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Abstract: Fast 3D reconstruction with semantic information on road scenes is of great requirements for 
autonomous navigation. It involves issues of geometry and appearance in the field of computer vision. In this 
work, we propose a method of fast 3D semantic mapping based on the monocular vision. At present, due to 
the inexpensive price and easy installation, monocular cameras are widely equipped on recent vehicles for the 
advanced driver assistance and it is possible to acquire semantic information and 3D map. The monocular 
visual sequence is used to estimate the camera pose, calculate the depth, predict the semantic segmentation, and 
finally realize the 3D semantic mapping by combination of the techniques of localization, mapping and scene 
parsing. Our method recovers the 3D semantic mapping by incrementally transferring 2D semantic information 
to 3D point cloud. And a global optimization is explored to improve the accuracy of the semantic mapping in 
light of the spatial consistency. In our framework, there is no need to make semantic inference on each frame of 
the sequence, since the mesh data with semantic information is corresponding to sparse reference frames. It 
saves amounts of the computational cost and allows our mapping system to perform online. We evaluate the 
system on naturalistic road scenes, e.g., KITTI and observe a significant speed-up in the inference stage by 
labeling on the mesh.

Keywords: 3D semantic mapping; incremental fusion; global optimization; real time; naturalistic road scenes15

1. Introduction16

Naturalistic scene understanding plays a key background role in most vision-based mobile robots. For17

example, autonomous navigation in outdoor scenes asks for a rapid and comprehensive understanding of18

surroundings for obstacle avoidance and path planning. Vehicle movement in limited temporal and spatial19

contexts always requires knowledge of what something is, where it is located, and ego-vehicle’s surrounding.20

Robotic maps, such as Occupancy grid map and OctoMap, traditionally provide geometric presentation of the21

environment. However, they lack the correlation in data between map points and semantic knowledge; thus, they22

could not be directly utilized in naturalistic road scenes.23

Scene parsing is an important and promising step to address this issue. It benefits from the state-of-the-art24

Deep Convolutional Neural Networks (DCNNs) which contributes to better performance of 2D pixel labeling25

than traditional methods. Then, combined with the Simultaneous Localization and Mapping (SLAM) technology,26

automobile could locate itself and meanwhile recognize surrounding objects in pixel-wise level. For instance, it27

could make autonomous vehicle accomplish certain high-level tasks, such as “parking on the right free place”28

and “stopping at the crosswalk”. This form of semantically annotated 3D representation provides mobile robots29

with functions of understanding, interaction and navigation in various scenes.30

Semantic segmentation has been an active topic for a long time. Most methods have focused on increasing31

the accuracy of the semantic segmentation, and have seen major improvements [1–3]. However, they usually asks32

for high-power computing resources, which is not suitable for the embedded platform. Several recent research33

focuses on the balance between the computing cost and the accuracy of object detection, classification and 2D34

pixel labeling [4,5]. They achieves a better performance with regards to the embedded and mobile platforms.35
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Compared to the SLAM technology with scaled sensors, such as stereo and RGB-D cameras, monocular36

visual SLAM is a promising technology, because monocular vision is flexible, inexpensive, and most importantly,37

widely equipped on most recent vehicles. Scaled sensors could provide reliable measurement in their specific38

ranges, whereas they lack the capability of seamless switch between various-scale scenes such as indoor and39

outdoor. And they normally need large storage resources.40

Most man-made environments, e.g., road scenes, usually exhibit distinctive spatial relations among varied41

classes of objects. Being able to capture, model and utilize these kinds of relations could enhance semantic42

segmentation performance in the 3D semantic mapping [6]. In this paper, we exploit a monocular SLAM method43

that provides cues of 3D spatial information and utilize state-of-the-art DCNN to build a 3D scene understanding44

system towards road scenes. Moreover, a Bayesian 2D-3D transfer and a map regularization process are exploited45

to generate a consistent reconstruction in the spatial and semantic context.46

road

Input Image Sequence

Scene Parsing

Monocular SLAM

3D Semantic Mapping

sidewalk wall terrain vegetation traffic sign pole car

keyframe

Figure 1. Overview of our system: From monocular image sequence, keyframes are selected to obtain its 2D
semantic information, which then transfer to the 3D reconstruction to build the 3D semantic map.

In our monocular mapping system, the 3D map is incrementally reconstructed with a sequence of47

automatically selected keyframes and corresponding semantic information. There is no need to label each48

frame in a sequence, which could save a considerable amount of computation cost. We refer the reader to Figure 149

for an illustration. Different from the frame skipping strategy proposed by Hermans et al. [7] and McCormac et50

al. [8], our method could work well under fast camera motions. Since the 3D map should have global consistent51

depth information, it could be regularized in term of spatial structures. The regularization is aimed to remove52

distinctive outliers and makes components more consistent in the point cloud map, i.e., local points with same53

semantic label should be approached in 3D space. Two datasets, Cityscapes [9] and KITTI [10], are used to54

evaluate our approach. Several raw videos are taken to reconstruct 3D map with semantic labels.55

This paper is presented as follows. In the following Section 2, a review of the related work is given.56

The problem formulation is presented in Section 3. The 3D semantic mapping is described in Section 4,57

including the semantic segmentation, the monocular visual SLAM, the Bayesian incremental fusion and the58

global regularization. Section 5 includes the results of 2D semantic inference and 3D semantic mapping. Finally,59

Section 6 concludes the paper and discusses possible extensions of our work.60

2. Related Work61

Our work is motivated by [8] which contributes an indoor 3D semantic SLAM from the RGB-D input. It62

aims towards a dense 3D map based on ElasticFusion SLAM [11] with semantic labeling. Pixel-wise semantic63

information is acquired from a Deconvolutional semantic segmentation network [12] using the scaled RGB64

information and the depth as the input. Depth information is also used to update surfel’s depth and normal65

information to construct 3D dense map during loop closure. In addition, a previous work, SLAM++ [13], creates66

a map with semantically defined objects, but it is limited to predefined database and hand-crafted template models.67
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In this paper, we make use of an incremental Bayesian fusion strategy with state-of-the-art visual SLAM and68

semantic segmentation.69

Visual SLAM usually contains sparse, semi-dense, and dense types depending on the methods of image70

alignment. Feature-based methods only exploited limited feature points - typically image corners and blobs or71

line segments, such as classic MonoSLAM [14] and ORB-SLAM [15,16]. They are not suitable for 3D semantic72

mapping due to rather sparse feature points. In order to better exploit image information and avoid the cost on73

calculation of features, direct dense SLAM system, such as the surfel-based dense slam, ElasticFusion [11] and74

Dense Visual SLAM [17], have been proposed recently. Whereas, direct image alignment from these dense75

methods is well-established for monocular, RGB-D and stereo sensors. Semi-dense methods like Large-Scale76

Direct-SLAM (LSD-SLAM) [18] and Semi-direct Visual Odometry (SVO) [19] provide possibility to build a77

synchronized 3D semantic mapping system.78

Deep CNNs have proven to be effective in the field of image semantic segmentation. Long et al. [20] firstly79

introduces an inverse convolution layer to realize an end-to-end training and inference. Then, the encoder-decoder80

architectures with specified upsampling layers, such as max unpooling and deconvolutional layer, are proposed to81

avoid the problem of separate step training in the FCN network and improve the accuracy [12,21]. Zhao et al. [2]82

exploits the capability of global context information through embedding various scenery context feature in a83

pyramid structure. The fusion of varied scaled feature has been a popular strategy in the recent deep CNNs. The84

cutting-edge method, namely, DeepLab series [1,3,5], combines atrous convolutions and atrous spatial pyramid85

pooling (ASPP) to achieve a state-of-the-art performance on semantic segmentation. The early DeepLab models86

have a reasonable accuracy but require much computation overhead. Recently proposed efficient convolution87

neural network, such as MobileNets [22,23] boosts real-time performance of semantic segmentation without88

losing the accuracy too much. The state-of-the-art DeepLab-v3+ [5] contains a simple effective decoder module89

to refine the segmentation results especially along object boundaries. Furthermore, combining the encoder part of90

MobileNet-v2 in its encoder-decoder structure, DeepLab-v3+ could achieve a better trade-off between precision91

and runtime.92

In the topic of scene understanding and mapping, recent research employ 3D priors of objects increasingly.93

Salas-Moreno et al. [13] project 3D mesh of objects to the RGB-D frame in a graphical SLAM framework.94

Valentin et al. [24] propose a triangulated meshed representation of the scene from multiple depth measurements95

and exploit the Conditional Random Field (CRF) to capture the consistency of 3D object mesh. Kundu et al. [25]96

exploit the CRF for joint voxels to infer the semantic information and occupancy. Sengupta and Sturgess [26]97

use stereo camera, estimated pose and CRF to infer the semantic octree presentation of the 3D scene. Vineet et98

al. [27] propose an incremental dense stereo reconstruction and semantic fusion technique to handle dynamic99

objects in the large-scale outdoor scenes. Kochanov et al. [28] employ scene flow measurements to incorporate100

temporal updates into the mapping of dynamic environment. Landrieu et al. [29] introduce a regularization101

framework to obtain spatially smooth semantic labeling of 3D point clouds from a point-wise classification,102

considering the uncertainty associated with each label. Gaussian Process (GP) is another popular method for map103

inference. Jadidi et al. [30] exploit GP to learn the structural and semantic correlation between map points. This104

technique also incorporates OcotoMap to handle sparse measurements and missing labels. In order to improve105

the training and query time complexities of the GP-based semantic mapping, Gan et al. [31] further introduce a106

Relevance Vector Machine (RVM) inference technique for efficient map query at any resolution.107

Our semi-dense approach is also inspired by dense 3D semantic mapping methods [6,7,32,33] in both108

indoor and outdoor scenes. The major contributions from these work involve the 2D-3D transfer and the map109

regularization. Especially, Hermans et al. [7] propose an efficient 3D CRF to regularize 3D semantic mapping110

consistently considering influence between neighbors of 3D points (voxels). In this work, we adopt a similar111

strategy to improve the performance of the 3D semantic reconstruction in the road scenes. The key concepts are112

• a 3D semantic mapping system based on the monocular vision,113

• integration of monocular SLAM and scene parsing into 3D semantic representation,114

• exploiting the correlation between semantic information and geometrical information to enforce spatial115

consistency,116
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• active sequence downsampling and sparse semantic segmentation so that to achieve a real-time performance117

and reduce the storage.118

Following the comparison in [27], we list the characteristics of our approach and some relative work in119

TABLE 1.120

Table 1. Comparison with some related work: M = monocular camera, S/D = stereo/depth camera, L = Lidar, O
= outdoor, I = incremental, SDT = sparse data structures, RT = real time

Method M S/D L O C I SDT RT
Hu et al. [34]

√ √ √ √ √

Sengupta et al. [32]
√ √ √

Hermans et al. [7]
√ √ √

Kundu et al. [25]
√ √ √ √ √

Vineet et al. [27]
√ √ √ √ √ √

Wolf et al. [6]
√ √ √ √ √

McCormac et al. [8]
√ √ √ √ √ √

Ours
√ √ √ √ √ √

3. Problem Formulation121

3.1. Notation122

The target is to estimate the 3D semantic mapM comprising of a pose-graph of keyframes with semantic123

map taken from a monocular camera. Let Ii : Ω→ R3 symbolize an H×W RGB image at the frame indexed124

by i. Keyframes are extracted from image sequence in light of camera’s pose Tj
i at the i frame with respect to125

previous keyframe j. We define the ith keyframe to be a tuple Ki = (Ii, Di, Vi, Si), where Di : ΩDi → R is126

the full-resolution inverse depth map associated with image Ii, and Vi : ΩVi → R is associated inverse depth127

variance map. Depth map and variance are defined in the subset of pixels as ΩDi ⊂ Ωi, which means semi-dense,128

only available for certain image regions of large intensity gradient. The symbol Si : ΩSi → R represents the129

full-resolution semantic map with maximum probability of object class from the semantic segmentation process.130

The keyframes are consecutively stacked in a pose-graph G = (V , E), where V = {K0, . . . ,Kn} is the set131

of keyframes and E = {Sj
i ∈ Sim(3) : Ki,Kj ∈ V} is the set of constraint factors. Each Sj

i = (Tj
i , sj

i) consists132

of a camera’s pose Tj
i = (R t

0 1) from keyframe i to keyframe j, and scale factor sj
i > 0. In reference to world133

frame W, normally regarded as the first keyframe K0, the pose of the keyframe indexed by i is denoted as Ti
W .134

For a sequence of keyframes (n keyframes), we get the nth keyframe’s pose Tn
W = ∏n

1 Tk
k−1.135

The 3D mapM is reconstructed by the projection of the inverse depth map of all keyframes, where each136

3D point P can be labeled as one of the solid semantic objects in the label space L = {l1, l2, . . . , lk} like Road,137

Building, Tree, etc. We use X = {X1, X2, . . . , XM} to denote the set of random variables corresponding to the138

3D points Pi : i ∈ {1, . . . , M}, where each variable Xi ∈ X take a value li from the predefined label space L.139

3.2. 3D semantic mapping140

Our target is to build a 3D semantic map with semi-dense and consistent label information online while the
image sequences are captured by a moving monocular forward camera. Given an image sequence, the inference
of the 3D semantic map is regarded as:

M∗ = argmaxMP(M|G), (1)

which can be estimated by the maximum a-posterior (MAP). Compared to the model used in [25], our observation141

is continuously updating, not all existing measurements. Thus, we adopt an incremental fusion strategy to142

estimate the 3D semantic map by incorporating new arriving keyframes. Correspondingly, the approach is143

decoupled into three separately running processes as shown in Figure 2.144
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Figure 2. Framework of our method: The input is the sequence of the RGB frames, denoted as I. There
are three separate processes, a keyframe selection process, a 2D semantic segmentation process , and a 3D
reconstruction with semantic optimization process. Keyframes K are conditionally extracted from the sequence
based on the distance between the poses. The following frames refine the depth map and the variance map of
each keyframe until new keyframe is extracted. The 2D semantic segmentation module predicts the pixel-level
class of the new-arriving keyframe. Finally, the keyframes are incrementally explored to reconstruct the 3D map
with semantic labeling and then it is regularized by a dense CRF.

In the system, the monocular SLAM process maintains and tracks on a global map of the environment, which145

contains a number of keyframes connected by pose-pose constraints with associated probabilistic semi-dense146

depth maps. It runs in real-time on a CPU. Represented as point clouds, the map gives a semi-dense and highly147

accurate 3D reconstruction of the environment. Meanwhile, the second process of the 2D semantic segmentation148

generates the pixel-level classification on the extracted keyframes. A fast deep CNN model is explored to predict149

the semantic information on a GPU. In addition, an incremental fusion process for the semantic label optimization150

is operated in a parallel way. It builds a local optimal correspondence between semantic labeling and voxels in the151

3D point cloud. To obtain a globally optimal 3D semantic segmentation, we attempt to make use of information152

of neighboring 3D points, involving the distance, color similarity and semantic label. It updates voxel’s position153

and corresponding semantic label, which gives a globally consistently 3D semantic map.154

4. 3D Semantic Mapping155

4.1. 2D Scene Parsing156

We explore the DeepLab-v3+ deep neural network proposed by Chen et al. [5]. Two important components157

in the DeepLab series are the atrous convolution and atrous spatial pyramid pooling (ASPP), which enlarge158

the field of view of filters and explicitly combine the feature maps at multiple scales. The improvement in the159

DeepLab-v3+ involves the encoder-decoder structure and the augmentation of ASPP module with image-level160

feature. The former is able to capture sharper object boundaries by regaining the spatial information, while the161

latter encodes multi-scale contextual information to capture long range information. These contributions make162

DeepLab successfully handle both large and small objects and achieve a better trade-off between precision and163

run-time.164

For the semantic segmentation of road scenes, we exploit the Cityscapes dataset and the KITTI dataset and165

adopt the predefined 19-class label space L = {l1, l2, . . . , l19}, which contains Road, Sidewalk, Building, Wall,166

and so on. We use all semantic annotated images in the Cityscapes dataset for training and fine-tune the model167

with the KITTI dataset.168

Note that there is not any depth information involved in the training process. In the inference, we keep the169

original resolution of input image according to different datasets.170

4.2. Semi-Dense SLAM171

We explore LSD-SLAM to track camera’s trajectory and build consistent, large-scale maps of the172

environment. LSD-SLAM is a real-time, semi-dense 3D mapping method. It has several advantages: firstly, it is173
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a scale-aware image alignment algorithm to directly estimate the similarity transform between two keyframes174

against different scale environments, such as office rooms (indoor) and urban roads (outdoor). The second one is175

that it is a probabilistic approach to incorporate noise on the estimated depth maps into the tracking based on the176

propagation of uncertainty. Moreover, it could integrate easily with different kinds of sensors like monocular,177

stereo and panoramic cameras for various applications. These features are of benefit to a reliable tacks and maps178

even in challenging surroundings.179

LSD-SLAM has three major components: tracking, depth map estimation and map optimization. Spatial180

regularization and outlier removal are incorporated in the estimation of depth map with small-baseline stereo181

comparisons. In addition, a direct, scale-drift aware image alignment is carried on these existing keyframes to182

detect scale-drift and loop closures. Due to the inherent correlation between the depth map and the tracking183

accuracy, depth residual is used to estimate the similarity transform sim(3) constraints between keyframes.184

Consequently, a 3D point cloud map is built based on a set of keyframes with the estimated depth maps via185

minimizing the error of image alignment. The map is continuously optimized in the background using a g2o186

pose-graph optimization. The approach runs in 25Hz on an Intel i7 CPU. More details like keyframe selection187

and depth estimation should be referred to the work [18].188

4.3. Incremental Fusion189

There might be a large amount of inconsistent 2D semantic labels between consecutive frames, due to190

the noise of sensors, the complexity of environments in the real world and the failure of scene parsing model.191

Incremental fusion of semantic label from the stacked keyframes allows associating probabilistic label in a192

Bayesian way, when combining with the depth map propagation between keyframes in the LSD-SLAM. We will193

give the details about the incremental semantic fusion with the depth estimation as follows.194

The camera projection transformation function π(·) : R3 → R2 is defined as

p = π(P) = [α
x
z
+ cx, β

y
z
+ cy]

T , (2)

which maps a point P = [x, y, z]T in 3D space into a 2D point p = [x′, y′]T on the digital image plane Ii in
the camera coordinate system. Since this projection function is nonlinear, for the computation efficiency, the
transformation should be augmented into the homogeneous coordinate system, which is defined as

ph =

 x′h
y′h
z′h

 =

 α 0 cx 0
0 β cy 0
0 0 1 0




x
y
z
1

 = K[I 0]Ph, (3)

where the matrix K is referred to as the camera matrix. Given a 3D point PW in the world reference system, the
mapping to image plane Ii in the homogeneous reference system is calculated as

ph = KTi
WPWh, (4)

where Ti
W the pose of the camera in the world reference system. Then, we get Euclidean coordinates p =195

[x′h/z′h, y′h/z′h]
T from the homogeneous coordinates. From this point on, any point p and P is assumed to be in196

homogeneous coordinates and thus we drop the h index, unless stated otherwise.197

Correspondingly, given the inverse depth estimation d̂ for a pixel p = [x′, y′]T in Ii of the keyframe Ki, we
also have an inverse projection function below:

P = π−1(p, d̂) = [
x′/d̂− cx/d̂

α
,

y′/d̂− cy/d̂
β

,
1
d̂
]T , (5)

where d̂ = Di(p) corresponds to the point p existing in the depth map Di, which projects the 2D pixel point into
the 3D point in the current camera coordinate system. The inverse depth estimation of each existing keyframe is
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continuously refined using its following frames until new keyframe is defined. In reference to Equation 4 and 5,
we can derive the 3D point in the world reference system as follows:

PW = Ti
W
−1

π−1(p, Di(p)), (6)

where the homogeneous transformation matrix has the property: T j
W
−1

= TW
j .198

Once a new frame is chosen to become a keyframe Kj, its depth map Dj is initialized by projecting points
from previous keyframe into it. The information of existing, close-by keyframes is propagated to new keyframe
for its initialization and semantic probabilistic refinement. The point in the depth map of new keyframe is
obtained by

p = KTi
WTj

iPW ∈ Ij. (7)

Here, we have a Gaussian distributed transformation between keyframes, regarded as p ∈ Ii → PW → p ∈ Ij.199

The class label corresponding to a 3D point P is denoted as X : P → l ∈ L. Note that the label Sky is200

removed from L for the 3D semantic mapping. Our target is to obtain the independent probability distribution of201

each 3D point over the class labels P(X|Ki
0) given a sequence of existing keyframes Ki

0 = {K0,K1, . . . ,Ki} in202

the pose-graph G.203

We explore a recursive Bayesian fusion to refine the corresponding probability distribution of 3D points
with new keyframe’s update:

P(X|Ki
0) =

1
Zi

P(Ki|Ki−1
0 , X)P(X|Ki−1

0 ), (8)

with Zi = P(Ki|Ki−1
0 ). Applying the first-order Markov assumption to p(Ki|Ki−1

0 , X), then we have:

P(X|Ki
0) =

1
Zi

P(Ki|X)P(X|Ki−1
0 ) =

1
Zi

p(Ki)P(X|Ki)

P(X)
P(X|Ki−1

0 ). (9)

We assume that P(X) does not change over time and there is no need to calculate the normalization factor204

P(Ki)/Zi explicitly.205

According to the formulations above, the semantic probability distribution of all given keyframes can be
recursively updated as follows:

P(X|Ki
0) ∝ P(X|Ki)P(X|Ki−1

0 ). (10)

The incremental fusion can refine the semantic label of the points in the 3D space based on the pose-graph206

of keyframes. It could handle the inconsistent 2D semantic labels, even though its performance relies on the207

depth estimation. In addition, map geometry is another useful feature which could improve the performance of208

the 3D semantic mapping further. The following section describes how we use the dense CRF to regularize the209

3D semantic map by exploring the map geometry, which could propagate semantic information between spatial210

neighbors.211

4.4. Map Regularization212

The dense CRF is widely used in the 2D semantic segmentation to enhance the performance of semantic213

segmentation. Some previous works [6,7,32] seek its application on the 3D map to model contextual relations214

between various class labels in a fully connected graph. It is a heuristic approach that assume the influence215

between neighbors should be proportional to their distance, visual and geometrical similarity [7].216

The CRF model is defined as a graph composed of unary potentials as nodes and pairwise potentials as217

edges, but the size of the model makes traditional inference algorithms impractical. Thanks to Krahenbuhl218

and Koltun’s work [35], a highly efficient approximate inference algorithm is proposed to handle this issue by219

defining the pairwise edge potentials as a linear combination of Gaussian kernels. We apply the efficient inference220

of the dense CRF to maximize label agreement between similar 3D points as follows.221
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Assume the 3D semantic mapM containing M 3D points is defined as a random field. A CRF (M, X) is
characterized by a Gibbs distribution as follows:

P(X|M) =
1

Z(M)
exp(−E(X|M)), (11)

where E(X|M) is the Gibbs energy and Z(M) is the partition function. The maximum a posteriori (MAP)
labeling of the random field is

X∗ = argmaxl∈LP(X|M) = argminl∈LE(X|M), (12)

which is converted into minimizing the Gibbs energy by the mean-field approximation and message passing222

scheme.223

We employ the associative hierarchical CRF [32,36] which integrates the unary potential ψi, the pairwise
potential ψi,j and the higher order potential ψc into the Gibbs energy at different levels of the hierarchy (voxels
and supervoxels) given by:

E(X|C; `) = ∑
i

ψi(Xi|C) + ∑
i<j

ψi,j(Xi, Xj|C; θ) + ∑
c

ψc(Xc|c) (13)

by the indexes i, j ∈ {1, . . . , M} correspond to different 3D points Pi, Pj in the 3D mapM.224

Unary Potential: The unary potential ψi(·) is defined as the negative logarithm of the probabilistic label for
a given 3D point:

ψi(Xi|C) = − log(P(Xi → ł|Kt
0)). (14)

This term means the cost of 3D point Pi taking an object label l ∈ L based on the incremental semantic225

probabilistic fusion above. The output of the unary potential for each point is produced independently, and thus,226

the MAP labeling produced by the unary potential alone is generally inconsistent.227

Pairwise Potentials: The pairwise potential ψi,j(·) is modeled to be a log-linear combination of m Gaussian
edge potential kernels:

ψi,j(Xi, Xj|C; θ) = µ(Xi, Xj)∑
m

ω(m)k(m)(fi, fj; θ), (15)

where µ(·) is a label compatibility function corresponding to the Gaussian kernel functions k(m)(fi, fj). f denotes
the feature vector for the 3D point P including the position, the RGB appearance and the surface normal vector
of the reconstructed surface. And µ(·) is a Potts model given by:

µ(l, l′) = [l 6= l′] =

{
1 l 6= l′

0 l = l′
. (16)

This term is defined to encourage the consistency over pairs of neighboring points for the local smoothness
of the 3D semantic map. We employ two Gaussian kernels for the pairwise potentials following the previous
work [7]. The first one is an appearance kernel as follows:

k(1)(fi, fj; `) = exp

(
−
|Pi − Pj|2

2θ2
P,c

−
|ci − cj|2

2θ2
c

)
, (17)

where c is the RGB color vector of the corresponding 3D points. This kernel is used to build long range228

connections between 3D points with a similar appearance.229

The second one, a spatial smoothness kernel, is defined to enforce a local, appearance-agnositc smoothness
among 3D points with similar normal vectors.

k(2)(fi, fj; θ) = exp

(
−
|Pi − Pj|2

2θ2
P,n

−
|ni − nj|2

2θ2
n

)
, (18)
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where n are the respective surface normals. The surface normal are computed using the Triangulated Meshing230

using Marching Tetrahedra (TMMT) proposed in [32]. Note that the original method is towards producing a231

dense labeling with the stereo vision. Since the LSD-SLAM only generates semi-dense 3D point clouds, we232

modify the TMMT to extract a triangulated mesh within limited ranges of short distance between 3D points.233

High Order Potential: The higher order term ψc(Xc|c) encourages the 3D points (voxels) in the given
segment to take the same label and penalizes partial inconsistency of supervoxels as described in [36]. It is
defined as

ψc(Xc|c) = minl∈L(γ
max
c , γl

c + kl
cNl

c), (19)

where γl
c represents the cost if all voxels in the segment take the label l. Nl

c = ∑i∈c δ is the number of234

inconsistent 3D points with the label l which is penalized with a factor kc, regarded as the inconsistency cost.235

All parameters θP,c, θc, θP,n, θn, θP,s, θs specify the range in which points with similar features affect each236

other, respectively. They can be obtained using piece-wise learning.237

5. Experiments and Results238

We demonstrate the performance of our approach on the KITTI dataset [10], which contains a variety of239

urban scene sequences involving lots of moving objects in various lighting conditions. It consists of various240

datasets, such as the semantic dataset, the odometry dataset, and the detection dataset. Thus, it is very challenging241

for the 3D reconstruction. The KITTI dataset contains a 2D semantic segmentation data of 200 labeled242

training images and 200 test images1 . Its data format and metrics conform with the Cityscapes dataset [9].243

The Cityscapes dataset involves 19 classes within high quality pixel-level annotations of 5000 images with a244

resolution of 2048× 1024, including 2975 training images, 500 validation images, and 1525 testing images. In245

our experiment, we train the model on the Cityscapes and then tune it on the KITTI taking the volume size of246

dataset into account.247

For the training of 2D semantic segmentation model, various encoder models in the DeepLab-v3+ are248

evaluate including ResNet, Xception, and MobileNet. And we find that the “poly” stochastic gradient descent is249

better than the “step” one on these datasets. The TensorFlow library is employed to do the training and inference250

on the workstation with 4 Nvidia Titan X GPU cards. The hyper-parameters used in training are set corresponding251

to the datasets and models as shown in Table 2.252

Table 2. Hyper-parameters used in the training step

Dataset Encoder Learning Rate Learning Power Momentum Weight Decay Batch Steps
ResNet_50 0.003 0.9 0.9 0.0001 8 20000
ResNet_101 0.003 0.9 0.9 0.0001 8 20000
Xception_41 0.01 0.9 0.9 0.00004 8 10000

Cityscapes Xception_65 0.01 0.9 0.9 0.00004 8 10000
Xception_71 0.01 0.9 0.9 0.00004 8 10000

MobileNet_v2 0.001 0.9 0.9 0.00004 64 10000
ResNet_50 0.003 0.9 0.9 0.0001 8 20000
ResNet_101 0.003 0.9 0.9 0.0001 8 20000
Xception_41 0.01 0.9 0.9 0.00004 8 10000

KITTI Xception_65 0.01 0.9 0.9 0.00004 8 10000
Xception_71 0.01 0.9 0.9 0.00004 8 10000

MobileNet_v2 0.001 0.9 0.9 0.00004 64 10000

We benchmark the performance of our semantic mapping system on the KITTI odometry dataset2. There253

are 22 sequences with the consecutive RGB frames, in which there are 11 sequences with the ground-truth poses254

for evaluation. The scenes contain serious illumination change, moving objects like persons and vehicles, and255

1 http://www.cvlibs.net/datasets/kitti/eval_semseg.php?benchmark=semantics2015
2 http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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some turns as shown in Figure 3. These road-scene frames involves two resolutions 1242× 375 and 1226× 370.256

Our system runs on an Intel Core i7-5960K CPU and a NVIDIA Titan X GPU for online process.257

Since the KITTI sequences are mostly captured in 10 Hz, it is highly below the normal speed requirements258

of LSD-SLAM about 60 Hz. In addition, the LSD-SLAM is hard to handle severe turning when the platform259

moves. Due to the limit of the monocular LSD-SLAM, we choose 6 sequences to evaluate.260

In the following sections, we show some qualitative results for our approach in 5.1 and the quantitative261

results of our evaluation are presented in 5.2, in which we also make the runtime analysis on our semantic262

mapping approach.263

5.1. Qualitative Results264

First, we present some qualitative results of the KITTI semantic dataset in Figure 4. Then, we use the265

trained model to make prediction on the KITTI odometry dataset, and the results are exemplified as shown in266

Figure 5.267

Take the sequence odometry_03 as an example of our semantic mapping approach. The sequence consists268

of 801 RGB frames on a urban road of about 560m and a camera calibration file. Figure 6 shows the semantic269

reconstruction with a close-up view including large-scale annotations such as road, building and even small-scale270

objects like traffic signs. Note we discard some keyframes at the beginning, due to random initialization of271

LSD-SLAM.272

·
(a) IC (b) MO (c) T

Figure 3. Instances in the odometry_03 sequence. IC: Illumination Change, MO: Moving Objects, T: Turns

(a) Raw Image (b) Prediction (c) Ground Truth
Figure 4. Qualitative results of 2D semantic segmentation
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Figure 5. Instances of 2D semantic segmentation in the KITTI odometry set

Figure 6. Qualitative results of 3D semantic mapping from the sequence odometry_03. Our approach not only
reconstructs and labels entire outdoor scenes that include roads, sidewalks and buildings, but also accurately
recovers thin objects such as traffic signs and trees.The close-up views show the details of the map.

5.2. Quantitative Results273

For the quantitative performance of our approach, we focus on the 2D semantic segmentation and the274

runtime of the entire system, since the 3D reconstruction mainly depends on the LSD-SLAM method.275

Semantic Segmentation: Table 3 shows the quantitative results of 2D semantic segmentation based on
different DeepLab-v3+ models on the KITTI datasets. We evaluate these models by the mean intersection/union
(mIOU) score, the model size, and the computational runtime. The mIOU score is defined as

mIOU =
1
|L |

|L|

∑
i=1

TPi/(TPi + FPi + FNi) (20)

in terms of the True/False Positives/Negatives for a given class i. We do not resize the image to evaluate the276

models here. Whereas, for the 3D semantic mapping process, we need to half resize the input images in order to277

make a trade-off between accuracy and computational speed.278

During the training process, these models are initialized with the checkpoints pre-trained from various279

datasets including ImageNet [37] and MS-COCO [38]. In the training step on the Cityscapes dataset, we directly280

use the ImageNet-pretrained checkpoints as the initialization. Note we employ the MobileNet_v2 based model281

which has been pre-trained on MS-COCO dataset, and the Xception_71 based model has been pre-trained on282

both ImageNet and MS-COCO datasets. These pre-trained models can be accessed from the github3.283

3 https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
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Table 3. Quantitative results of various encoder parts of DeepLab-v3+ on the Cityscapes and the KITTI. I:
ImageNet, M: MS-COCO, C: Cityscapes

Dataset Encoder Crop Size mIOU[0.5:0.25:1.75] Pb Size (MB) Runtime (s) I M C
ResNet_50 769 63.92 107.8 -

√

ResNet_101 769 69.88 184.1 -
√

Xception_41 769 68.5 113.4 -
√

Cityscapes Xception_65 769 78.73 165.7 5.0
√

Xception_71 769 80.24 167.9 -
√ √

MobileNet_v2 513 70.7 8.8 0.8
√

MoblieNet_v2 769 70.9 8.8 0.8
√

ResNet_50 769 51.35 107.8 0.9
√ √

ResNet_101 769 57.12 184.1 1.1
√ √

Xception_41 769 54.2 113.4 0.88
√ √

KITTI Xception_65 769 64.8 165.6 1.13
√ √

Xception_71 769 66.2 167.9 1.26
√ √ √

MobileNet_v2 513 57.74 8.8 0.2
√ √

MobileNet_v2 769 60.73 8.8 0.2
√ √

Then we fine-tune the models on the KITTI dataset by using the pre-trained Cityscapes model. The284

Xception_71 based model performs the best mIOU performance but a rather slow computational speed. The285

MobileNet_v2 based model has a moderate mIOU, the smallest file size and the fastest speed. Note the286

MobileNet_v2 based model does not employ ASPP and decoder modules for fast computation. Considering the287

balance between computational speed and accuracy, we choose the MobileNet_v2 based model to carry out the288

2D semantic segmentation in our approach. Table 4 shows the performance of the MobileNet_v2 based model on289

the VAL/TEST split of the KITTI dataset.290

Table 4. Results of our selected model on the val/test of the KITTI datasets.
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VAL 95.7 73.9 87.1 38.1 44.2 42.7 48.6 60.3 89.1 52.3 90.1 70.1 36.5 89.1 44.6 62.2 37.4 36.1 67.7 60.3
TEST 96.1 73.7 86.2 37.9 41.4 40.1 50.3 58.3 90.2 66.8 91.3 72.4 40.3 91.8 33.7 46.4 37.1 46.0 62.4 60.9

We also make the test regarding to the effect of pre-training on the Cityscapes dataset. In Table 5, the291

salience has been illustrated on training the Xception_65 and MobileNet_v2 models. The Cityscapes pre-trained292

models could greatly improve the performance of 2D semantic segmentation on the KITTI dataset.293

Table 5. Performance of 2D semantic segmentation with/without the Cityscapes. Using the pre-trained Cityscapes
model, the accuracy of 2D semantic segmentation could be greatly improved on the KITTI semantic data.

Encoder mIOU[0.5:0.25:1.75] WITH Cityscapes
ResNet_101 52.46
ResNet_101 57.12

√

Xception_65 55.99
Xception_65 64.8

√

MobileNet_v2 51.82
MobileNet_v2 60.73

√

Note that towards the 3D semantic mapping, since we use a novel monocular 3D mapping different from294

the other related work, it is not easy to make quantitative comparison here. Kundu et al.’s work [25] propose295

a joint semantic segmentation and 3D reconstruction from monocular video, but it is an offline approach with296

different 3D representation in the form of a 3D volumetric semantic + occupancy map.297

Runtime and Storage: As shown in Table 6, our SLAM system runs about 40ms on average to process each298

frame, extract the keyframes and update the map. Since we reduce the size of the input image, the semantic299
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segmentation process requires about 100ms to infer 2D semantic information parallel upon the keyframes, and300

the incremental fusion process needs 50ms on average. In the experiments, we find the SLAM process normally301

selects a keyframe from more than every 4 frames. It keeps enough timing for the 2D semantic segmentation and302

the incremental fusion during the 3D semantic mapping. Thus, our approach could run in real-time. Moreover,303

considering the speed of moving platform, in case of the speed of 60KMH, the semantic segmentation process on304

selected keyframes corresponds to a distance about 2 meters, which is not too sparse for an urban scene.305

The lower part of this table shows the ranges of the CRF timing with different configurations due to the306

different size of point clouds when testing various sequences in the experiments. The CRF update runs offline307

due to slow inference speed on the CPU. Thus, it is only applied once at the end of the sequence. Optimized308

GPU implementation can be studied in future to realize the online CRF update.309

Table 6. Timing results. The table lists the operation time for different components of our system. Times of three
core components are averaged over all sequences and the CRF timings depends on the iterations and the point
cloud sizes.

Component Consumed Time (ms)
Semantic segmentation 100
SLAM 40
Incremental fusion 50
3D CRF 1 Iter. 800-2000
3D CRF 2 Iter. 1200-2400
3D CRF 3 Iter. 1500-3000
3D CRF 4+ Iter. >2000

Taking the odometry_03 sequence as example, our approach acquires 114 keyframes with 2.8E+07 3D310

points. Compared to the total 801 frames, the system utilizes only about 1/7 frames for mapping. Note that311

smaller values of the parameters KFDistWeight and KFUsageWeight could give more constraints between312

keyframes so that to achieve more accurate mapping. But it has a rather limited influence on the number of313

keyframes, the number of 3D points and the size of storage.314

6. Conclusions315

We have presented a fast monocular 3D semantic mapping system which runs on a CPU coupled with a316

GPU. An incremental fusion method is introduced to combine 2D semantic segmentation and 3D reconstruction317

online. We exploit a state-of-the-art deep CNN to realize the scene parsing in the road contexts. Direct monocular318

SLAM provides a quick 3D mapping based on selected keyframes and corresponding depth estimation. Since319

the semantic segmentation only runs and propagates on the keyframes, this reduces the computational cost and320

improves the accuracy of semantic mapping. The offline regularization with a CRF model can enhance the321

mapping further.322

Since the original LSD-SLAM is hard to handle the cases of sharp turns which are frequent in ordinal323

driving, our system is not stable in such conditions. In addition, semi-dense 3D reconstruction should be replaced324

by a dense model. In future work, we plan to introduce several state-of-the-art SLAM methods to improve325

the initialization and resistance to serious movements, i.e., rotations. Research on how labeling boosts 3D326

reconstruction of SLAM would be an interesting direction. The optimization of the regularization module would327

be another effective direct on the wide-range mapping.328
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