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1 Abstract: Fast 3D reconstruction with semantic information on road scenes is of great requirements for
2 autonomous navigation. It involves issues of geometry and appearance in the field of computer vision. In this
s work, we propose a method of fast 3D semantic mapping based on the monocular vision. At present, due to
4+ the inexpensive price and easy installation, monocular cameras are widely equipped on recent vehicles for the
s advanced driver assistance and it is possible to acquire semantic information and 3D map. The monocular
¢ visual sequence is used to estimate the camera pose, calculate the depth, predict the semantic segmentation, and
7 finally realize the 3D semantic mapping by combination of the techniques of localization, mapping and scene
s parsing. Our method recovers the 3D semantic mapping by incrementally transferring 2D semantic information
s to 3D point cloud. And a global optimization is explored to improve the accuracy of the semantic mapping in
10 light of the spatial consistency. In our framework, there is no need to make semantic inference on each frame of
1 the sequence, since the mesh data with semantic information is corresponding to sparse reference frames. It
12 saves amounts of the computational cost and allows our mapping system to perform online. We evaluate the
13 system on naturalistic road scenes, e.g., KITTI and observe a significant speed-up in the inference stage by
12 labeling on the mesh.

15 Keywords: 3D semantic mapping; incremental fusion; global optimization; real time; naturalistic road scenes

16 1. Introduction

17 Naturalistic scene understanding plays a key background role in most vision-based mobile robots. For
1s example, autonomous navigation in outdoor scenes asks for a rapid and comprehensive understanding of
19 surroundings for obstacle avoidance and path planning. Vehicle movement in limited temporal and spatial
20 contexts always requires knowledge of what something is, where it is located, and ego-vehicle’s surrounding.
21 Robotic maps, such as Occupancy grid map and OctoMap, traditionally provide geometric presentation of the
22 environment. However, they lack the correlation in data between map points and semantic knowledge; thus, they
23 could not be directly utilized in naturalistic road scenes.

2 Scene parsing is an important and promising step to address this issue. It benefits from the state-of-the-art
25 Deep Convolutional Neural Networks (DCNNs) which contributes to better performance of 2D pixel labeling
26 than traditional methods. Then, combined with the Simultaneous Localization and Mapping (SLAM) technology,
27 automobile could locate itself and meanwhile recognize surrounding objects in pixel-wise level. For instance, it
2s could make autonomous vehicle accomplish certain high-level tasks, such as “parking on the right free place”
20 and “stopping at the crosswalk”. This form of semantically annotated 3D representation provides mobile robots
s with functions of understanding, interaction and navigation in various scenes.

Y Semantic segmentation has been an active topic for a long time. Most methods have focused on increasing
32 the accuracy of the semantic segmentation, and have seen major improvements [ [-3]. However, they usually asks
ss  for high-power computing resources, which is not suitable for the embedded platform. Several recent research
s« focuses on the balance between the computing cost and the accuracy of object detection, classification and 2D
35 pixel labeling [4,5]. They achieves a better performance with regards to the embedded and mobile platforms.
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36 Compared to the SLAM technology with scaled sensors, such as stereo and RGB-D cameras, monocular
a7 visual SLAM is a promising technology, because monocular vision is flexible, inexpensive, and most importantly,
s widely equipped on most recent vehicles. Scaled sensors could provide reliable measurement in their specific
s ranges, whereas they lack the capability of seamless switch between various-scale scenes such as indoor and
40 outdoor. And they normally need large storage resources.

4 Most man-made environments, e.g., road scenes, usually exhibit distinctive spatial relations among varied
22 classes of objects. Being able to capture, model and utilize these kinds of relations could enhance semantic
s segmentation performance in the 3D semantic mapping [6]. In this paper, we exploit a monocular SLAM method
4« that provides cues of 3D spatial information and utilize state-of-the-art DCNN to build a 3D scene understanding
45 system towards road scenes. Moreover, a Bayesian 2D-3D transfer and a map regularization process are exploited
s to generate a consistent reconstruction in the spatial and semantic context.

Scene Parsing

‘i keyframe

= - RN
Input Image Sequence

3D Semantic Mapping

Monocular SLAM
W road [ sidewalk M wall [ terrain I vegetation [ traffic sign @ pole M car

Figure 1. Overview of our system: From monocular image sequence, keyframes are selected to obtain its 2D
semantic information, which then transfer to the 3D reconstruction to build the 3D semantic map.

47 In our monocular mapping system, the 3D map is incrementally reconstructed with a sequence of
45 automatically selected keyframes and corresponding semantic information. There is no need to label each
s frame in a sequence, which could save a considerable amount of computation cost. We refer the reader to Figure 1
so for an illustration. Different from the frame skipping strategy proposed by Hermans et al. [7] and McCormac et
st al. [8], our method could work well under fast camera motions. Since the 3D map should have global consistent
s2 depth information, it could be regularized in term of spatial structures. The regularization is aimed to remove
s3  distinctive outliers and makes components more consistent in the point cloud map, i.e., local points with same
s« semantic label should be approached in 3D space. Two datasets, Cityscapes [9] and KITTI [10], are used to
s evaluate our approach. Several raw videos are taken to reconstruct 3D map with semantic labels.

56 This paper is presented as follows. In the following Section 2, a review of the related work is given.
sz The problem formulation is presented in Section 3. The 3D semantic mapping is described in Section 4,
s including the semantic segmentation, the monocular visual SLAM, the Bayesian incremental fusion and the
s global regularization. Section 5 includes the results of 2D semantic inference and 3D semantic mapping. Finally,
e Section 6 concludes the paper and discusses possible extensions of our work.

st 2. Related Work

62 Our work is motivated by [8] which contributes an indoor 3D semantic SLAM from the RGB-D input. It
es aims towards a dense 3D map based on ElasticFusion SLAM [11] with semantic labeling. Pixel-wise semantic
e« information is acquired from a Deconvolutional semantic segmentation network [12] using the scaled RGB
es information and the depth as the input. Depth information is also used to update surfel’s depth and normal
es information to construct 3D dense map during loop closure. In addition, a previous work, SLAM++ [13], creates
67 amap with semantically defined objects, but it is limited to predefined database and hand-crafted template models.
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es In this paper, we make use of an incremental Bayesian fusion strategy with state-of-the-art visual SLAM and
e Semantic segmentation.

70 Visual SLAM usually contains sparse, semi-dense, and dense types depending on the methods of image
71 alignment. Feature-based methods only exploited limited feature points - typically image corners and blobs or
72 line segments, such as classic MonoSLAM [14] and ORB-SLAM [15,16]. They are not suitable for 3D semantic
73 mapping due to rather sparse feature points. In order to better exploit image information and avoid the cost on
74 calculation of features, direct dense SLAM system, such as the surfel-based dense slam, ElasticFusion [11] and
75 Dense Visual SLAM [17], have been proposed recently. Whereas, direct image alignment from these dense
7 methods is well-established for monocular, RGB-D and stereo sensors. Semi-dense methods like Large-Scale
77 Direct-SLAM (LSD-SLAM) [18] and Semi-direct Visual Odometry (SVO) [19] provide possibility to build a
78 synchronized 3D semantic mapping system.

79 Deep CNNs have proven to be effective in the field of image semantic segmentation. Long et al. [20] firstly
s introduces an inverse convolution layer to realize an end-to-end training and inference. Then, the encoder-decoder
s1  architectures with specified upsampling layers, such as max unpooling and deconvolutional layer, are proposed to
&2 avoid the problem of separate step training in the FCN network and improve the accuracy [12,21]. Zhao et al. [2]
ss exploits the capability of global context information through embedding various scenery context feature in a
s« pyramid structure. The fusion of varied scaled feature has been a popular strategy in the recent deep CNNs. The
&5 cutting-edge method, namely, DeepLab series [1,3,5], combines atrous convolutions and atrous spatial pyramid
s pooling (ASPP) to achieve a state-of-the-art performance on semantic segmentation. The early DeepLab models
&7 have a reasonable accuracy but require much computation overhead. Recently proposed efficient convolution
ss neural network, such as MobileNets [22,23] boosts real-time performance of semantic segmentation without
s losing the accuracy too much. The state-of-the-art DeepLab-v3+ [5] contains a simple effective decoder module
90 torefine the segmentation results especially along object boundaries. Furthermore, combining the encoder part of
91 MobileNet-v2 in its encoder-decoder structure, DeepLab-v3+ could achieve a better trade-off between precision
92 and runtime.

93 In the topic of scene understanding and mapping, recent research employ 3D priors of objects increasingly.
e« Salas-Moreno et al. [13] project 3D mesh of objects to the RGB-D frame in a graphical SLAM framework.
o5 Valentin er al. [24] propose a triangulated meshed representation of the scene from multiple depth measurements
9 and exploit the Conditional Random Field (CRF) to capture the consistency of 3D object mesh. Kundu et al. [25]
o7 exploit the CRF for joint voxels to infer the semantic information and occupancy. Sengupta and Sturgess [26]
98 use stereo camera, estimated pose and CRF to infer the semantic octree presentation of the 3D scene. Vineet et
9 al. [27] propose an incremental dense stereo reconstruction and semantic fusion technique to handle dynamic
10 objects in the large-scale outdoor scenes. Kochanov et al. [28] employ scene flow measurements to incorporate
101 temporal updates into the mapping of dynamic environment. Landrieu ef al. [29] introduce a regularization
102 framework to obtain spatially smooth semantic labeling of 3D point clouds from a point-wise classification,
13 considering the uncertainty associated with each label. Gaussian Process (GP) is another popular method for map
104 inference. Jadidi et al. [30] exploit GP to learn the structural and semantic correlation between map points. This
105 technique also incorporates OcotoMap to handle sparse measurements and missing labels. In order to improve
16 the training and query time complexities of the GP-based semantic mapping, Gan et al. [31] further introduce a
107 Relevance Vector Machine (RVM) inference technique for efficient map query at any resolution.

108 Our semi-dense approach is also inspired by dense 3D semantic mapping methods [6,7,32,33] in both
109 indoor and outdoor scenes. The major contributions from these work involve the 2D-3D transfer and the map
10 regularization. Especially, Hermans et al. [7] propose an efficient 3D CRF to regularize 3D semantic mapping
11 consistently considering influence between neighbors of 3D points (voxels). In this work, we adopt a similar
112 strategy to improve the performance of the 3D semantic reconstruction in the road scenes. The key concepts are

113 e a 3D semantic mapping system based on the monocular vision,
114 e integration of monocular SLAM and scene parsing into 3D semantic representation,
115 e exploiting the correlation between semantic information and geometrical information to enforce spatial

116 consistency,
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117 e active sequence downsampling and sparse semantic segmentation so that to achieve a real-time performance
118 and reduce the storage.
119 Following the comparison in [27], we list the characteristics of our approach and some relative work in
120 TABLE 1.

Table 1. Comparison with some related work: M = monocular camera, S/D = stereo/depth camera, L = Lidar, O
= outdoor, I = incremental, SDT = sparse data structures, RT = real time

Method M SD L O C
Hu et al. [34]
Sengupta et al. [32]
Hermans et al. [7]
Kundu et al. [25] v
Vineet et al. [27]
Wolf et al. [6]
McCormac et al. [8]
Ours Vv
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121 3. Problem Formulation

122 3.1. Notation

123 The target is to estimate the 3D semantic map M comprising of a pose-graph of keyframes with semantic
12+ map taken from a monocular camera. Let I; : Q) — R3 symbolize an H x W RGB image at the frame indexed
125 by i. Keyframes are extracted from image sequence in light of camera’s pose Tf at the 7 frame with respect to
126 previous keyframe j. We define the ith keyframe to be a tuple K; = (I;, D;, V;, S;), where D; : Qp, — Riis
127 the full-resolution inverse depth map associated with image I;, and V; : QOy, — R is associated inverse depth
126 variance map. Depth map and variance are defined in the subset of pixels as Qp. C €);, which means semi-dense,
129 only available for certain image regions of large intensity gradient. The symbol S; : ()5, — R represents the
130 full-resolution semantic map with maximum probability of object class from the semantic segmentation process.
131 The keyframes are consecutively stacked in a pose-graph G = (V, £), where V = {Ky, ..., K, } is the set
w2 of keyframes and £ = {S] € Sim(3) : K;, Kj € V} is the set of constraint factors. Each S} = (T/, s}) consists

1.3 of a camera’s pose Tﬁ = (glt ) from keyframe i to keyframe j, and scale factor sé > 0. In reference to world
1« frame W, normally regarded as the first keyframe Ky, the pose of the keyframe indexed by i is denoted as Tjy,.
s For a sequence of keyframes (1 keyframes), we get the nth keyframe’s pose T}, = [T} Tifl

136 The 3D map M is reconstructed by the projection of the inverse depth map of all keyframes, where each
17 3D point P can be labeled as one of the solid semantic objects in the label space £ = {I1,15, ..., I} like Road,
138 Building, Tree, etc. We use X = {Xl, Xy,..., X M} to denote the set of random variables corresponding to the
19 3D points P; : i € {1,..., M}, where each variable X; € X take a value I; from the predefined label space L.

1o 3.2. 3D semantic mapping

Our target is to build a 3D semantic map with semi-dense and consistent label information online while the
image sequences are captured by a moving monocular forward camera. Given an image sequence, the inference
of the 3D semantic map is regarded as:

M* = argmax ,P(M|G), (1)

141 which can be estimated by the maximum a-posterior (MAP). Compared to the model used in [25], our observation
12 1is continuously updating, not all existing measurements. Thus, we adopt an incremental fusion strategy to
13 estimate the 3D semantic map by incorporating new arriving keyframes. Correspondingly, the approach is
1a  decoupled into three separately running processes as shown in Figure 2.
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Figure 2. Framework of our method: The input is the sequence of the RGB frames, denoted as I. There
are three separate processes, a keyframe selection process, a 2D semantic segmentation process , and a 3D
reconstruction with semantic optimization process. Keyframes K are conditionally extracted from the sequence
based on the distance between the poses. The following frames refine the depth map and the variance map of
each keyframe until new keyframe is extracted. The 2D semantic segmentation module predicts the pixel-level
class of the new-arriving keyframe. Finally, the keyframes are incrementally explored to reconstruct the 3D map
with semantic labeling and then it is regularized by a dense CRF.

145 In the system, the monocular SLAM process maintains and tracks on a global map of the environment, which
146 contains a number of keyframes connected by pose-pose constraints with associated probabilistic semi-dense
127 depth maps. It runs in real-time on a CPU. Represented as point clouds, the map gives a semi-dense and highly
148 accurate 3D reconstruction of the environment. Meanwhile, the second process of the 2D semantic segmentation
s generates the pixel-level classification on the extracted keyframes. A fast deep CNN model is explored to predict
150 the semantic information on a GPU. In addition, an incremental fusion process for the semantic label optimization
151 is operated in a parallel way. It builds a local optimal correspondence between semantic labeling and voxels in the
152 3D point cloud. To obtain a globally optimal 3D semantic segmentation, we attempt to make use of information
153 of neighboring 3D points, involving the distance, color similarity and semantic label. It updates voxel’s position
15« and corresponding semantic label, which gives a globally consistently 3D semantic map.

155 4. 3D Semantic Mapping

156 4.1. 2D Scene Parsing

157 We explore the DeepLab-v3+ deep neural network proposed by Chen et al. [5]. Two important components
158 in the DeepLab series are the atrous convolution and atrous spatial pyramid pooling (ASPP), which enlarge
159 the field of view of filters and explicitly combine the feature maps at multiple scales. The improvement in the
10 DeepLab-v3+ involves the encoder-decoder structure and the augmentation of ASPP module with image-level
161 feature. The former is able to capture sharper object boundaries by regaining the spatial information, while the
162 latter encodes multi-scale contextual information to capture long range information. These contributions make
1sa  DeepLab successfully handle both large and small objects and achieve a better trade-off between precision and
164 run-time.

165 For the semantic segmentation of road scenes, we exploit the Cityscapes dataset and the KITTI dataset and
s adopt the predefined 19-class label space £ = {I1,15,...,l19}, which contains Road, Sidewalk, Building, Wall,
1e7 and so on. We use all semantic annotated images in the Cityscapes dataset for training and fine-tune the model
s with the KITTI dataset.

169 Note that there is not any depth information involved in the training process. In the inference, we keep the
170 original resolution of input image according to different datasets.

1 4.2. Semi-Dense SLAM

172 We explore LSD-SLAM to track camera’s trajectory and build consistent, large-scale maps of the
173 environment. LSD-SLAM is a real-time, semi-dense 3D mapping method. It has several advantages: firstly, it is
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174 a scale-aware image alignment algorithm to directly estimate the similarity transform between two keyframes
175 against different scale environments, such as office rooms (indoor) and urban roads (outdoor). The second one is
176 that it is a probabilistic approach to incorporate noise on the estimated depth maps into the tracking based on the
177 propagation of uncertainty. Moreover, it could integrate easily with different kinds of sensors like monocular,
178 stereo and panoramic cameras for various applications. These features are of benefit to a reliable tacks and maps
179 even in challenging surroundings.

180 LSD-SLAM has three major components: tracking, depth map estimation and map optimization. Spatial
181 regularization and outlier removal are incorporated in the estimation of depth map with small-baseline stereo
1.2 comparisons. In addition, a direct, scale-drift aware image alignment is carried on these existing keyframes to
183 detect scale-drift and loop closures. Due to the inherent correlation between the depth map and the tracking
1« accuracy, depth residual is used to estimate the similarity transform sim(3) constraints between keyframes.
1es  Consequently, a 3D point cloud map is built based on a set of keyframes with the estimated depth maps via
186 minimizing the error of image alignment. The map is continuously optimized in the background using a g20
157 pose-graph optimization. The approach runs in 25Hz on an Intel i7 CPU. More details like keyframe selection
188 and depth estimation should be referred to the work [18].

180 4.3. Incremental Fusion

190 There might be a large amount of inconsistent 2D semantic labels between consecutive frames, due to
191 the noise of sensors, the complexity of environments in the real world and the failure of scene parsing model.
192 Incremental fusion of semantic label from the stacked keyframes allows associating probabilistic label in a
19a Bayesian way, when combining with the depth map propagation between keyframes in the LSD-SLAM. We will
1sa  give the details about the incremental semantic fusion with the depth estimation as follows.

The camera projection transformation function 77(-) : R® — R? is defined as

x
pP= 7T(P) = [0(; + Cy, ,Bg + Cy]T, (2)
]T in 3D space into a 2D point p = [x/,y']T

which maps a point P = [x, v,z on the digital image plane I; in

the camera coordinate system. Since this projection function is nonlinear, for the computation efficiency, the
transformation should be augmented into the homogeneous coordinate system, which is defined as

x), a 0 ¢ O X
pi=1|v, |=]0 B ¢ O Z = K[1 0]P,, 3)
z 001 0]|]

where the matrix K is referred to as the camera matrix. Given a 3D point Py in the world reference system, the
mapping to image plane [; in the homogeneous reference system is calculated as

pr = KTy Py, (4)

165 where TZI'N the pose of the camera in the world reference system. Then, we get Euclidean coordinates p =
s [x],/z},y}/zy]T from the homogeneous coordinates. From this point on, any point p and P is assumed to be in
197 homogeneous coordinates and thus we drop the 4 index, unless stated otherwise.
Correspondingly, given the inverse depth estimation dfora pixel p = [x/, /] T'in I; of the keyframe K;, we
also have an inverse projection function below:

X /d—cy/d y'/d—cy/d 1]T

P=7n'(pd)=| . B o

®)

where d = D, (p) corresponds to the point p existing in the depth map D;, which projects the 2D pixel point into
the 3D point in the current camera coordinate system. The inverse depth estimation of each existing keyframe is
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continuously refined using its following frames until new keyframe is defined. In reference to Equation 4 and 5,
we can derive the 3D point in the world reference system as follows:

Py =Ti, 7 '(p, Di(p)), ©)

19s  where the homogeneous transformation matrix has the property: T{/vil = T]W.

Once a new frame is chosen to become a keyframe K, its depth map D; is initialized by projecting points
from previous keyframe into it. The information of existing, close-by keyframes is propagated to new keyframe
for its initialization and semantic probabilistic refinement. The point in the depth map of new keyframe is
obtained by '

p = KT}, /Py € I;. (7

19 Here, we have a Gaussian distributed transformation between keyframes, regarded as p € I; = Py — p € I;.
200 The class label corresponding to a 3D point P is denoted as X : P — [ € L. Note that the label Sky is
200 removed from £ for the 3D semantic mapping. Our target is to obtain the independent probability distribution of
22 each 3D point over the class labels P(X|K}) given a sequence of existing keyframes Ky = {Ko, K1, ..., K;} in
208 the pose-graph G.
We explore a recursive Bayesian fusion to refine the corresponding probability distribution of 3D points
with new keyframe’s update:

, 1 4 .
P(X|Kp) = ZP(/Cili%*er)P(X\’CFl)I ®)

with Z; = P(Ki|IC6_1). Applying the first-order Markov assumption to p(/C; |IC6_1, X), then we have:

P(XIK) = - PUGIXOP(XIKG ) = 7 PEZ ) e 1, ©
204 We assume that P(X) does not change over time and there is no need to calculate the normalization factor
205 P(ICI‘) / Z; explicitly.
According to the formulations above, the semantic probability distribution of all given keyframes can be
recursively updated as follows:
P(X|Kh) o« P(X|K;)P(X|KH). (10)

206 The incremental fusion can refine the semantic label of the points in the 3D space based on the pose-graph
207 of keyframes. It could handle the inconsistent 2D semantic labels, even though its performance relies on the
208 depth estimation. In addition, map geometry is another useful feature which could improve the performance of
200 the 3D semantic mapping further. The following section describes how we use the dense CRF to regularize the
210 3D semantic map by exploring the map geometry, which could propagate semantic information between spatial
211 neighbors.

212 4.4. Map Regularization

213 The dense CRF is widely used in the 2D semantic segmentation to enhance the performance of semantic
214 segmentation. Some previous works [6,7,32] seek its application on the 3D map to model contextual relations
215 between various class labels in a fully connected graph. It is a heuristic approach that assume the influence
216 between neighbors should be proportional to their distance, visual and geometrical similarity [7].

217 The CRF model is defined as a graph composed of unary potentials as nodes and pairwise potentials as
218 edges, but the size of the model makes traditional inference algorithms impractical. Thanks to Krahenbuhl
219 and Koltun’s work [35], a highly efficient approximate inference algorithm is proposed to handle this issue by
220 defining the pairwise edge potentials as a linear combination of Gaussian kernels. We apply the efficient inference
221 of the dense CRF to maximize label agreement between similar 3D points as follows.
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Assume the 3D semantic map M containing M 3D points is defined as a random field. A CRF (M, X) is
characterized by a Gibbs distribution as follows:

1
Z(M)

where E(X|M) is the Gibbs energy and Z(,M) is the partition function. The maximum a posteriori (MAP)
labeling of the random field is

P(X|M) =

exp(—E(X|M)), (11

X* = argmax;_ P (X|M) = argmin,_ -E(X| M), (12)

222 which is converted into minimizing the Gibbs energy by the mean-field approximation and message passing
223 scheme.
We employ the associative hierarchical CRF [32,36] which integrates the unary potential ¥;, the pairwise
potential ¥; ; and the higher order potential ¢, into the Gibbs energy at different levels of the hierarchy (voxels
and supervoxels) given by:

E(X|C) = 1 ¢i(Xi|C) + 3 1,(Xi, Xj1C30) + ) _¢he(Xele) (13)

i<j

224 by the indexes i,j € {1,..., M} correspond to different 3D points P;, P; in the 3D map M.
Unary Potential: The unary potential ¢;(-) is defined as the negative logarithm of the probabilistic label for
a given 3D point:
$i(Xi|C) = —log(P(X; — 1K) (14)

25 This term means the cost of 3D point P; taking an object label I € L based on the incremental semantic
26 probabilistic fusion above. The output of the unary potential for each point is produced independently, and thus,
227 the MAP labeling produced by the unary potential alone is generally inconsistent.
Pairwise Potentials: The pairwise potential 1/]1‘,]‘(-) is modeled to be a log-linear combination of m Gaussian
edge potential kernels:
;1(Xi, X;1C0) = (X, X;) Y ™k (£, £;;0), (15)
m
where (- is a label compatibility function corresponding to the Gaussian kernel functions k(") (£;, f;). f denotes
the feature vector for the 3D point P including the position, the RGB appearance and the surface normal vector
of the reconstructed surface. And y(-) is a Potts model given by:

ﬂ(l,l’)—[l#l’]—{ 3 ;if : (16)

This term is defined to encourage the consistency over pairs of neighboring points for the local smoothness
of the 3D semantic map. We employ two Gaussian kernels for the pairwise potentials following the previous
work [7]. The first one is an appearance kernel as follows:

P-—P-|2 |C'—C-|2
(1) foft) = B | 1 L ] 1
K (£,£55°) exp( 29%,C 202 , 17

28 where ¢ is the RGB color vector of the corresponding 3D points. This kernel is used to build long range
20 connections between 3D points with a similar appearance.
The second one, a spatial smoothness kernel, is defined to enforce a local, appearance-agnositc smoothness
among 3D points with similar normal vectors.

[P —Pj[> [n; —n

2
k2 (£, £;0) = exp( - I _ >, (18)
v 2603 , 203
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230 where n are the respective surface normals. The surface normal are computed using the Triangulated Meshing
231 using Marching Tetrahedra (TMMT) proposed in [32]. Note that the original method is towards producing a
232 dense labeling with the stereo vision. Since the LSD-SLLAM only generates semi-dense 3D point clouds, we
233 modify the TMMT to extract a triangulated mesh within limited ranges of short distance between 3D points.
High Order Potential: The higher order term 1. (X.|c) encourages the 3D points (voxels) in the given
segment to take the same label and penalizes partial inconsistency of supervoxels as described in [36]. It is
defined as

Pe(Xele) = minge 2 (Y, v+ KLND), (19)

23 where ')/f: represents the cost if all voxels in the segment take the label I. NZ, = ) jcc 0 is the number of
25 inconsistent 3D points with the label I which is penalized with a factor k., regarded as the inconsistency cost.
236 All parameters 0p ¢, Oc, Op 1, 0n, Op s, 05 specify the range in which points with similar features affect each
237 other, respectively. They can be obtained using piece-wise learning.

233 5. Experiments and Results

239 We demonstrate the performance of our approach on the KITTI dataset [10], which contains a variety of
240 urban scene sequences involving lots of moving objects in various lighting conditions. It consists of various
2e1  datasets, such as the semantic dataset, the odometry dataset, and the detection dataset. Thus, it is very challenging
22 for the 3D reconstruction. The KITTI dataset contains a 2D semantic segmentation data of 200 labeled
243 training images and 200 test images! . Its data format and metrics conform with the Cityscapes dataset [9].
224 The Cityscapes dataset involves 19 classes within high quality pixel-level annotations of 5000 images with a
25 resolution of 2048 x 1024, including 2975 training images, 500 validation images, and 1525 testing images. In
246 our experiment, we train the model on the Cityscapes and then tune it on the KITTI taking the volume size of
247 dataset into account.

248 For the training of 2D semantic segmentation model, various encoder models in the DeepLab-v3+ are
249 evaluate including ResNet, Xception, and MobileNet. And we find that the “poly” stochastic gradient descent is
20  better than the “step” one on these datasets. The TensorFlow library is employed to do the training and inference
251 on the workstation with 4 Nvidia Titan X GPU cards. The hyper-parameters used in training are set corresponding
22 to the datasets and models as shown in Table 2.

Table 2. Hyper-parameters used in the training step

Dataset Encoder Learning Rate | Learning Power | Momentum | Weight Decay | Batch | Steps
ResNet_50 0.003 0.9 0.9 0.0001 8 20000
ResNet_101 0.003 0.9 0.9 0.0001 8 20000
Xception_41 0.01 0.9 0.9 0.00004 8 10000
Cityscapes | Xception_65 0.01 0.9 0.9 0.00004 8 10000
Xception_71 0.01 0.9 0.9 0.00004 8 10000
MobileNet_v2 0.001 0.9 0.9 0.00004 64 10000
ResNet_50 0.003 0.9 0.9 0.0001 8 20000
ResNet_101 0.003 0.9 0.9 0.0001 8 20000
Xception_41 0.01 0.9 0.9 0.00004 8 10000
KITTI Xception_65 0.01 0.9 0.9 0.00004 8 10000
Xception_71 0.01 0.9 0.9 0.00004 8 10000
MobileNet_v2 0.001 0.9 0.9 0.00004 64 10000

253 We benchmark the performance of our semantic mapping system on the KITTI odometry dataset?. There

254 are 22 sequences with the consecutive RGB frames, in which there are 11 sequences with the ground-truth poses
255 for evaluation. The scenes contain serious illumination change, moving objects like persons and vehicles, and

1
2

http://www.cvlibs.net/datasets/kitti/eval_semseg.php?benchmark=semantics2015
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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256 some turns as shown in Figure 3. These road-scene frames involves two resolutions 1242 x 375 and 1226 x 370.
257 Our system runs on an Intel Core i7-5960K CPU and a NVIDIA Titan X GPU for online process.

258 Since the KITTI sequences are mostly captured in 10 Hz, it is highly below the normal speed requirements
29 of LSD-SLAM about 60 Hz. In addition, the LSD-SLAM is hard to handle severe turning when the platform
260 moves. Due to the limit of the monocular LSD-SLAM, we choose 6 sequences to evaluate.

261 In the following sections, we show some qualitative results for our approach in 5.1 and the quantitative
262 results of our evaluation are presented in 5.2, in which we also make the runtime analysis on our semantic
263 mapping approach.

264 5.1. Qualitative Results

265 First, we present some qualitative results of the KITTI semantic dataset in Figure 4. Then, we use the
266 trained model to make prediction on the KITTI odometry dataset, and the results are exemplified as shown in
267 Figure 5.

268 Take the sequence odometry_03 as an example of our semantic mapping approach. The sequence consists
260 of 801 RGB frames on a urban road of about 560m and a camera calibration file. Figure 6 shows the semantic
270 reconstruction with a close-up view including large-scale annotations such as road, building and even small-scale
271 objects like traffic signs. Note we discard some keyframes at the beginning, due to random initialization of
22 LSD-SLAM.

(a) IC (b) MO @©T
Figure 3. Instances in the odometry_03 sequence. IC: Illumination Change, MO: Moving Objects, T: Turns

(a) Raw Image (b) Prediction (¢) Ground Truth
Figure 4. Qualitative results of 2D semantic segmentation
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road terrain
sidewalk

building

traffic lightRreHiy

LEETAl motorcyclel

vegetation  bicycle

Figure 6. Qualitative results of 3D semantic mapping from the sequence odometry_03. Our approach not only
reconstructs and labels entire outdoor scenes that include roads, sidewalks and buildings, but also accurately
recovers thin objects such as traffic signs and trees.The close-up views show the details of the map.

273 5.2. Quantitative Results

274 For the quantitative performance of our approach, we focus on the 2D semantic segmentation and the
275 runtime of the entire system, since the 3D reconstruction mainly depends on the LSD-SLAM method.
Semantic Segmentation: Table 3 shows the quantitative results of 2D semantic segmentation based on
different DeepLab-v3+ models on the KITTI datasets. We evaluate these models by the mean intersection/union
(mIOU) score, the model size, and the computational runtime. The mIOU score is defined as

|£]
mIOU = i| Y TP;/(TP; + FP; + FNj;) (20)

£ i=1

276 in terms of the True/False Positives/Negatives for a given class i. We do not resize the image to evaluate the
277 models here. Whereas, for the 3D semantic mapping process, we need to half resize the input images in order to
278 make a trade-off between accuracy and computational speed.

278 During the training process, these models are initialized with the checkpoints pre-trained from various
280 datasets including ImageNet [37] and MS-COCO [38]. In the training step on the Cityscapes dataset, we directly
251 use the ImageNet-pretrained checkpoints as the initialization. Note we employ the MobileNet_v2 based model
2.2 which has been pre-trained on MS-COCO dataset, and the Xception_71 based model has been pre-trained on
23 both ImageNet and MS-COCO datasets. These pre-trained models can be accessed from the github?.

3 https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
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Table 3. Quantitative results of various encoder parts of DeepLab-v3+ on the Cityscapes and the KITTI. I:
ImageNet, M: MS-COCO, C: Cityscapes

Dataset Encoder Crop Size | mIOU[0.5:0.25:1.75] | Pb Size (MB) | Runtime(s) | I | M | C
ResNet_50 769 63.92 107.8 - v
ResNet_101 769 69.88 184.1 - v
Xception_41 769 68.5 113.4 - v
Cityscapes | Xception_65 769 78.73 165.7 5.0 v
Xception_71 769 80.24 167.9 - Na YA
MobileNet_v2 513 70.7 8.8 0.8 Vv
MoblieNet_v2 769 70.9 8.8 0.8 v
ResNet_50 769 51.35 107.8 0.9 v vV
ResNet_101 769 57.12 184.1 1.1 v v
Xception_41 769 54.2 1134 0.88 Vv Vv
KITTI Xception_65 769 64.8 165.6 1.13 Vv Vv
Xception_71 769 66.2 167.9 1.26 ViIiviiv
MobileNet_v2 513 57.74 8.8 0.2 NA YA
MobileNet_v2 769 60.73 8.8 0.2 NARY;
284 Then we fine-tune the models on the KITTI dataset by using the pre-trained Cityscapes model. The

285 Xception_71 based model performs the best mIOU performance but a rather slow computational speed. The
26 MobileNet_v2 based model has a moderate mIOU, the smallest file size and the fastest speed. Note the
287 MobileNet_v2 based model does not employ ASPP and decoder modules for fast computation. Considering the
258 balance between computational speed and accuracy, we choose the MobileNet_v2 based model to carry out the
269 2D semantic segmentation in our approach. Table 4 shows the performance of the MobileNet_v2 based model on
200 the VAL/TEST split of the KITTI dataset.

Table 4. Results of our selected model on the val/test of the KITTI datasets.

) E‘) g’) _§
< (=}
§ 5] é é — 8=
3 AN - B
o I =1 o =) =) > - BaEEE ©° | = [ ©° F=n = S
VAL | 95.7 73.9 87.1 38.1 44.2 42.7 48.4 60.3 89.1 52.3 90.1] 70.1 36.5 89.1 44. . . . 1 60.3
TEST 96.1] 73.71 86.2 37.9 41.4 40.1 50.3 58.3 90.2 66.8§ 91.3 72.4 40.3 91.§ 33.7 46.4 37.1 46.0 62.4 60.9

291 We also make the test regarding to the effect of pre-training on the Cityscapes dataset. In Table 5, the
202 salience has been illustrated on training the Xception_65 and MobileNet_v2 models. The Cityscapes pre-trained
203 models could greatly improve the performance of 2D semantic segmentation on the KITTI dataset.

Table 5. Performance of 2D semantic segmentation with/without the Cityscapes. Using the pre-trained Cityscapes
model, the accuracy of 2D semantic segmentation could be greatly improved on the KITTI semantic data.

Encoder mlIOUJ[0.5:0.25:1.75] | WITH Cityscapes
ResNet_101 52.46
ResNet_101 57.12 v
Xception_65 55.99
Xception_65 64.8 v
MobileNet_v2 51.82
MobileNet_v2 60.73 Vv
294 Note that towards the 3D semantic mapping, since we use a novel monocular 3D mapping different from

205 the other related work, it is not easy to make quantitative comparison here. Kundu et al.’s work [25] propose
206 ajoint semantic segmentation and 3D reconstruction from monocular video, but it is an offline approach with
207 different 3D representation in the form of a 3D volumetric semantic + occupancy map.

298 Runtime and Storage: As shown in Table 6, our SLAM system runs about 40ms on average to process each
200 frame, extract the keyframes and update the map. Since we reduce the size of the input image, the semantic
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a0 segmentation process requires about 100ms to infer 2D semantic information parallel upon the keyframes, and
st the incremental fusion process needs 50ms on average. In the experiments, we find the SLAM process normally
a2 selects a keyframe from more than every 4 frames. It keeps enough timing for the 2D semantic segmentation and
a3 the incremental fusion during the 3D semantic mapping. Thus, our approach could run in real-time. Moreover,
a4 considering the speed of moving platform, in case of the speed of 60KMH, the semantic segmentation process on
s0s  selected keyframes corresponds to a distance about 2 meters, which is not too sparse for an urban scene.

306 The lower part of this table shows the ranges of the CRF timing with different configurations due to the
a7 different size of point clouds when testing various sequences in the experiments. The CRF update runs offline
a8 due to slow inference speed on the CPU. Thus, it is only applied once at the end of the sequence. Optimized
s09  GPU implementation can be studied in future to realize the online CRF update.

Table 6. Timing results. The table lists the operation time for different components of our system. Times of three
core components are averaged over all sequences and the CRF timings depends on the iterations and the point
cloud sizes.

Component Consumed Time (ms)
Semantic segmentation 100
SLAM 40
Incremental fusion 50
3D CRF 1 Iter. 800-2000
3D CRF 2 Iter. 1200-2400
3D CREF 3 Iter. 1500-3000
3D CRF 4+ Iter. >2000
310 Taking the odometry_03 sequence as example, our approach acquires 114 keyframes with 2.8E+07 3D

a1 points. Compared to the total 801 frames, the system utilizes only about 1/7 frames for mapping. Note that
sz smaller values of the parameters KFDistWeight and KFUsageWeight could give more constraints between
313 keyframes so that to achieve more accurate mapping. But it has a rather limited influence on the number of
sis  keyframes, the number of 3D points and the size of storage.

315 6. Conclusions

316 We have presented a fast monocular 3D semantic mapping system which runs on a CPU coupled with a
37 GPU. An incremental fusion method is introduced to combine 2D semantic segmentation and 3D reconstruction
sis  online. We exploit a state-of-the-art deep CNN to realize the scene parsing in the road contexts. Direct monocular
a9 SLAM provides a quick 3D mapping based on selected keyframes and corresponding depth estimation. Since
a0 the semantic segmentation only runs and propagates on the keyframes, this reduces the computational cost and
321 improves the accuracy of semantic mapping. The offline regularization with a CRF model can enhance the
322 mapping further.

323 Since the original LSD-SLAM is hard to handle the cases of sharp turns which are frequent in ordinal
3¢ driving, our system is not stable in such conditions. In addition, semi-dense 3D reconstruction should be replaced
s2s by a dense model. In future work, we plan to introduce several state-of-the-art SLAM methods to improve
326 the initialization and resistance to serious movements, i.e., rotations. Research on how labeling boosts 3D
327 reconstruction of SLAM would be an interesting direction. The optimization of the regularization module would
a8 be another effective direct on the wide-range mapping.
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