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In crystal structure prediction, Newton’s second law can always be applied to particles (atoms or
ions) in a cell to determine their positions. However the values of the period vectors (crystal cell edge
vectors) should be determined as well. Here we applied the dynamical equations of period vectors
derived recently based on Newton’s laws (doi:/10.1139/cjp-2014-0518) for that purpose, where the
period vectors are driven by the imbalance between the internal and external pressures/stresses.
For equilibrium states, they became equations of state, which essentially turn out the equilibrium
conditions of crystals from mechanical point of view. Additionally for external pressure, they became
Mie-Gruneisen equation supposing the Gruneisen constant is 1/3, which means phonon frequency
is inversely proportional to the cell length. Since the internal stress has both a full kinetic energy
term and a full interaction term, the influences of both external temperature and stress/pressure on
crystal structures can be calculated, then thermodynamical properties and processes were presented.
Contrary to usual ideas, the equations show that pure harmonic vibrating phonons can result in
thermal expansion in crystals when the external temperature is changed. Finally, crystal system
collapse due to temperature and/or stress/pressure change was discussed.

I. INTRODUCTION

Crystal structure prediction from being questioned becomes more and more feasible and important these years[1-6].
Actually minimizing the enthalpy H = E + PV is normally employed to determine crystal structures for constant
external pressure P, where E and V' are the total potential energy and volume of a crystal cell respectively. Then,

one has
O(E + PV) B .
T2 =0 (=12, (1)
O(E + PV) B B
ah - 0 (h - a7 b7 C), (2)

where n is the total number of particles (atoms or ions) in a cell, r; is the position vector of particle ¢, and h is any
one of the period vectors (cell edge vectors) a, b, and c. Eq.(1) means
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where F; is the net force acting on particle i. Eq.(2) means
OF
— 4+ Poyj, = h = 4
ah + Oh 0 ( aa ba C>7 ( )

where o, = 0V /0h is the cell surface vector with respect to h. Actually the way in our previous paper|[7] is equivalent
to this. However the temperature effect is not shown there.

Another way making much progress in crystal structure prediction is minimizing Gibbs free energy and applying
quasiharmonic Debye model[8-14] for phonon (then temperature) effect[15-19]. However, they usually use the cell
volume as variable rather than the period vectors. Additionally all above only consider the external pressure, rather
than the general external stress.

In this paper, we will apply the dynamical equations of period vectors derived recently[20] in crystal structure
prediction, with temperature including phonon effect applied, and external stress considered. As a result, equations
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of state, equivalent to the equilibrium conditions of crystals from mechanical point of view, is derived. For exter-
nal pressure, they became Mie-Gruneisen equation supposing the Gruneisen constant is 1/3, which means phonon
frequency is inversely proportional to the cell length. Contrary to usual ideas, the equations also show that pure
harmonic vibrating phonons can result in thermal expansion in crystals when the external temperature is changed.
Later, crystal system collapse due to temperature and/or stress/pressure change is discussed.

II. DYNAMICAL EQUATIONS OF PERIOD VECTORS IN CRYSTAL STRUCTURE

In our recent paper[20], particles are always obeying Newton’s second law
mit; =F; (i=1,2,---,n). (5)

When the system reaches an equilibrium state, Eq.(5) becomes Eq.(3). For determing the period vectors, the dynamical
equations of them were derived based on Newton’s laws as[20]

opph=(r+7Y)-0, (h=a,b,c), (6)

where ayp, 1, is some mass, tensor 7 is the internal stress, and tensor Y is the external stress. As it shows, the imbalance
between the internal and external stresses drive the period vectors to change. As a matter of fact, crystal structure
normally means the values of particle positon vectors and the period vectors in an equilibrium state, then let us
regard all the so-called degrees of freedom (DOF) of the system in the paper[20], which are ry,rq,---,r,,a,b, and c,
as those in the equilibrium state. Since the purpose of pursuing a crystal structure is to determine their final values
from some guessed ones, the velocities of them can be completely forgotten. Then let us ignore the left side of Eq.(6),
but only change the period vectors in the directions of the calculated result of the right side of Eq.(6).
The internal stress in Eq.(6) has two terms

T=T+4E€. (7)

The first tensor term
1 — 9 2
T 3V ;:l:m ‘I‘ ‘ 3V k,M D (8)

where Ej aprp is the total kinetic energy of the particles in the center cell and I is an identity tensor, then this
term should be temperature dependent. Although no kinetic energy for the DOF variables, which are the crystal
framework (backbone) in equilibrium states, other kinetic energy do exist in the system separately. For example, the
actual position vector of particle 4 is r; + Ar; 4, + Ar; 41, where as we already know r; is the equilibrium one, Ar; .
is vibrational displacement around and relative to the equilibrium, and Ar;,, is thermal displacement around and
relative to the vibration. In other words, it performs three motions at the same time: equilibrium postion motion
(static once achieved), ordered vibration, and disordered thermal motion. Then the kinetic energy of the particles
can be separated into two additive terms of ordered motion and disordered thermal motion respectively, and the
ordered kinetic energy can be further separated into two additive ones of the DOF variables (but zero here) and of
the vibration. Additionally kinetic energy of free electrons should also be considered, which are also “particles”, while
potential energy associated with electrons is always included in the total potential energy in any form. Then Eq.(8)
can be further written as

T = Tyb + Tth + Tel, 9)

where T, Ttn, and T, are contribued from the kinetic energies of free electron’s motion, (other) particle’s thermal
motion (disordered), and particle’s vibrations (ordered) respectively. Specifically,

2

vb — E v 17 10

Tub a7 ZhMD wb (10)
2

= B upal 11

Tel 3y PhMD el (11)

where Ei prp.wy and Ei arp e are the kinetic energies of the particle’s vibrations and free electron’s motion per cell.
For the particle’s thermal motion, it could be written as

1
T = kT, (12)
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where k is Boltzmann constant and 7 is the temperature. However any of these tensor items may be ignored if the
corresponding actual physics process is negligible.
The second tensor term of the internal stress is

1 oF MD
Ly ( )®z7 (13)
VZEDOF Oz

where E, arp, a function of the DOF, is the total potential energy of a cell, which should be the same as E in Eq.(1).
Explicitly, it is

I OF OF OF
Considering Eq.(3) (equilibrium states), it becomes
1 (OF OF OF
€V<6a®a+ab®b+ac®0>. (15)

Since in equilibrium states h = 0 and using h’ - o, = On,h'V, where h' = a or b or ¢, Eq.(6) is

T-ah—a—E—l—Tﬁh:O (h=a,b,c). (16)
oh

As shown in Fig. 1 of our paper[20], if the crystal is imagined being cut into two halves, the terms Y - op,, —0E/0h,
and 7 - oj, in Eq.(16) are the exteranl force acting on the right end surface of, the net force by the whole left half of
the crystal acting on, and the total force associated with momentum transportation acting on the “half-cell bar” By,
respectively. Since the net of all forces by other particles in the right half of the crystal on the “half-cell bar” By, is
zero, Eq.(16) means that the net of all internal and external forces on the “half-cell bar” By, is zero, and then on each
half of the crystal is also zero. Then the combination of Eq.(3) and Eq.(16) determine the crystal structure for given
external temperature and stress. For equilibrium states, the internal temperature should be the same as the external
temperature. As the period vectors determine the cell volume, they are actually also equations of state of crystals,
but in a microscopic form.

III. EQUATIONS OF STATE UNDER EXTERNAL PRESSURE

For the special case of external pressure P, T = —PI (real number P shoule be positive for compressing and
negative for stretching), Eq.(16) becomes

E
— —Pop, =0 (h=a,b,c). 17
oh Oh ( By ) ( )
Comparing Eq.(4) and Eq.(17), we have the extra kinetic energy term reflecting the influence of temperature on
crystal structures.

Supposing Eq.(17) is satisfied (equilibrium states), by dot mulitiplying it with period vector h, we can get the
equations of state under external pressure in the following explicit form

T -0Op —

2 2
nkT + gEk,MD,el + gEk,MD,vb + Winy — PV =0, (18)
where the invariant work is
OF OF OF
Wipy = -8+ — = —b- 2" = —¢. . 19
™ Pa ob e (19)
Eq.(18) also allows us to specify the internal pressure as
2 Wz'nv
Py =——F — 20
int 3V k,M D % ) ( )

then

Pipi + P =0. (21)
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Eq.(18) and Eq.(20) are actually both equations of state, depending on external or internal pressure employed, for
crystals under external pressure. Since they were derived based on the fact that the net of all internal and external
forces on the above mentioned “half-cell bar” By, is zero, they rigorously reflect the equilibrium condition of the
crystal, from the perspective of forces.

If no free electrons, no (collective) vibrations, and no interactions between any particles (then no potential energer),
Eq.(18) becomes

PV = nkT, (22)

which is the equation of state for ideal gases (in a cell of crystal). It can be re-written as Poy, = (nkT/V)o, (h =
a,b,c), where the left term Poj and the right term (nkT/V)op are the net external force and the net internal
force associated with momentum transportation acting on the “half-cell bar” By of cells filled with such ideal gases
respectively. Then Eq.(22) is also the equilibrium condition of the ideal gases, from mechanical point of view.
Additionally, the period vectors can be of any values, as long as satisfying V = o, - a.

Now let us compare Eq.(18) with the well know Mie-Gruneisen equation, equation (4.46) of Born and Huang’s book

[16]
dE Et mD b
P=—-—— —_—— 23
A T (23)
where Fy arp b is total energy of phonons of a cell and Gruneisen constant -y is defined as
dlnw
_ 24
TE oy (24)

with respect to phonon frequency w. For simplicity, let us consider the cell in the shape of a rectangular prism, then
in Cartesian coordinates, the period vectors can be written as a = (a > 0,0,0), b = (0,b > 0,0), and ¢ = (0,0,¢ > 0).
The derivative in Eq.(23) means

dE I _ E(a+da,b+6b,c+dc) — E(a,b,¢)
v 50,,5;,%2—)0 beda + acdb + abde
B lim _E(a+5a,b+5b,c+5c)—E(a,b+(5b,c+(5c)+
T 5a,6b,6¢0 beda + acdb + abde
. E(a,b+ éb,c+ éc) — E(a,b,c+ dc)
+ lim -
5a,6b,6¢—0 beda + acdb + abde
) E(a,b,c+ dc) — E(a,b,c)
1 _
+ sa,sgglcao beda + acdb + abdc
. E(a+ da,b,c) — E(a,b,¢) + E(a,b+ 6b,c) — E(a,b,c) + E(a,b,c+ dc) — E(a, b, c)
= lim — . (25)
5a,8b,6¢—0 beda + acdb + abde

On the other hand, Eq.(19) can be written as

Wine . E(a+ éa,b,c) — E(a,b,c) . E(a,b+ db,c) — E(a,b,c) . E(a,b,c+ dc) — E(a,b,c)
—— = lim — = lim — = lim — .
\% 5a—0 beda 5b6—0 acdb 5c—0 abdce

(26)
We arrived at
dE  Winy
vV
Ignoring the free electron kinetic energy and the disordered thermal kinetic energy and considering the total kinetical

energy of phonons in the cell being half of the total energy of phonons in the cell, Eq.(18) is the same as Mie-Gruneisen
equation, Eq.(23), if Gruneisen constant is assumed

. (27)

1
—— 28
T=3 (28)
Recalling Eq.(24), Eq.(28) means phonon frequency

w o VT3, (29)

where V—1/3 is actually the reciprocal of the one-dimentional length of the cell. Eq.(29) is actually shown as in
equations (17) and (21) in chapter 5 of Kittel’s book [15].
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IV. THERMODYNAMICS

Since crystal structures can be determined based on the microscopic equations of state (Eq.(3) and Eq.(16)), let us
explore their thermodynamical properties and processes in the following three cases.

A. Isovolumic

Now let us consider the temperature is changed from T to T” but keep the volume fixed. Actually, the fixed volume
means the crystal structure does not change, then Eq.(3) is always satisfied, and the total potential energy is also
fixed. However, in order to satisfy Eq.(16), since 9E/0h does not change, the externally applied stress must change
accordingly from Y to Y’ as the temperature dependent (kinetic energy) part of the internal stress changes from T

to 7/
Y =X4+7-17. (30)
The heat capacity at constant volume is then
dEy mp )
Cy = ( . (31)
dr v
B. Isobaric

When the temperature is changed from T to T”, even with the external stress Y kept fixed, the crystal structure
must change accordingly in order to satisfy Eq.(3) and Eq.(16). As a result, the volume should change from V to V,
for an example. Then the coefficient of isobaric thermal expansion can be quickly calculated as

1 /dv 1V -V
=—|— N —— . 2
¢ V <dT>T Vi1 -T (82)

The heat capacity at constant external pressure

d(Ex mp + Ep.mD) av
Cp = ( ’ P, + P—
dT ar ) ,

(33)

can also be calucalated the same way.
An alternative more accurate way to calculate them is to take derivatives of Eq.(3) and Eq.(16) with respect to
temperature, since the equations should always be satisfied even if the external conditions are changed:

dF; )
= = DS 4
7 0 (1=1,2,---,n), (34)
d OF
M{Tgh—%+rgh}—0 (h—a,b,c).
(35)

Please note that all these are vector equations, then they are total 3(n+3) scalar equations. In Cartesian coordinates,
for every coordinate component k£ = x,y, z, the component F; j of the force F; is a function of DOF, then

dFix OF; ) dz —0
dr 0z dT
zcDOF
(i=1,2,---,n),(k=x,y,z). (36)

As all the partial derivatives OF; i /0z are supposed known, all these total 3n equations are linear ones about the
derivatives of DOF with respect to temperature (dry/dT, drs/dT, ---, dr,/dT, da/dT, db/dT, and dc/dT).
Very similarly,

d OF

~IToh (h=a,b,c) (37)
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are all linear combinations of the derivatives of DOF with respect to temperature. For example, h = a, considering
constant stress Y, then

d do db dc

— (Y- =Y 2 =0-(—x b x — 38

o) =T e or (Rxerbx ). (38)
also a linear combination of the derivatives of DOF with respect to temperature. Assuming d(7 - 0)/dT can also
be expanded as a linear combination of the derivatives of DOF with respect to temperature, we will get a system of
3(n + 3) linear equations about the derivatives of DOF with respect to temperature. Once solved, the coefficients of
isobaric thermal expansion can be calculated as

1 /dv onp dh
C_V<dT)T_h v ar 39

=a,b,c

The heat capacity at constant external pressure can be calculated the same way.
If the system expansion is assumed/proven evenly to certain degrees, the number of independent equations of the
linear system should be reduced significantly.

C. Isothermal

In this case, an external pressure, rather than a stress, is applied to the system. Everything is similar to the isobaric
case, but the derivatives shoule be taken of Eq.(3) and Eq.(18) with respect to pressure:

dF;

dP O (Z = 77’11), ( O)
412y +ip Wi —PVY =0 (h=a,b,c) (41)
dP 13 k,M D el 3 k,M D ,vb inv - - 4,0,C).

Considering dT'/dP = 0 for isothermal condition and supposing the above equations also generate a system of
3(n + 3) linear equations but about the derivatives of DOF with respect to pressure, the coefficients of isothermal

compressibility can be calculated as
1 h
B=—— <dV) - _ o d ) (42)

V\dP)p~ A 'V dP

V. PHONON EFFECTS

Since many studies show that phonons play a very important role in crystal thermodynamical processes[8-14], let
us consider phonons. Based on quantum statistics, the total energy of phonons of fixed frequency w; is [11, 15-19]

TLUJj

1
E,; = —hw; , 43
b = g exp(hw;/KT) — 1 (43)
where i = h/27 and h is Planck’s constant. Then the total potential energy of phonons per cell is
3n
Evnmpws = Y Erj. (44)
j=1

As a matter of fact, the kinetic energy and potential energy is averagely equal in harmonic vibrations, then the
total kinetic energy of phonons per cell should be

1 1™ 1 1
E =-E = hw (5 : 45
kMDwb = G HtMDwb = 5 P Wi <2 + exp(hw; kT) — 1) (4)

The other half is the total potential energy of phonons per cell Ep, pp,vp = %Et,MDﬂ,b. Theoretically it should be
included in E, the total potential energy of a cell, in Eq.(16). As in our paper[20], the term —0FE/dh in Eq.(16)
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means the net force on the “half-cell bar” By, in the right half of the crystal by all particles in the left half of the
crystal. For any single force of such on a particle, which is vibrating around the equilibrium position as a harmonic
oscillator, although the vibration causes the force changing a little bit constantly, the force should be averagely the
one in the equilibrium state without vibration, as the force change is proportional to the relative displacement of the
particle to its equilibrium position. This means that the averaged change caused by vibrational motion on the forces
acting on the “half-cell bar” By, by the left half of crystal, —0 (E, mp.vp)/0h, is zero, then the phonon’s potential
energy E, prpop can be ignored in Eq.(16). Actually, neither kinetic energy nor potential energy of phonons affects
Eq.(3). However both of them shoule be reflected in heat capacity calculation.

Bringing Eq.(45) into Eq.(10) then into Eq.(16) (and Eq.(6)), regardless of other kinetic energy, it shows that the
period vectors should change if the temperature is changed while keeping the external stress fixed. This thermal
expansion by pure harmonic vibrating phonons is contrary to usual ideas.

The calculation should be feasible by employing Debye-Slater model[10] for an example, where the total energy of
phonons is

Et,MD,vb = %’nk@D + 3nkTD ((?FD) s (46)

where O p is Debye temperature and function D(---) is Debye integral

3 [
D(z) = ﬁ/o . ldy. (47)

Then the total kinetic energy of phonons per cell Ej arp.op = %Et,Mow can be brought into Eq.(16).

VI. SYSTEM COLLAPSE

Careful inspection on Eq.(16) (also based on Eq.(6)) shows that actually the temperature effect, the first term on
the left side of Eq.(16), is to try to “break” the crystals, i.e. playing a repulsive role inside the system. Then particles
inside the system should attract each other enough to overcome it in order to keep crystal stable. However, there is a
limit to the overall attraction inside the crystal (the middle term of the left side of Eq.(16)). For fixed external stress,
if the temperature is increased so much that its repulsive effect is bigger than the internal attraction limit and the
external stress compensation, the crystal will collapse, where Eq.(16) can no longer be satisfied. On the other hand,
for whatever temperature, if the external stress is stretching and bigger than the internal attraction limit, the system
will also collapse. The higher temperature, the less stretching is needed to break the crystal system.

VII. SUMMARY

By employing Newton’s second law on particles in a cell and applying the dynamical equations of period vectors,
crystal structures can be predicted. Not only the action of the external stress/pressure is presented in these equations,
but also that of the (external) temperature via the kinetic energy term of the internal stress. They are actually
equations of state of crystals in a microscopic form, and also the equilibrium conditions from the perspective of forces.
For external pressure, they became Mie-Gruneisen equation supposing the Gruneisen constant is 1/3, which means
phonon frequency is inversely proportional to the cell length. Then thermodynamical properties and processes can
be calculated as well. Contrary to usual ideas, the equations show that pure harmonic vibrating phonons can explain
thermal expansion in crystals when temperature is changed. Furthermore crystals are also shown to collapse when
the equations can not be satisfied.
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