Support Information

ZIF-8 derived hollow carbon for efficient adsorption of antibiotics

Hongmei Tang, a Wenyao Li, a,* Haishun Jiang, a Runjia Lin, b Zhe Wang, a Jianghong Wu, c
Guanjie He, b,* Paul R. Shearing b and Dan J. L. Brett b,*

a School of Materials Engineering, Shanghai University of Engineering Science, 333 Long
Teng Road, Shanghai 201620, China

b Electrochemical Innovation Lab, Department of Chemical Engineering, University College
London, London WC1E 7JE, UK

c College of Health Science and Environmental Engineering, Shenzhen Technology
University, Shenzhen, Guangdong 518118, PR China.

* Corresponding authors, E-mail: liwenyao314@gmail.com, g.he@ucl.ac.uk,
d.brett@ucl.ac.uk

Fig. S1. The chemical structure of TC, NFO and OFO
Fig. S2 The Low-(a) and High-magnification (b) SEM images of the synthesized ZIF-8 without CTAB.

Fig. S3 The isothermal adsorption fitting curves of Langmuir (a, b) and Freundlich (c, d) for TC, OFO and NFO by ZIF-8.

Fig. S3 describe the isothermal adsorption fitting curves of Langmuir (Fig S3a, 3b) and Freundlich (Fig S3c, S3d) for TC, OFO and NFO by pure ZIF-8. Langmuir
calculation showed that the maximum adsorption capacity of pure ZIF-8 for TC, OFO and NFO was 119.04, 111.48 and 38.69 mg g$^{-1}$, respectively.