Article

Transcriptional profile of *Aedes aegypti* Leucine-Rich Repeat Proteins in response to Zika and Chikungunya viruses

Liming Zhao 1,*, Barry W. Alto 1 and Dongyoung Shin 1

- ¹ Florida Medical Entomology Laboratory, University of Florida, 200 9th Street South East, Vero Beach, FL 32962; lmzhao@ufl.edu, bwalto@ufl.edu and dshin@ufl.edu.
- * Correspondence: lmzhao@ufl.edu; Tel.: +01-772-778-7200

Abstract: Aedes aegypti (L.) is the primary vector of chikungunya, dengue, yellow fever and Zika viruses. The leucine-rich repeats (LRR)-containing domain is evolutionarily conserved in many proteins associated with innate immunity in invertebrates and vertebrates, as well as plants. We focused on the AaeLRIM1 and AaeAPL1 gene expressions in response to Zika virus (ZIKV) and Chikungunya virus (CHIKV) infection using a time course study, as well as the developmental expressions in the eggs, larvae, pupae, and adults. RNA-seq analysis data provided 60 leucine-rich repeat related transcriptions in Ae. aegypti in response to Zika virus (Accession number: GSE118858, https://www.ncbi.nlm.nih.gov/gds/?term=GSE118858). RNA-seq analysis data showed that AaeLRIM1 (AAEL012086-RA) and AaeAPL1 (AAEL009520-RA) were significantly upregulated 2.5 and 3-fold during infection by ZIKV 7-days post infection (dpi) of an Ae. aegypti Key West strain compared to an Orlando strain. The qPCR data showed that LRR-containing proteins AaeLRIM1, AaeAPL1 and five paralogues were expressed 100-fold lower than other nuclear genes, such as defensin, during all developmental stages examined. Together, these data provide insights into transcription profiles of LRR proteins of Ae. aegypti during its development and in response to infection with emergent arboviruses.

Keywords: Aedes aegypti, Leucine-Rich Repeat Proteins, Zika virus, Chikungunya virus, immune responses, gene expression

1. Introduction

The leucine-rich repeats (LRR)-containing domain is noted to be evolutionarily conserved among many proteins correlated with innate immunity in an array of organisms including invertebrates, vertebrates, and plants [1]. Innate immunity is a conserved host response that serves as the host's first line of defense by sensing pathogen-associated molecular patterns through germline-encoded pattern recognition receptors [2]. Additionally, research generated by Aloor et al. (2018) indicates that LRR and calponin homology containing 4 (Lrch4) conform to the horseshoe-shaped structure typical of LRRs in pathogen-recognition receptors, and that the best structural match in the protein database is to the variable lymphocyte receptor of the jawless vertebrate hagfish

[3]. Silencing Lrch4 attenuates cytokine induction by LPS and multiple other TLR ligands and dampens the in vivo innate immune response [3].

Several human studies have assisted in identifying the function of Nucleotide-binding-site-(NBS)-LRR proteins which have also been utilized in plants for pathogen detection of pathogen products such as avirulence genes [4, 5]. Polymorphisms in the Nucleotide-binding oligomerization domain (NOD), LRP and Pyrin domain containing 12 (NLRP12), are associated with depression and coronary artery disease in trauma-exposed humans [6]. NLRP6, a member of the nucleotide-binding domain and LRR-containing (NLR) innate immune receptor family, participates in the progression of intestinal inflammation and enteric pathogen infections. This is important in disease pathogenesis because it responds to internal ligands that lead to the release of AMPs and mucus, thus regulating the regeneration of intestinal epithelial cells [7]. Toll-like receptor (TLRs) and NOD-like receptors, through their LRR domain, sense pathogens in mammals through pattern-recognition receptors responsible for activating antimicrobial defenses and stimulating the adaptive immune response [8]. Mutations in the genes encoding LRR-containing proteins - which impact protein folding, aggregation, oligomerization, stability, protein-ligand interactions, disulfide bond formation, and glycosylation - are associated with over sixty human diseases including high myopia, mitochondrial encephalomyopathy, Parkinson's disease and Crohn's disease [9, 10].

Mosquitoes lack an adaptive immune system [11] and so they are fully dependent on mounting an innate immune response to fight infection [12-15]. Research indicates that mosquito vectors and mosquito cell lines produce both humoral and cellular immune responses against invading pathogens [16, 17]. Leucine-rich repeat immune proteins (LRIMs) are a mosquito-specific family of putative innate receptors [18-20]. Two LRR proteins, LRIM1 (leucine-rich repeat immune protein 1) and APL1 (Anopheles Plasmodium-responsive leucine-rich repeat 1), have been recognized as major mosquito factors that regulate parasite infection and parasite loads [21]. In Anopheles mosquitoes, LRIM1, APL1C, and LRR-containing proteins activate complement-like defense responses against malaria by forming a disulphide-bridge that interacts with thioestercontaining protein 1 (TEP1), a complement C3-like protein [22, 23]. APL1 of Anopheles gambiae is a family of variable LRR proteins required for cell-mediated protection as shown using a rodent model malaria parasite, Plasmodium berghei [24]. The An. gambiae APL1 genomic locus circumscribes three distinct genes (APL1A, APL1B and APL1C), however, only the product of APL1C acts as a P. berghei antagonist [24]. LRIM1 and APL1C both play a significant role in the anti-Plasmodium response. Accordingly, silencing of these genes results in an altered response against *Plasmodium* infection [20]. A genome-wide study found that variations or polymorphisms in the LRIM1 and APL1C proteins were correlated with resistance and susceptibility to Plasmodium infection [25]. Additional studies offered mechanisms for controlling *Plasmodium* early during the infection process by targeting the ookinete or oocyst stages of oocyst [26, 27]. Nonetheless, no detailed information has been generated for pathogen response by the LRR-containing proteins of immune factors in *Aedes* mosquitoes.

Aedes aegypti (L.) is a vector for transmitting emergent arboviruses including chikungunya, dengue, yellow fever and Zika viruses. Chikungunya fever is primarily transmitted to humans through mosquito vectors, Ae. aegypti and Ae. albopictus. It is a viral disease belonging to the family Togaviridae, and genus Alphavirus. Recent outbreaks of chikungunya fever occurred from 2004-2006 spanning Kenya in 2004 (Eastern/Central/Southern African, ECSA, CHIKV lineage) and the island of La Réunion in 2005-2006 (Indian Ocean CHIKV lineage). It later emerged in the New World in 2013 on St. Martin Island (Asian CHIKV lineage), eventually spreading throughout the Americas [28-31].

Over the span of the past 12 years, it is estimated that more than four million human cases of chikungunya infection have occurred worldwide [32]. Symptoms of infection include a rash, fever, headache, joint pain, and muscle pain [33] along with the chance of developing chronic musculoskeletal diseases [34]. There is currently no vaccine available for CHIKV. Accordingly, controlling the mosquito vectors is the primary method utilized to reduce the risk of disease transmission.

Zika virus (ZIKV) was first discovered in 1947 and belongs to the family Flaviviridae, genus *Flavivirus* (CDC 2016) [35]. Spreading to the Oceania region, ZIKV caused outbreaks on Yap Island in Micronesia and French Polynesia in 2007 and 2013 respectively. In 2015, ZIKV was found to have reached Brazil spreading throughout the Americas [35, 36]. It is estimated that 1.5 million people have been infected by ZIKV in Brazil [37]. ZIKV continues to spread to new areas. Transmission in the U.S. is a major public health risk, notably for the Gulf states such as Florida and Texas where ecological conditions are favorable for the primary vector *Ae. aegypti*, as well as an increasing likelihood for virus introduction by imported cases. Manifestations of ZIKV take on different forms, the most serious of which include birth defects in humans [38] along with neurological complications that may result in Guillain-Barré syndrome, both of which are significant public health threats [39].

Mosquitoes respond to infection using an array of molecular signaling pathways and immune effector proteins. A focus on the immune system response of *Ae. aegypti* has unveiled a transcriptome analysis of genome-wide mechanisms that are implicated in defense against arbovirus infections [40-43]. No sequence-structure-function relationships of mosquito leucine-rich repeat immune proteins in *Ae. aegypti* in response to arboviruses are available, though the LRR-proteins have been compared with *An. gambiae* and *Culex quinquefasciatus* [23]. Data from *Ae. aegypti* was provided by RNA-seq analysis giving 60 leucine-rich repeat related transcriptions in response to ZIKV (Accession number: GSE118858, https://www.ncbi.nlm.nih.gov/gds/?term=GSE118858) [41]. We examined the *AaeLRIM1* and *AaeAPL1* gene expressions in response to both ZIKV and CHIKV infection using a time course study. Additionally, we investigated the developmental expressions of these genes in the eggs, larvae, pupae and adults. The current study aims to improve our understanding of the transcription profiles of *Ae. aegypti* LRR proteins during development and in response to arbovirus infection.

2. Results

2.1.1 Leucine-Rich Repeat Proteins AaeAPL1 paralogues of Aedes aegypti

Evolutionary analysis of 8 paralogues of *AeaAPL1* of the *Ae. Aegypti* were conducted in MEGA7 [44] (**Figure 1**). The data showed that *AaeAPL1* was close related to *AaeLRIM4*. The DNA sequences producing significant alignments between *AaeAPL1* and *AaeLRIM4* was 44% identity.

Figure 1. The evolutionary history was inferred using the Neighbor-Joining method [45]. The optimal tree with the sum of branch length = 4.948 is shown. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Maximum Composite Likelihood method [46] and are in the units of the number of base substitutions per site. The analysis involved 9 nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1179 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [44].

2.1.2 Developmental regulation of AaeLRIM1 and AaeAPL1

To understand how *AaeLRIM1* and *AaeAPL1* are regulated during the development of *Ae. aegypti*, qPCR was performed to examine relative transcription levels of *AaeLRIM1* and *AaeAPL1* in eggs, larvae, pupae, and male and female adults (**Figure 2**).

In addition, we also examined 5 paralogues of *AeaAPL1*, *i.e.*, *AaeLRIM3*, *AaeLRIM4*, *AaeLRIM5*, *AaeLRIM16*, and *AaeLRIM17* during developmental stages using qPCR (**Figures S1A-E**).

Figure 2. *AaeLRIM1* and *AaeAPL1* relative expression in the all developmental stages, from eggs (Eg), larvae (Lv), pupae (Pu), and adults *Ae. aegypti*, including male (M1, male 1-d-old; M3, male 3-d-old; M5, male 5-d-old; M7, male 7-d-old; and M10, male 10-d-old) and female (F1, female 1-d-old; F3, female 3-d-old; F5, female 5-d-old; F7, female 7-d-old; and F10, female 10-d-old) in the Key West strain (KW) and Orlando (OR) strain of *Aedes aegypti*. (**A**) *AaeLRIM1*; (**B**) *AaeAPL1*.

1. AaeLRIM1 and AaeAPL1 RNA Profile in Immature Stages of Ae. aegypti

MANOVA showed significant effects of mosquito strain, developmental stage, and interaction of these factors (**Table 1A**). For the mosquito strain effect, Key West had higher AaeLRIM1 than Orlando Ae. aegypti (**Figure 2**). Standardized canonical coefficients showed that AaeLRIM1 and AaeAPL1 contributed similary, but in opposite directions (**Table 1A**). In contrast, Orlando had higher AaeAPL1 than Key West Ae. aegypti (**Figure 2**). Standardized canonical coefficients showed that AaeLRIM1 contributed twice as much as AaeAPL1 for the significant developmental stage effect (**Figure 2**). For the developmental stage effect, LRIM1 was significantly different between developmental stages with increases associated between each stage (**Figure 2**). Gene expression of AaeAPL1 was significantly higher for the larval and pupal stages compared to the egg stage. However, AaeAPL1 was lower among pupae than larvae (**Figure 2**). For the significant interaction, we compared less than all possible treatment groups by which developmental stage was

compared within a given strain (e.g., Key West eggs vs. Key West larvae). Standardized canonical coefficients showed similar contribution of *AaeLRIM1* and *AaeAPL1* to the significant interaction, in opposite directions (**Table 1A**). Gene expression of *AaeLRIM1* was higher for Key West than Orlando *Ae. aegypti* and occurred over a greater range. We observed significant increases in gene expression of *AaeLRIM1* for each developmental stage for both Key West and Orlando *Ae. aegypti* (**Figure 2**). In contrast, gene expression of *AaeAPL1* was higher for Orlando than Key West *Ae. aegypti* and occurred over a greater range. Gene expression of *AaeAPL1* significantly increased for each developmental stage for both Key West and Orlando *Ae. aegypti* (**Figure 2**).

Table 1A. MANOVA results for strain and stage effects of *AaeLRIM1* and *AaeAPL1* RNA profile in immature stages of *Ae. aegypti*.

Treatment	Pillai's Trace	df (numerator and denominator	` 1		Canonical
				AaeLR1M1	AaeAPL1
Strain	0.99	2, 11	<0.0001	12.12	-10.76
Stage	1.99	4, 24	< 0.0001	16.28	8.35
Strain x Stage	1.89	4, 24	< 0.0001	11.09	-11.57

2. AaeLRIM1 and AaeAPL1 RNA Profile in Adults (Male and Female) of Ae. aegypti

MANOVA showed significant main effects of mosquito strain, sex, and age, as well as the two-way interaction and three-way interaction (strain x sex x age). Standardized canonical coefficients showed that *AaeLRIM1* contributed much more to all significant effects than *AaeAPL1* (Table 1B). Because the three-way interaction was significant, we focused on pairwise comparisons of treatment groups for this effect. Specifically, we compared mosquito strains of a given sex and age (e.g., Key West, female, 1-day old vs. Orlando, female, 1-day old). For expression of *AaeLRIM1*, Key West was higher for 1-day 3-day, and 10-day old mosquitoes than Orlando female *Ae. aegypti*. In contrast, *AaeLRIM1* was higher for 5-day and 7-day Orlando than Key West female *Ae. aegypti*. Gene expression for *AaeLRIM1* was higher for all ages of Key West male *Ae. aegypti* except for 1-day old males. Lowest rates of expression were observed for 1-day old male *Ae. aegypti* for both strains and highest rates were observed for intermediate aged mosquitoes.

For gene expression of *AaeAPL1*, Orlando was higher for all ages than Key West female *Ae. aegypti*. Rates of expression were highest for 7-day old female mosquitoes and expression was lower among older females (10-day old) for both mosquito strains. For gene expression of *AaeAPL1*, Orlando was higher for all ages than Key West male *Ae. aegypti*, except 5-day old males. Rates of expression were highest for 5-day old and 3-day old male mosquitoes for Key West and Orlando, *Ae. aegypti*, respectively. Gene expression was low for young and old male mosquitoes (**Figure 2**).

Table 1B. MANOVA results for strain, sex and age effects of *AaeLRIM1* and *AaeAPL1* RNA profile in adult stages of *Ae. aegypti*.

Treatment	Pillai's Trace	df (numerator and	p-value	Standardized Coefficients	Canonical
		denominator			

				AaeLR1M1	AaeAPL1
Strain	0.99	2, 39	<0.0001	47.84	-7.90
Sex	1.00	2, 39	< 0.0001	49.46	-4.80
Age	1.98	8, 80	< 0.0001	49.48	-3.43
Strain x Sex	1.00	2, 39	< 0.0001	48.66	-1.11
Strain x Age	1.93	8, 80	< 0.0001	46.59	-9.05
Sex x Age	1.99	8, 80	< 0.0001	49.49	-4.55
Strain x Sex x Age	1.98	8, 80	< 0.0001	49.52	-4.06

2.1.3 Infection in Ae. aegypti Exposed to CHIKV and ZIKV

To understand the molecular interactions of the arbovirus with permethrin resistant Ae. aegypti from Florida, qPCR was conducted to discover the gene expression in the Ae. aegypti (Key West and Orlando strains) in response to oral ingestion of ZIKV or CHIKV infected blood and ZIKV/CHIKV infection. In this study, four-day-old female Ae. aegypti adults were fed a blood meal containing 6.4 log10 pfu/mL of ZIKV (**Table 2A**). Fresh fed mosquitoes ingested 4.2 to 4.3 log10 pfu/mL of ZIKV. By 3 days post infection (dpi), ZIKV titer in mosquito bodies were 3.96 ± 0.26 log10 pfu/mL and 3.66 ± 0.27 log10 pfu/mL for the permethrin resistant and susceptible strains of Ae. aegypti, respectively. By 7 days post infection (dpi), ZIKV titer in mosquito bodies were 4.11 ± 1.78 log10 pfu/mL and 3.58 ± 1.23 log10 pfu/mL for the permethrin resistant and susceptible strains of Ae. aegypti, respectively. A two-tailed t-test showed no significant differences in ZIKV titer in the bodies of the two strains of Ae. aegypti (t17 = 0.77, p = 0.44). By 10 dpi, ZIKV titer in permethrin resistant strain mosquito bodies were 6.57 ± 0.05 log10 pfu/mL, which was 100-fold higher (t4 = 8.12, p = 0.001) than the titer of the susceptible strain (4.49 ± 0.34 log10 pfu/mL). This result demonstrated that the ZIKV replication rates were higher at this point in the infection process for the permethrin resistant strain than the susceptible strain.

Four-day-old female *Ae. aegypti* adults were fed a blood meal containing 8.0±0.09, 8.3±0.08 log10 pfu/mL of CHIKV (**Table 2B**). Fresh fed mosquitoes ingested 4.56±1.16 to 5.23±0.10 log10 pfu/mL of CHIKV. By 3 days post infection (dpi), CHIKV titer in mosquito bodies were 5.04±0.71 log10 pfu/mL and 4.7±0.81log10 pfu/mL for the permethrin resistant and susceptible strains of *Ae. aegypti*, respectively. By 7 days post infection (dpi), ZIKV titer in mosquito bodies were 5.4±0.46 log10 pfu/mL and 5.81±0.48 log10 pfu/mL for the permethrin resistant and susceptible strains of *Ae. aegypti*, respectively. A two-tailed t-test showed no significant differences in ZIKV titer in the bodies of the two strains of *Ae. aegypti*. By 10 dpi, ZIKV titer in permethrin resistant strain mosquito bodies were 5.53±0.33 log10 pfu/mL, and the titer of the susceptible strain (5.20±0.49 log10 pfu/mL). This result demonstrated that the CHIKV replication rates were similar at this point in the infection process for the permethrin resistant strain and the susceptible strain.

Table 2A. Zika virus titers (log10 pfu/ml) in infectious blood meals and mosquitoes for Key West and Orlando strains of *Aedes aegypti*.

Strains	Initial dose in bloodmeal	Freshly fed	3 days post infection	7 days post infection	10 days post infection
Key West	6.4±0.09	4.30±0.0	3.96±0.26	4.11±1.78	6.57±0.05
Orlando	6.4 ± 0.08	4.17±0.39	3.66±0.27	3.58±1.23	4.49 ± 0.34

^{2a} Zika virus (strain PRVABC59, GenBank accession # KU501215.1) isolated from a human infected in Puerto Rico in 2015.

Table 2B. Chikungunya virus titers (log10 pfu/ml) in infectious blood meals and mosquitoes for Key West and Orlando strains of *Aedes aegypti*.

Strains	Initial dose in bloodmeal	Freshly fed	3 days post infection	7 days post infection	10 days post infection
Key West	8.0 ± 0.09	5.23±0.10	4.7±0.81	5.4 ± 0.46	5.20±0.49
Orlando	8.3±0.08	4.56±1.16	5.04 ± 0.71	5.81±0.48	5.53±0.33

²⁶ CHIKV (LaReunion strain LR2006-OPY1, GenBank KT449801) from a human infected on La Réunion Island in 2006 (Parola et al. 2006).

2.1.4 Leucine-Rich Repeat Proteins Changes in Transcriptome of the Aedes Aegypti Female Adult in Response to ZIKV Infection

To better our understanding of molecular interactions and the immune response of Ae. aegypti from Florida with arbovirus, we re-examined RNA-seq data to explore the changes in Leucine-Rich Repeat Proteins in the Ae. aegypti (Key West and Orlando strains) transcriptome in response to oral ingestion of ZIKV infected blood and ZIKV infection (Accession number: GSE118858, https://www.ncbi.nlm.nih.gov/gds/?term=GSE11). Data were provided by RNA-seq analysis that generated 60 leucine-rich repeat related transcriptions in the Ae. aegypti genome in response to Zika virus (Table S1A-S1D, Table 3A-3D). Specifically, female Ae. aegypti transcriptomic RNA-seq data showed that 23 genes related to Leucine-Rich Repeat Proteins (LRRP) were significantly upregulated during infection by ZIKA in 7-days post infection (dpi) Ae. aegypti Key West strains compared with Orlando strains. Additionally, seventeen of these genes between the two strains were upregulated more than 2-fold (p-adj ≤ 0.01 ; log2 fold change $> \pm 2.0$) in response to ZIKV 7 dpi (Table 3A). AaeLRIM1 (AAEL012086-RA) and AaeAPL1 (AAEL009520-RA) were significantly upregulated 2.5 and 3-fold (Table 3A). When comparing transcriptome profiles of two Ae. aegypti strains in response to the control (blood-feeding only), only three genes related to Leucine-Rich Repeat Proteins were significantly upregulated/downregulated in 7-days post infection Ae. aegypti in Key West strains compared with Orlando strains (Table 3B). AaeLRIM1 (AAEL010286-RA) was significantly upregulated 3-fold (Table 3B). Comparing ZIKV infected Key West Ae. aegypti with the Key West control at 7 dpi, 4 differentially expressed (DE) transcripts related to LRRP were significantly dysregulated (2 upregulated and 2 downregulated, Table 3C). AaeLRIM1 (AAEL010286-RA, p-adj 5.0 x 10-9, log2 fold change -3.3918) was significantly down-regulated (Table 3C). Analysis and comparison of mRNA expression profiles of Ae. aegypti Orlando strains following ZIKV infection indicated five LRRP related genes, including AaeAPL1 (AAEL009520-RA, p-adj 2.8 x 10-4, log2 fold change -2.2074), were significantly dysregulated (downregulated) 7-days post infection (Table 3D).

Table 3A. Female *Aedes aegypti* transcriptomic RNA-seq data show Leucine-Rich Repeat Proteins related genes significantly upregulated in the Zika infection in Key West strain compared with Orlando strain *Aedes aegypti* 7-days post infection

Transcript ID	Log2FC	p-adj	Gene description
AAEL001401-RA	3.2722	2.3 x 10 ⁻²⁷	leucine-rich immune protein (Short)
AAEL001402-RA	3.2947	3.3×10^{-33}	leucine-rich immune protein (Short)

_				
	AAEL001414-RA	3.3721	2.1 x 10 ⁻³⁶	leucine-rich immune protein (Short)
	AAEL001417-RA	3.9484	2.1 x 10 ⁻⁵	leucine-rich immune protein (Short)
	AAEL001420-RA	3.4335	1.6×10^{-73}	leucine-rich immune protein (Short)
	AAEL001649-RA	-0.2792	4.6×10^{-3}	leucine aminopeptidase
	AAEL002295-RA	2.4545	1.9 x 10 ⁻⁴⁴	leucine-rich transmembrane protein
	AAEL002615-RA	2.2527	4.9×10^{-12}	leucine-rich transmembrane protein
	AAEL003262-RA	1.8141	3.9 x 10 ⁻⁵	leucine-rich transmembrane protein
	AAEL003408-RA	1.3747	5.3 x 10 ⁻⁶	leucine-rich transmembrane protein
	AAEL003713-RA	1.3970	7.2×10^{-4}	leucine-rich transmembrane protein
	AAEL003720-RA	1.1688	5.6 x 10 ⁻⁵	leucine-rich transmembrane protein
	AAEL005762-RA	2.2277	2.7 x 10 ⁻⁵	leucine-rich transmembrane protein
	AAEL006975-RA	1.7989	8.7 x 10 ⁻⁵	leucine aminopeptidase
	AAEL007103-RA	3.2536	7.5 x 10 ⁻¹¹	leucine-rich immune protein (TM)
	AAEL009520-RA ¹	3.0383	4.5×10^{-25}	leucine-rich immune protein (Long)
	AAEL010125-RA	3.2598	7.0×10^{-8}	leucine-rich immune protein (Coil-less)
	AAEL010128-RA	4.8149	2.4 x 10 ⁻⁷	leucine-rich immune protein (Long)
	AAEL010656-RA	2.7658	3.8 x 10 ⁻⁷	leucine-rich immune protein (Short)
	AAEL012086-RA	2.4679	1.7×10^{-12}	leucine-rich immune protein (Long)
	AAEL012092-RA	2.1252	2.6×10^{-28}	leucine-rich repeat protein
	AAEL012093-RA	2.2739	1.9×10^{-10}	leucine-rich transmembrane protein
	AAEL012255-RA	4.2146	1.9×10^{-4}	leucine-rich immune protein (Short)

¹ AAEL009520-RA is the same gene as AAEL024406.

Table 3B. Female *Aedes aegypti* transcriptomic RNA-seq data show Leucine-Rich Repeat Proteins related genes significantly upregulated/downregulated in the **Control** in Key West strain compared with Orlando strain *Aedes aegypti* 7-days post injection.

Transcript ID	Log2FC	p-adj	Gene description
AAEL000243-RA	5.2443	1.8 x 10 ⁻²⁶	leucine-rich transmembrane protein
AAEL009894-RA	-0.9167	2.9 x 10 ⁻⁴	leucine-rich immune protein (Coil-less)
AAEL010286-RA	3.0287	1.5×10^{-5}	leucine-rich transmembrane protein

Table 3C. Female *Aedes aegypti* transcriptomic RNA-seq data show Leucine-Rich Repeat Proteins related genes significantly dysregulated in the Key West strain *Aedes aegypti* 7-days post infection with ZIKV compared with Control in Key West strain.

Transcript ID	Log2FC	p-adj	Gene description
AAEL000243-RA	-6.6469	7.6×10^{-44}	leucine-rich transmembrane protein
AAEL003408-RA	2.1477	1.8×10^{-4}	leucine-rich transmembrane protein
AAEL009894-RA	0.8665	9.7×10^{-8}	leucine-rich immune protein (Coil-less)
AAEL010286-RA	-3.3918	5.0×10^{-9}	leucine-rich transmembrane protein

Table 3D. Female *Aedes aegypti* transcriptomic RNA-seq data show Leucine-Rich Repeat Proteins related genes significantly dysregulated in the Orlando strain *Aedes aegypti* 7-days post infection with ZIKV compared with Control in Orlando strain.

Transcript ID	Log2FC	p-adj	Gene description
AAEL009520-RA1	-2.2074	2.8 x 10 ⁻⁴	leucine-rich immune protein (Long)
AAEL010128-RA	-5.3692	2.8×10^{-6}	leucine-rich immune protein (Long)

AAEL001402-RA	-3.3551	6.1 x 10 ⁻⁸	leucine-rich immune protein (Short)
AAEL010656-RA	-2.5623	4.4×10^{-3}	leucine-rich immune protein (Short)
AAEL012255-RA	-4.1624	3.1 x 10 ⁻⁵	leucine-rich immune protein (Short)

¹ AAEL009520-RA is the same gene as AAEL024406.

2.1.5 AaeLRIM1 and AaeAPL1 Transcriptional Induction of ZIKV Infections in Orally Infected Ae. aegypti Females

To characterize *AaeLRIM1* and *AeaAPL1* expression in response to ZIKV exposure, we measured *AaeLRIM1* and *AeaAPL1* expressions in orally infected *Ae aegypti*. MANOVA showed the significant effects of strain of *Ae. aegypti*, time, and their interaction (**Table 4A**). For the strain effect, SCCs showed that *AaeLRIM1* contributed more to the significant effect than *AaeAPL1* (**Table 4A**). Gene expression of *AaeLRIM1* was significantly higher for Key West than Orlando strains. Similar contributions of gene expression of *AaeAPL1* were observed for Orlando and Key West *Ae. aegypti*. For the significant time effect, SCCs showed that *AaeLRIM1* contributed approximately 8-fold higher than *AaeAPL1* (**Table 4A**). The highest gene expression of *AaeLRIM1* was 3-hours post infection with the later time point having lower levels. For *AaeAPL1*, the highest levels were observed for 72, 120, and 168-hours post infection with other points being lower (**Figure 3**).

For the interaction, SCCs showed that *AaeAPL1* contributed approximately 2-fold greater than *AaeLRIM1* (**Table 4A**). We made less than all possible comparisons by comparing between strains and holding time constant (e.g., Key West, 3-hours vs. Orlando, 3-hours). Gene expression for *AaeLRIM1* was highest for 3-hours post infection compared to other time points for both Key West and Orlando *Ae. aegypti*. All pairwise contrasts of treatment groups were significantly different from one another, except for 120 hours post infection (**Figure 3**).

For the significant interaction, gene expression for *AaeAPL1* was highest for Key West at 168-hours post infection and for Orlando at 72- and 120-hours post infection for *Ae. aegypti*. All pairwise comparisons were significantly different between each other except for 24- and 48-hours post infection between the two mosquito strains (**Figure 3**).

Table 4A. MANOVA results for strain and time effects of *AaeLRIM1* and *AaeAPL1* RNA profile in response to Zika virus infection of *Ae. aegypti*.

Treatment	Pillai's Trace	df (numerator and p-value denominator		Standardized Coefficients	Canonical
				AaeLR1M1	AaeAPL1
Strain	0.86	2, 31	< 0.0001	8.06	-1.16
Time	1.94	14, 64	< 0.0001	8.07	-1.01
Strain x Time	1.86	14, 64	< 0.0001	2.45	5.84

Figure 3. *AaeLRIM1* and *AaeAPL1* relative expression level fold changes in *Aedes aegypti* female infected with ZIKV. The fold change was calculated using the 2 [-average ΔΔCT] method. Δ Ct (Control) = Ct (*AaeLRIM1/AaeAPL1*) –Ct (*AeaActin*); Δ Ct (infected-ZIKV) = Ct (*AaeLRIM1/AaeAPL1*) – Ct (*AeaActin*); Δ Ct (infected-ZIKV)– Δ Ct (Control). The 3, 12, 24, 48, 72, 120, 168, and 240 h represented gene expression post infected with ZIKV. (A) Key West strain female *Ae. aegypti*; (B) Orlando strain female *Ae. aegypti*.

2.1.6 AaeLRIM1 and AaeAPL1 Transcriptional Induction of CHIKV Infections in Orally Infected Ae. aegypti Females

To characterize *AaeLRIM1* and *AaeAPL1* expression in response to CHIKV exposure, we measured *AaeLRIM1* and *AaeAPL1* expressions in orally infected *Ae aegypti*. MANOVA showed the significant effects of strain of *Ae. aegypti*, time, and their interaction. For all significant treatment effects, SCCs showed that *AaeLRIM1* contributed approximately 2-6-fold greater than *AaeAPL1* (Table #). For the strain effect, gene expression of *AaeLRIM1* and *AaeAPL1* was significantly higher for Key West than Orlando strains. For the time effect, gene expression of *AaeLRIM1* was highest at 72-hours post infection. All time points were significantly different from one another, except 3-hours versus 120-hours post infection (Figure 4). Similarly, gene expression of *AaeAPL1* was highest at 72-hours

post infection. All time points were significantly different from one another except the following; 3-hours versus 168-hours, 24-hours versus 240-hours, and 48-hours versus 120 hours (Figure 4).

For the significant interaction, gene expression of *AaeLRIM1* was highest for 24-hours and 240-hours post infection for Key West and Orlando *Ae. aegypti*, respectively (Figure 4). All pairwise comparisons of treatment groups were significantly different from one another except for 48-hours and 168-hours post infection (Figure 4). The timing of the highest gene expression of *AaeAPL1* was similar to observations of *AaeLRIM1*, with highest levels observed for 24-hours and 240-hours post infection for Key West and Orlando *Ae. aegypti*, respectively (Figure 4). All pairwise comparisons of treatment groups were significantly different from one another except for 3-hours, 120-hours, and 168-hours post infection (Figure 4).

Table 4B. MANOVA results for strain and time effects of *AaeLRIM1* and *AaeAPL1* RNA profile in response to Chikungunya virus infection of *Ae. aegypti*.

Treatment	Pillai's Trace	df (numerator and	p-value	Standardized	Canonical
		denominator		Coefficients	
				AaeLR1M1	AaeAPL1
Strain	0.60	2, 27	<0.0001	5.90	1.23
Time	1.77	12, 56	<0.0001	4.59	2.61
Strain x Time	1.79	12, 56	<0.0001	6.20	0.79

Figure 4. *AaeLRIM1* and *AaeAPL1* relative expression level fold changes in *Aedes aegypti* female infected with CHIKV. The fold change was calculated using the $2^{[-average \Delta\Delta CT]}$ method. Δ Ct (Control) = Ct (*AaeLRIM1/AaeAPL1*) –Ct (*AeaActin*); Δ Ct (infected-CHIKV) = Ct (*AaeLRIM1/AaeAPL1*) – Ct (*AeaActin*); $\Delta\Delta$ Ct = Δ Ct (infected-CHIKV)– Δ Ct (Control). The 3, 24, 48, 72, 120, 168, and 240 h represented gene expression post infected with CHIKV. (**A**) Key West strain female *Ae. aegypti*; (**B**) Orlando strain female *Ae. aegypti*.

3. Discussion

Identification and characterization of genes related to *LRIM1* and *APL1C* revealed novel innate immune factors and furthered our understanding of their presumed molecular functions. Waterhouse et al. (2010) used comparative sequenced genomes: *An. gambiae, Ae. aegypti,* and *Cx. quinquefasciatus* revealed that mosquito LRIM proteins can be classified into four distinct subfamilies by a variable number of LRRs [23]. Our phylogenetic tree of paralogue showed that *AaeAPL1* (or *AaeLRIM2*) sequence-structure-function was most closely related to *AaeLRIM4*.

We analyzed developmental changes in the gene expression of LRR-containing proteins in Ae. aegypti eggs, larvae, pupae, and adults. The nucleus gene LRR-containing proteins AaeLRIM1, AaeAPL1 and others five paralogues are expressed <100-fold lower than the other nuclear genes, such as defensin, during all developmental stages examined [47]. Our data show that the expression of AaeLRIM1 (AAEL012086), AaeAPL1 (AAEL009520-RA) and others five paralogues is not only regulated by development but also by the varying environmental origin (or permethrin resistant selected strain) of mosquito strains in Ae. aegypti. For both immature and adult stages, we observed higher expression of AaeLRIM1 than AaeAPL1 in Key West Ae. aegypti and higher expression of AaeAPL1 than AaeLRIM1 in Orlando Ae. aegypti. These differences in responses may be attributable to difference in insecticide resistance among the Orlando (permethrin susceptible) and Key West (permethrin resistant) strains of Ae. aegypti. However, we are unable to rule out that other differences between these two strains of Ae. aegypti (e.g., geographic origin and founder effects) may contribute to the observed differences in gene expressions. For the immature, but not adult stages, expression of AaeAPL1 and AaeLRIM1 increased with developmental stage. The strain effect for the analyses were modified by interactions with other factors, suggesting complex interactions between gene expression and immature stage, adult age, and sex. To our knowledge, this is the first exploration of AaeLRIM gene expression during Ae. aegypti development.

In Anopheles, two leucine-rich repeat (LRR) proteins, LRIM1 and APL1, have been shown to strongly affect P. berghei development in the mosquito midgut and have been identified as major mosquito factors that regulate parasite loads [18, 20-22, 48-51]. In Ae. aegypti, the likely LRIM1 orthologue is upregulated with other immune genes following infection with Wolbachia bacteria resulting in immune activation and shortened mosquito life spans [52]. However, there is no information available for revealing LRIM1 and APL1 affected by arboviruses. Our data demonstrates that gene expression of LRR-containing proteins, AaeLRIM1 and AaeAPL1, not only affect regulated parasites in the Anopheles but are also altered by arbovirus infection in Ae. aegypti. Biophysical analysis of anopheles gambiae leucine-rich repeat proteins APL1A1, APL1B and APL1C can all form an extended, flexible heterodimer with LRIM1, providing a repertoire of functional innate immune complexes to protect An. gambiae from a diverse array of pathogens [21]. Future studies are needed to identify how proteins AaeLRIM1 and AaeAPL1 may influence progression of infection of arboviruses in Ae. aegypti. Some of the highest changes in expression of AaeAPL1 and AaeLRIM1 for both strains of Ae. aegypti occurred 24-72 hours post infection with CHIKV which approximates the time when Ae. aegypti acquire disseminated infections [31]. However, this response appears to be earlier for the Key West strain (approximately 24 hours), which may suggest alterations in immune responses between permethrin susceptible and resistant Ae. aegypti (Shin et al. unpublish data). Changes in expression of AaeLRIM1 and AaeAPL1 followed a different pattern for ZIKV infected mosquitoes, suggesting gene expression changes depending on the particular arbovirus. For both strains of Ae. aegypti, AaeLRIM1 tended to be highest early during infection and decline at later points. In contrast, expression of AaeAPL1 was low early during infection and higher at later measured times.

Studying the immune system of mosquitoes will provide insights into significant opportunities to bridge tissue damage, immune invasions mechanisms, and immune response against pathogens [11]. More importantly, unveiling newfound understanding of mosquito immunity will shed light on the fight against disease-spreading pathogens, including ZIKV and CHIKV. Understanding the mechanisms that allow pathogens to grow and replicate in mosquitoes will provide insights into the mechanisms of mosquito-pathogen interactions. Finding exact immune evasion strategies of pathogens will help produce novel strategies that are effective at controlling them.

4. Materials and Methods

Mosquito strains and developmental stages of Aedes aegypti

Ae. aegypti larvae were collected from Key West (24.55°N, 81.78°W), Florida, USA since 2011 and were initially tested for permethrin resistance, then subjected to permethrin selection for 15 generations and again assayed for resistance strain[41]. Key West strain Ae. aegypti, referred to as the resistant strain, was maintained at the Florida Medical Entomology Laboratory (FMEL) in Vero Beach, FL, USA. The Orlando population of Ae. aegypti was collected from Orlando, FL, USA and reared in the Mosquito and Fly Research Unit, Center for Medical, Agricultural and Veterinary Entomology, ARS-USDA in Gainesville, FL since 1952. The Orlando strain is recognized as a permethrin susceptible strain of Ae. aegypti [53]. For the experiments, mosquito eggs were hatched and reared in a rearing chamber at 27°C [47]. We sampled eggs, larvae, pupae and adults to measure developmentally regulated gene expression of Leucine-Rich Repeat Proteins in Ae. aegypti. We collected 100 μg of eggs, 20 larvae at 3rd instar stage, 20 pupae, 10 adult mosquitoes, 10 males and 10

females at 1-day-old (teneral), 3-day-old, 5-day-old, 7-day-old and 10-day-old adults. The experiments were repeated three times.

Chikungunya virus and Zika virus infection

Four-day-old female adults were fed blood containing either CHIKV, ZIKV or blood without virus as control [41, 47]. Isolates of the Indian Ocean lineage of CHIKV (LR2006-OPY1, GenBank accession: KT449801) from Réunion and the Asian lineage of ZIKV (strain PRVABC59, GenBank accession # KU501215.1) from Puerto Rico were cultured in African green monkey (Vero) cells and used in the mosquito infection study. The detail procedures were described in the previous publication [41, 47].

Monolayers of Vero cells were inoculated with 500 µl of diluted stock virus (multiplicity of infection, 0.1) and incubated for 1 hr at 37°C and 5% CO₂ atmosphere, after which 24 mL media (M199 medium supplemented with 10% fetal bovine serum, penicillin/streptomycin and mycostatin) were added to each flask and incubated for three days for CHIKV and six days for ZIKV. Freshly harvested media from infected cell cultures were combined with defibrinated bovine blood and ATP (0.005 M) and presented to mosquitoes using a membrane feeding system (Hemotek, Lancashire, United Kingdom) for one hour feeding trials. Control blood meals were prepared similarly except that monolayers of Vero cells were inoculated with media only. Samples of infected blood were taken at the time of the feedings and stored at -80°C for later determination of virus titer. Mosquitoes were fed 8.0-8.3 log10 pfu/ml of CHIKV and 6.4 log10 pfu/ml of ZIKV.

Following feeding trials, fully engorged mosquitoes were sorted using light microscopy (10X) and held in cages (h by d: 10 cm by 10 cm) maintained at a 12:12 hour light:dark photoperiod and 30°C. Mosquitoes were provided with an oviposition substrate and 10% sucrose solution on cotton pads. Cohorts of mosquitoes were killed and stored at -80°C at the following sample periods after ingesting infected blood: 3-h, 12-h (ZIKV only), 24-h, 48-h, 72-h, 120-h, 168-h, and 240-h. Mosquitoes were deprived of sucrose but not water 1-day before trials used to measure transmission on 3, 5, 7, and 10 days following ingestion of ZIKV and CHIKV infection blood.

RNA extraction

Samples were homogenized with a plastic pestle in 1.5 ml tubes. Total RNAs were extracted using TRIzol reagent according to the manufacturer's instruction (Ambion, Life Technologies, Carlsbad, California 92008, USA) following the standard protocol [47]. The RNA samples were digested by DNase I (RNase-free), according to the manufacturer's instructions (Thermo Scientific, Wilmington, Delaware USA). The purified RNA samples were quantitated by NANODROP 2000 Spectrophotometer (Thermo Scientific, Wilmington, Delaware USA).

cDNA synthesized and qPCR amplification

cDNAs from 2 μ g of total purified RNA were synthesized using a Cloned AMV First-Strand cDNA Synthesis Kit InvitrogenTM and Oligo (dT)20 primer, according to the manufacturer's instructions (Invitrogen, Carlsbad, CA). The reaction was terminated by heat inactivation at 95°C for 5 min. The cDNA samples for qPCR from developmental stages, infected treatment, and controls were diluted by adding 80 μ l ddH₂O to 20 μ l reaction solution [54].

The quantitative PCR (qPCR) assay for target genes AaeLRIM1 and AaeAPL1 and reference gene AaeActin in Ae. aegypti was achieved using a BIO-RAD C1000 Touch Thermal Cycler, CFX 96™ Real-Time System (BIO-RAD, Hercules, CA, USA). The qPCR reaction mixture with a volume of 15 μl in Multiwell Plates 96 contained 1 μl diluted cDNA, 0.5 μM primers and 1X master mix of PowerUP SYBR® Green Master Mix (Applied Biosystems, Thermo Fisher Scientific, Foster City, CA). In every qPCR run, AaeActin was employed as an internal control to normalize for variation in the amount of cDNA template. The PCR primers for AaeLRPIM, and AaeAPL1 genes were designed from the coding region based on GenBank, Accession Number using Primer3 http://primer3.ut.ee (Table 3). The qPCR thermal cycling parameters were the same as previous publication [55]. Relative expression levels were calculated as follows for the developmental stages. First, AaeLRIM/AaeAPL1 transcript levels relative to a standard (AaeActin) were calculated using the formula Δ CT = CT (AaeLRIM/AaeAPL1) - CT (AaeActin). Second, an average Δ CT value for each sample was calculated. Third, relative expression levels were calculated using the equation 10,000 x 2 [-average ACT] [47, 55]. Relative expression levels were calculated as follows for the treatment and control adults. First, AaeLRIM1 or AaeAPL1 transcript levels relative to a standard (AaeActin) were calculated using the formula $\Delta CT = CT$ (AaeLRIM1/AaeAPL1) - CT (AaeActin). Then, $\Delta \Delta CT = \Delta CT$ (infected) - ΔCT (control) value for each sample was calculated. Third, relative expression levels were calculated using the equation $1x\ 2^{\text{[-average }\Delta\Delta\text{CT]}}$ [47, 55-58].

Table 3. Primers from *Aedes aegypti* for qPCR reaction.

Gene ID	Gene name	Primer name	Primer sequence (5'3')
AAEL012086	AaeLRIM1	AaeLRIM1-086-1011F	TGACAACCGGGTTAAGGAAG
		AaeLRIM1-086-1198R	TGGCCAAATCATTGTTCTCA
AAEL024406	AaeAPL1	AaeAPL1-406-115F	TCAACCCAGCCTCCAGATAC
		AaeAPL1-406-275R	TCAGCAGTTTCACCACTTGC
AAEL010132	AaeLRIM3	AaeLRIM3-132-166F	TGTAGCCCGCAATAATCACA
		AaeLRIM3-132-405R	CTGAAGTGCTCCGTTGAACA
AAEL010128	AaeLRIM4	AaeLRIM4-128-612F	TGTAGCCCGCAATAATCACA
		AaeLRIM4-128-830R	GCCAGATTAAGCTCCACGAG
AAEL007103	AaeLRIM15	AaeLRIM15-103-1522F	ATGGTATTGCGTGGAGGAAG
		AaeLRIM15-103-1676R	ATCCTATCAACCGCCCTTCT
AAEL008658	AaeLRIM16	AaeLRIM16-658-299F	ACACCTTCGAGAAAGCGAAA
		AaeLRIM16-658-541R	TCAACATGGGCAAATGAGAA
AAEL010125	AaeLRIM17	AaeLRIM17-125-555F	GCAGTACAATTCGCTGACCA
		AaeLRIM17-125-718R	CCTTAAGCCGATTGAAGCTG
AAEL011197	AaeActin	AaeActin-197-152F	AGGACTCGTACGTCGGTGAC
		AaeActin-197-590R	CGTTCAGTCAGGATCTTC

¹ AAEL024406 is the same gene as AAEL009520-RA

RNA-Seq Library Sequencing, Data mining and RNA-seq analysis

RNA-Seq library sequencing, data mining and RNA-seq analysis were featured in the previous publication [41]. Gene expression was assessed by counting the number of mapped reads for each transcript [59]. Significant up- and downregulated genes were selected using the adjusted P-value (p-adj), log2 fold-change (log2FC), or both for downstream analysis. The RNA-seq data have been deposited to NCBI (https://www.ncbi.nlm.nih.gov/gds/?term=GSE118858). RNA-seq analysis data were provided 60 leucine-rich repeat related transcriptions in the *Ae. aegypti* in response to Zika virus (**Table S1A-D**).

Statistical analysis

Multivariate analysis of variance (MANOVA) and ANOVA were used to measure developmentally regulated gene expression of *AaeLRIM1* and *AaeAPL1*. The relative contribution and relationship of *AaeLRIM1* and *AaeAPL1* to developmental treatment effects were assessed using standardized canonical coefficients (SCC) (PROC GLM, SAS 9.22). When significant effects were detected, we used univariate comparisons among treatment least-squares means for the developmental stages (Tukey-Kramer method). Separate analyses were performed for the immature stages and adult stages. Similarly, we used MANOVA to measure expression of *AaeLRIM1* or *AaeAPL1* following ingestion of CHIKV and ZIKV infected blood. We tested for all main treatment factors and interactions.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1.

Table S1: Female *Aedes aegypti* transcriptomic RNA-seq data show Leucine-Rich Repeat Proteins 7-days post infection or post injection between Key west and Orlando strains.

Figure S1A-E. *AaeLRIM3, AaeLRIM4, AaeLRIM15, AaeLRIM16,* and *AaeLRIM17* relative expression in the all developmental stages.

Figure S2A-B. *AaeLRIM3, AaeLRIM4, AaeLRIM15, AaeLRIM16,* and *AaeLRIM17* relative expression level fold changes in *Aedes aegypti* female infected with ZIKV (Key West strain and Orlando strain).

Figure S3A-B. *AaeLRIM3*, *AaeLRIM4*, *AaeLRIM15*, *AaeLRIM16*, and *AaeLRIM17* relative expression level fold changes in *Aedes aegypti* female infected with CHIKV(Key West strain and Orlando strain).

Author Contributions: Conceptualization, L.Z., and B.A.; Methodology, L.Z., and B.A.; Software, B.A. and L.Z.; Validation, L.Z., and B.A.; Formal Analysis, L.Z., and B.A.; Investigation, L.Z., B.A. and DS; Resources, L.Z., B.A. and DS; Data Curation, L.Z.; Writing-Original Draft Preparation, L.Z.; Writing-Review & Editing, L.Z., B.A. and DS; Visualization, L.Z., and B.A; Supervision, L.Z.; Project Administration, L.Z.; Funding Acquisition, L.Z. and B.A..

Funding: This research was funded by the Florida Department of Agriculture and Consumer Services: Contract Numbers 025364, 024246, 023557, 020190 and 021090 to Jorge Rey and Contract Number 020180 to Walter Tabachnick, Contract Numbers 021803 and 022399 to Liming Zhao and Barry Alto.

Acknowledgments: We thank Jordan Norus, Bradley Eastmond, Melissa Williams, Daniel Velez, Ayse Civana and Keenan Wiggins of the Florida Medical Entomology Laboratory, University of Florida for their excellent technical support. We would also like to thank Jorge Rey and Walter Tabachnick for their support. The isolate of Zika virus was graciously provided by the Centers for Disease Control and Prevention. The Indian Ocean lineage of Chikungunya virus was kindly provided by Robert Tesh (World Reference Center for Emerging Viruses and Arboviruses, through the University of Texas Medical Branch in Galveston, Texas) to the UF-FMEL. We thank Mosquito and Fly Research Unit, Center for Medical, Agricultural and Veterinary Entomology, ARS-USDA for providing us with *Ae. aegypti* from Orlando, Florida.

Conflicts of Interest: All authors declare no conflict of interest.

Abbreviations

ZIKV Zika Virus

CHIKV Chikungunya virus LRR leucine-rich repeats

LRIM1 leucine-rich repeat immune protein 1

APL1 Anopheles Plasmodium-responsive leucine-rich repeat 1

References

- 1. Ng A, Xavier RJ: Leucine-rich repeat (LRR) proteins: integrators of pattern recognition and signaling in immunity. *Autophagy* 2011, 7:1082-1084.
- 2. Ausubel FM: Are innate immune signaling pathways in plants and animals conserved? *Nat Immunol* 2005, **6:**973-979.
- 3. Aloor JJ, Azzam KM, Guardiola JJ, Gowdy KM, Madenspacher JH, Gabor KA, Mueller GA, Lin WC, Lowe JM, Gruzdev A, et al: Leucine-Rich Repeats and Calponin Homology containing 4 regulates the innate immune response. *J Biol Chem* 2018.
- 4. DeYoung BJ, Innes RW: **Plant NBS-LRR proteins in pathogen sensing and host defense.** *Nat Immunol* 2006, **7:**1243-1249.
- 5. Marone D, Russo MA, Laidò G, De Leonardis AM, Mastrangelo AM: Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. *Int J Mol Sci* 2013, **14**:7302-7326.
- 6. Akosile W, Voisey J, Lawford B, Colquhounc D, Young RM, Mehta D: **The inflammasome** NLRP12 is associated with both depression and coronary artery disease in Vietnam veterans. *Psychiatry Res* 2018, **270**:775-779.
- 7. Yin J, Sheng B, Yang K, Sun L, Xiao W, Yang H: **The protective roles of NLRP6 in intestinal epithelial cells.** *Cell Prolif* 2018:e12555.
- 8. Medzhitov R: Recognition of microorganisms and activation of the immune response.

 Nature 2007, 449:819-826.
- 9. Matsushima N, Takatsuka S, Miyashita H, Kretsinger RH: Leucine Rich Repeat Proteins: Sequences, Mutations, Structures, and Diseases. *Protein Pept Lett* 2018.
- 10. Pfeffer SR: LRRK2 and Rab GTPases. Biochem Soc Trans 2018.
- 11. Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, Sunil S: **Mosquito Innate Immunity.** *Insects* 2018, **9**.
- 12. Kantor AM, Dong S, Held NL, Ishimwe E, Passarelli AL, Clem RJ, Franz AW: **Identification** and initial characterization of matrix metalloproteinases in the yellow fever mosquito, **Aedes aegypti.** *Insect Mol Biol* 2017, **26:**113-126.
- 13. Dong S, Kantor AM, Lin J, Passarelli AL, Clem RJ, Franz AW: Infection pattern and transmission potential of chikungunya virus in two New World laboratory-adapted Aedes aegypti strains. *Sci Rep* 2016, **6:**24729.
- 14. Houk EJ, Hardy JL, Chiles RE: **Permeability of the midgut basal lamina in the mosquito, Culex tarsalis Coquillett (Insecta, Diptera).** *Acta Trop* 1981, **38:**163-171.
- 15. Passarelli AL: Barriers to success: how baculoviruses establish efficient systemic infections. *Virology* 2011, **411**:383-392.
- 16. Bartholomay LC, Michel K: **Mosquito Immunobiology: The Intersection of Vector Health** and Vector Competence. *Annu Rev Entomol* 2018, **63:**145-167.
- 17. Bartholomay LC, Cho WL, Rocheleau TA, Boyle JP, Beck ET, Fuchs JF, Liss P, Rusch M, Butler KM, Wu RC, et al: Description of the transcriptomes of immune response-activated

- hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infect Immun 2004, 72:4114-4126.
- 18. Upton LM, Povelones M, Christophides GK: *Anopheles gambiae* blood feeding initiates an anticipatory defense response to *Plasmodium berghei*. *J Innate Immun* 2015, 7:74-86.
- 19. Habtewold T, Povelones M, Blagborough AM, Christophides GK: **Transmission blocking** immunity in the malaria non-vector mosquito *Anopheles quadriannulatus* species A. *PLoS Pathog* 2008, **4:**e1000070.
- 20. Povelones M, Waterhouse RM, Kafatos FC, Christophides GK: Leucine-rich repeat protein complex activates mosquito complement in defense against *Plasmodium* parasites. *Science* 2009, **324**:258-261.
- 21. Williams M, Summers BJ, Baxter RH: **Biophysical analysis of** *Anopheles gambiae* **leucinerich repeat proteins APL1A1, APL1B and APL1C and their interaction with LRIM1.** *PLoS One* 2015, **10:**e0118911.
- 22. Fraiture M, Baxter RH, Steinert S, Chelliah Y, Frolet C, Quispe-Tintaya W, Hoffmann JA, Blandin SA, Levashina EA: **Two mosquito LRR proteins function as complement control factors in the TEP1-mediated killing of** *Plasmodium*. *Cell Host Microbe* 2009, **5:**273-284.
- 23. Waterhouse RM, Povelones M, Christophides GK: **Sequence-structure-function relations of the mosquito leucine-rich repeat immune proteins.** *BMC Genomics* 2010, **11:**531.
- 24. Riehle MM, Xu J, Lazzaro BP, Rottschaefer SM, Coulibaly B, Sacko M, Niare O, Morlais I, Traore SF, Vernick KD: *Anopheles gambiae* **APL1** is a family of variable LRR proteins required for Rel1-mediated protection from the malaria parasite, *Plasmodium berghei*. *PLoS One* 2008, **3**:e3672.
- 25. Blandin SA, Wang-Sattler R, Lamacchia M, Gagneur J, Lycett G, Ning Y, Levashina EA, Steinmetz LM: Dissecting the genetic basis of resistance to malaria parasites in *Anopheles gambiae*. *Science* 2009, **326**:147-150.
- 26. Kwon H, Arends BR, Smith RC: Late-phase immune responses limiting oocyst survival are independent of TEP1 function yet display strain specific differences in *Anopheles gambiae*. *Parasit Vectors* 2017, **10**:369.
- 27. Smith RC, Barillas-Mury C: *Plasmodium* Oocysts: Overlooked Targets of Mosquito Immunity. *Trends Parasitol* 2016, **32**:979-990.
- 28. Tsetsarkin KA, Chen R, Weaver SC: Interspecies transmission and chikungunya virus emergence. *Curr Opin Virol* 2016, **16**:143-150.
- 29. Lanciotti RS, Valadere AM: **Transcontinental movement of Asian genotype chikungunya virus.** *Emerg Infect Dis* 2014, **20:**1400-1402.
- 30. Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, de Lamballerie X: **Chikungunya in the Americas**. *Lancet* 2014, **383:**514.
- 31. Alto BW, Wiggins K, Eastmond B, Velez D, Lounibos LP, Lord CC: **Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic.** *PLoS Negl Trop Dis* 2017, **11:**e0005724.
- 32. Powers AM: How Chikungunya Virus Virology Affects Its Epidemiology and Transmission: Implications for Influencing Public Health. J Infect Dis 2016, 214:S449-S452.
- 33. Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L: **Chikungunya virus** infection: an overview. *New Microbiol* 2013, **36**:211-227.

- 34. Gasque P, Bandjee MC, Reyes MM, Viasus D: **Chikungunya Pathogenesis: From the Clinics to the Bench.** *J Infect Dis* 2016, **214:**S446-S448.
- 35. Solomon T, Baylis M, Brown D: **Zika virus and neurological disease--approaches to the unknown.** *Lancet Infect Dis* 2016, **16**:402-404.
- 36. Lanciotti RS, Lambert AJ, Holodniy M, Saavedra S, Signor LeC: **Phylogeny of Zika Virus in Western Hemisphere**, **2015**. *Emerg Infect Dis* 2016, **22:**933-935.
- 37. Sacramento CQ, de Melo GR, de Freitas CS, Rocha N, Hoelz LV, Miranda M, Fintelman-Rodrigues N, Marttorelli A, Ferreira AC, Barbosa-Lima G, et al: **The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication**. *Sci Rep* 2017, **7:**40920.
- 38. Cuevas EL, Tong VT, Rozo N, Valencia D, Pacheco O, Gilboa SM, Mercado M, Renquist CM, González M, Ailes EC, et al: Preliminary Report of Microcephaly Potentially Associated with Zika Virus Infection During Pregnancy Colombia, January-November 2016. MMWR Morb Mortal Wkly Rep 2016, 65:1409-1413.
- 39. Pinto-Díaz CA, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Molano-González N, Anaya JM, Ramírez-Santana C: **Autoimmunity in Guillain-Barré syndrome associated with Zika virus infection and beyond.** *Autoimmun Rev* 2017.
- 40. Dong S, Behura SK, Franz AWE: The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape. *BMC Genomics* 2017, **18:**382.
- 41. Zhao L, Alto BW, Shin D, Yu F: The Effect of Permethrin Resistance on *Aedes aegypti* Transcriptome Following Ingestion of Zika Virus Infected Blood. *Viruses* 2018, 10.
- 42. Etebari K, Hegde S, Saldaña MA, Widen SG, Wood TG, Asgari S, Hughes GL: **Global Transcriptome Analysis of** *Aedes aegypti* **Mosquitoes in Response to Zika Virus Infection.** *mSphere* 2017, **2**.
- 43. Shrinet J, Srivastava P, Sunil S: **Transcriptome analysis of** *Aedes aegypti* **in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus.** *Biochem Biophys Res Commun* 2017, **492:**617-623.
- 44. Kumar S, Stecher G, Tamura K: **MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.** *Mol Biol Evol* 2016, **33:**1870-1874.
- 45. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol* 1987, 4:406-425.
- 46. Tamura K, Nei M, Kumar S: **Prospects for inferring very large phylogenies by using the neighbor-joining method.** *Proc Natl Acad Sci U S A* 2004, **101:**11030-11035.
- 47. Zhao L, Alto BW, Smartt CT, Shin D: **Transcription Profiling for Defensins of Aedes aegypti** (Diptera: Culicidae) During Development and in Response to Infection With Chikungunya and Zika Viruses. *J Med Entomol* 2017.
- 48. Riehle MM, Markianos K, Niaré O, Xu J, Li J, Touré AM, Podiougou B, Oduol F, Diawara S, Diallo M, et al: Natural malaria infection in *Anopheles gambiae* is regulated by a single genomic control region. *Science* 2006, 312:577-579.
- 49. Osta MA, Christophides GK, Kafatos FC: Effects of mosquito genes on *Plasmodium* development. *Science* 2004, **303**:2030-2032.
- 50. Osta MA, Christophides GK, Vlachou D, Kafatos FC: **Innate immunity in the malaria vector** *Anopheles gambiae*: **comparative and functional genomics.** *J Exp Biol* 2004, **207**:2551-2563.

- 51. Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, Kafatos FC, Levashina EA: Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector *Anopheles gambiae*. *Cell* 2004, **116**:661-670.
- 52. Kambris Z, Cook PE, Phuc HK, Sinkins SP: Immune activation by life-shortening *Wolbachia* and reduced filarial competence in mosquitoes. *Science* 2009, **326:**134-136.
- 53. Estep AS, Sanscrainte ND, Waits CM, Louton JE, Becnel JJ: Resistance Status and Resistance Mechanisms in a Strain of *Aedes aegypti* (Diptera: Culicidae) From Puerto Rico. *J Med Entomol* 2017.
- 54. Zhao L, Alto BW, Duguma D: Transcriptional Profile for Detoxification Enzymes AeaGGT1 and AaeGGT2 From Aedes aegypti (Diptera: Culicidae) in Response to Larvicides. J Med Entomol 2017, 54:878-887.
- 55. Zhao L, Pridgeon JW, Becnel JJ, Clark GG, Linthicum KJ: Cytochrome c gene and protein expression: developmental regulation, environmental response, and pesticide sensitivity in *Aedes aegypti*. *J Med Entomol* 2008, 45:401-408.
- 56. Portereiko MF, Sandaklie-Nikolova L, Lloyd A, Dever CA, Otsuga D, Drews GN: NUCLEAR FUSION DEFECTIVE1 encodes the *Arabidopsis* RPL21M protein and is required for karyogamy during female gametophyte development and fertilization. *Plant Physiol* 2006, 141:957-965.
- 57. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 2001, 25:402-408.
- 58. Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN: **AGL80** is required for central cell and endosperm development in *Arabidopsis*. *Plant Cell* 2006, **18**:1862-1872.
- 59. Yao JQ, Yu F: **DEB: A web interface for RNA-seq digital gene expression analysis.** *Bioinformation* 2011, **7:**44-45.