

Article

Fast 3D Semantic Mapping on Naturalistic Road Scenes

Xuanpeng Li ^{1,*} , Dong Wang¹, Huanxuan Ao¹, Rachid Belaroussi² and Dominique Gruyer²

¹ School of Instrument Science and Engineering, Southeast University, 210006 Nanjing, Jiangsu, China

² COSYS/LIVIC, IFSTTAR, 25 allée des Marronniers, 78000 Versailles

* Correspondence: li_xuanpeng@seu.edu.cn

† This paper is an extended version of our paper published in LI, Xuanpeng, et al. Fast semi-dense 3D semantic mapping with monocular visual SLAM. In: Intelligent Transportation Systems (ITSC), 2017 IEEE 20th International Conference on. IEEE, 2017. S. 385-390.

Abstract: Fast 3D reconstruction with semantic information on road scenes is of great requirements for autonomous navigation. It involves issues of geometry and appearance in the field of computer vision. In this work, we propose a method of fast 3D semantic mapping based on the monocular vision. At present, due to the inexpensive price and easy installation, monocular cameras are widely equipped on recent vehicles for the advanced driver assistance and it is possible to acquire semantic information and 3D map. The monocular visual sequence is used to estimate the camera pose, calculate the depth, predict the semantic segmentation, and finally realize the 3D semantic mapping by combination of the techniques of localization, mapping and scene parsing. Our method recovers the 3D semantic mapping by incrementally transferring 2D semantic information to 3D point cloud. And a global optimization is explored to improve the accuracy of the semantic mapping in light of the spatial consistency. In our framework, there is no need to make semantic inference on each frame of the sequence, since the mesh data with semantic information is corresponding to sparse reference frames. It saves amounts of the computational cost and allows our mapping system to perform online. We evaluate the system on naturalistic road scenes, e.g., KITTI and observe a significant speed-up in the inference stage by labeling on the mesh.

Keywords: 3D semantic mapping; incremental fusion; global optimization; real time; naturalistic road scenes

1. Introduction

Naturalistic scene understanding plays a key background role in most vision-based mobile robots. For example, autonomous navigation in outdoor scenes asks for a rapid and comprehensive understanding of surroundings for obstacle avoidance and path planning. Vehicle movement in limited temporal and spatial contexts always requires knowledge of what something is, where it is located, and ego-vehicle's surrounding. Robotic maps, such as Occupancy grid map and OctoMap, traditionally provide geometric presentation of the environment. However, they lack the correlation in data between map points and semantic knowledge; thus, they could not be directly utilized in naturalistic road scenes.

Scene parsing is an important and promising step to address this issue. It benefits from the state-of-the-art Deep Convolutional Neural Networks (DCNNs) which contributes to better performance of 2D pixel labeling than traditional methods. Then, combined with the Simultaneous Localization and Mapping (SLAM) technology, automobile could locate itself and meanwhile recognize surrounding objects in pixel-wise level. For instance, it could make autonomous vehicle accomplish certain high-level tasks, such as “parking on the right free place” and “stopping at the crosswalk”. This form of semantically annotated 3D representation provides mobile robots with functions of understanding, interaction and navigation in various scenes.

Semantic segmentation has been an active topic for a long time. Most methods have focused on increasing the accuracy of the semantic segmentation, and have seen major improvements [1–3]. However, they usually asks for high-power computing resources, which is not suitable for the embedded platform. Several recent research focuses on the balance between the computing cost and the accuracy of object detection, classification and 2D pixel labeling [4,5]. They achieves a better performance with regards to the embedded and mobile platforms.

36 Compared to the SLAM technology with scaled sensors, such as stereo and RGB-D cameras, monocular
 37 visual SLAM is a promising technology, because monocular vision is flexible, inexpensive, and most importantly,
 38 widely equipped on most recent vehicles. Scaled sensors could provide reliable measurement in their specific
 39 ranges, whereas they lack the capability of seamless switch between various-scale scenes such as indoor and
 40 outdoor. And they normally need large storage resources.

41 Most man-made environments, e.g., road scenes, usually exhibit distinctive spatial relations among varied
 42 classes of objects. Being able to capture, model and utilize these kinds of relations could enhance semantic
 43 segmentation performance in the 3D semantic mapping [6]. In this paper, we exploit a monocular SLAM method
 44 that provides cues of 3D spatial information and utilize state-of-the-art DCNN to build a 3D scene understanding
 45 system towards road scenes. Moreover, a Bayesian 2D-3D transfer and a map regularization process are exploited
 46 to generate a consistent reconstruction in the spatial and semantic context.

Figure 1. Overview of our system: From monocular image sequence, keyframes are selected to obtain its 2D semantic information, which then transfer to the 3D reconstruction to build the 3D semantic map.

47 In our monocular mapping system, the 3D map is incrementally reconstructed with a sequence of
 48 automatically selected keyframes and corresponding semantic information. There is no need to label each
 49 frame in a sequence, which could save a considerable amount of computation cost. We refer the reader to Figure 1
 50 for an illustration. Different from the frame skipping strategy proposed by Hermans *et al.* [7] and McCormac *et
 51 al.* [8], our method could work well under fast camera motions. Since the 3D map should have global consistent
 52 depth information, it could be regularized in term of spatial structures. The regularization is aimed to remove
 53 distinctive outliers and makes components more consistent in the point cloud map, i.e., local points with same
 54 semantic label should be approached in 3D space. Two datasets, Cityscapes [9] and KITTI [10], are used to
 55 evaluate our approach. Several raw videos are taken to reconstruct 3D map with semantic labels.

56 This paper is presented as follows. In the following Section 2, a review of the related work is given.
 57 The problem formulation is presented in Section 3. The 3D semantic mapping is described in Section 4,
 58 including the semantic segmentation, the monocular visual SLAM, the Bayesian incremental fusion and the
 59 global regularization. Section 5 includes the results of 2D semantic inference and 3D semantic mapping. Finally,
 60 Section 6 concludes the paper and discusses possible extensions of our work.

61 2. Related Work

62 Our work is motivated by [8] which contributes an indoor 3D semantic SLAM from the RGB-D input. It
 63 aims towards a dense 3D map based on ElasticFusion SLAM [11] with semantic labeling. Pixel-wise semantic
 64 information is acquired from a Deconvolutional semantic segmentation network [12] using the scaled RGB
 65 information and the depth as the input. Depth information is also used to update surfel's depth and normal
 66 information to construct 3D dense map during loop closure. In addition, a previous work, SLAM++ [13], creates
 67 a map with semantically defined objects, but it is limited to predefined database and hand-crafted template models.

68 In this paper, we make use of an incremental Bayesian fusion strategy with state-of-the-art visual SLAM and
69 semantic segmentation.

70 Visual SLAM usually contains sparse, semi-dense, and dense types depending on the methods of image
71 alignment. Feature-based methods only exploited limited feature points - typically image corners and blobs or
72 line segments, such as classic MonoSLAM [14] and ORB-SLAM [15,16]. They are not suitable for 3D semantic
73 mapping due to rather sparse feature points. In order to better exploit image information and avoid the cost on
74 calculation of features, direct dense SLAM system, such as the surfel-based dense slam, ElasticFusion [11] and
75 Dense Visual SLAM [17], have been proposed recently. Whereas, direct image alignment from these dense
76 methods is well-established for monocular, RGB-D and stereo sensors. Semi-dense methods like Large-Scale
77 Direct-SLAM (LSD-SLAM) [18] and Semi-direct Visual Odometry (SVO) [19] provide possibility to build a
78 synchronized 3D semantic mapping system.

79 Deep CNNs have proven to be effective in the field of image semantic segmentation. Long *et al.* [20] firstly
80 introduces an inverse convolution layer to realize an end-to-end training and inference. Then, the encoder-decoder
81 architectures with specified upsampling layers, such as max unpooling and deconvolutional layer, are proposed to
82 avoid the problem of separate step training in the FCN network and improve the accuracy [12,21]. Zhao *et al.* [2]
83 exploits the capability of global context information through embedding various scenery context feature in a
84 pyramid structure. The fusion of varied scaled feature has been a popular strategy in the recent deep CNNs. The
85 cutting-edge method, namely, DeepLab series [1,3,5], combines atrous convolutions and atrous spatial pyramid
86 pooling (ASPP) to achieve a state-of-the-art performance on semantic segmentation. The early DeepLab models
87 have a reasonable accuracy but require much computation overhead. Recently proposed efficient convolution
88 neural network, such as MobileNets [22,23] boosts real-time performance of semantic segmentation without
89 losing the accuracy too much. The state-of-the-art DeepLab-v3+ [5] contains a simple effective decoder module
90 to refine the segmentation results especially along object boundaries. Furthermore, combining the encoder part of
91 MobileNet-v2 in its encoder-decoder structure, DeepLab-v3+ could achieve a better trade-off between precision
92 and runtime.

93 In the topic of scene understanding and mapping, recent research employ 3D priors of objects increasingly.
94 Salas-Moreno *et al.* [13] project 3D mesh of objects to the RGB-D frame in a graphical SLAM framework.
95 Valentin *et al.* [24] propose a triangulated meshed representation of the scene from multiple depth measurements
96 and exploit the Conditional Random Field (CRF) to capture the consistency of 3D object mesh. Kundu *et al.* [25]
97 exploit the CRF for joint voxels to infer the semantic information and occupancy. Sengupta and Sturgess [26]
98 use stereo camera, estimated pose and CRF to infer the semantic octree presentation of the 3D scene. Vineet *et*
99 *al.* [27] propose an incremental dense stereo reconstruction and semantic fusion technique to handle dynamic
100 objects in the large-scale outdoor scenes. Kochanov *et al.* [28] employ scene flow measurements to incorporate
101 temporal updates into the mapping of dynamic environment. Landrieu *et al.* [29] introduce a regularization
102 framework to obtain spatially smooth semantic labeling of 3D point clouds from a point-wise classification,
103 considering the uncertainty associated with each label. Gaussian Process (GP) is another popular method for map
104 inference. Jadidi *et al.* [30] exploit GP to learn the structural and semantic correlation between map points. This
105 technique also incorporates OcotoMap to handle sparse measurements and missing labels. In order to improve
106 the training and query time complexities of the GP-based semantic mapping, Gan *et al.* [31] further introduce a
107 Relevance Vector Machine (RVM) inference technique for efficient map query at any resolution.

108 Our semi-dense approach is also inspired by dense 3D semantic mapping methods [6,7,32,33] in both
109 indoor and outdoor scenes. The major contributions from these work involve the 2D-3D transfer and the map
110 regularization. Especially, Hermans *et al.* [7] propose an efficient 3D CRF to regularize 3D semantic mapping
111 consistently considering influence between neighbors of 3D points (voxels). In this work, we adopt a similar
112 strategy to improve the performance of the 3D semantic reconstruction in the road scenes. The key concepts are

113 • a 3D semantic mapping system based on the monocular vision,
114 • integration of monocular SLAM and scene parsing into 3D semantic representation,
115 • exploiting the correlation between semantic information and geometrical information to enforce spatial
116 consistency,

117 • active sequence downsampling and sparse semantic segmentation so that to achieve a real-time performance
 118 and reduce the storage.

119 Following the comparison in [27], we list the characteristics of our approach and some relative work in
 120 TABLE 1.

Table 1. Comparison with some related work: M = monocular camera, S/D = stereo/depth camera, L = Lidar, O = outdoor, I = incremental, SDT = sparse data structures, RT = real time

Method	M	S/D	L	O	C	I	SDT	RT
Hu <i>et al.</i> [34]			✓	✓		✓	✓	✓
Sengupta <i>et al.</i> [32]		✓		✓	✓			
Hermans <i>et al.</i> [7]		✓				✓	✓	
Kundu <i>et al.</i> [25]	✓			✓	✓	✓	✓	
Vineet <i>et al.</i> [27]		✓		✓	✓	✓	✓	✓
Wolf <i>et al.</i> [6]		✓		✓		✓	✓	✓
McCormac <i>et al.</i> [8]		✓		✓	✓	✓	✓	✓
Ours	✓			✓	✓	✓	✓	✓

121 3. Problem Formulation

122 3.1. Notation

123 The target is to estimate the 3D semantic map \mathcal{M} comprising of a pose-graph of keyframes with semantic
 124 map taken from a monocular camera. Let $I_i : \Omega \rightarrow \mathbb{R}^3$ symbolize an $H \times W$ RGB image at the frame indexed
 125 by i . Keyframes are extracted from image sequence in light of camera's pose \mathbf{T}_i^j at the i frame with respect to
 126 previous keyframe j . We define the i th keyframe to be a tuple $\mathcal{K}_i = (I_i, D_i, V_i, S_i)$, where $D_i : \Omega_{D_i} \rightarrow \mathbb{R}$ is
 127 the full-resolution inverse depth map associated with image I_i , and $V_i : \Omega_{V_i} \rightarrow \mathbb{R}$ is associated inverse depth
 128 variance map. Depth map and variance are defined in the subset of pixels as $\Omega_{D_i} \subset \Omega_i$, which means semi-dense,
 129 only available for certain image regions of large intensity gradient. The symbol $S_i : \Omega_{S_i} \rightarrow \mathbb{R}$ represents the
 130 full-resolution semantic map with maximum probability of object class from the semantic segmentation process.

131 The keyframes are consecutively stacked in a pose-graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{\mathcal{K}_0, \dots, \mathcal{K}_n\}$ is the set
 132 of keyframes and $\mathcal{E} = \{\mathbf{S}_i^j \in \text{Sim}(3) : \mathcal{K}_i, \mathcal{K}_j \in \mathcal{V}\}$ is the set of constraint factors. Each $\mathbf{S}_i^j = (\mathbf{T}_i^j, s_i^j)$ consists
 133 of a camera's pose $\mathbf{T}_i^j = \begin{pmatrix} \mathbf{R}^j \\ \mathbf{t}^j \end{pmatrix}$ from keyframe i to keyframe j , and scale factor $s_i^j > 0$. In reference to world
 134 frame W , normally regarded as the first keyframe \mathcal{K}_0 , the pose of the keyframe indexed by i is denoted as \mathbf{T}_W^i .
 135 For a sequence of keyframes (n keyframes), we get the n th keyframe's pose $\mathbf{T}_W^n = \prod_1^n \mathbf{T}_{k-1}^k$.

136 The 3D map \mathcal{M} is reconstructed by the projection of the inverse depth map of all keyframes, where each
 137 3D point \mathbf{P} can be labeled as one of the solid semantic objects in the label space $\mathcal{L} = \{l_1, l_2, \dots, l_k\}$ like *Road*,
 138 *Building*, *Tree*, etc. We use $\mathbf{X} = \{X_1, X_2, \dots, X_M\}$ to denote the set of random variables corresponding to the
 139 3D points $\mathbf{P}_i : i \in \{1, \dots, M\}$, where each variable $X_i \in \mathbf{X}$ take a value l_i from the predefined label space \mathcal{L} .

140 3.2. 3D semantic mapping

Our target is to build a 3D semantic map with semi-dense and consistent label information online while the
 image sequences are captured by a moving monocular forward camera. Given an image sequence, the inference
 of the 3D semantic map is regarded as:

$$\mathcal{M}^* = \text{argmax}_{\mathcal{M}} P(\mathcal{M} | \mathcal{G}), \quad (1)$$

141 which can be estimated by the maximum a-posterior (MAP). Compared to the model used in [25], our observation
 142 is continuously updating, not all existing measurements. Thus, we adopt an incremental fusion strategy to
 143 estimate the 3D semantic map by incorporating new arriving keyframes. Correspondingly, the approach is
 144 decoupled into three separately running processes as shown in Figure 2.

Figure 2. Framework of our method: The input is the sequence of the RGB frames, denoted as I. There are three separate processes, a keyframe selection process, a 2D semantic segmentation process, and a 3D reconstruction with semantic optimization process. Keyframes K are conditionally extracted from the sequence based on the distance between the poses. The following frames refine the depth map and the variance map of each keyframe until new keyframe is extracted. The 2D semantic segmentation module predicts the pixel-level class of the new-arriving keyframe. Finally, the keyframes are incrementally explored to reconstruct the 3D map with semantic labeling and then it is regularized by a dense CRF.

145 In the system, the monocular SLAM process maintains and tracks on a global map of the environment, which
 146 contains a number of keyframes connected by pose-pose constraints with associated probabilistic semi-dense
 147 depth maps. It runs in real-time on a CPU. Represented as point clouds, the map gives a semi-dense and highly
 148 accurate 3D reconstruction of the environment. Meanwhile, the second process of the 2D semantic segmentation
 149 generates the pixel-level classification on the extracted keyframes. A fast deep CNN model is explored to predict
 150 the semantic information on a GPU. In addition, an incremental fusion process for the semantic label optimization
 151 is operated in a parallel way. It builds a local optimal correspondence between semantic labeling and voxels in the
 152 3D point cloud. To obtain a globally optimal 3D semantic segmentation, we attempt to make use of information
 153 of neighboring 3D points, involving the distance, color similarity and semantic label. It updates voxel's position
 154 and corresponding semantic label, which gives a globally consistently 3D semantic map.

155 4. 3D Semantic Mapping

156 4.1. 2D Scene Parsing

157 We explore the DeepLab-v3+ deep neural network proposed by Chen *et al.* [5]. Two important components
 158 in the DeepLab series are the atrous convolution and atrous spatial pyramid pooling (ASPP), which enlarge
 159 the field of view of filters and explicitly combine the feature maps at multiple scales. The improvement in the
 160 DeepLab-v3+ involves the encoder-decoder structure and the augmentation of ASPP module with image-level
 161 feature. The former is able to capture sharper object boundaries by regaining the spatial information, while the
 162 latter encodes multi-scale contextual information to capture long range information. These contributions make
 163 DeepLab successfully handle both large and small objects and achieve a better trade-off between precision and
 164 run-time.

165 For the semantic segmentation of road scenes, we exploit the Cityscapes dataset and the KITTI dataset and
 166 adopt the predefined 19-class label space $\mathcal{L} = \{l_1, l_2, \dots, l_{19}\}$, which contains *Road*, *Sidewalk*, *Building*, *Wall*,
 167 and so on. We use all semantic annotated images in the Cityscapes dataset for training and fine-tune the model
 168 with the KITTI dataset.

169 Note that there is not any depth information involved in the training process. In the inference, we keep the
 170 original resolution of input image according to different datasets.

171 4.2. Semi-Dense SLAM

172 We explore LSD-SLAM to track camera's trajectory and build consistent, large-scale maps of the
 173 environment. LSD-SLAM is a real-time, semi-dense 3D mapping method. It has several advantages: firstly, it is

174 a scale-aware image alignment algorithm to directly estimate the similarity transform between two keyframes
 175 against different scale environments, such as office rooms (indoor) and urban roads (outdoor). The second one is
 176 that it is a probabilistic approach to incorporate noise on the estimated depth maps into the tracking based on the
 177 propagation of uncertainty. Moreover, it could integrate easily with different kinds of sensors like monocular,
 178 stereo and panoramic cameras for various applications. These features are of benefit to a reliable tracking and maps
 179 even in challenging surroundings.

180 LSD-SLAM has three major components: tracking, depth map estimation and map optimization. Spatial
 181 regularization and outlier removal are incorporated in the estimation of depth map with small-baseline stereo
 182 comparisons. In addition, a direct, scale-drift aware image alignment is carried on these existing keyframes to
 183 detect scale-drift and loop closures. Due to the inherent correlation between the depth map and the tracking
 184 accuracy, depth residual is used to estimate the similarity transform $\text{sim}(3)$ constraints between keyframes.
 185 Consequently, a 3D point cloud map is built based on a set of keyframes with the estimated depth maps via
 186 minimizing the error of image alignment. The map is continuously optimized in the background using a $g2o$
 187 pose-graph optimization. The approach runs in 25Hz on an Intel i7 CPU. More details like keyframe selection
 188 and depth estimation should be referred to the work [18].

189 4.3. Incremental Fusion

190 There might be a large amount of inconsistent 2D semantic labels between consecutive frames, due to
 191 the noise of sensors, the complexity of environments in the real world and the failure of scene parsing model.
 192 Incremental fusion of semantic label from the stacked keyframes allows associating probabilistic label in a
 193 Bayesian way, when combining with the depth map propagation between keyframes in the LSD-SLAM. We will
 194 give the details about the incremental semantic fusion with the depth estimation as follows.

The camera projection transformation function $\pi(\cdot) : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ is defined as

$$\mathbf{p} = \pi(\mathbf{P}) = [\alpha \frac{x}{z} + c_x, \beta \frac{y}{z} + c_y]^T, \quad (2)$$

which maps a point $\mathbf{P} = [x, y, z]^T$ in 3D space into a 2D point $\mathbf{p} = [x', y']^T$ on the digital image plane I_i in the camera coordinate system. Since this projection function is nonlinear, for the computation efficiency, the transformation should be augmented into the homogeneous coordinate system, which is defined as

$$\mathbf{p}_h = \begin{bmatrix} x'_h \\ y'_h \\ z'_h \end{bmatrix} = \begin{bmatrix} \alpha & 0 & c_x & 0 \\ 0 & \beta & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \mathbf{K}[\mathbf{I} \ 0] \mathbf{p}_h, \quad (3)$$

where the matrix \mathbf{K} is referred to as the camera matrix. Given a 3D point \mathbf{P}_W in the world reference system, the mapping to image plane I_i in the homogeneous reference system is calculated as

$$\mathbf{p}_h = \mathbf{K} \mathbf{T}_W^i \mathbf{P}_{Wh}, \quad (4)$$

195 where \mathbf{T}_W^i the pose of the camera in the world reference system. Then, we get Euclidean coordinates $\mathbf{p} =$
 196 $[x'_h/z'_h, y'_h/z'_h]^T$ from the homogeneous coordinates. From this point on, any point \mathbf{p} and \mathbf{P} is assumed to be in
 197 homogeneous coordinates and thus we drop the h index, unless stated otherwise.

Correspondingly, given the inverse depth estimation \hat{d} for a pixel $\mathbf{p} = [x', y']^T$ in I_i of the keyframe \mathcal{K}_i , we also have an inverse projection function below:

$$\mathbf{P} = \pi^{-1}(\mathbf{p}, \hat{d}) = \left[\frac{x'/\hat{d} - c_x/\hat{d}}{\alpha}, \frac{y'/\hat{d} - c_y/\hat{d}}{\beta}, \frac{1}{\hat{d}} \right]^T, \quad (5)$$

where $\hat{d} = D_i(\mathbf{p})$ corresponds to the point \mathbf{p} existing in the depth map D_i , which projects the 2D pixel point into the 3D point in the current camera coordinate system. The inverse depth estimation of each existing keyframe is

continuously refined using its following frames until new keyframe is defined. In reference to Equation 4 and 5, we can derive the 3D point in the world reference system as follows:

$$\mathbf{P}_W = T_W^i \pi^{-1}(\mathbf{p}, D_i(\mathbf{p})), \quad (6)$$

198 where the homogeneous transformation matrix has the property: $T_W^j \pi^{-1} = T_j^W$.

Once a new frame is chosen to become a keyframe \mathcal{K}_j , its depth map D_j is initialized by projecting points from previous keyframe into it. The information of existing, close-by keyframes is propagated to new keyframe for its initialization and semantic probabilistic refinement. The point in the depth map of new keyframe is obtained by

$$\mathbf{p} = \mathbf{K} \mathbf{T}_W^i \mathbf{T}_i^j \mathbf{P}_W \in I_j. \quad (7)$$

199 Here, we have a Gaussian distributed transformation between keyframes, regarded as $\mathbf{p} \in I_i \rightarrow \mathbf{P}_W \rightarrow \mathbf{p} \in I_j$.

200 The class label corresponding to a 3D point \mathbf{P} is denoted as $X : \mathbf{P} \rightarrow l \in \mathcal{L}$. Note that the label *Sky* is
201 removed from \mathcal{L} for the 3D semantic mapping. Our target is to obtain the independent probability distribution of
202 each 3D point over the class labels $P(X|\mathcal{K}_0^i)$ given a sequence of existing keyframes $\mathcal{K}_0^i = \{\mathcal{K}_0, \mathcal{K}_1, \dots, \mathcal{K}_i\}$ in
203 the pose-graph \mathcal{G} .

We explore a recursive Bayesian fusion to refine the corresponding probability distribution of 3D points with new keyframe's update:

$$P(X|\mathcal{K}_0^i) = \frac{1}{Z_i} P(\mathcal{K}_i|\mathcal{K}_0^{i-1}, X) P(X|\mathcal{K}_0^{i-1}), \quad (8)$$

with $Z_i = P(\mathcal{K}_i|\mathcal{K}_0^{i-1})$. Applying the first-order Markov assumption to $p(\mathcal{K}_i|\mathcal{K}_0^{i-1}, X)$, then we have:

$$P(X|\mathcal{K}_0^i) = \frac{1}{Z_i} P(\mathcal{K}_i|X) P(X|\mathcal{K}_0^{i-1}) = \frac{1}{Z_i} \frac{p(\mathcal{K}_i) P(X|\mathcal{K}_i)}{P(X)} P(X|\mathcal{K}_0^{i-1}). \quad (9)$$

204 We assume that $P(X)$ does not change over time and there is no need to calculate the normalization factor
205 $P(\mathcal{K}_i)/Z_i$ explicitly.

According to the formulations above, the semantic probability distribution of all given keyframes can be recursively updated as follows:

$$P(X|\mathcal{K}_0^i) \propto P(X|\mathcal{K}_i) P(X|\mathcal{K}_0^{i-1}). \quad (10)$$

206 The incremental fusion can refine the semantic label of the points in the 3D space based on the pose-graph
207 of keyframes. It could handle the inconsistent 2D semantic labels, even though its performance relies on the
208 depth estimation. In addition, map geometry is another useful feature which could improve the performance of
209 the 3D semantic mapping further. The following section describes how we use the dense CRF to regularize the
210 3D semantic map by exploring the map geometry, which could propagate semantic information between spatial
211 neighbors.

212 4.4. Map Regularization

213 The dense CRF is widely used in the 2D semantic segmentation to enhance the performance of semantic
214 segmentation. Some previous works [6,7,32] seek its application on the 3D map to model contextual relations
215 between various class labels in a fully connected graph. It is a heuristic approach that assume the influence
216 between neighbors should be proportional to their distance, visual and geometrical similarity [7].

217 The CRF model is defined as a graph composed of unary potentials as nodes and pairwise potentials as
218 edges, but the size of the model makes traditional inference algorithms impractical. Thanks to Krakenbuhl
219 and Koltun's work [35], a highly efficient approximate inference algorithm is proposed to handle this issue by
220 defining the pairwise edge potentials as a linear combination of Gaussian kernels. We apply the efficient inference
221 of the dense CRF to maximize label agreement between similar 3D points as follows.

Assume the 3D semantic map \mathcal{M} containing M 3D points is defined as a random field. A CRF $(\mathcal{M}, \mathbf{X})$ is characterized by a Gibbs distribution as follows:

$$P(\mathbf{X}|\mathcal{M}) = \frac{1}{Z(\mathcal{M})} \exp(-E(\mathbf{X}|\mathcal{M})), \quad (11)$$

where $E(\mathbf{X}|\mathcal{M})$ is the Gibbs energy and $Z(\mathcal{M})$ is the partition function. The maximum a posteriori (MAP) labeling of the random field is

$$\mathbf{X}^* = \operatorname{argmax}_{l \in \mathcal{L}} P(\mathbf{X}|\mathcal{M}) = \operatorname{argmin}_{l \in \mathcal{L}} E(\mathbf{X}|\mathcal{M}), \quad (12)$$

which is converted into minimizing the Gibbs energy by the mean-field approximation and message passing scheme.

We employ the associative hierarchical CRF [32,36] which integrates the unary potential ψ_i , the pairwise potential $\psi_{i,j}$ and the higher order potential ψ_c into the Gibbs energy at different levels of the hierarchy (voxels and supervoxels) given by:

$$E(\mathbf{X}|\mathbf{C}; \cdot) = \sum_i \psi_i(X_i|\mathbf{C}) + \sum_{i < j} \psi_{i,j}(X_i, X_j|\mathbf{C}; \theta) + \sum_c \psi_c(X_c|\mathbf{c}) \quad (13)$$

by the indexes $i, j \in \{1, \dots, M\}$ correspond to different 3D points $\mathbf{P}_i, \mathbf{P}_j$ in the 3D map \mathcal{M} .

Unary Potential: The unary potential $\psi_i(\cdot)$ is defined as the negative logarithm of the probabilistic label for a given 3D point:

$$\psi_i(X_i|\mathbf{C}) = -\log(P(X_i \rightarrow l|\mathcal{K}_0^t)). \quad (14)$$

This term means the cost of 3D point P_i taking an object label $l \in \mathcal{L}$ based on the incremental semantic probabilistic fusion above. The output of the unary potential for each point is produced independently, and thus, the MAP labeling produced by the unary potential alone is generally inconsistent.

Pairwise Potentials: The pairwise potential $\psi_{i,j}(\cdot)$ is modeled to be a log-linear combination of m Gaussian edge potential kernels:

$$\psi_{i,j}(X_i, X_j|\mathbf{C}; \theta) = \mu(X_i, X_j) \sum_m \omega^{(m)} k^{(m)}(\mathbf{f}_i, \mathbf{f}_j; \theta), \quad (15)$$

where $\mu(\cdot)$ is a label compatibility function corresponding to the Gaussian kernel functions $k^{(m)}(\mathbf{f}_i, \mathbf{f}_j)$. \mathbf{f} denotes the feature vector for the 3D point \mathbf{P} including the position, the RGB appearance and the surface normal vector of the reconstructed surface. And $\mu(\cdot)$ is a Potts model given by:

$$\mu(l, l') = [l \neq l'] = \begin{cases} 1 & l \neq l' \\ 0 & l = l' \end{cases}. \quad (16)$$

This term is defined to encourage the consistency over pairs of neighboring points for the local smoothness of the 3D semantic map. We employ two Gaussian kernels for the pairwise potentials following the previous work [7]. The first one is an appearance kernel as follows:

$$k^{(1)}(\mathbf{f}_i, \mathbf{f}_j; \cdot) = \exp\left(-\frac{|\mathbf{P}_i - \mathbf{P}_j|^2}{2\theta_{\mathbf{P},c}^2} - \frac{|\mathbf{c}_i - \mathbf{c}_j|^2}{2\theta_c^2}\right), \quad (17)$$

where \mathbf{c} is the RGB color vector of the corresponding 3D points. This kernel is used to build long range connections between 3D points with a similar appearance.

The second one, a spatial smoothness kernel, is defined to enforce a local, appearance-agnostic smoothness among 3D points with similar normal vectors.

$$k^{(2)}(\mathbf{f}_i, \mathbf{f}_j; \theta) = \exp\left(-\frac{|\mathbf{P}_i - \mathbf{P}_j|^2}{2\theta_{\mathbf{P},n}^2} - \frac{|\mathbf{n}_i - \mathbf{n}_j|^2}{2\theta_n^2}\right), \quad (18)$$

230 where \mathbf{n} are the respective surface normals. The surface normal are computed using the Triangulated Meshing
 231 using Marching Tetrahedra (TMMT) proposed in [32]. Note that the original method is towards producing a
 232 dense labeling with the stereo vision. Since the LSD-SLAM only generates semi-dense 3D point clouds, we
 233 modify the TMMT to extract a triangulated mesh within limited ranges of short distance between 3D points.

High Order Potential: The higher order term $\psi_c(X_c|\mathbf{c})$ encourages the 3D points (voxels) in the given
 segment to take the same label and penalizes partial inconsistency of supervoxels as described in [36]. It is
 defined as

$$\psi_c(X_c|\mathbf{c}) = \min_{l \in \mathcal{L}} (\gamma_c^{\max}, \gamma_c^l + k_c^l N_c^l), \quad (19)$$

234 where γ_c^l represents the cost if all voxels in the segment take the label l . $N_c^l = \sum_{i \in \mathbf{c}} \delta$ is the number of
 235 inconsistent 3D points with the label l which is penalized with a factor k_c , regarded as the inconsistency cost.

236 All parameters $\theta_{\mathbf{P},c}, \theta_c, \theta_{\mathbf{P},n}, \theta_n, \theta_{\mathbf{P},s}, \theta_s$ specify the range in which points with similar features affect each
 237 other, respectively. They can be obtained using piece-wise learning.

238 5. Experiments and Results

239 We demonstrate the performance of our approach on the KITTI dataset [10], which contains a variety of
 240 urban scene sequences involving lots of moving objects in various lighting conditions. It consists of various
 241 datasets, such as the semantic dataset, the odometry dataset, and the detection dataset. Thus, it is very challenging
 242 for the 3D reconstruction. The KITTI dataset contains a 2D semantic segmentation data of 200 labeled
 243 training images and 200 test images¹. Its data format and metrics conform with the Cityscapes dataset [9].
 244 The Cityscapes dataset involves 19 classes within high quality pixel-level annotations of 5000 images with a
 245 resolution of 2048 × 1024, including 2975 training images, 500 validation images, and 1525 testing images. In
 246 our experiment, we train the model on the Cityscapes and then tune it on the KITTI taking the volume size of
 247 dataset into account.

248 For the training of 2D semantic segmentation model, various encoder models in the DeepLab-v3+ are
 249 evaluate including *ResNet*, *Xception*, and *MobileNet*. And we find that the “poly” stochastic gradient descent is
 250 better than the “step” one on these datasets. The *TensorFlow* library is employed to do the training and inference
 251 on the workstation with 4 Nvidia Titan X GPU cards. The hyper-parameters used in training are set corresponding
 252 to the datasets and models as shown in Table 2.

Table 2. Hyper-parameters used in the training step

Dataset	Encoder	Learning Rate	Learning Power	Momentum	Weight Decay	Batch	Steps
Cityscapes	ResNet_50	0.003	0.9	0.9	0.0001	8	20000
	ResNet_101	0.003	0.9	0.9	0.0001	8	20000
	Xception_41	0.01	0.9	0.9	0.00004	8	10000
	Xception_65	0.01	0.9	0.9	0.00004	8	10000
	Xception_71	0.01	0.9	0.9	0.00004	8	10000
	MobileNet_v2	0.001	0.9	0.9	0.00004	64	10000
KITTI	ResNet_50	0.003	0.9	0.9	0.0001	8	20000
	ResNet_101	0.003	0.9	0.9	0.0001	8	20000
	Xception_41	0.01	0.9	0.9	0.00004	8	10000
	Xception_65	0.01	0.9	0.9	0.00004	8	10000
	Xception_71	0.01	0.9	0.9	0.00004	8	10000
	MobileNet_v2	0.001	0.9	0.9	0.00004	64	10000

253 We benchmark the performance of our semantic mapping system on the KITTI odometry dataset². There
 254 are 22 sequences with the consecutive RGB frames, in which there are 11 sequences with the ground-truth poses
 255 for evaluation. The scenes contain serious illumination change, moving objects like persons and vehicles, and

¹ http://www.cvlabs.net/datasets/kitti/eval_semseg.php?benchmark=semantics2015

² http://www.cvlabs.net/datasets/kitti/eval_odometry.php

256 some turns as shown in Figure 3. These road-scene frames involves two resolutions 1242×375 and 1226×370 .
 257 Our system runs on an Intel Core i7-5960K CPU and a NVIDIA Titan X GPU for online process.

258 Since the KITTI sequences are mostly captured in 10 Hz, it is highly below the normal speed requirements
 259 of LSD-SLAM about 60 Hz. In addition, the LSD-SLAM is hard to handle severe turning when the platform
 260 moves. Due to the limit of the monocular LSD-SLAM, we choose 6 sequences to evaluate.

261 In the following sections, we show some qualitative results for our approach in 5.1 and the quantitative
 262 results of our evaluation are presented in 5.2, in which we also make the runtime analysis on our semantic
 263 mapping approach.

264 *5.1. Qualitative Results*

265 First, we present some qualitative results of the KITTI semantic dataset in Figure 4. Then, we use the
 266 trained model to make prediction on the KITTI odometry dataset, and the results are exemplified as shown in
 267 Figure 5.

268 Take the sequence *odometry_03* as an example of our semantic mapping approach. The sequence consists
 269 of 801 RGB frames on a urban road of about 560m and a camera calibration file. Figure 6 shows the semantic
 270 reconstruction with a close-up view including large-scale annotations such as *road*, *building* and even small-scale
 271 objects like *traffic signs*. Note we discard some keyframes at the beginning, due to random initialization of
 272 LSD-SLAM.

Figure 3. Instances in the *odometry_03* sequence. IC: Illumination Change, MO: Moving Objects, T: Turns

Figure 4. Qualitative results of 2D semantic segmentation

Figure 5. Instances of 2D semantic segmentation in the KITTI odometry set

Figure 6. Qualitative results of 3D semantic mapping from the sequence *odometry_03*. Our approach not only reconstructs and labels entire outdoor scenes that include roads, sidewalks and buildings, but also accurately recovers thin objects such as traffic signs and trees. The close-up views show the details of the map.

273 5.2. Quantitative Results

274 For the quantitative performance of our approach, we focus on the 2D semantic segmentation and the
 275 runtime of the entire system, since the 3D reconstruction mainly depends on the LSD-SLAM method.

Semantic Segmentation: Table 3 shows the quantitative results of 2D semantic segmentation based on different DeepLab-v3+ models on the KITTI datasets. We evaluate these models by the mean intersection/union (mIOU) score, the model size, and the computational runtime. The mIOU score is defined as

$$276 \quad \text{mIOU} = \frac{1}{|\mathcal{L}|} \sum_{i=1}^{|\mathcal{L}|} \text{TP}_i / (\text{TP}_i + \text{FP}_i + \text{FN}_i) \quad (20)$$

277 in terms of the True/False Positives/Negatives for a given class i . We do not resize the image to evaluate the
 278 models here. Whereas, for the 3D semantic mapping process, we need to half resize the input images in order to
 make a trade-off between accuracy and computational speed.

279 During the training process, these models are initialized with the checkpoints pre-trained from various
 280 datasets including ImageNet [37] and MS-COCO [38]. In the training step on the Cityscapes dataset, we directly
 281 use the ImageNet-pretrained checkpoints as the initialization. Note we employ the *MobileNet_v2* based model
 282 which has been pre-trained on MS-COCO dataset, and the *Xception_71* based model has been pre-trained on
 283 both ImageNet and MS-COCO datasets. These pre-trained models can be accessed from the github³.

³ https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md

Table 3. Quantitative results of various encoder parts of DeepLab-v3+ on the Cityscapes and the KITTI. I: ImageNet, M: MS-COCO, C: Cityscapes

Dataset	Encoder	Crop Size	mIOU[0.5:0.25:1.75]	Pb Size (MB)	Runtime (s)	I	M	C
Cityscapes	ResNet_50	769	63.92	107.8	-	✓		
	ResNet_101	769	69.88	184.1	-	✓		
	Xception_41	769	68.5	113.4	-	✓		
	Xception_65	769	78.73	165.7	5.0	✓		
	Xception_71	769	80.24	167.9	-	✓	✓	
	MobileNet_v2	513	70.7	8.8	0.8	✓	✓	
	MobileNet_v2	769	70.9	8.8	0.8	✓	✓	
KITTI	ResNet_50	769	51.35	107.8	0.9	✓		✓
	ResNet_101	769	57.12	184.1	1.1	✓		✓
	Xception_41	769	54.2	113.4	0.88	✓		✓
	Xception_65	769	64.8	165.6	1.13	✓		✓
	Xception_71	769	66.2	167.9	1.26	✓	✓	✓
	MobileNet_v2	513	57.74	8.8	0.2	✓	✓	✓
	MobileNet_v2	769	60.73	8.8	0.2	✓	✓	✓

284 Then we fine-tune the models on the KITTI dataset by using the pre-trained Cityscapes model. The
 285 Xception_71 based model performs the best mIOU performance but a rather slow computational speed. The
 286 MobileNet_v2 based model has a moderate mIOU, the smallest file size and the fastest speed. Note the
 287 MobileNet_v2 based model does not employ ASPP and decoder modules for fast computation. Considering the
 288 balance between computational speed and accuracy, we choose the MobileNet_v2 based model to carry out the
 289 2D semantic segmentation in our approach. Table 4 shows the performance of the MobileNet_v2 based model on
 290 the VAL/TEST split of the KITTI dataset.

Table 4. Results of our selected model on the val/test of the KITTI datasets.

method	road	sidewalk	building	wall	fence	pole	traffic light	traffic sign	vegetation	terrain	sky	person	rider	car	truck	bus	train	motorcycle	bicycle	IoU
VAL	95.7	73.9	87.1	38.1	44.2	42.7	48.6	60.3	89.1	52.3	90.1	70.1	36.5	89.1	44.6	62.2	37.4	36.1	67.7	60.3
TEST	96.1	73.7	86.2	37.9	41.4	40.1	50.3	58.3	90.2	66.8	91.3	72.4	40.3	91.8	33.7	46.4	37.1	46.0	62.4	60.9

291 We also make the test regarding to the effect of pre-training on the Cityscapes dataset. In Table 5, the
 292 salience has been illustrated on training the Xception_65 and MobileNet_v2 models. The Cityscapes pre-trained
 293 models could greatly improve the performance of 2D semantic segmentation on the KITTI dataset.

Table 5. Performance of 2D semantic segmentation with/without the Cityscapes. Using the pre-trained Cityscapes model, the accuracy of 2D semantic segmentation could be greatly improved on the KITTI semantic data.

Encoder	mIOU[0.5:0.25:1.75]	WITH Cityscapes
ResNet_101	52.46	
ResNet_101	57.12	✓
Xception_65	55.99	
Xception_65	64.8	✓
MobileNet_v2	51.82	
MobileNet_v2	60.73	✓

294 Note that towards the 3D semantic mapping, since we use a novel monocular 3D mapping different from
 295 the other related work, it is not easy to make quantitative comparison here. Kundu *et al.*'s work [25] propose
 296 a joint semantic segmentation and 3D reconstruction from monocular video, but it is an offline approach with
 297 different 3D representation in the form of a 3D volumetric semantic + occupancy map.

298 *Runtime and Storage:* As shown in Table 6, our SLAM system runs about 40ms on average to process each
 299 frame, extract the keyframes and update the map. Since we reduce the size of the input image, the semantic

300 segmentation process requires about 100ms to infer 2D semantic information parallel upon the keyframes, and
 301 the incremental fusion process needs 50ms on average. In the experiments, we find the SLAM process normally
 302 selects a keyframe from more than every 4 frames. It keeps enough timing for the 2D semantic segmentation and
 303 the incremental fusion during the 3D semantic mapping. Thus, our approach could run in real-time. Moreover,
 304 considering the speed of moving platform, in case of the speed of 60KMH, the semantic segmentation process on
 305 selected keyframes corresponds to a distance about 2 meters, which is not too sparse for an urban scene.

306 The lower part of this table shows the ranges of the CRF timing with different configurations due to the
 307 different size of point clouds when testing various sequences in the experiments. The CRF update runs offline
 308 due to slow inference speed on the CPU. Thus, it is only applied once at the end of the sequence. Optimized
 309 GPU implementation can be studied in future to realize the online CRF update.

Table 6. Timing results. The table lists the operation time for different components of our system. Times of three core components are averaged over all sequences and the CRF timings depends on the iterations and the point cloud sizes.

Component	Consumed Time (ms)
Semantic segmentation	100
SLAM	40
Incremental fusion	50
3D CRF 1 Iter.	800-2000
3D CRF 2 Iter.	1200-2400
3D CRF 3 Iter.	1500-3000
3D CRF 4+ Iter.	>2000

310 Taking the *odometry_03* sequence as example, our approach acquires 114 keyframes with 2.8E+07 3D
 311 points. Compared to the total 801 frames, the system utilizes only about 1/7 frames for mapping. Note that
 312 smaller values of the parameters *KFDistWeight* and *KFUsageWeight* could give more constraints between
 313 keyframes so that to achieve more accurate mapping. But it has a rather limited influence on the number of
 314 keyframes, the number of 3D points and the size of storage.

315 6. Conclusions

316 We have presented a fast monocular 3D semantic mapping system which runs on a CPU coupled with a
 317 GPU. An incremental fusion method is introduced to combine 2D semantic segmentation and 3D reconstruction
 318 online. We exploit a state-of-the-art deep CNN to realize the scene parsing in the road contexts. Direct monocular
 319 SLAM provides a quick 3D mapping based on selected keyframes and corresponding depth estimation. Since
 320 the semantic segmentation only runs and propagates on the keyframes, this reduces the computational cost and
 321 improves the accuracy of semantic mapping. The offline regularization with a CRF model can enhance the
 322 mapping further.

323 Since the original LSD-SLAM is hard to handle the cases of sharp turns which are frequent in ordinal
 324 driving, our system is not stable in such conditions. In addition, semi-dense 3D reconstruction should be replaced
 325 by a dense model. In future work, we plan to introduce several state-of-the-art SLAM methods to improve
 326 the initialization and resistance to serious movements, i.e., rotations. Research on how labeling boosts 3D
 327 reconstruction of SLAM would be an interesting direction. The optimization of the regularization module would
 328 be another effective direct on the wide-range mapping.

329 **Funding:** This research was funded by the Natural Science Foundation of Jiangsu Province grant number No. BK20160700
 330 and No. BK20170681.

331 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the study; in the
 332 collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

333

334 1. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep
 335 convolutional nets and fully connected crfs, 2015.

336 2. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. *IEEE Conf. on Computer Vision and*
337 *Pattern Recognition (CVPR)*, 2017, pp. 2881–2890.

338 3. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with
339 deep convolutional nets, atrous convolution, and fully connected crfs. *IEEE transactions on pattern analysis and*
340 *machine intelligence* **2018**, *40*, 834–848.

341 4. Zhao, H.; Qi, X.; Shen, X.; Shi, J.; Jia, J. ICNet for Real-Time Semantic Segmentation on High-Resolution Images.
342 European Conference on Computer Vision. Springer, 2018, pp. 418–434.

343 5. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for
344 semantic image segmentation. European Conference on Computer Vision, 2018, pp. 833–851.

345 6. Wolf, D.; Prankl, J.; Vincze, M. Fast semantic segmentation of 3D point clouds using a dense CRF with learned
346 parameters. *2015 IEEE International Conference on Robotics and Automation (ICRA)*, 2015, pp. 4867–4873.

347 7. Hermans, A.; Floros, G.; Leibe, B. Dense 3d semantic mapping of indoor scenes from rgb-d images. *2014 IEEE*
348 *International Conference on Robotics and Automation (ICRA)*, 2014, pp. 2631–2638.

349 8. McCormac, J.; Handa, A.; Davison, A.; Leutenegger, S. SemanticFusion: Dense 3D semantic mapping with
350 convolutional neural networks. *Robotics and Automation (ICRA)*, 2017 *IEEE International Conference on*. IEEE,
351 2017, pp. 4628–4635.

352 9. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The
353 cityscapes dataset for semantic urban scene understanding. *Proceedings of the IEEE conference on computer vision*
354 *and pattern recognition*, 2016, pp. 3213–3223.

355 10. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. *Computer*
356 *Vision and Pattern Recognition (CVPR)*, 2012 *IEEE Conference on*. IEEE, 2012, pp. 3354–3361.

357 11. Whelan, T.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J.; Leutenegger, S. ElasticFusion: Real-time dense SLAM
358 and light source estimation. *The International Journal of Robotics Research* **2016**, *35*, 1697–1716.

359 12. Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. *The IEEE International*
360 *Conference on Computer Vision*, 2015.

361 13. Salas-Moreno, R.F.; Newcombe, R.A.; Strasdat, H.; Kelly, P.H.; Davison, A.J. Slam++: Simultaneous localisation
362 and mapping at the level of objects. *Proceedings of the IEEE conference on computer vision and pattern recognition*,
363 2013, pp. 1352–1359.

364 14. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-time single camera SLAM. *IEEE transactions*
365 *on pattern analysis and machine intelligence* **2007**, *29*, 1052–1067.

366 15. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: a versatile and accurate monocular SLAM system. *IEEE*
367 *Transactions on Robotics* **2015**, *31*, 1147–1163.

368 16. Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. *IEEE*
369 *Transactions on Robotics* **2017**, *33*, 1255–1262.

370 17. Kerl, C.; Sturm, J.; Cremers, D. Dense visual SLAM for RGB-D cameras. *Intelligent Robots and Systems (IROS)*,
371 2013 *IEEE/RSJ International Conference on*. Citeseer, 2013, pp. 2100–2106.

372 18. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. *European Conference on*
373 *Computer Vision*, 2014, pp. 834–849.

374 19. Forster, C.; Zhang, Z.; Gassner, M.; Werlberger, M.; Scaramuzza, D. Svo: Semidirect visual odometry for monocular
375 and multicamera systems. *IEEE Transactions on Robotics* **2017**, *33*, 249–265.

376 20. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. *Proceedings of the*
377 *IEEE Conference on Computer Vision and Pattern Recognition*, 2015, pp. 3431–3440.

378 21. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
379 Segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence* **2017**, pp. 2481–2495.

380 22. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets:
381 Efficient convolutional neural networks for mobile vision applications. *arXiv preprint arXiv:1704.04861* **2017**.

382 23. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear
383 Bottlenecks. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2018, pp. 4510–4520.

384 24. Valentin, J.P.; Sengupta, S.; Warrell, J.; Shahrokni, A.; Torr, P.H. Mesh based semantic modelling for indoor and
385 outdoor scenes. *Computer Vision and Pattern Recognition (CVPR)*, 2013 *IEEE Conference on*. IEEE, 2013, pp.
386 2067–2074.

387 25. Kundu, A.; Li, Y.; Dellaert, F.; Li, F.; Rehg, J.M. Joint semantic segmentation and 3d reconstruction from monocular
388 video. *European Conference on Computer Vision*. Springer, 2014, pp. 703–718.

389 26. Sengupta, S.; Sturgess, P. Semantic octree: Unifying recognition, reconstruction and representation via an octree
390 constrained higher order MRF. *Robotics and Automation (ICRA), 2015 IEEE International Conference on*. IEEE,
391 2015, pp. 1874–1879.

392 27. Vineet, V.; Miksik, O.; Lidegaard, M.; Nießner, M.; Golodetz, S.; Prisacariu, V.A.; Kähler, O.; Murray, D.W.; Izadi,
393 S.; Pérez, P. Incremental dense semantic stereo fusion for large-scale semantic scene reconstruction. *Robotics and*
394 *Automation (ICRA), 2015 IEEE International Conference on*. IEEE, 2015, pp. 75–82.

395 28. Kochanov, D.; Ošep, A.; Stückler, J.; Leibe, B. Scene flow propagation for semantic mapping and object discovery in
396 dynamic street scenes. *Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on*. IEEE,
397 2016, pp. 1785–1792.

398 29. Landrieu, L.; Raguët, H.; Vallet, B.; Mallet, C.; Weinmann, M. A structured regularization framework for spatially
399 smoothing semantic labelings of 3D point clouds. *ISPRS Journal of Photogrammetry and Remote Sensing* **2017**,
400 *132*, 102–118.

401 30. Jadidi, M.G.; Gan, L.; Parkison, S.A.; Li, J.; Eustice, R.M. Gaussian processes semantic map representation. *arXiv*
402 *preprint arXiv:1707.01532* **2017**.

403 31. Gan, L.; Jadidi, M.G.; Parkison, S.A.; Eustice, R.M. Sparse Bayesian Inference for Dense Semantic Mapping. *arXiv*
404 *preprint arXiv:1709.07973* **2017**.

405 32. Sengupta, S.; Greveson, E.; Shahrokni, A.; Torr, P.H. Urban 3d semantic modelling using stereo vision. *Robotics and*
406 *Automation (ICRA), 2013 IEEE International Conference on*. IEEE, 2013, pp. 580–585.

407 33. Martinovic, A.; Knopp, J.; Riemenschneider, H.; Van Gool, L. 3d all the way: Semantic segmentation of urban scenes
408 from start to end in 3d. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2015, pp.
409 4456–4465.

410 34. Hu, H.; Munoz, D.; Bagnell, J.A.; Hebert, M. Efficient 3-d scene analysis from streaming data. *2013 IEEE*
411 *International Conference on Robotics and Automation*. IEEE, 2013, pp. 2297–2304.

412 35. Krähenbühl, P.; Koltun, V. Efficient inference in fully connected crfs with gaussian edge potentials. *Advances in*
413 *neural information processing systems*, 2011, pp. 109–117.

414 36. Russell, C.; Kohli, P.; Torr, P.H. Associative hierarchical crfs for object class image segmentation. *Computer Vision*,
415 *2009 IEEE 12th International Conference on*. IEEE, 2009, pp. 739–746.

416 37. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein,
417 M. Imagenet large scale visual recognition challenge. *International Journal of Computer Vision* **2015**, *115*, 211–252.

418 38. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco:
419 Common objects in context. *European conference on computer vision*. Springer, 2014, pp. 740–755.