PKM2 knockdown induces autophagic cell death via the AKT/mTOR pathway in human prostate cancer cells

Prasanta Dey 1, Amit Kundu 1, Richa Sachan 1, Jaehyun Park 1, Mee Young Ahn 2, Kyungsil Yoon* 3, Jaewon Lee, Nan Deuk Kim, In Su Kim 1, Byung Mu Lee 1 and Hyung Sik Kim 1, 2

1 School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
2 Major in Pharmaceutical Engineering, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
3 Comparative Biomedicine Research Branch, Division of Translational Science, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do 10408, Republic of Korea

*Author to whom correspondence should be addressed.

Abstract: Pyruvate kinase M2 (PKM2) is essential for aerobic glycolysis and is highly expressed in various cancer tissues. Although high PKM2 expression is observed in prostate cancer tissues, its functional role in cancer metabolism is unclear. Here, we investigated the role of PKM2 in regulation of autophagy and its associated pathways in prostate cancer cells. PKM2 expression was silenced using various PKM2 small interfering RNAs (siRNAs), and PKM2-related cellular pathways associated with autophagy were determined. PKM2 siRNA-transfected prostate cancer cells showed significantly reduced viability. Acridine orange, MDC staining, and western blotting analysis showed that PKM2 downregulation markedly increased autophagic cell death. The results of western blotting analysis showed that PKM2 knockdown affected the protein kinase B/mechanistic target of rapamycin 1 pathway, which consequently downregulated the expression of the glycolytic enzymes lactate dehydrogenase A and glucose transporter 1. To our knowledge, this is the first study to show that PKM2 inhibition alters prostate cancer cell metabolism and induces autophagy, thus providing new perspectives for developing PKM2-targeting anticancer therapies for prostate cancer.

Keywords: pyruvate kinase M2; prostate cancer; cancer metabolism; mTOR; autophagy

1. Introduction

Prostate cancer is characterized by the abnormal growth of cells in the prostate gland and metastasis of these cancerous cells to other parts of the body, such as the lymph nodes and bone marrow. Prostate cancer generally develops in men aged over 50 years [1]. It is the sixth leading cause of cancer-related death worldwide, and over 200,000 new prostate cancer cases are predicted to have occurred in the United States in 2013 [2]. According to Siegel et al; 164,690 new cases have been registered in the USA in 2018, and 29,430 men have died due to prostate cancer [3].

Tumor cells need sufficient amounts of energy and biosynthetic precursors for survival and proliferation [4]. These cells generally use large amounts of glucose and secrete large amounts of lactate in the presence of oxygen, a phenomenon referred to as aerobic glycolysis or the “Warburg effect” [5,6]. Glycolytic intermediates produced via the Warburg effect promote the biosynthesis of ATP and cellular macromolecular building blocks, including nucleotides, amino acids, proteins, and lipids [7,8]. Pyruvate kinase M2 (PKM2), a rate-limiting terminal glycolytic enzyme, is a major component of aerobic glycolysis in cancer cells; it catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate and releases energy, thus providing a selective growth advantage to cancer cells.
Pyruvate kinase has four isoforms, namely, PKM1, PKM2 (encoded by PKM), PKL, and PKR (encoded by PKLR). PKM2 is produced by the alternative splicing of PKM pre-mRNA by heterogeneous nuclear ribonucleoproteins A1 and A2 and polypyrimidine tract-binding protein splicing factor (which is upregulated by oncogenic transcription factor c-MYC), which promote the inclusion of exon 10 and exclusion of exon 9 [14-16]. PKM1 is highly expressed in normal tissues [16], whereas PKM2 is predominantly expressed in various cancers such as colon cancer [9,17], hepatocellular carcinoma [18], lung cancer [18], breast cancer [19], renal cell carcinoma [20-22], and gastrointestinal and cervical cancers [23], thus making it a potential hallmark of cancer metabolism.

Besides its well-established role in aerobic glycolysis, PKM2 performs various non-metabolic functions in cancer cells, including gene expression and cell cycle progression. Extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated nuclear translocation of PKM2 activates β-catenin, which in turn upregulates the expression of c-MYC and induces the expression of glycolytic enzymes, including glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). This upregulation also induces PKM2 expression by splicing the PKM pre-mRNA into PKM2 mRNA [24-27]. Nuclear PKM2 acts as a transcriptional co-activator of hypoxia-inducible factor 1-alpha (HIF1α) to reprogram cancer cell metabolism [28]. Moreover, PKM2 promotes the phosphorylation and activation of STAT3 and ERK1/2 to enhance their transcriptional activity and promote cell proliferation [29,30]. Upregulation of these glycolytic genes increases glucose consumption and lactate production rates, thus promoting tumorigenesis [31,32].

In the cellular environment, PKM2 is associated with the protein kinase B (AKT)/mechanistic or mammalian target of rapamycin (mTOR) signaling pathway [33], which regulates numerous cellular processes, including cell growth and survival, cell cycle progression, protein synthesis, and angiogenesis [34]. Activation of the AKT/mTOR pathway impairs autophagy in prostate cancer cells [34]. Autophagy is a well-regulated homeostatic mechanism characterized by the collection of cytoplasmic machinery into autophagosomes, followed by its lysosomal proteolytic digestion and recycling to maintain cellular growth [35]. Under metabolic stress, autophagy promotes cancer cell survival; however, unrestricted autophagy can lead to uncontrolled cellular consumption and ultimately cell death [36]. Autophagy is highly regulated by the kinase mTOR. In cancer cells, overexpressed PKM2 activates mTORC1 by phosphorylating its substrate, AKT1 substrate 1 (AKT1S1), which in turn accelerates autophagy inhibition and oncogenic growth, leading to poor patient outcomes [34,37].

However, the exact oncogenic role of PKM2 in prostate cancer is unclear. Different studies have used various strategies involving the activation and silencing of PKM2 to determine its tumorigenic role and the therapeutic potential of PKM2-targeting strategies. In the present study, we investigated PKM2 expression in prostate cancer cells and observed a correlation between PKM2 expression and cancer cell survival. Moreover, we found that PKM2 was an upstream regulator of the AKT/mTOR oncogenic pathway in prostate cancer cells and that PKM2 knockdown hampered the growth of prostate cancer DU145 cells by inducing autophagy through AKT/mTOR pathway inhibition. These results suggest that targeting PKM2 could reduce the Warburg effect and provide a basis for developing PKM2-targeting therapies to treat prostate cancer.

2. Materials and Methods

2.1 Chemicals and reagents

Roswell Park Memorial Institute-1640 (RPMI-1640) medium (cat. no. LM011-01) and penicillin and streptomycin solutions (cat. no. LS202-02) were purchased from Welgene (South Korea). Fetal bovine serum (FBS; cat. no. 10099-141), Dulbecco’s phosphate-buffered saline (DPBS; cat. no. 31600-026), trypsin (cat. no. 25300-054), and reduced serum medium OPTI-MEM (cat. no. 31985070) were obtained from Gibco, Life Technologies (Carlsbad, CA, USA). Lipofectamine RNAiMAX (cat. no.
13778150) was obtained from Invitrogen. NE-PER subcellular fractionation kit (cat. no. 78833) and Pierce bicinchoninic acid (BCA) protein assay reagent A (cat. no. 23228) and B (cat. no. 1859078) were purchased from Thermo Fisher Scientific. FITC Annexin V apoptosis detection kit (cat. no. 556547) was obtained from BD Pharmingen. Acridine orange solution (cat. no. A8097), monodansylcadaverine (MDC) (cat. no. D4008), acetic acid (cat. no. 270725), goat serum (cat. no. G9023), Triton X-100 (cat. no. T8787), 4,6-diamidino-2-phenylindole dihydrochloride (DAPI; cat. no. D9542), and thiamine (cat. no. T1270) were obtained from Sigma-Aldrich. Bovine serum albumin (BSA; cat. no. BSAS 0.1) and crystal violet (cat. no. C1035) were purchased from Bovogen and Biosesang Inc., respectively. Protein extraction solution PRO-PREP (cat. no. 17081) was purchased from Intron Biotechnology. Luminata™ Crescendo Western Horseradish Peroxidase (HRP) Substrate and polyvinylidene difluoride (PVDF) membrane were purchased from Millipore. HPLC-grade water (resistivity, 18 MΩ cm) was obtained using a water purification system (Puris), and lactic acid (cat. no. L0226) was obtained from Tokyo Chemical Industry Co, Ltd. Rabbit monoclonal antibodies against PKM1 (cat. no. D30G6), PKM2 (cat. no. 4053), mTOR (cat. no. 2983), glycogen synthase kinase 3 beta (GSK3β) (cat. no. 12456), phosphorylated GSK3β (p-GSK3β; S9) (cat. no. 5558), phosphorylated ERK1/2 (p-ERK1/2; T202/Y204) (cat. no. 4370), LDHA (cat. no. C4B5), GLUT1 (cat. no. 12939), β-catenin (cat. no. 8480), phosphorylated STAT3 (p-STAT3) (T705) (cat. no. 9145), Beclin 1 (cat. no. 3495), ATG7 (cat. no. 8558), LC3A/B (cat. no. 12741), p53 (cat. no. 2527), phosphorylated p53 (cat. no. 9286), and GAPDH (cat. no. 2532) were purchased from Cell Signaling Technology, Inc. Rabbit polyclonal antibodies against Akt (cat. no. 9272), phosphorylated Akt (p-Akt; S473) (cat. no. 9271), phosphorylated mTOR (p-mTOR; S2448) (cat. no. 2971), phosphorylated AMPKα (T172) (2531), and ribosomal protein S6 kinase beta-1 (P70S6K) (cat. no. 9202) were purchased from Cell Signaling Technology, Inc. Goat polyclonal antibody against PDK1 (cat. no. NB100-2383) was purchased from Novus Biologicals. Alexa Fluor 488-conjugated goat anti-rabbit antibody (cat. no. ab150077) was purchased from Abcam.

2.2 Prostate tissue samples

Tissue microarray (TMA) slides of 5 normal human prostate tissue samples and 35 prostate adenocarcinoma tissue samples (duplicates per case) were obtained from US Biomax Inc. (Rockville, MD, USA). Detailed information about the TMA samples is provided in Table 1.

Table 1: Clinicopathological features of the experimental samples (prostate adenocarcinoma tissue and normal prostate tissue samples)

<table>
<thead>
<tr>
<th>Variable</th>
<th>No. of samples</th>
<th>Normal individual (%)</th>
<th>Cancer patient (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><60</td>
<td>>60</td>
</tr>
<tr>
<td>Patients (Male)</td>
<td>35 cancer patients 5 normal individuals</td>
<td>5 (100%)</td>
<td>-</td>
</tr>
<tr>
<td>Tumor stage, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gleason score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gleason grade</td>
<td>Tumor invasion</td>
<td>Lymph node invasion</td>
<td>Other</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TNM grade</th>
<th>Tumor invasion</th>
<th>Lymph node invasion</th>
<th>Other</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2N0M0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3 (8.57%)</td>
</tr>
<tr>
<td>T2aN0M0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 (5.71%)</td>
</tr>
<tr>
<td>T2N1M1c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (2.85%)</td>
</tr>
<tr>
<td>T3N1M1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (2.85%)</td>
</tr>
<tr>
<td>T3N0M1b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 (5.71%)</td>
</tr>
<tr>
<td>T3N0M1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (2.85%)</td>
</tr>
<tr>
<td>T3N1M1b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 (11.42%)</td>
</tr>
<tr>
<td>T3N0M1c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (2.85%)</td>
</tr>
<tr>
<td>T4N1M1c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (2.85%)</td>
</tr>
<tr>
<td>T3N0M0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 (5.71%)</td>
</tr>
<tr>
<td>T3N1M1c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (2.85%)</td>
</tr>
<tr>
<td>T2bN0M0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (2.85%)</td>
</tr>
<tr>
<td>T2N1M1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (2.85%)</td>
</tr>
<tr>
<td>T4N1M1c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (2.85%)</td>
</tr>
<tr>
<td>T2N1M1b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 (2.85%)</td>
</tr>
</tbody>
</table>

TNM grading:

- **T**: Primary tumor
- **Tx**: Primary tumor cannot be assessed
- **T0**: No evidence of primary tumor
- **Tis**: Carcinoma in situ; intraepithelial or invasion of the lamina propria
- **T1**: Tumor invading the submucosa
- **T2**: Tumor invading the muscularis propria
- **T3**: Tumor invading through the muscularis propria into the subserosa or into non-peritonealized pericolic or perirectal tissues
- **T4**: Tumor directly invading other organs or structures and/or perforating the visceral peritoneum

- **N**: Regional lymph nodes
- **Nx**: Regional lymph nodes cannot be assessed
- **N0**: No regional lymph node metastasis
- **N1**: Metastasis in 1–3 regional lymph nodes
- **N2**: Metastasis in 4 or more regional lymph nodes
2.3 Immunohistochemical analysis

Immunohistochemical analysis was performed to investigate PKM2 expression in the normal prostate and prostate adenocarcinoma tissue samples. The TMA slides were transferred to a xylene chamber and were dipped in a graded alcohol series and water before transferring in 3% H$_2$O$_2$ to quench endogenous peroxidase activity. Next, the slides were incubated in a buffer containing 4% BSA and 5% horse serum at 37°C for 1 h to block nonspecific binding sites, followed by washing three times with Tris-buffered saline (TBS). The slides were then incubated overnight at 4°C with the anti-PKM2 primary antibody (dilution, 1:1000). Next, the slides were washed three times with TBS, followed by incubation with an HRP-conjugated secondary antibody for 45 min at room temperature. Slide immunostaining was visualized using diaminobenzidine tetrahydrochloride, counterstaining with hematoxylin, and by performing microscopy.

2.4. Cell lines and cell culture

The human prostate cancer cell line DU145 was purchased from the American Type Culture Collection, USA. The cells were maintained in RPMI-1640 medium supplemented with 10% heat-inactivated FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin at 37°C in a humidified atmosphere of 5% CO$_2$ and 95% air. The cells were collected in the logarithmic growth phase for use in subsequent experiments.

2.5 Small interfering RNA transfection

Human PKM2 was knocked down using specific small interfering RNAs (siRNAs), according to a method described previously [38]. For this, siRNAs specifically targeting PKM2 mRNA (si27, si155, and si156), a siRNA targeting both PKM1 and PKM2 mRNAs (siPK, positive control siRNA), and a scrambled siRNA targeting the firefly luciferase gene without affecting PKM2 expression (siCT, negative control siRNA) were obtained from Bioneer Corporation (Table 2). DU145 cells were carefully selected in their logarithmic growth phase and transfected with the indicated siRNAs after they had reached 70% confluency by using Lipofectamine RNAiMAX reagent, according to the manufacturer's protocol. The proficiency of siRNA transfection was confirmed by performing western blotting analysis.

Table 2. The sequences of the control and PKM2 siRNAs [38].

<table>
<thead>
<tr>
<th>siRNA</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>si27</td>
<td>AGGCAGAGGCUGCCAUCUA</td>
</tr>
<tr>
<td>si155</td>
<td>GCCAUAAUCGUCCUCACCA</td>
</tr>
<tr>
<td>si156</td>
<td>CCAUAUGCUCCUCACCAA</td>
</tr>
<tr>
<td>siCT (negative control siRNA targeting the firefly luciferase gene)</td>
<td>CUUACGCUGAGUACUACGA</td>
</tr>
<tr>
<td>siPK (positive control siRNA [commercially available] targeting both PKM1 and PKM2 mRNAs)</td>
<td>GGACCUGAGAUCCGAACUG</td>
</tr>
</tbody>
</table>

2.6. Cell viability assay

The effect of PKM2 knockdown on the viability of prostate cancer cells was determined using the IncuCyte ZOOM™ live cell imaging system (Essen BioScience, MI, USA) which quantitatively detects live cells in real time. The cells were seeded and transfected (forward transfection) with 5, 25, 50 or 100 nM of the indicated siRNAs (si27, si155, si156, siCT, or siPK) for 72 h.
2.7. Western blotting analysis

The cells were lysed using the PRO-PREP cell lysis buffer, and the protein content of the lysates was quantified using a BCA protein assay kit. Proteins present in the cell lysates were evaluated by performing western blotting analysis. For this, the total proteins in the cell lysates were resolved onto a PVDF membrane, and the membrane was blocked using 5% skimmed milk for 1 h at room temperature. Next, the membrane was incubated overnight at 4˚C with the primary antibodies, followed by incubation with the respective HRP-conjugated secondary antibodies for 1 h at room temperature. Immune complexes were detected using Luminata™ Crescendo Western HRP Substrate.

2.8 Immunofluorescence analysis

DU145 cells were grown in a confocal dish and were transfected with the indicated siRNAs. The cells were then fixed in acetone for 10 min at room temperature, followed by washing with ice-cold phosphate-buffered saline (PBS). Next, the cells were blocked with 10% goat serum for 1 h at room temperature. PKM2 expression was determined by incubating the cells overnight at 4˚C with the anti-PKM2 primary antibody, followed by incubation with the respective Alexa Fluor 488-conjugated secondary antibody for 1 h at room temperature. The cells were then washed three times with PBS, stained with 0.1 μg/mL DAPI in PBS for 1 min, and washed again with PBS. Finally, the cells were examined under a fluorescence microscope (FV10i; Olympus Corp., Tokyo, Japan) at 400× magnification.

2.9 Acridine orange staining

DU145 cells were transfected with the indicated siRNAs after they had reached 70% confluency. The cells were then treated with 1 μg/mL acridine orange in a serum-free medium for 15 min at 37˚C, followed by washing with PBS. Formation of acidic vesicular organelles (AVOs) was examined using the confocal microscope. The cytoplasm and nuclei showed bright green staining, whereas the AVOs showed incandescent bright red staining.

2.10 Monodansylcadaverine (MDC) staining

DU145 cells were transfected with the indicated siRNAs after they had reached 70% confluency. The cells were then fixed with methanol and stained with 50 μM MDC in a serum-free medium for 15 min at 37˚C, washed with PBS, and examined by confocal microscopy (600 x, Olympus FV10i).

2.11 Quantification of pyruvate and lactate

The liquid chromatography (LC) system used in this study included a LC-321/322/350 pump (Gilson, France), an autosampler (Gilson-234), and a UV/Vis-151 detector (Gilson). Detection and quantification were performed using a Synergi Hydro-RP C18 column (250 × 4.6 mm, 4 μm, 80 Å; Phenomenex, USA) preceded by a pre-column (Phenomenex). The flow rate was maintained at 0.8 and 0.7 mL/min for lactate and pyruvate, respectively. Isocratic mobile phases were composed of water with 0.1% phosphoric acid and water with 20 mM potassium phosphate for lactate and pyruvate, respectively. After extraction, the samples were collected, transferred to a sample tube, and mixed thoroughly with acetonitrile containing thiamine (internal standard). The samples were then centrifuged at 1,503 X g for 5 min. Finally, the supernatants obtained were collected and analyzed by performing HPLC (LC-321/322/350 pump) at 210 and 220 nm for lactate and pyruvate, respectively.

2.12 Effect of PKM2 knockdown on the non-metabolic functions of prostate cancer cells
Besides its role in metabolism, PKM2 performs other non-metabolic roles. Therefore, we examined the expression level of PKM2 in both the cytoplasmic and nuclear fractions of DU145 cells by performing western blotting analysis. To examine whether PKM2 knockdown modulated gene transcription, cell proliferation, or cell cycle progression, we performed western blotting analysis of β-catenin, c-MYC, p-STAT3, p-ERK1/2, and MCT4.

2.13 Colony formation assay [39,40]

A total of 700 cells/well were seeded into 6 well plates and then transfected with si156 and siPK (100 nM) for 14 days. Viable colonies were fixed with methanol, stained with 0.05% crystal violet for 20 min, washed with phosphate buffered saline, and air dried. Colonies with more than 50 cells were counted and then normalized to the numbers in the control group. Experiments were performed at least three times.

2.14 Statistical analysis

Data are expressed as the mean ± SD. Statistically significant differences between the groups were determined using analysis of variance (ANOVA) followed by Tukey multiple comparison tests. For all tests, a significance level of 5% (P < 0.05) was used. Survival data were analyzed using Kaplan–Meier analysis.

3. Results

3.1. PKM2 is remarkably overexpressed in prostate cancer

PKM2 expression was immunohistochemically examined in the 35 human prostate adenocarcinoma tissue samples obtained from patients aged 55–82 years (duplicates per case) with stage II, III, and IV tumors and was compared with that of the 5 normal prostate tissue samples obtained from normal subjects aged 28–45 years (duplicates per case). PKM2 expression was predominantly higher in the prostate adenocarcinoma tissues (depending on the tumor stage) than the normal prostate tissues (Fig. 1A-C), indicating a role of PKM2 in the poor prognosis and outcome of patients with prostate cancer. Previous studies have reported elevated PKM2 expression in various cancer cells [41-45]. We compared the basal PKM2 and PKM1 expression levels in different cancer cell lines by performing western blotting analysis and found that PKM2 protein levels were high in prostate cancer DU145 cells as well as in other cancer cell lines (Fig. 1D).
Fig. 1. Expression patterns of pyruvate kinases. (A) The number of normal human prostate tissue samples and prostate adenocarcinoma tissue samples (belonging to three different tumor stages). (B) Normal prostate tissue and prostate adenocarcinoma tissue samples were immunostained for PKM2 by using specific antibody. PKM2 was highly expressed in the human prostate adenocarcinoma tissues compared with the normal prostate tissues, as confirmed by performing immunohistochemical analysis. (C) PKM2 immunoreactive scoring between the normal prostate tissue samples and prostate adenocarcinoma tissue samples belonging to the three different tumor stages. (D) Comparison of PKM1 and PKM2 expression levels in seven cancer cell lines (CaCo: human epithelial colorectal adenocarcinoma cells; MCF-7: human breast adenocarcinoma cells; Ishikawa: human Asian endometrial adenocarcinoma cells; HCT 116: human colon carcinoma cells; Caki-1: human clear cell renal cell carcinoma; DU145: human prostate cancer cells; 786-O: human renal carcinoma cells from the kidney). The cells were harvested, and whole cell lysates were analyzed by performing western blotting analysis with anti-PKM1 and anti-PKM2 antibodies, using GAPDH as an internal loading control. Compared with PKM1, PKM2 was highly expressed in the human prostate cancer cell line DU145.

3.2 Effect of PKM2 knockdown on its expression in prostate cancer cells

To determine the most effective siRNA to completely silence PKM2 protein expression, DU145 cells were transfected with 100 nM of the indicated PKM2 siRNAs for 72 h. Results of the western blotting analysis of whole-cell lysates showed a robust reduction in PKM2 protein expression in the DU145 cells transfected with 100 nM si27 or si156 for 72 h without affecting PKM1 protein expression (Fig. 2A and 2B), compared with that of the normal control and negative control cells. As expected, the transfection of DU145 cells with siPK inhibited both PKM1 and PKM2 expression. Immunofluorescence staining detected the PKM2 in the cytoplasm (green fluorescence) and nucleus (blue fluorescence with DAPI staining) of the DU145 cells. However, these immunofluorescence signals were not detected in the DU145 cells transfected with the PKM2 siRNAs (Fig. 2C). Results of western blotting analysis showed markedly decreased PKM2 protein levels in both the cytoplasm and nucleus of the si156-transfected DU145 cells (Fig. 2D), thus confirming the results of the immunofluorescence analysis.

Fig. 2. Effect of siRNA transfection on PKM2 expression and cancer cell survival. (A) PKM2 expression was drastically reduced in cells transfected with the indicated PKM2 siRNAs. The cells were transfected with 100 nM siRNAs for 72 h. PKM2 siRNA transfection did not change PKM1 expression level. PKM1 expression was reduced after transfection with siPK. GAPDH was used as an internal loading control. (B) The statistical quantification of PKM2/PKM1 western blot bands. One-way
ANOVA was used to compare the means of different groups. Differences between the means were considered to be significant at $P < 0.05$ by using Tukey multiple comparison tests; *$P < 0.05$, **$P < 0.01$, and ***$P < 0.001$ compared with the normal control cells. (C) Immunofluorescence analysis was performed to check PKM2 expression after siRNA transfection. High PKM2 expression was observed in the cytoplasm and nucleus of the normal control and negative control cells. However, PKM2 siRNA transfection drastically reduced PKM2 expression, as confirmed by the absence of PKM2 green signals. Transfection of DU145 cells with the positive control siPK also reduced PKM2 expression.

(D) PKM2 expression levels in the cytoplasmic and nuclear fractions of DU145 cells. The cytoplasmic and nuclear fractions were isolated after transfecting the cells with the indicated siRNAs, and western blotting was performed. The representative blots are shown. (E) The effects of the transfecting different concentrations of the indicated siRNAs on the viability of prostate cancer DU145 cells. Cell viability was determined using the IncuCyte ZOOM™ live cell imaging system. The cells were transfected with 5, 25, 50, or 100 nM siRNAs for 72 h. Transfection of the cells with 100 nM si156 for 72 h reduced DU145 cell survival and PKM2 expression. siCT (siControl): siRNA targeting the firefly luciferase gene (negative control); siPK: commercially available siRNA targeting both PKM1 and PKM2 mRNAs (positive control); and si27, si155, and si156: experimental siRNAs targeting PKM2 mRNA.

3.3 Effects of PKM2 knockdown on the proliferation of prostate cancer cells

Unrestrained growth is a fundamental property of all malignant tumors. To investigate the effects of PKM2 knockdown on the proliferation of prostate cancer cells and the inhibition of cancer cell metabolism, DU145 cells were transfected with the indicated PKM2 siRNAs (5, 25, 50, or 100 nM) for 72 h. Among the siRNAs, si27 and si156 noticeably reduced the viability of DU145 cells in a time-dependent manner (Fig. 2E). PKM1 and PKM2 knockdown by siPK also significantly reduced the viability of DU145 cells in a time-dependent manner, with the largest decrease in cell viability being observed at 72 h (Fig. 2E). No noteworthy reduction in viability was observed in the normal control (untransfected) or negative control (siCT-transfected) cells, suggesting that PKM2 knockdown inhibited the proliferation of DU145 prostate cancer cells. The reduction in the viability of PKM2 siRNA-transfected DU145 cells indicates the importance of PKM2 in prostate cancer cell survival.

3.4. PKM2 knockdown inhibits colony formation by DU145 cells

We performed a long-term colony formation assay, which more closely simulates the in vivo environment, to determine whether PKM2 knockdown exerted antitumor effects in prostate cancer cells. PKM2 knockdown by si156 affected colony formation of DU145 cells more than the positive control, siPK (Fig. 3A and 3B). Therefore, the reproductive ability of DU145 cells was affected after PKM2 knockdown.
323 Fig. 3. PKM2 knockdown decreased the colony formation ability of prostate cancer cells. (A) Representative photographs of the colony formation assays show the proliferation of DU145 cells transfected with the PKM2 siRNAs in six-well plates. The cell colonies were scored visually and were counted using a light microscope. The normal control and negative control cells showed no distinct difference in the number of colonies compared with the si156-, si155-, and si27-transfected cells. (B) Quantitative analysis of colony number. Data are representative of three independent experiments. One-way ANOVA was used to compare the means of different groups. Differences between the means were considered to be significant at $P < 0.05$ by using Tukey multiple comparison tests; *$P < 0.05$, **$P < 0.01$, and ***$P < 0.001$ compared with the normal control cells.

3.5. PKM2 silencing alters metabolism in prostate cancer cells

PKM2 plays a critical role in glucose metabolism and catalyzes the dephosphorylation of PEP to pyruvate, which is then converted to lactate by LDHA. To determine the effect of PKM2 knockdown on the generation of cellular metabolites, we quantitatively analyzed the pyruvate and lactate levels in the lysates and media of prostate cancer cells by performing HPLC. PKM2 knockdown by si156 inhibited pyruvate production in a time-dependent manner to a greater extent than the positive control siPK (Fig. 4A). Moreover, PKM2 knockdown induced LDHA inhibition, which in turn reduced lactate production (Fig. 4B). However, these changes in the cellular metabolites were not observed in the normal control and negative control cells. We further evaluated the lysates of the PKM2 siRNA-transfected DU145 cells by performing western blotting analysis. This showed that PKM2 knockdown considerably inhibited the expression of the glucose transporter GLUT1 and lactate exporter MCT4 (Fig. 5A & B), which may have decreased glucose uptake and lactate efflux, respectively. Because tumor cells are highly dependent on glycolysis for energy production, the significant PKM2 knockdown-associated reduction in glycolysis in prostate cancer cells may have reduced ATP generation and thus the Warburg effect.
Fig. 4. Effects of PKM2 siRNA transfection on cellular metabolite levels in DU145 cells. (A) PKM2 knockdown reduced pyruvate levels in the lysates and media of the PKM2 siRNA-transfected cells compared with the lysates and media of the normal control cells. Pyruvate levels were significantly reduced after 72 h. (B) PKM2 knockdown considerably reduced lactate levels in the lysates and media of the PKM2 siRNA-transfected cells. One-way ANOVA was used to compare the means of the different groups. Differences between the means were considered to be significant at P < 0.05 by using the Tukey multiple comparison tests; *P < 0.05, **P < 0.01, and ***P < 0.001 compared with the normal control cells.

Fig. 5. (A) The effects of PKM2 knockdown on the expression levels of different glycolytic signaling proteins. DU145 cells were transfected with the indicated siRNAs, and western blotting was performed to determine the expression levels of the glycolytic proteins. PKM2 knockdown downregulated the expression levels of various glycolytic proteins, thus reducing glycolysis in the PKM2 siRNA-transfected DU145 cells. Representative blots are shown. (B) The intensities of the bands
were measured and are depicted in the bar graph by the ratio of GAPDH. (C) The ratios of p-ERK1/2/ERK1/2, p-AMPK/AMPK, p-Stat3/Stat3 and p-p53/ p53 were measured and are depicted in the bar graph. One-way ANOVA was used to compare the means of different groups. Differences between the means were considered to be significant at P < 0.05 by using Tukey multiple comparison tests; *P < 0.05, **P < 0.01, and ***P < 0.001 compared with the normal control cells.

3.6. PKM2 knockdown inhibits the Akt/mTOR signaling pathway

PKM2 overexpression inhibits autophagy by activating mTORC1 in various cancers [37,46,47]. Therefore, to determine whether PKM2 knockdown induced autophagy in prostate cancer cells, we examined the expression levels of major autophagy signaling proteins in PKM2 siRNA-transfected DU145 cells by performing western blotting analysis. PKM2 knockdown significantly downregulated the expression of p-AKT, which in turn inhibited the phosphorylation of mTOR and promoted autophagy induction (Fig. 6A & B). Total AKT and mTOR expression levels were unchanged in the normal and negative control cells. Moreover, PKM2 knockdown increased AMPK expression, which in turn decreased mTOR phosphorylation (Fig. 5 and 6). This reduction in mTOR phosphorylation decreased p-P70S6K and p-GSK3β levels compared with those in the normal control and negative control cells (Fig. 6A & B). These data suggest that PKM2 knockdown exerts anticancer effects in DU145 cells by inhibiting the AKT/mTOR signaling pathway.

Fig. 6. Expression patterns of different signaling pathway proteins after PKM2 knockdown by siRNAs. (A) The effects of PKM2 knockdown on anticancer signaling pathways in DU145 cells. The cells were transfected with the indicated siRNAs, and western blotting was performed to determine the expression levels of the different signaling pathway proteins. Representative blots are shown. (B) The intensities of the bands were measured and are depicted in the bar graph by the ratio of GAPDH. (C) The ratios of p-AKT/AKT, p-mTOR/mTOR, p-p70S6K/ p70S6K and p-GSK3β/ GSK3β were measured and are depicted in the bar graph. One-way ANOVA was used to compare the means of different groups. Differences between the means were considered to be significant at P < 0.05 by using Tukey multiple comparison tests; *P < 0.05, **P < 0.01, and ***P < 0.001 compared with the normal control cells.

3.7. PKM2 knockdown induces autophagic cell death

To investigate the effect of PKM2 knockdown on autophagic cell death, we performed acridine orange staining, MDC staining, and western blotting analysis to determine the rate of autophagy in
the PKM2 siRNA-transfected DU145 cells. PKM2 knockdown significantly increased autophagosome formation in DU145 cells after incubating for 72-h (Fig. 7A & B). Autophagy induction was further confirmed based on the upregulation of autophagy proteins by performing western blotting analysis (Fig. 7C & D). Moreover, PKM2 knockdown using si156 blocked the nuclear availability of PKM2 (Fig. 2C and 2D), which in turn reduced the phosphorylation of ERK1/2 and STAT3 (Fig. 5A & B). PKM2 knockdown also downregulated β-catenin and c-MYC expression, which in turn decreased the expression of the glycolytic enzymes LDHA and GLUT1 and of HIF1α (Fig. 5 and 6).

Fig. 7. Assessment of autophagy induction after PKM2 knockdown. (A) DU145 cells were transfected with the indicated siRNAs and stained with acridine orange. Formation of autophagic vacuoles was observed under a confocal microscope. Acridine orange staining resulted in the fluorescent green staining of both the cytoplasm and nucleus, and fluorescent bright red or orange-red staining of the autophagic vacuoles. (B) MDC staining showing the induction of autophagy in DU145 cells after PKM2 knockdown compared with the normal and negative controls. Cells were examined using confocal microscopy. Scale bars indicate 50 μm. (C) Western blotting of autophagic proteins in cells transfected with the indicated siRNAs. Western blotting was performed using the whole-cell lysates, with GAPDH as the internal loading control. Representative blots are shown. (D) The ratios of LC3-II/GAPDH, Beclin 1/GAPDH were measured and are depicted in the bar graph. One-way ANOVA was used to compare the means of different groups. Differences between the means were considered to be significant at P < 0.05 by using Tukey multiple comparison tests; *P < 0.05, **P < 0.01, and ***P < 0.001 compared with the normal control cells.

4. Discussion

Prostate cancer is one of the most common malignant cancers, with high incidence and mortality rates [48-51]. The identification of prostate cancer markers is important for determining its progression and for developing selective and effective therapeutic regimens. To maintain their anabolic processes, prostate cancer cells require a large, nonstop supply of glucose [52]. Therefore, high glucose uptake and lactate production are essential in prostate cancer metabolism, and increased PKM2 expression plays a significant role in maintaining aerobic glycolysis in prostate cancer cells [53]. In this study, we examined the effect of PKM2 knockdown on the metabolic and non-metabolic
functions of prostate cancer cells and determined the mechanism underlying prostate cancer cell death.

PKM2 overexpression is associated with the tumorigenesis of various cancers and with the poor outcomes of patients with these cancers. In this study, we detected high PKM2 expression in prostate cancer DU145 cells. Moreover, intense PKM2 immunostaining was observed in stage III and stage IV prostate adenocarcinoma tissue samples compared with normal prostate tissue samples, thus confirming that increased PKM2 expression is associated with prostate tumorigenesis. Moreover, we observed that the transfection of DU145 cells with PKM2 siRNAs drastically decreased their proliferation in a time-dependent manner, suggesting a relationship between PKM2 overexpression and prostate cancer cell proliferation and survival.

Compared with normal cells that metabolize glucose into carbon dioxide, tumor cells metabolize large amounts of glucose for lactate and energy production in the presence of large amounts of oxygen. This process is called the Warburg effect; it increases glucose consumption and makes tumor cells immortal [8]. One study confirmed that cancer cell proliferation was guided by PKM2-mediated highly aerobic glycolysis. In this study, PKM2 knockdown reduced pyruvate levels and subsequently lactate levels.

The regulation of PKM2 in prostate cancer is still unclear. Various studies have suggested that PKM2 is converted from a tetrameric state to a dimeric state in cancer cells which promotes aerobic glycolysis and glycolytic intermediate production for synthesizing cellular building blocks [53]. Moreover, nuclear PKM2 plays a crucial role in the transcriptional regulation of various genes [25,29,54], further suggesting the importance of its role in prostate cancer tumorigenesis. The results of the western blotting and immunofluorescence analyses performed in this study support the presence of PKM2 in the nucleus of prostate cancer cells.

PKM2 is a glycolytic enzyme that acts as a transcriptional co-activator of HIF1α to activate the transcription of several genes involved in cancer angiogenesis, metastasis, and invasion [55-57]. PKM2 knockdown downregulates HIF1α expression, which may affect the transcription of genes encoding the glucose transporter GLUT1 and the glycolytic enzymes LDHA and PDK1, thus affecting glucose uptake, lactate production, and mitochondrial pyruvate utilization. Moreover, PKM2 knockdown decreases the nuclear abundance of PKM2, which in turn decreases p-STAT3 level and affects the transcriptional activation of various STAT3-dependent genes [29]. Nuclear PKM2 binds to and activates c-Src-phosphorylated β-catenin (Y333), thus acting as a protein kinase [58,59]. In this study, PKM2 siRNA transfection inhibited the nuclear abundance of PKM2, thus inhibiting β-catenin phosphorylation. This subsequently affected c-MYC expression, which upregulates the expression of glycolytic enzymes, thus affecting cell proliferation [54]. PKM2 promotes the phosphorylation and activation of ERK1/2 [30], which was blocked after PKM2 siRNA transfection, again affecting prostate cancer cell proliferation.

Autophagy is a self-degradative housekeeping process that is important for maintaining a balance of energy sources in response to nutrient stress during tumor development [60]. Autophagic cell death is an alternative cell death pathway to apoptosis [61,62]. Activation of the AKT/mTOR signaling pathway inhibits autophagy, indicating that this pathway is crucial for controlling cell growth and survival [63]. AKT, a serine/threonine-specific protein kinase, is the master regulator of cell survival under stress conditions (such as nutrient stress, oxygen deprivation, and low pH) [64]. In contrast, mTOR, also a serine/threonine kinase, regulates the intake of nutrients and expression of growth factors and induces the synthesis of important proteins [65]. P70S6K, a downstream effector of mTOR, regulates cell growth, cell cycle progression, and cell metabolism by initiating the translation of mRNA into necessary proteins [66]. PKM2 activates mTOR signaling by phosphorylating the mTORC1 inhibitor AKT1S1, which ultimately inhibits autophagy [37]. In this study, the accumulation of autophagosomes in the PKM2 siRNA-transfected cells suggests that
PKM2 knockdown inhibits AKT expression and initiates autophagic cell death in DU145 cells, which may be mediated by the AKT/mTOR signaling pathway. The inhibition of the AKT/mTOR signaling pathway suppresses the expression of downstream proteins such as P70S6K and GSK3β, which in turn inhibit ribosomal protein synthesis, cell cycle progression, and glycogen synthesis. These findings suggest that PKM2 knockdown could be a beneficial therapeutic strategy for treating prostate cancer by inhibiting the key resistance factors of autophagy, i.e., the AKT/mTOR pathway; glucose uptake; and metabolic remodeling.

Clonogenic cell survival assays are a basic tool for determining the ability of a cell to multiply indefinitely and to form a large colony or a clone; a cell with these properties is referred to as a clonogenic cell [67]. In this study, PKM2 knockdown inhibited the ability of DU145 cells to form colonies (a single DU145 cell can produce a colony containing 50 or more cells) compared with normal and negative control cells.

Thus, our results indicate that targeting the metabolic and non-metabolic functions of cancer cells by targeting PKM2 could be an attractive strategy for prostate cancer therapy. To the best of our knowledge, this study is the first to report that DU145 prostate cancer cells show increased proliferation due to PKM2 overexpression and that PKM2 knockdown induces autophagy in DU145 cells by inhibiting the AKT/mTOR pathway, and glycolysis.

5. Conclusions

Tumor cells attain growth advantages over normal cells by reprogramming their metabolism. PKM2, the rate-limiting glycolytic enzyme, plays a significant role in the metabolic reprogramming of cancer cells. The high expression and enzymatic activity of PKM2 allow the improved regulation of glycolysis and the stable synthesis of macromolecular building blocks in cancer cells. Furthermore, PKM2 regulates non-metabolic functions in cancer cells, highlighting its ability to regulate gene transcription, cell proliferation, cell cycle progression, and feedback-regulated cellular metabolism (Fig. 8). Thus, PKM2 promotes the survival of cancer cells by regulating both the metabolic and non-metabolic functions of these cells. Further determination of the cellular functions of PKM2 will help to successfully develop a therapeutic strategy for prostate cancer in the near future.
Fig. 8. Schematic representation of the effect of PKM2 knockdown on prostate cancer cell survival and related pathways. PKM2 knockdown inhibits the AKT/mTOR signaling pathway, which activates autophagy and reduces the survival of human prostate cancer cells.

Funding: This research was funded by the National Research Foundation (NRF) of Korea, grant number NRF-2016R1A2B2011071 and NRF-2016R1A4A1011189. The NRF was funded by the Korean Government.

Acknowledgments: We would like to thank Karen Nelson for critically reading this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

34. Gabriele, F.; Martinelli, C.; Comincini, S. Prostate cancer cells at a therapeutic gunpoint of the autophagy process. *2018*.

55. Weibo Luo, G.L.S. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget 2011, 2, 551-556.

