations and other high canopy commodity crops such as oil palm, rubber, etc., cocoa agroforests sustain ecosystem services at a scale that is considered second to transition forests [18–20]. Regarding management in most cocoa-producing nations, available literature does rarely address spatial mapping of cocoa production area. Management projections on production area are based on the FAO’s (Food and Agricultural Organization) database on crops, FAOSTAT. This database depends on sporadic Country reports of annual harvest area, and projection from these reports, which may not represent the actual ground reality [21] in the case of Cameroon, cocoa is predominantly grown in small-scale agroforests of 1-3ha [5,7,8]. Thus, the cocoa area of 123,120 ha in Cameroon’s Centre Region production hotspot for example [22], is in effect the harvested area, which is based on seasonal records by local farmers’ and Cocoa cooperatives. Thence, the national statistics is monitored and published by the National Cocoa and Coffee Board (NCCB). Depending on the variety and propagation technique, established cocoa farms require about 3 or more years of crop tending, before the harvest of first produce [23]. Consequently, the FAO records of the harvested area may be, at the minimum, 3 years short of possible expansions in cocoa farms. On the assumption of continuous expansion of cocoa production land, therefore, the associated impact on forest cover is far greater than management extrapolations made solely from published data on harvested areas. For a sustainable management of cocoa production landscapes, national government programs that stimulate export of dry cocoa beans [2,9,22] need support for reliable and updated estimations of both harvest and expansion areas for cocoa agroforests.

The application of earth observation data provides large-scale mapping of commodity cropping area. Unfortunately, the discrimination of cocoa agroforest areas with multi-strata canopy, using optical reflectance and vegetation indices is yet not successful [17,24]. Cocoa agroforests have similar canopy structure as transition forests [16]. In moist tropical zones, a high frequency of clouds and atmospheric aerosols hampers application of optical satellite data. SAR images on the contrary, provide cloud and season independent information about land surface features. Based on texture information extraction, the analysis of SAR images has been used for discrimination of cropland [25,26] and forest biomass estimation [27]. Unlike optical imagery that captures reflectance of trees and forest canopies, SAR data capture the water content (a dielectric property) and structure (geometric property) of target features. The later information is only provided if the targets’ size is lower or close to the wavelength of the SAR sensor. Thus, use of SAR imagery, e.g. for vegetation mapping, is predetermined by sensor wavelength, and necessitates image processing procedures that vary with vegetation type and scale of assessment.
Long wavelength SAR such as L-band ($\lambda=25$ cm) provide details on volume scattering from branches and stems, which are essential for aboveground biomass estimation [28]. A SAR-based index, Radar Vegetation Index (RVI), was developed for biomass monitoring using L-band data. However, the application of such an index requires removal of the contribution from soil surface backscatter [29]. Although such bands may improve discrimination of vegetation with high tree canopy, they are less reliable for mapping features of low or no vegetation. In the latter scenario, therefore, other SAR wavelengths may be equally reliable.

The C-band sensor is the wavelength ($\lambda=5$ cm) with the largest temporal series in SAR remote sensing. Its utility has been less explored for mapping tropical land cover, and especially so in commodity croplands in the predominantly heterogeneous farming conditions in sub-Saharan Africa. The C-Band SAR penetrates the vegetation canopy only to a limited extent. However, as in the case of settlement and grassland land cover classes, forests have a high temporal stability of SAR backscatter signals. To Thiel et al. [30], the contrast between these land cover classes and agricultural land is high in the cross-polarized (HV or VH) SAR image bands. Besides, Stimulus et al. [31] reported that texture measures are needed to discriminate settlement areas from forests. Thus, considering the seasonal changes in structure and water content of vegetation canopy elements, a temporal metric of texture from C-band SAR images may be able to discriminate perennial agroforestry land cover.

Texture measures from Grey Level Co-occurrence Matrix (GLCM) provide reliable information on the spatial relationship of images pixels [32]. The GLCM provides a joint probability distribution or co-occurrence frequency of grey levels (or intensity tones) in an image based on three parameters: the pixel(s) distance, angular displacement and image sub-region - analysis window size. Several second order, between two pixels, statistics from the GLCM were proposed [33] to describe the texture in an image. The use of GLCM texture measures depends on the geometry of target features and their characteristic spatial structure in the landscape[32]. For land cover classification in a heterogeneous landscape, Mishra et al. [34] observed that texture information was more valuable to improve classification accuracy in SAR image than for optical image. Yet, the authors [34] suggested that an optimum combination of texture features is needed for the specific type of landscape heterogeneity. Land cover classification using GLCM texture extraction have focused on scale or window size [32,34–37]. However, the importance of grey level quantization in GLCM texture analysis has been emphasized [38–40]. Moreover, for texture feature extraction, use of image grey levels beyond the depth of pixels (range of values) may increase uncertainty in results [41]. Thus, application of GLCM matrix for land use and land cover (LULC) classification [30,32,37] do not take grey level quantization in account, which may be vital in mapping heterogeneous agricultural landscapes - in particular, the inherently heterogeneous LULC categories.

The purpose of this study was to assess the temporal contribution of SAR volume scattering, essentially by vegetation canopy, in discriminating perennial cocoa agroforests land use. We explored multi-seasonal multi-polarization Sentinel-1 C-band SAR images for the following objectives: (1) Evaluate the performance of GLCM texture-based discrimination of cocoa agroforest land use from transition forests cover in comparison to typical classification from multi-spectral optical image – using a RapidEye image; (2) Assess the contribution of grey level quantization in improving texture-based classification performance. We compared four different grey level quantization or dynamic pixel range: 32bits, 8bits, 6bits and 4bits; (3) Assess the information gain from Shannon Entropy (H) or uncertainty as a classifier performance estimator.

We applied the GLCM to estimate four selected texture statistics based on [32]: contrast, entropy, variance, and correlation, which provided texture information on structure and water content of vegetation – volume scattering. Then, conducted an averaging of SAR volume scattering across seasons by using a machine (random forest) learning classification algorithm; we include other land cover classes in classification analysis to derive a thematic land cover map of the heterogeneous landscape.
2. Study site

This study was conducted in the landscape of Bakoa (32°N 73°42′80″E 51°09′75″N and 74°74′35″N 50°14′80″E, 123.28 km²), which is located in the Bokito District of the Mbam and Inoubou Department, in the Centre Region of Cameroon (Figure 1). This area is classified as a savannah-forest transition zone. The topography features a rolling terrain and the altitude ranges between 500 – 900 m a.s.l. The vegetation is a mosaic of bush-savannah, subsistence farming, and perennial cocoa agroforests. These perennial agroforests are established mainly within or along patches of transition and gallery forests. The study area is situated in the humid forest bimodal agro-ecological zone, which is characterized by two dry and wet seasons. The total annual rainfall ranges between 1300 – 1500 mm with a long rainy season from August to November. The main dry season lasts about 5 months from November – April. The mean annual temperature is 25°C.

Figure 1. (a) Study area located in the centre region of Cameroon; (b) Study landscape, in red footprint, within the Bam and Inoubou administrative department; (c) RapidEye false colour image (RGB: Blue, Green, and Red spectral bands) revealing a mosaic of forest and savannah vegetation in the landscape.

3. Materials and methods

3.1 Satellite data: optical and radar imagery

We acquired a multispectral optical image of 5m spatial resolution from RapidEye, which was recorded in the dry season of 2015. The image comprised five spectral bands in the Blue (400-510 nm), Green (520-590 nm), Red (630-685 nm), RedEdge (690-730 nm), and Near Infrared (760-850 nm) range of the electromagnetic spectrum. Four different image tiles, acquired on the same date, were needed to cover the study landscape.

We accessed Sentinel-1A C-band ($\lambda=5.5$ cm) SAR images for the study area from the Sentinel Scientific Data Hub of the European Space Agency (ESA). The SAR data were acquired in dual (VV and VH) polarization, the Interferometric Wide swath (IW) observation mode, and pre-processed to...
Level-1 or ground range detection level (GRDH) of 10m spatial resolution. We selected a temporal series of 50 images acquired between March 2015 and April 2017 that covered both the dry and wet seasons. Using the image processing tools of Sentinel Application Platform (SNAP) version 5.0, we prepared image subsets and pre-processed them sequentially from radar backscatter intensity values to sigma naught (sigma0) backscatter coefficients: thermal noise removal, filtering with orbit file, radiometric calibration, geometric rectification, and terrain correction. The digital elevation model (DEM) of the Shuttle radar topographic mission (SRTM) was applied, in SNAP with Sentinel-1 toolbox (S-1TBX), for terrain correction and geometric rectification of SAR images. We used both the co- (VV) and cross-polarised (VH) bands of all images. We then projected the pre-processed 10m resolution images in WGS 1984 UTM Zone 32 N. A list of the remote sensing data is presented in Table 1.

Table 1. Used remote sensing data: mono-date RapidEye (5m) and multi-date Sentinel-1 SAR (10m) data.

<table>
<thead>
<tr>
<th>Satellite mission</th>
<th>Scene ID(s)</th>
<th>Acquisition date (DD/MM/YYYY)</th>
<th>Sensing stop time (HH:MM:SS UTC)</th>
<th>Acquisition mode (Polarization)</th>
<th>Data level</th>
</tr>
</thead>
<tbody>
<tr>
<td>RapidEye: RE-3</td>
<td>3241224, 3241225, 3241124</td>
<td>09-JAN-2015</td>
<td>10:35:41.00</td>
<td>MSI, Optical</td>
<td>L3A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>_010456_00F838_64CF</td>
<td>20-MAR-2016</td>
<td>17:28:13.302867</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2 Field campaigns

During the field campaigns conducted in 2015, 2016 and 2017, we collected ground information on land use and cover. The field data comprised ground GPS information and inventory of representative areas that characterize the different land cover and uses in the landscape (see Figure 2 and Table 2).

Table 2. Description of the thematic land cover types used for classification of land cover (Figure 2).

<table>
<thead>
<tr>
<th>Class acronym</th>
<th>Class Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu</td>
<td>Built up</td>
<td>Residents, commercial/markets, industrial, administrative settings</td>
</tr>
<tr>
<td>Es</td>
<td>Earth road/bare soil</td>
<td>Land areas of exposed soil, bare rocks</td>
</tr>
<tr>
<td>Sv</td>
<td>Shrub/grassland Savannah</td>
<td>Imperata sp. savannah land: Shrubby and grassland areas which have not been converted to farm</td>
</tr>
<tr>
<td>W</td>
<td>Water</td>
<td>River, ponds, seasonal and permanent swamps</td>
</tr>
</tbody>
</table>
Af Perennial cocoa agroforests | Land areas used for cocoa production with various degrees of canopy stratification: canopy/shade trees are mainly deciduous

Fa Subsistence farming | Savannah and forest land areas that have been converted essentially for permanent or seasonal subsistence crop production; including farm fallows

Sf Transition/Secondary forest | Disturbed and gallery forest patches, secret/cultural forest, hunting forest: have a more permanent and less stratified canopy structure

Figure 2. The range of vegetation land cover differ mainly in the density of woody biomass, which changes with season or phenological period. Class acronyms are described in Table 2.

3.3 Image processing workflow

For RapidEye images, the following pre-processing protocol was conducted: atmospheric rectification by dark object subtraction (DOS), radiometric calibration to reflectance values, geometric correction, and finally computing different vegetation indices from a mosaicked image. After subsetting the SAR images, we used the batch processing mode of SNAP for the following pre-processing steps: radiometric calibration to Sigma0 (decibels), and geocoding with SRTM 3sec DEM using RangeDoppler Terrain Correction. We used intensity backscatter profile (Figure 3) and the Random Forest (RF) important variables criterion to remove noisy SAR images, and selected a subsample of 10 (of the 50) important images that represent six wet and four dry seasons between 2015 and 2017 (see summary description in Table 1 and Figure 4).

The image processing steps, detailed in following subsections, comprised of three major categories: (a) Feature extraction: this consisted of computing images of vegetation indices and GLCM texture images; (b) Image classification: we co-registered the vegetation index and texture images into the separate stacks or models described in Table 3. Then we ran eight RF ensemble (machine learning) classification algorithms, using the image stacks as input (Table 3), and (c) Post-processing: estimation of uncertainties in classified maps, in addition to accuracy metrics, as the basis for validating the classifier models. Finally, for the texture-based model with the highest overall
accuracy, we evaluated GLCM texture images at four different grey level quantization, to improve
classification uncertainties.

Figure 3. Radar backscatter intensity temporal profiles for the different land use/cover types
using the SAR images. (a) Vertical transmitted, horizontal receive backscatter; (b) Vertical
transmitted, vertical received backscatter. The number, n, for each label pertains to the amount of the
sample pixels (10×10m²)
Figure 4. Radar backscatter intensity (dB) images of study landscape for key seasons from 2015 to 2017. (a) RapidEye false colour (RGB: bands 1, 2, and 3) composite image; (b) start of wet season: 17 August, 2015; (c) peak dry season: 20 March, 2016; (d) peak wet season: 4 September, 2016; (e) mid of dry season: 14 January, 2017. The left and right columns are, respectively, the VV and VH backscatter for each image. The North and scale bar is applicable to all images.

3.3.1. Feature extraction: Vegetation Indices (VIs) and GLCM texture features

The monitoring of vegetation status and extent is often based on normalisation ratios of spectral bands, in the Visible and Near Infrared (NIR) spectrum [42] in spaceborne imagery. These ratios are based on the contrasting spectral response of vegetation to the Red and NIR wavelengths.

The application of indices such as NDVI (Normalised Difference Vegetation Index) for vegetation monitoring have faced several challenges [43], notably issue of saturation for biomass above certain thresholds, and which is common in moist tropical vegetation. And, although saturation may not be an issue over agricultural landscapes, reflectance from soil background often perturb discrimination of sparse vegetation or cropland from bare soil [44]. In this study, we used VIs whose values indicate the status and abundance of vegetation and biomass, and that minimise the effect of soil background on vegetation reflectance values [45]: NDVI, gNDVI (green NDVI), EVI2 (Enhanced Vegetation Index), SAVI (Soil Adjusted Vegetation Index), and MSAVI (Modified SAVI) [46–50]. However, to provide additional information on vegetation characteristics and vitality, recent
optical sensors include an additional spectral band - the red edge band featured in RapidEye and Sentinel2 [51]. This band is located between red absorption (by chlorophylls) zone, and the NIR waveband. Since radar backscatter signals from a ground resolution cell are pseudorandom, the interaction of microwaves with terrain objects may be difficult to predict. Moreover, SAR images have speckle effect because the response signal of a resolution cell is a coherent interference from multiple scattering elements within the cell. Based on texture information extraction, the analysis of SAR images has been used for discrimination of cropland [26] and forest biomass estimation [27]. Often, the GLCM statistical approach is used in analysing SAR textures. The GLCM is a sparse matrix that stores co-occurrence probabilities of inter-pixel grey levels in an image [33]. These probabilities provide a second-order measure for texture features in an image: they represent conditional joint probabilities of all pairwise combination of grey levels (G) in the spatial window of analysis, and depend on both the spatial orientation (θ) and displacement distance (δ). Computation of GLCM is faster for images with fewer grey levels, because the matrix is dimensioned to G. The conditional probabilities are estimated as follows:

\[\Pr(x) = C_{ij}(\theta, \delta) \]

Where, \(C_{ij} \) = co-occurrence probability between grey level i and j; and is defined by

\[C_{ij} = \frac{P_{ij}}{\sum_{i,j=1}^{G} P_{ij}} \]

Where, \(P_{ij} \) = number of occurrence of grey levels i and j within the given window, for a certain (θ, δ) pair; G = the quantized number of grey levels. The denominator sums up to the total number of grey level pairs (i, j) within the analysis window.

Although different second-order statistics are commonly used to classify single images [52], some GLCM texture measures are auto-correlated [33]: a selection of a few texture measures may be reliable in achieving specific image analysis objective(s) [32]. We assess the accuracy of SAR images, covering several seasons, in discriminating perennial agroforestry land cover, using four less correlated GLCM texture measures: Contrast, Entropy, Correlation, and Variance. We estimated the textures measures from GLCM using a 5×5 moving window, an aggregate orientation of four directions (0°, 45°, 90°, and 135°), and one-pixel displacement (inter-pixel distance).

Contrast = \[\sum_{i,j=0}^{G-1} \sum_{j=0}^{G-1} P_{ij} (i - j)^2 \]

Entropy = \[\sum_{i,j=0}^{G-1} \sum_{j=0}^{G-1} P_{ij} \log_2 P_{ij} \]

Variance = \[\sigma_i^2 = \sum_{i,j=0}^{G-1} P_{ij} (i - \mu_i)^2 \]

Correlation = \[\sum_{i,j=0}^{G-1} P_{ij} \left(\frac{(i-\mu_i)(j-\mu_j)}{\sigma_i \sigma_j} \right) \]

where \(P_{ij} \) is the joint probability distribution of the grey levels i and j at two ends of a displacement vector in the assessment window, and G is the number of rows or columns. Since we considered a symmetrical GLCM, \(\mu_i \equiv \mu_j \) and \(\sigma_i \equiv \sigma_j \). And for Entropy, \(0 \times \ln(0) = 0 \), since \(\ln(0) \) is undefined.

3.3.2. Classification: Random Forest ensemble algorithm

In this study, we used a non-parametric machine learning algorithm, the Random Forest (RF) ensemble as an image classifier. This algorithm builds multiple decision trees for the same dataset based on random bootstrapping of sample training data [53]. The random forest classifier is less influenced by the common issue of over-fitting and is able to handle a large number of variables [54]. Firstly, each tree is built from a random subset (n) of two thirds of the original samples (N) – the ‘in-bag’ data; and secondly, from a subset (m) randomly selected from the total (M) variables in the
dataset – mtry, in each decision tree nodes are split using a best split variable – the one that yields the highest decrease in impurity [54]. The algorithm is a soft classifier on the basis of the probability voting of pixels belonging into the respective classes considered (Table 2). Compared to other non-parametric classification algorithms, it is less constrained by the need of extensive training and test data samples; this is due to an integrated out-of-bag (OOB) error estimation and accuracy test following a bootstrap sub-sampling on input data. Several sources provide additional details on the random forest algorithm [54,55].

We ran eight RF models for the different images stacks as classifier input (Table 3). For each model, we evaluated the OOB error curve and mtry to prune decision trees to an optimal number. For a spatially explicit and unbiased representation of each land cover class in the RF models, we divided the extracted pixel information for each class into a stratified random sample of 70% and 30% pixels respectively for training and testing the models. Image classification was conducted using the random forest package [56] of R programming software 3.4.3.

Table 3. The respective image stacks, used to compare the Random Forest (RF) classification accuracy.

<table>
<thead>
<tr>
<th>Data Categories</th>
<th>Model</th>
<th>Image stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE: Dry season Multi-spectral RapidEye Image</td>
<td>RE1</td>
<td>TOA Reflectance of B, G, R, Red Edge, and NIR: 5 Bands</td>
</tr>
<tr>
<td></td>
<td>RE2</td>
<td>TOA Reflectance and Vegetation Indices (VIs): 10 Bands</td>
</tr>
<tr>
<td>GL: Multi-date and season SAR GLCM Textures</td>
<td>GL1</td>
<td>Multi-date VV GLCM Textures: 40 Bands</td>
</tr>
<tr>
<td></td>
<td>GL2</td>
<td>Multi-date VH GLCM Textures: 40 Bands</td>
</tr>
<tr>
<td></td>
<td>GL3</td>
<td>Multi-date VV and VH GLCM Textures: 80 Bands</td>
</tr>
<tr>
<td>GL: Multi-date and season SAR intensity and GLCM Textures</td>
<td>GLI1</td>
<td>Multi-date SAR VV Sigma0 intensity and VV GLCM Textures: 50 bands</td>
</tr>
<tr>
<td></td>
<td>GLI2</td>
<td>Multi-date SAR VH Sigma0 intensity and VH GLCM Textures: 50 bands</td>
</tr>
<tr>
<td></td>
<td>GLI3</td>
<td>Multi-date SAR VV plus VH Sigma0 intensity and, VV plus VH GLCM Textures: 100 bands</td>
</tr>
</tbody>
</table>

Several studies have used RF for classification of forest cover [57] and cropland [26]. Although data over-fitting and poor prediction with RF approach has been reported [58] contrarily, it has been shown to provide relatively better classification of croplands [26] and mangrove vegetation [52]. Thus the performance of the RF ensemble classification algorithm may vary for different landscapes and cropping systems. For example, Loosvelt et al. [59], observed a high classification uncertainties for mixed pixels, at the heterogeneous boundaries of internally homogeneous cropping fields. Likewise, Van Tricht et al. [60], reported low classification confidence at such crop boundaries. Mixed cropping systems are common and the norm in moist tropical landscapes. However, reported research on the processing and use of SAR images for mapping of tropical heterogeneous cropping land, such as perennial agroforestry, is scarce.

3.3.3. Post-processing and classification uncertainty assessment

In remote sensing mapping, the validity and reliability of classified maps are often decided on basis of estimated overall accuracy and kappa coefficient [26]. Values such as user’s and producer’s accuracy are prone to errors and uncertainties [61]. As a soft classifier, however, the RF algorithm provides the possibility for assessing data- and computation-related uncertainties [59]. In our analysis, we used user’s accuracy (omission error), producer’s accuracy (commission error), overall accuracy and Kappa statistics – which compares results of a chance classification versus our RF model.
However, the pixel-based classification methods are prone to uncertainties coming from either the use of unreliable data [61]. Thus, RF algorithm, as a soft classifier, provides a vector \((P_i) \) of classification probability or votes for each image pixel - \(P = P_1, P_2, P_3, \ldots, P_n \) for a classification with \(n \) categories, and \(P_i \) denotes the probability of belonging to class \(i \) (Table 2).

In this study, in addition to model OOB error estimation, we evaluated classification uncertainties of RF models using the maximum classifier probability (\(U \)), and a weighted uncertainty measure entropy: the Shannon entropy (\(H \)) (Shannon, 1948; Vajapeyam, 2014). These uncertainties were calculated as:

\[
U = 1 - P_{\text{max}} \quad (8)
\]

\[
H = -\sum_{i=1}^{N} P_i \log P_i \quad (9)
\]

Where, \(P_i \) = probability of belonging to class \(i \) and \(P_{\text{max}} \) = maximum probability vote for a pixel’s class. \(N \) = the total number of classes considered for analysis.

The maximum probability class assignment, by the soft classifier, for a pixel does not always result in assigning the true class label to the concerned pixel. Thus, by considering the entire range of values in a pixel’s probability vector, \(H \), compared to \(U \) that only makes use of \(P_{\text{max}} \), provides a more robust measure of uncertainty; it has a maximum value at highest entropy – equal probability votes for all classes considered.

Loosvelt et al. [59], showed that \(H \) is reliable for evaluating uncertainties in mapping cropland from SAR images. However, our study area is characterised by heterogeneous cropping systems and is located in a tropical landscape (Figure 2). For the best-performing RF models, based on kappa accuracy, we computed and analysed \(U \) and \(H \) uncertainties for the classified maps, and the land cover classes considered in the study area (Table 2). The uncertainty estimations and analysis were conducted in Spyder IDE (Integrated Development Environment) of Anaconda distribution for Python programming software version 3.0 (Anaconda 3).
Figure 5. Schematic outline of the image processing and texture feature extraction, and land use/cover (LCLU) delineation by a machine learning algorithm. Input and outputs are shaded, and feature extraction in broken border lines. DOS: Dark object subtraction, TOA: Top of Atmosphere

4. Results

All the RF models had classification accuracies above 70%. Classification error and the sensitivity in discriminating land cover classes was different for each model. The models with the highest classification reliability, in increasing order of importance, were RE1, GLI3, and GL3.

4.1 Classification accuracy

Table 4 summarizes the classification results for all eight RF models. All models had a reliable overall accuracy (OA) above 70%. However, compared to using VV or VH bands separately, the use of both co- and cross-polarization bands (GL3) resulted in the highest classification accuracy. The GL3 model had the highest overall accuracy of 88.1% and kappa of 0.85; and, compared to other models, the OOB error estimate was the least with 12.8%. Also, classification from the multi-spectral optical image (RE1 model) had a reliable overall accuracy of 81.1%, but it had a lower kappa 76.9%. Compared to the GL3 model, the OOB error difference of +7% was observed for the RE1. The GLCM textures are reliable for discriminating the land cover/uses. And considering the heterogeneous and dynamic vegetation in the landscape, an improvement feature selection using the GLCM approach is necessary to reduce class uncertainties.

Table 4. Classification accuracies of different feature models based on the Random Forest (RF) classifier algorithm.

<table>
<thead>
<tr>
<th>Model</th>
<th>Overall Accuracy-OA % (95% CI)</th>
<th>Kappa</th>
<th>OOB Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE1</td>
<td>81.04 (79.68, 82.35)</td>
<td>0.769</td>
<td>19.18</td>
</tr>
<tr>
<td>RE2</td>
<td>80.15 (78.76, 81.48)</td>
<td>0.757</td>
<td>19.46</td>
</tr>
<tr>
<td>GL1</td>
<td>82.74 (80.02, 85.23)</td>
<td>0.787</td>
<td>17.12</td>
</tr>
<tr>
<td>GL2</td>
<td>81.65 (78.74, 84.32)</td>
<td>0.773</td>
<td>18.47</td>
</tr>
<tr>
<td>GL3</td>
<td>88.07 (85.52, 90.31)</td>
<td>0.853</td>
<td>12.85</td>
</tr>
<tr>
<td>GLI1</td>
<td>78.80 (75.85, 81.53)</td>
<td>0.738</td>
<td>19.66</td>
</tr>
<tr>
<td>GLI2</td>
<td>82.97 (80.21, 85.48)</td>
<td>0.789</td>
<td>18.71</td>
</tr>
<tr>
<td>GLI3</td>
<td>85.07 (82.42, 87.47)</td>
<td>0.817</td>
<td>13.69</td>
</tr>
</tbody>
</table>

The thematic land cover map from RE1 and GL3 models are shown in Figure 6. Separately, both VV and VH GLCM derived texture measures were poor in the prediction of non-vegetated land covers, and more so when both bands were included in the same model (Figure 6b). When included as input layers, the SAR backscatter intensity did not improve classification accuracy. Likewise, the inclusion of vegetation indices from the multispectral optical image, taken during a dry season, did not improve classification accuracy (Figure 6a). The texture measures from both VH and VH backscatter provide comparable, and may be complementary, LULC mapping accuracy to the commonly used vegetation indices of optical image.
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

Figure 6. Pixel-based classification result for the eight models evaluated by random forest ensemble algorithm. (a) Classification accuracy; (b) Class reliability estimates; (c) Thematic land cover/use map from model RE1; (d) Thematic map model GL3. The scale, legend and north arrow apply to both c and d.

Visually, RE1 map shows a relatively intact and continuous expanse of transition forest patches (Figure 6c). Contrarily, the classified map from GL3 revealed that transition forest cover is highly fragmented by cocoa agroforests into smaller patches (Figure 6d). Also, from classification reliability estimates (100 - commission error) in Figure 6b, the RE1 model was more reliable in delineating non-vegetation land features. SAR-based texture images had a high reliability in delineating vegetation landscape features (Sv, Af, Fa, and Sf). Thus, although multi-spectral optical image had a better classification prediction of land cover classes in general, it was less reliable in discriminating perennial agroforests from transition forest land cover.

4.2 Uncertainty in discriminating vegetation land cover

The classification results from dry season RapidEye multi-spectral optical image (RE1) had a low overall and class uncertainties. From the cumulative estimates of class probabilities in Figure 7, classification uncertainty from the RE1 converges at a probability of around 0.6 for both U and H, whereas the uncertainty from GL3 map converges at higher probabilities – 0.7 and 0.9 respectively for U and H (Figure 7a). About 90% of pixels classified by RE1 had H uncertainties below 0.4, compared to about 50% of pixels for GL3. This difference is less obvious in the cumulative plot of U. Thus, uncertainty difference between RE1 and GL3 was better revealed by Shannon entropy or H uncertainty.
Figure 7. Classification uncertainties as validation of models with highest accuracy. (a) The Shannon entropy (H) clearly reveals uncertainty in classification accuracy validation. For the thematic maps from RE1 and GL3 R models: As example, the proportion of pixels with uncertainty below 0.4; (b) Individual class uncertainty, (H), for model RE1; (c) Class uncertainty, (H), for model GL3.

The individual class uncertainties are compared in Figure 7. Although the classified map from the multi-spectral image (RE1 model) had a lower accuracy, the class uncertainty was, compared to other land cover types, high for perennial cocoa agroforests and transition forest cover (Figure 7b). In comparison to RE1, the multi-seasonal SAR image textures, from the GL3 model, had a high overall uncertainty of a pixel’s class prediction. However, perennial agroforests and transition forests were discriminated with relatively lower individual class uncertainty (Figure 7c): The median of class uncertainties were in a range between 0.2 and 0.4, which is comparable to those obtained from the single date multi-spectral image (RE1). The uncertainties in land cover/use discrimination by RE1 may reflect vegetation status/phenology - canopy greenness; while, in the GL3 model, volume scattering of radar signal reflects changes in water content and structure in different vegetation canopy.

4.3 Contribution of pixel depth to texture feature extraction

The SAR backscatter intensity images have a pixel quantization of 32 bits. The likelihood of grey level co-occurrences was lower at such high dynamic pixel range, as observable from unclassified pixels, Un class, in Figure 6c. In order to improve classification uncertainty from SAR image textures, we computed and compared three (3) different image pixel quantization or grey levels; 32bits – GL3 (as in original SAR intensity image), 8bits – GL3_B8, 6bits – GL3_B6, and 4bits – GL3_B4.

The contribution of grey levels on GLCM feature co-occurrence and classification probability is shown in Figure 8 and Table 5. Pixel co-occurrence was low at high pixel dynamic ranges (Figure 8a), which resulted in a large clustering of features with low and no predictions in Figures 8a and d. The dynamic pixel range of 64 grey level significantly reduced the prediction error (Figure 8e). The class prediction probability is improved to a maximum of 0.99 in GL3_B6, with a difference of 7% from 0.92 recorded in GL3. The prediction did not improve with further reduction of grey levels to 4
bits (Figure 8d). Optimizing the image pixel depth resulted in a marginal improvement of classification accuracy to a kappa value of 86.22 (Table 5). Though, the OOB error of prediction is reduced remarkably from the initial 12.8% (GL3) to 9.9% in GL3_B6. These results show that the dynamic pixel range was vital in feature selection (co-occurrence between pixels), and texture feature extraction by the ensemble algorithm.

![GLCM Texture Measures](image)

Figure 8. Classification probability maps reveal improved pixel classification with at lower grey level quantization. (a) Co-occurrence values in the first 5 × 5 cells of GLCM; (b) Sample details of the four GLCM texture measures; (c) to (f) are snips showing the respective details of the classification probability map for GL3, GL3_B8, GL3_B6, and GL3_B4 models. Unclassified areas are shown as red pixels in (c) and (d).

Table 5. Classification results of different grey level GLCM models and land cover/use surface area estimates. See Appendix A for details of class errors.

<table>
<thead>
<tr>
<th>Model</th>
<th>Overall Accuracy-OA % (95% CI)</th>
<th>Kappa</th>
<th>OOB Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE1</td>
<td>81.04 (79.68, 82.35)</td>
<td>0.769</td>
<td>19.18</td>
</tr>
<tr>
<td>GL3</td>
<td>88.07 (85.52, 90.31)</td>
<td>0.854</td>
<td>12.85</td>
</tr>
<tr>
<td>GL3_B8</td>
<td>88.23 (85.74, 90.41)</td>
<td>0.854</td>
<td>11.84</td>
</tr>
<tr>
<td>GL3_B6</td>
<td>88.83 (86.48, 90.90)</td>
<td>0.862</td>
<td>9.92</td>
</tr>
<tr>
<td>GL3_B4</td>
<td>88.86 (86.50, 90.94)</td>
<td>0.862</td>
<td>10.38</td>
</tr>
</tbody>
</table>

The improvements in the predicted land cover/use maps, after optimizing the dynamic pixel ranges, are illustrated in Figures 9 and 10. Figure 9 shows the predicted maps for the different texture-based models. Compared to the classification from GL3, at 32 bits pixel depth, with an estimated 647.3 ha as unclassified area (Figure 9a), the analysis at 6 bits dynamic pixel range show less mosaic in discriminating class areas and reduced the unclassified land area to about 7.4 ha (Figure 9c). See Table A3 in Appendix.
The model validation results, by Shannon Entropy estimates, are shown in Figure 10. The difference in class uncertainty between GL3 and GL3_B6 is most evident for the following classes: Built up (Bu), Cocoa agroforests (Af), subsistence farms (Fa), and transition forests (Sf). The GL3_B6 had a comparable lower class error for these classes: respectively 16.4%, 4.4%, 5.3%, and 6.1% (see Figure A1 in Appendix). Remarkably, the class uncertainty estimates for Sf is low and comparable for GL3_B6 and RE1. Unlike the RE1 model, with no difference in class uncertainty between Af and Sf, the significant distinction between their class uncertainties in the GL3_B6 confirms the reliability of the model to discriminate these two vegetation categories.

Figure 9. Classification prediction, based on Random forest algorithm, for the GLCM texture-based models. (a) GL3; (b) GL3_B8; (c) GL3_B6; (d) GL3_B4; (e) to (h) are corresponding details of the prediction maps in area 1; (i) to (l) are corresponding details in area 2. The legend and north arrow apply to all images and the scale bar to images (e) to (l).

Figure 10. Comparison of validation by Shannon Entropy (H) estimation. Class uncertainty estimate is significantly improve by the GL3_B6, as observed for Built-up areas (Bu), Cocoa agroforests (Af), subsistence farmlands (Fa) and transition forests (Fs).
The estimated land cover/use against the reference model (RE1) is shown in Figure 11. The total area for each class is summarized in Table A3 (see Appendix). A significance reduction in unclassified area is shown in 11c and d. The area of transition forest is lower for all models than estimated by RE1. Though the class error and uncertainty for GL3_B6 is comparable to that of RE1 (Figure 10). The land area for subsistence farming, cocoa agroforests and built up is remarkably larger in the texture-based predicted maps.

Figure 11. Comparison of the predicted land cover/use from RE1 model (optical image), in the landscape surface area of 11344.61ha, with: (a) GL3; (b) GL3_B8; (c) GLC_B6; and (d) GL3_B4. See Table A2.

5. Discussion

Land use and land cover (LULC) classification of satellite image is commonly applied to mono-date images; we use a rapidEye image that was acquired in the dry season – during minimal or no hindrance from cloud cover. In LULC change detection, a temporal series of images is often used, which require a reliable consistency in the characteristics of the processed images. For SAR image processing, therefore, image filtering or multi-looking is often applied to reduce speckle noise in SAR images [60]. However, such pre-processing also reduces the resolution of images. Thus, considering the landscape structure and the inherently heterogeneous vegetation categories in this study, we did not consider image speckle as noise. The selected SAR images were recorded during the ascending satellite overpass. We conducted a temporal average of measured textures across seasons, which, reduced any potential noise from individual image pixels; meanwhile, the seasonal differences in volume scattering over vegetation cover provided the texture details for discriminating the vegetation types. The temporal SAR data and the texture measures were, however, less sensitive to mapping non-vegetation land cover - notably the water cover. The low classification sensitivity for water areas can be explained by the following: variability in water cover as a result of seasonal swampy areas, the seasonal conversion of some swampy areas into subsistence farms of adapted crops, and the low backscatter intensity over water, which culminates in low or no co-occurring pixels.
in the GLCM. Consequently, the GLCM had a low likelihood to extract texture for the water class. Nonetheless, this land cover was not of main interest in this study.

Compared to a “business as usual” classification using a mono-season multi-spectral optical image (RE1), a combination of texture from both VV and VH bands and the 6bits grey level quantization prior to GLCM texture classification had the highest OA of 88.1% and kappa of 0.85. Moreover, this accuracy resulted in, respectively, 3% and 9.3% reduction in prediction error over the GLCM texture at the default 32bits grey levels and the optical-image. Albeit the relatively low high prediction error of the RE1 model, the class prediction error was low for land cover with no- and low-vegetation: built up, bare soil, savannah and subsistence farmlands; these have rather distinctive optical spectral signatures. For the vegetation cover with high canopy, Table A1 shows the high confusion between cocoa agroforests and transition forests, both of which have high canopy. Since their canopy structure is similar [16], they may not be reliably discriminated using their spectral signatures [17], and less so during the dry season - of low leaf proliferation. Therefore, the classification performance from optical data is logical, and for the vegetation classes, reflects the vegetation status per season and phonological cycle; consequently, the optical reflectance in the dry season was less distinctive for cocoa agroforests versus secondary forests.

In the texture-based classification, we averaged volume scattering across seasons, which captured differences the vegetation types. As seen in Table A2, the confusion between cocoa agroforests and transition forest is low, compared to other classes. This indicates that optimizing the grey level improved the classification and helped to distinguish especially the vegetation classes with high heterogeneous canopy. For the study landscape the range of backscatter intensity, for VH and VV bands, is on average above 34 dB. The 6bits grey level quantization was consistent with the range of backscatter intensity in both VV and VH bands, and our results on grey level quantization confirms other reports [39–41]. Therefore, our land cover/use classification performance at grey level quantization of 6bits or 64 levels (GL3_B6) were optimal for discriminating different vegetation, particularly those featuring a high canopy. Other studies on heterogeneous cropland mapping recorded an accuracy of 71% using C-band SAR intensity images [26]. However, in terms of OA, our result is in line with the accuracy observed in different heterogeneous cropping landscapes using a combination of C-band SAR and optical data though [26,34]. The authors [26,34], mapped cropping lands with inherent homogeneous canopy. The landscape in the study is, however, tropical and dominated by vegetation and cropping fields with internally heterogeneous canopy.

Our texture-based classification result shows spatial fragmentation of forest cover by cocoa agroforests land use. These transition forest patches are consistent with field observations; the transition forest patches are mostly owned by families and community groups for hunting, performing traditional rituals, and serve as potential cocoa agroforests parcels. The similarity in canopy structure of cocoa agroforests and transition forests is explained by their matching class uncertainty estimates from the optical data i.e. RE1 model. Moreover, the confusion matrix in Table A1 reveals a high commission error between the two classes. Thus, by averaging the seasonal radar volume scattering, the GL3_B6 model discriminated the two vegetation cover with significantly different class uncertainties: the mean class uncertainty for transition forests was 0.28 in GL3_B6 based on GL3_B6 model, and unlike in RE1 model, this was significantly different from the 0.4 class average for cocoa agroforests. Following the high overall accuracy and a corresponding low individual class uncertainty, the multi-date texture information from SAR images provided a reliable classifier input for discriminating of perennial agroforestry land cover from transition forest.

Classification validation based on accuracy metrics as overall, user, and producer accuracies are influenced by sample class distribution in training data [64]. The differences in pixel resolution between images types (5 m for RapidEye and 10 m for SAR C-Band) resulted in a different number of reference pixels; of which lower numbers result in low estimates of misclassification probability (commission or omission errors). This explains the high overall accuracy for SAR image. The sample size is not as influential in classification validation by estimates of entropy or uncertainty. Entropy is a classic metric for biodiversity in ecology; thus, for this study, it describes the likelihood of a pixel belonging to either one of the classes considered [59]. Considering the heterogeneous landscapes,
6. Conclusions

This study, to our knowledge, is the first to explore multi-polarization and multi-temporal
C-band SAR for discriminating cocoa agroforest cropping land in a heterogeneous landscape. We use seasonal differences in volume scattering from the dielectric (water content) status and structure of vegetation canopy as a metric to discriminate vegetation types. We make the following conclusions:

1. For the same window size and an invariant direction, reducing the grey level quantization improved classification accuracy marginally, but significantly reduced the uncertainty in discriminating cocoa agroforests from other vegetation covers.

2. Classification validation by estimates of Shannon entropy (H) reveal subtle differences in individual class prediction and provide reliable information for making inferences in heterogeneous landscape mapping.

3. The magnitude of forest fragmentation by cocoa agroforest, which is concealed by vegetation indices from spectral reflectance, is mapped using GLCM texture measures from C-band SAR images.

We suggest an approach for mapping cocoa agroforests in tropical heterogeneous cropping landscapes using C-band SAR imagery. The approach shows the reliability of Sentinel1 SAR image archive in landscape monitoring; especially for mapping cocoa agroforests expansion, and their contribution to the loss of transition and primary forest cover. Therefore, it has potential application in, for example, estimating the contribution of agroforestry to national and regional REDD+ (Reducing Emission from Deforestation and Forest Degradation and the role of conservation, sustainable management of forests and enhancement of carbon stocks in developing countries) strategies. However, there is a need to assess classification uncertainties in different agroforestry dominant landscapes – for an operational regional mapping in the Congo Basin sub-region.

Author Contributions: Conceptualization and design of the study, Frederick N. Numbisi; methodology, Frederick N. Numbisi and Frieke M.B. Van Coillie; field investigation, Frederick N. Numbisi; data curation, Frederick N. Numbisi; data analysis, Frederick N. Numbisi; original draft preparation, Frederick N. Numbisi; review and editing, Frederick N. Numbisi, Frieke M.B. Van Coillie and Robert De Wulf; supervision, Frieke M.B. Van Coillie and Robert De Wulf.

Funding: Special Research Fund, Ghent University, contract number BOF DOS01W03314

Acknowledgments: This study was conducted under the Special Research Fund, of Ghent University, for students from developing countries, and through which RapidEye image was procured. Fieldwork was supported by the World Agroforestry Centre in Cameroon. Field inventory was assisted by local resource persons, administrative personnel and cocoa farmers who granted access to their plantations. We thank the European Space Agency for providing the freely accessible archive of Sentinel-1 SAR imagery under the Copernicus Open Data Hub. We express gratitude to developers and contributors to both R and Python programming and data mining software, which are open source and free. The authors would like to thank the editors of the ISPRS midterm Symposium and the anonymous reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Classification confusion matrix of RE1 Model. OA = Overall Accuracy, UA = User Accuracy, PA = Producer Accuracy.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Class Error</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu</td>
<td>1238</td>
<td>0</td>
</tr>
<tr>
<td>Es</td>
<td>2</td>
<td>529</td>
</tr>
<tr>
<td>Sv</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>W</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

\[nTrees = 250, \text{mTry} = 2, \text{OOB error} = 19.2\%, \text{OA} = 81.0\%\]
Table A2. Classification confusion matrix of GL3_B6 Model.

\[
\begin{array}{cccccccc}
\text{Reference} & \text{Bu} & \text{Es} & \text{Sv} & \text{W} & \text{Af} & \text{Fa} & \text{Sf} & \text{OA} & \text{PA} \\
\text{Bu} & 244 & 2 & 5 & 0 & 23 & 17 & 1 & 0.164 & 83.6 \\
\text{Es} & 14 & 89 & 19 & 0 & 6 & 21 & 0 & 0.403 & 59.7 \\
\text{Sv} & 0 & 0 & 424 & 0 & 0 & 12 & 0 & 0.028 & 97.2 \\
\text{W} & 2 & 0 & 3 & 0 & 6 & 7 & 0 & 1.000 & 0 \\
\text{Af} & 3 & 0 & 0 & 0 & 325 & 8 & 4 & 0.044 & 95.6 \\
\text{Fa} & 1 & 0 & 18 & 0 & 3 & 415 & 1 & 0.053 & 94.8 \\
\text{Sf} & 0 & 0 & 0 & 0 & 16 & 0 & 246 & 0.061 & 93.9 \\
\hline
\text{UA} & 92.4 & 97.8 & 90.4 & 0 & 85.8 & 86.5 & 97.6 & & \\
\end{array}
\]

Table A3. Predicted surface area (ha) of land cover/use for optical multi-spectral image and GLCM textures at four different grey level quantization.

<table>
<thead>
<tr>
<th>LULC Class</th>
<th>RE1</th>
<th>GI3</th>
<th>GL3_B8</th>
<th>GL3_B6</th>
<th>GL3_B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu</td>
<td>68.89</td>
<td>547.38</td>
<td>650.35</td>
<td>545.89</td>
<td>719.07</td>
</tr>
<tr>
<td>Es</td>
<td>160.73</td>
<td>73.41</td>
<td>235.14</td>
<td>83.14</td>
<td>76.15</td>
</tr>
<tr>
<td>Sv</td>
<td>4485.2</td>
<td>3118.63</td>
<td>3035.37</td>
<td>3465.95</td>
<td>3629.72</td>
</tr>
<tr>
<td>W</td>
<td>137.08</td>
<td>0.27274</td>
<td>0.15079</td>
<td>0.16927</td>
<td>0.16446</td>
</tr>
<tr>
<td>Af</td>
<td>2733.63</td>
<td>2986.84</td>
<td>2904.18</td>
<td>3355.87</td>
<td>3254.77</td>
</tr>
<tr>
<td>Fa</td>
<td>2052.11</td>
<td>2787.95</td>
<td>3081.47</td>
<td>3120.90</td>
<td>3002.42</td>
</tr>
<tr>
<td>Sf</td>
<td>1706.94</td>
<td>1202.86</td>
<td>1306.70</td>
<td>1210.16</td>
<td>1094.61</td>
</tr>
<tr>
<td>Un</td>
<td>0</td>
<td>647.32</td>
<td>562.62</td>
<td>7.42</td>
<td>12.60</td>
</tr>
</tbody>
</table>

References

17. Ordway, E. M.; Asner, G. P.; Lambin, E. F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa Deforestation risk due to commodity crop expansion in sub-Saharan Africa. *2017*.

35. de Siqueira, R. F.; Robson, W.; Pedrini, H. Neurocomputing Multi-scale gray level co-occurrence

