

1 Article

2

Results-Based Forest Conservation Funding: Amazon 3 Fund 10 Years Later, Lessons from the World's 4 Largest REDD+ Program

5 **Juliano Correa ^{1*}, Richard van der Hoff ^{2,3} and Raoni Rajão ³**6 ¹ Duke University, Durham, United States; jc631@duke.edu7 ² Radboud Universiteit, Nijmegen, the Netherlands; richard.vanderhoff@gmail.com8 ³ Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; rajao@ufmg.br

9 * Correspondence: jc631@duke.edu; Tel.: +1-919 904-6453

10

11 **Abstract:** Results-Based Funding (RBF) for Reducing Emissions from Deforestation and Forest
12 Degradation (REDD+) has become an important instrument for channeling financial resources to
13 forest conservation activities. At the same time, much literature on conservation funding is
14 ambiguous about the effectiveness of existing RBF schemes. Many effectiveness evaluations follow
15 a simplified version of the principal-agent model, although in practice the relation between aid
16 providers and funding recipients is much more complex. As a consequence, intermediary steps of
17 conservation funding are often not accounted for effectiveness studies. This research paper aims to
18 provide a nuanced understanding of conservation funding by analyzing the allocation of financial
19 resources for one of the largest RBF schemes for REDD+ in the world: the Brazilian Amazon Fund.
20 As part of this analysis, this study has built a dataset of information on Amazon Fund projects at
21 unprecedented detail in order to accurately reconstruct the allocation of financial resources across
22 different stakeholders (i.e. governments, NGOs, research institutions), geographies and activities.
23 The results show that stakeholders seem to hold preferences with respect to the type of activities
24 that they support, thereby suggesting that project owners exert much influence on how
25 deforestation reduction is to be attained. There are evidences that governmental organizations lack
26 financial additionality of their projects, which renders the growing share of funding to this type of
27 stakeholder particularly worrisome. By contrast, the geographical distribution of financial resources
28 seemed to follow a more focused rationale as financial support tends to concentrate in areas where
29 deforestation threats are highest. Overall, the allocation of the financial resources from the Amazon
30 Fund reflects an arbitrary support of different projects that adopt very diverging theories of change
31 that are not primarily concerned with attaining further deforestation reductions. As project owners
32 exert influence on funding effectiveness to some extent, the Amazon Fund may either seek to
33 regulate the allocation of financial resources more actively or adopt funding effectiveness
34 evaluations that account for this influence more comprehensively.

35 **Keywords:** REDD+; Amazon Fund; Results-Based Funding; benefit distribution; resource allocation;
36 climate change funding; effectiveness.; forest conservation funding

37

38

1. Introduction

39 International allocation of funds to activities intended to funding forest conservation – directly
40 or indirectly – is said to be a “highly cost-effective way of reducing greenhouse gas emissions on
41 climate change” [1]. Among many types of financial mechanisms for pursuing this approach, Results-
42 Based Funding (RBF) for Reducing Emissions from Deforestation and Forest Degradation (REDD, or
43 REDD+ for a broader suite of activities) has become an important instrument for channeling financial
44 resources to forest conservation activities [2,3]. RBF can be defined as the “transfer of money or
45 material goods conditional upon taking a measurable action or achieving a predetermined

46 performance target" [4-7]. The success of RBF instruments for REDD+ stems from political
47 controversies related to initial REDD+ proposals that favored offset-based markets [8]. Particularly
48 the Brazilian government has been known to challenge the use of markets on the basis of sovereignty
49 concerns [6,9]. Instead, Brazil created the Amazon Fund in 2008 in order to receive results-based
50 payments for achievements in deforestation reductions [10], which have plummeted between 2004
51 and 2012 [11-13]. Similar developments have also occurred in international forest governance debates
52 as the Green Climate Fund became the central financial instrument for REDD+ [14], testifying the
53 growing prevalence of RBF approaches in forest governance. Despite this dominance, the
54 effectiveness of RBF has been challenged by scholars [5,7,15-18], while others have showed that donor
55 and receiving countries and stakeholders often disagree on how to best evaluate these schemes and
56 distribute the resources [19,20].

57 This research paper aims to enhance the understanding of intermediary stages of RBF for forest
58 conservation by reconstructing the allocation of financial resources from the Brazilian Amazon Fund
59 to individual projects and analyzing the underlying rationales behind this allocation. Between 2008
60 and 2017 the Amazon Fund has received more than USD 1,2 billion in donations, committed USD
61 667.3 million for the financial support of 96 approved projects and thereby represents the largest and
62 most longstanding RBF initiatives in forest governance worldwide [10,13,21]. An analysis of financial
63 resource allocation could therefore provide important lessons on the intermediary stages of RBF (as
64 Amazon Fund) to REDD+ and other conservation purposes. Our analysis exposes the underlying
65 intervention logics (or 'theory of change') adopted for redistributing financial resources, which is
66 useful for identifying the main factors for successful or failing forest conservation funding. The
67 remainder of this paper proceeds as follows. Section 2 reviews the literature on related resource
68 allocations, including the theories of change, criteria for resource allocation, benefit-sharing
69 mechanisms and impacts. Section 3 then outlines our approach and Section 4 presents data about the
70 distribution of Amazon Fund resources. Section 5 concludes with our main findings and their
71 implications for impact and policy making.

72 **2. Aid Effectiveness and the Complex Relations between Service Providers and Service Users**

73 Deforestation reduction [17,22] has been a relatively recent trend in the broader context of
74 development aid that usually targeted health, education or biodiversity conservation [16,23].
75 Although using the same model, for REDD+ initiatives the literature generally refers to aid as
76 funding, since the former seems to be charity while the last is close to the climate change concepts,
77 where developed countries should fund initiatives of forest conservation to offset their historical
78 emissions [2].

79 Although this aid could come in many forms, RBF has become an increasingly appealing
80 approach due to its simplicity from both the donor and receiver sides. On the donor side, the
81 payments are done based on the measurement of a result already achieved, reducing substantially
82 the transactional risk. On the receiver side, RBF promises the transfer of resources with "no strings
83 attached" as countries are able to decide on how to best invest the payments. Since receiving countries
84 would want to receive an increasing volume of resources, they would be incentivized to invest the
85 RBF proceedings in a way that reduces deforestation the most. A closer look, however, reveals that
86 many of the issues that have plagued REDD+ and development aid more in general are still present
87 in RBF, namely: benefit distribution, intervention design and effectiveness.

88 One of the key design choices around REDD+ programs concerns the definition of "who needs
89 to be involved, whose interests are at stake, and the expected co-benefits and required
90 safeguards" [19]. Moreover, their discussion of approaches to reducing tropical forest degradation
91 highlights the importance of contextualizing local realities, responding to new knowledge and
92 experience, and incorporate the full complexity of forest loss and degradation, among others [24,25].
93 Many scholars have highlighted the issues of equitable sharing of net benefits from REDD+ projects
94 [e.g. 26,27]. For instance, Luttrell, Loft, Fernanda Gebara, Kweka, Brockhaus, Angelsen and Sunderlin
95 [27] distinguish a number of possible rationales for the distribution of REDD+ benefits. They have
96 emphasized: (1) actors with legal rights; (2) actors achieving reductions in emissions; (3) low-emitting

97 forest stewards; (4) actors incurring the costs of REDD+ implementation; (5) effective facilitators of
98 REDD+ implementation; and (6) the poorest actors. They note great variation in how implementing
99 countries apply these rationales, implying that this is a function of context, project design and the
100 beneficiaries [see also 28]. Some scholars find that “equity can have significant positive feedback on
101 program outcomes and legitimacy over the longer term” [26,28,29]. According to Vatn and Vedeld
102 [30], market-based approaches were found to be the most problematic among governance structures,
103 since they do not address equity. These observations suggest a theme of providing equal
104 opportunities to stakeholders. Yet rigorous analysis and even merely comprehensive evaluations of
105 net benefits and their distribution are scarce, in part because of the way decisions are made about
106 distributions of resources within and across REDD+ projects [19].

107 Another key aspect of RBF is the choice, by the receiving country, of the interventions that will
108 be supported by the programme. [27,31]. Weatherley-Singh and Gupta [32], for example, find that
109 REDD+ activities must target directly the drivers of deforestation, such as forest fires and illegal
110 logging, as well as structural drivers, such as changes in land tenure and land-use planning. Yet they
111 argue that not all drivers are considered as most schemes do not address cattle ranching, corruption,
112 roadbuilding and or commodities demands, among others [see also 29,33]. As important as the choice
113 of the type of intervention is the definition of the territories that will be prioritized by REDD+.
114 Wolosin, Breitfeller and Schaap [10] show that the geographical distribution of REDD+ finance can
115 be explained to a large extent by priorities on tree cover, tree-cover loss and carbon emissions at
116 national (70-94%) and subnational (58-72%) levels, though institutional capacity and political
117 commitments have also been influential. Other work highlights significant gaps for specific priority
118 areas. Some scholars point to areas in the Amazon region facing high deforestation pressure that are
119 important for emissions and biodiversity [33-35]. Other scholars argue for additional investments in
120 the network of protected areas given their importance to date in curbing deforestation and the risks
121 from deforestation dynamics [36,37]. Still others argue that support should also consolidate pristine
122 or intact or stable forests to ensure long-term conservation [e.g. 35]. While the majority of available
123 literature strongly emphasizes improved protection of high-risk areas, at the least for prioritizing
124 additional impacts in the short run, various goals play parts within comprehensive approaches to
125 forest conservation.

126 Finally, different studies have pointed out that it is not clear that RBF leads to the efficient use
127 of resources, as assumed initially. The proponents of RBF expected that since receiving countries have
128 a direct financial incentive to reduce deforestation, they would strive to support actions on the
129 ground that contribute directly to that aim. However, a closer look suggests that that empirical
130 evidence on the effectiveness of RBF schemes is either lacking or points to contradictory effects [5], a
131 problem already well known in relation to development aid [38]. On the one hand authors such as
132 Restivo, Shandra and Sommer [17] argue that more bilateral aid from the United States Agency for
133 International Development (USAID) has a lowering effect on forest loss. On the other hand, studies
134 such as Hermanrud and de Soysa [22] report that forest conservation funding from Norway's
135 International Forest and Climate Initiative (NICFI), one of the largest aid initiatives in the world and
136 the main donor to the Amazon Fund, has had no effect on forest degradation. In a similar line, Bare,
137 Kauffman and Miller [18] for example, argue that forest conservation funding in sub-Saharan Africa
138 “is not associated with reduced deforestation rates at the national scale” and even claim that short-
139 term impacts had negative effects. All scholars agree, however, that the relations between aid and
140 results are complex and therefore difficult to analyze.

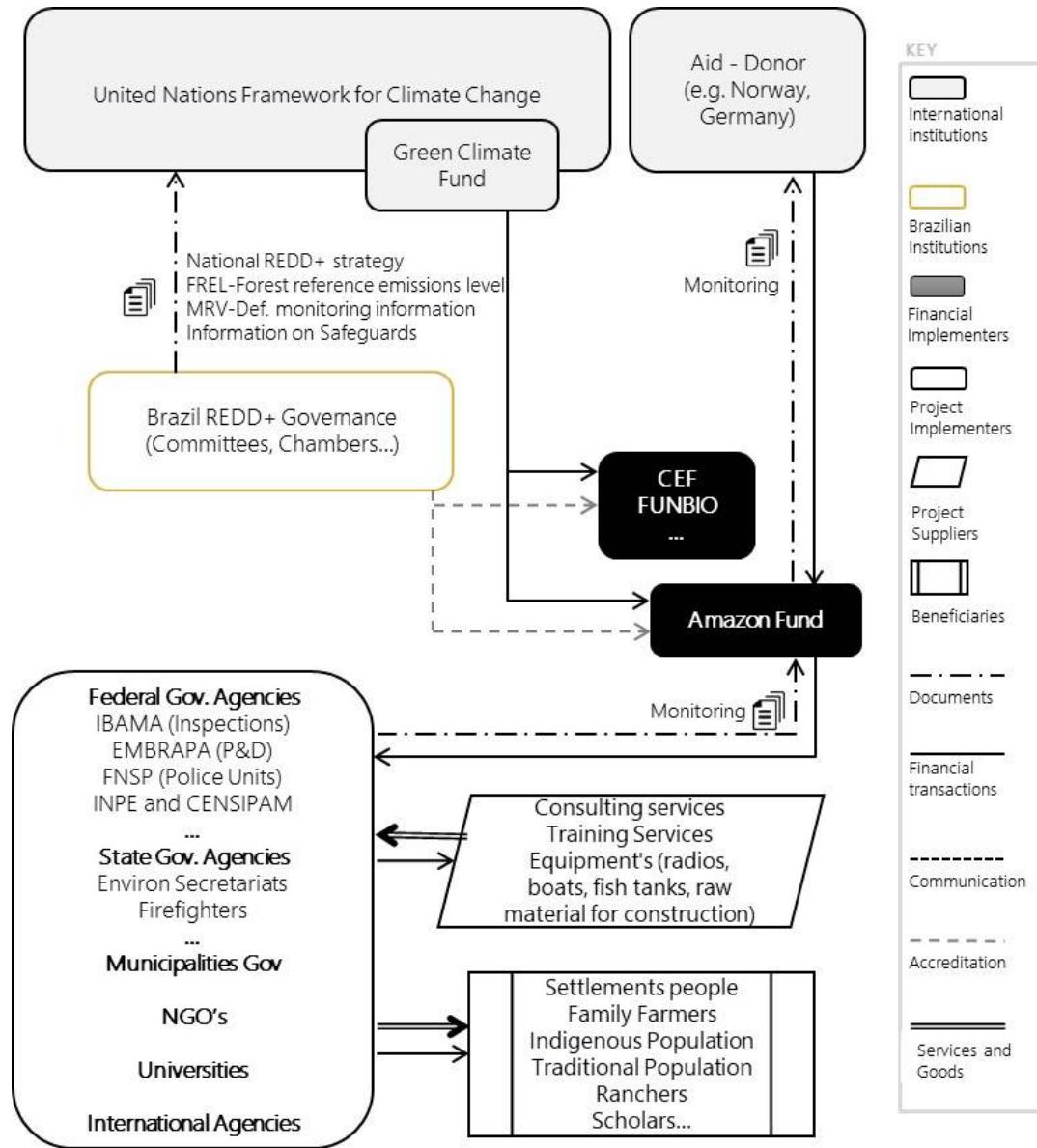
141 The problem with evaluating the effectiveness of RBF initiatives is that the relations between
142 service users (aid providers) and service providers (aid users) are much more complex than a
143 simplified reading of the principal-agent model suggests. According to Paul [7], the contracted
144 agency relationship is often one between the donor organization and a recipient organization or
145 ministry, whereas results may come from other organizations that ultimately spend the financial
146 resources from these donations but have no direct relation with the donor organization (i.e. non-
147 contracted agency relation). In this respect, for example, the UN-REDD+ programme from the United
148 Nations Development Program (UNDP) supports 94 projects in Cambodia, Sri Lanka, Panama,

149 Paraguay, Democratic Republic of the Congo and Nigeria. However, UNDP are directly related only
150 to the governmental focal point of each country, relating only indirectly with the local beneficiary
151 [53].

152 According to Van der Hoff, Rajão and Leroy [19] the indirect relations between financial
153 donations, 'project performance' and deforestation rates underlie discursive tensions between donor
154 and recipient countries. These tensions and conflicts suggest that the intermediary processes of forest
155 conservation funding are poorly understood, particularly with respect to how they affect aid
156 effectiveness. Addressing these conflicts requires new approaches to aid effectiveness evaluations
157 that account for the complex relations of RBF for REDD+, particularly the intermediary stages of
158 forest conservation funding. A possible response is to make transfers conditional upon desired
159 results, as within well-implemented payments for ecosystem services (PES) approaches [28]. Scholars
160 have noted that such conditions could also require environmental additionality, that is, provide more
161 ecosystem services than without the activities [39,40]. In addition, REDD+ should be 'financially
162 additional', beyond already planned funding [41]. While attractive, the idea of adding specific
163 demands of additionality to RBF goes against the simplicity and "hands off" approach that made RBF
164 popular in the first place.

165 The growing body of literature presented above presents valuable insights on how RBF should
166 be designed and presents some its dilemmas and contradictory results. But while allot has been said
167 about how large RBF programmes should look like, until recently we lacked a strong record of
168 largescale schemes to look back and draw lessons from concrete experiences. This study provides the
169 first comprehensive analysis of the first decade of the Amazon Fund, the world largest REDD+ RBF
170 programme [42][43]. Our study aims to reveal the design choices adopted by the Fund by analyzing
171 its resource distribution across beneficiaries, activities and geographies. While this study does not
172 provide a quantitative impact analysis of the fund, it allows us to understand how the allocation of
173 financial resources corresponds with various REDD+ design choices, as reflected in the available
174 literature on REDD+, and the extent to which this may affect its long-term effectiveness. From this,
175 this study draws lessons that could be used to improve the Amazon Fund in Brazil and others large
176 RBF programmes.

177 3. Research Approach and Methodology


178 This research paper conceptualizes the Amazon Fund as an intermediary organization that links
179 the forest conservation funding provided by donor organizations to the individual projects (see figure
180 1). Created in 2008, the Amazon Fund was the first large scale RBF programme to be implemented.
181 As such, the fund played an important role in shaping the discussions around REDD+ at the United
182 Nations Framework Convention on Climate Change (UNFCCC). For this reason, the UNFCCC's
183 Warsaw Framework for REDD+ adopted to a large degree the *modus operandi* pioneered by Brazil.
184 Financial donations to the Amazon Fund mainly come from Norway's International Climate and
185 Forest Initiative (NICFI) and the German Development Bank (KfW). The Amazon Fund consists of a
186 steering committee (COFA), which is responsible for establishing allocation guidelines, and a
187 technical committee (CTFA), which is responsible for approving results in terms of reducing
188 emissions from deforestation. The managing organization of the Amazon Fund is the Brazilian
189 Development Bank (BNDES) and is responsible for the approval (or rejection) of submitted project
190 proposals according to predefined guidelines as well as for the receipt and allocation of financial
191 resources. Since 2015, BNDES has also become eligible to receive financial resources from the Green
192 Climate Fund (decree 8.576/15), whereas other organizations like the government-owned bank Caixa
193 Econômica Federal (CEF) and the Brazilian Biodiversity Fund (FUNBIO) may also become recipients.
194 Financial resources are allocated to a wide variety of organizations. Federal government
195 organizations include the Brazilian Agricultural Research Corporation (EMBRAPA), the Brazilian
196 Institute for Space Research (INPE), the Brazilian Institute for the Environment and Renewable
197 Natural Resources (IBAMA) and the National Police Force (FNSP). Non-governmental organizations
198 also abound and include the Sustainable Amazon Foundation (FAS), the Amazon Institute for
199 Human and Environment (IMAZON), Amazon Environmental Research Institute (IPAM) and The

200 Nature Conservancy (TNC), between others. State governments organizations are mostly
201 represented by the environmental or agricultural secretariats of the nine Brazilian states in the Legal
202 Amazon, while some state secretariats outside this region were also recipients. Finally, municipal
203 government secretariats and federal universities were also supported financially by the Amazon
204 Fund.

205 Understanding how forest conservation funding to the Amazon Fund contributes to the effective
206 reduction of emissions from deforestation and forest degradation involves connecting the project
207 activities, each with a specific benefit sharing, geographies and supported activities, to the overall
208 objective of emissions reduction. The Amazon Fund already provides an annual report that divides
209 the funding distribution according to four broad categories: (1) monitoring and control, (2) land
210 tenure regularization, (3) sustainable production, and (4) scientific and technological development
211 [13]. However, to understand the allocation of financial resources in light of the design outlined
212 above, it is necessary to further refine the available information from the Amazon Fund. For this
213 purpose, we have built a project database with detailed information on the beneficiaries, activities
214 and geographies that received financial resources from the Amazon Fund.

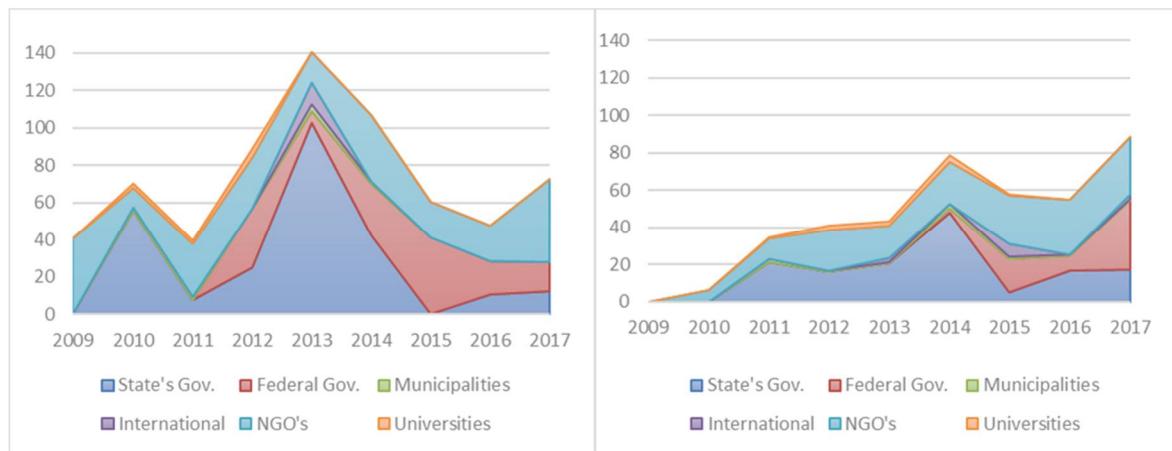
215 Our primary data source is the Amazon Fund's website as well as its annual activity reports. We
216 collected all data available on all of the 96 projects that received support between 2008 and 2017. This
217 data includes project objectives, beneficiaries, implementing organization, territorial scope,
218 committed and disbursed amounts, and activities conducted, among other information. Websites of
219 project owners provided additional information. For the data refinement for providing geographical
220 information, we used the municipality as the entity. In Brazil, municipalities reflect the smallest
221 geographical unit for monitoring deforestation, applying public policies, allocating government
222 resources and evaluating outcomes.

223 One of the main challenges of generating data at the municipal level is the variation of project
224 target areas, which may involve biomes, river basins, protected areas or indigenous territories. Based
225 on the available literature, we designed rules to determine the municipalities encompassed by each
226 project (see diagram 1 in SupMat). When project disbursements cover multiple municipalities, we
227 used a weight factor in order to determine the share of financial support that each municipality
228 received (see table 2 in SupMat). After the geographical allocation of financial resources, we further
229 categorized the dataset by main-component, which reflects the Amazon Fund's theory of change. As
230 projects may contribute to multiple main-components, we conducted one interview by email with an
231 BNDES manager, the managing organization of the Amazon Fund, that replied a spreadsheet with
232 the data dividing the investments of each Amazon Fund project by main-component. Finally, we
233 further categorized the dataset by activity (also called specific-components). As a main-component
234 can be composed by multiple activities, if more than one activity by main-component was verified,
235 then the amounts was equally divided across them. The final database contains 10,493 lines of
236 information structured by project, location, main-component and specific-component. The
237 procedures for collecting and interpreting data, and constructing the database, are detailed in the
238 supplements. The Amazon Fund accountability is in Brazilian Reais currency. All financial data were
239 converted from Brazilian reais to US dollars by using the rate for the day they are received, which
240 corresponds with the methodology used for the English publications of the Amazon Fund. For
241 evaluate the additionality of the Brazilian governmental agencies budgets (accountable in Brazilian
242 reais) with the Amazon Fund disbursements, we used an average exchange rate between 2009 and
243 2017, in order to reduce the effects of exchange rate fluctuation.

244

245

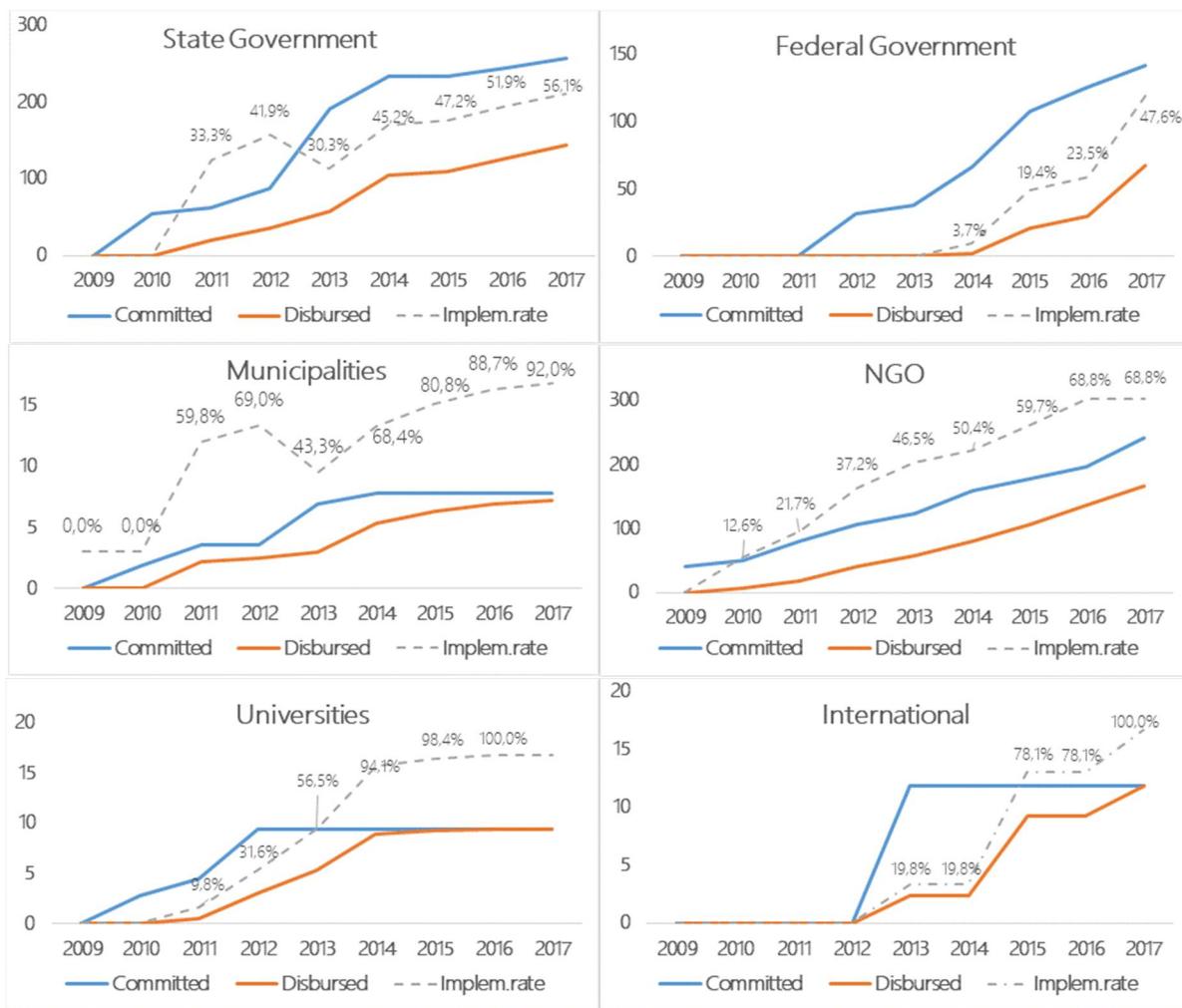
Figure 1. The Flows of Amazon Fund.


246 **4. Results: Resource Allocations by the Amazon Fund**

247 Currently, disbursements are made on the basis of criteria and guidelines updated biannually
 248 by COFA. The 2017-2018 document lists 14 minimum requirements that potential projects must meet,
 249 some (i.e. items B4, B5, B6, B7 and B14) determining conceptual boundaries of project activities.
 250 Projects also must demonstrate coherence with environmental and forest policies, most notably the
 251 national Action Plan for the Prevention and Control of Deforestation in the Legal Amazon
 252 (PPCDAm), including its manifestations in state governments (PPCDs), and the national policy for
 253 Regenerating Native Vegetation (ProVeg) [44]. Projects are also evaluated with respect to coherence
 254 with Brazil's National REDD+ Strategy (ENREDD+), which in turn incorporates implementation of
 255 PPCDAm and compliance with the Brazilian Forest Code. Finally, projects are expected to be
 256 financially additional, i.e., go beyond existing public environmental budgets and other forms of
 257 finance. Given these rules, any organization may submit a project proposal to BNDES for financial
 258 resources.

259

260 4.1. Benefit distribution across Stakeholders

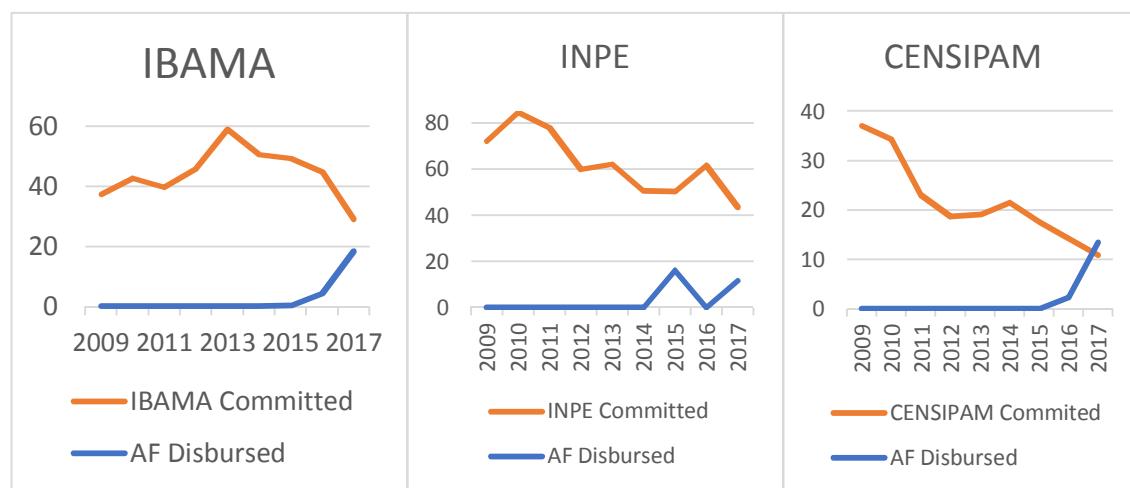

261 The distribution of financial commitments across stakeholders shows some variation across
 262 years (Fig.2, left panel). In 2017, over 95% of a total of USD 667.3 million went to state governments
 263 (USD 256.6 million) or NGOs (USD 241.1 million) or federal governments (USD 140.6 million), with
 264 their shares varying considerably per year. Of a total of USD 140.4 million in 2013, about 70% (or USD
 265 102.9 million) went to projects of state governments that received almost no such commitments either
 266 two years earlier or two years later. This peak took place as a consequence to a change in the rule of
 267 the Amazon Fund that allowed the approval of larger “structural projects”, as the implementation of
 268 the Rural Environmental Register (CAR). By contrast, commitments to NGOs projects were relatively
 269 stable over time, averaging USD 22 million until 2016, though rising to USD 44.5 million in 2017
 270 (implying variation in NGOs’ share). Commitments to federal government projects were also uneven,
 271 with slight peaks in 2012 and 2017 (USD 31.7 million, 41.2 million).

272

273 **Figure 2.** Annual committed (L) and disbursed (R) amounts per stakeholder (in million USD).

274 However, the ability of different stakeholders to approve projects with the Amazon Fund did
 275 not match their implementation capabilities. In the last decade only USD 405.3 of 667.3 million (i.e.
 276 60.7 %) has been transferred to project owners. Average annual disbursements to state governments
 277 have hovered between USD 16 and 21 million in most years, with a sudden peak of USD 47.6 million
 278 in 2014 and then a sharp drop to USD 4.8 million in 2015. Disbursements to federal government
 279 increased exponentially from a small base of only USD 2.4 million even in 2014 to USD 37.7 million
 280 in 2017. Finally, disbursements to NGOs steadily increased from USD 6.4 million in 2010 to USD 30.7
 281 million in 2017. From these three groups of beneficiaries, the Federal Government has been
 282 demonstrated the largest implementation gap, starting with a very low implementation rate and
 283 reaching the execution of only 47% of the committed values by 2017. This was followed by the State
 284 Governments, which spending rates stayed below 50%. Municipalities, Universities and NGOs, in
 285 contrast, presented a better implementation capacity, being able to invest most of the resources
 286 obtained from the Fund.

287
288 **Figure 3.** Implementation rates as disbursed divided by committed (consolidated amounts), by
289 Stakeholder.


290 To understand these variations in disbursements, we must also consider the characteristics of
291 the projects supported by the Fund. Federal government projects, for instance, were concentrated
292 within eight projects involving six recipient agencies. Of the total amounts in this category, USD 64.3
293 million (i.e. 47.2%) went to organizations that develop satellite-based monitoring systems and
294 provide information on deforestation trends, namely INPE and CENSIPAM. Another USD 35.9
295 million (i.e. 26.7%) went to organizations responsible for enforcing environmental laws and policies,
296 namely IBAMA and FNSP. The remaining USD 40.5 million (i.e. 25.9%) went to EMBRAPA units to
297 disseminate knowledge about sustainable production and recovery of degraded areas throughout
298 Brazil, and to the SFB to the collection of information aiming increase the forest data available (see
299 section 4.3). While the IBAMA manage to invest 17.5% of the funds received, by 2017 INPE and
300 CENSIPAM used only 58.6%, implying that the development of radar-based monitoring system is
301 lagging behind schedule.

302 The committed and disbursed peaks for state government projects in 2013 and 2014 (Fig.3)
303 corresponds with contextual factors as well, including a surge in state government projects toward
304 development and implementation of the Rural Environmental Register (CAR). CAR is a federal
305 policy instrument introduced in 2012 with the adoption of the new Forest Code (law 12.651/2012) to
306 enhance law enforcement capacity. Yet despite the federal law and a centralized national system, the
307 registers must be executed at state or municipal level (art 29, §1). CAR implementation has therefore
308 become a major concern for state governments, especially after the system went live in 2014 [45]. This

309 can be seen in both spending and appeals to the Amazon Fund [13]. Within the 13 states that have
 310 approved projects, 85% of disbursements went to seven of the nine inside the Amazon Biome.

311 The linear increase in disbursements to NGOs reflects yet another set of contextual factors, in
 312 this case related to Amazon Fund process adjustments over time. Disbursements to projects were
 313 slow, to start, due to rigid assessment procedures intended to show professionalism, in the eyes of
 314 donor organizations and BNDES management, that also reflected some lack of understanding of
 315 project owners [13,19]. Minutes of COFA meetings indicate that, in response to these challenges, the
 316 Amazon Fund adopted a number of measures in order to facilitate and accelerate the disbursement
 317 process, including public calls for submitting project proposals. While the consequences of these
 318 responses are reflected in the linear increase in approved projects and disbursements to NGOs, the
 319 financial resources were not evenly distributed. We find that 80% of the disbursed amount was
 320 concentrated in half of the NGOs that received support from Amazon Fund, usually high-capacity
 321 and professional organizations, such as FAS, AMAZON, and TNC. (see figure 15 in SupMat).

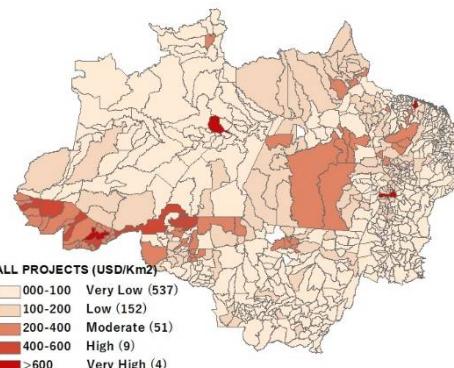
322 In addition to exposing the implementation capability of different governmental agencies, a
 323 comparison between the disbursement of the Amazon Fund with the yearly government budget also
 324 reveals the ability of the Fund to foster additional actions. One of the key principles of the first
 325 donation contract between Norway and Brazil signed in 2008 was the warrant that the Amazon Fund
 326 would not replace but would be additional to tax payer funds [2,20,22,46] However, it is possible to
 327 observe that the increases in disbursements to federal agencies coincided with their decreasing
 328 governmental budgets, in particular after 2014 (Fig.4). This suggests the occurrence of a partial
 329 substitution for agency expenditure of taxpayer-funded budgets using the Amazon Fund. For
 330 instance, IBAMA's committed budgets to reduce deforestation, combat fires and conduct
 331 environmental inspections were reduced from USD 50.64 million in 2014 to USD 29.07 million in 2017,
 332 a shift occurring in parallel with rising disbursements from the Amazon Fund disbursement.
 333 Similarly, INPE's budget fell from USD 84.5 million in 2010 to USD 43.63 million in 2017, alongside
 334 increasing disbursements from the Amazon Fund (USD 27.51 million) between 2015 and 2017.
 335 CENSIPAM shows similar trends. Those trends include rising implementation rates for turning
 336 federal commitments into disbursements, which increased from 3.7% in 2014 to 26.8% in 2017.

337

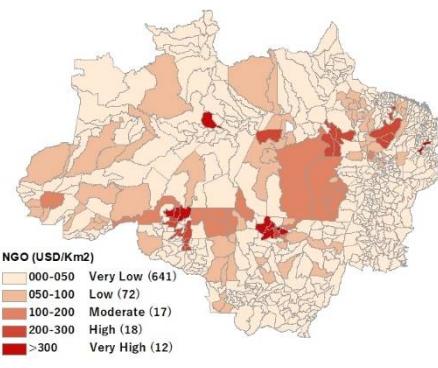
338 **Figure 4.** Comparison of Federal Committed Budgets with the Amazon Fund disbursements for INPE,
 339 IBAMA and CENSIPAM (used average 2009–2017 exchange rate: 2.434). Committed amounts
 340 represents the term in Portuguese 'Empenhado', an act that guarantees that there is the amount
 341 necessary to pay an assumed commitment and creates for the government the payment obligation.

342

343 These observations cannot by themselves confirm a direct causal relationship between the
344 increasing financial disbursements from the Amazon Fund and the decreasing budgets of the
345 recipient federal agencies. Furthermore, it should be highlighted that the period following 2015
346 witnessed one of Brazil's worse political, economic and fiscal crisis. At the same time, however,
347 contextual factors seem to correspond with an interpretation that the forest conservation funding
348 provided through the Amazon Fund lacks financial additionality, particularly considering the
349 unfavorable political climate for environmental protection [47], more flexibility within forest
350 legislation since 2012 [48], multiple bills for reducing environmental protection during election year
351 2018 and, as a consequence of all these factors, rising deforestation rates since 2014 [49].

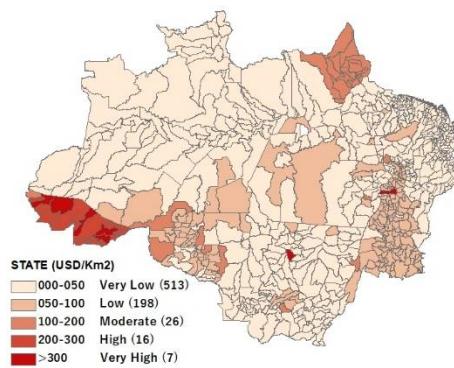

352 *4.2. Geographical distribution*

353 Spatially, Amazon Fund allocations display a large concentration (Fig. 5a) in 64 municipalities
354 along the (Fig. 5a) region stretching from the southeast of Pará towards the western regions in the
355 Mato Grosso, Rondônia and Acre states, municipalities that contain, since 2000, the highest
356 consolidated deforestation rates in Brazil. NGO and state projects explain much of this concentration
357 (Fig. 5b and 5c), whereas federal projects had no significant contribution mainly due to their
358 nationwide focus (Fig. 5c and 5d). State government projects are mostly responsible for monitoring
359 and control (Fig. 5c), particularly through activities as structuring of environmental secretariats, CAR
360 implementation, and training of firefighters (see section 4.3 for details). State governments that more
361 actively sought the support of Amazon Fund for monitoring and control were Acre, Maranhão,
362 Tocantins and Rondônia. Particularly Acre has a strong presence in investments in sustainable
363 production spread throughout its territory. However, the Amazon Fund allocations did not
364 systematically have privileged the municipalities that showed the recent highest deforestation rates.
365 An analysis of the relation between yearly deforestation rates and disbursements of the 20
366 municipalities that received more by hectare, indicate that the support from the Amazon Fund tend
367 to arrive in a context in which clearings have already been reduced substantially. Likewise, from the
368 10 municipalities with the higher deforestation rates in 2017, only 2 are amongst the top 100 receiving
369 per/Ha considering the 775 municipalities from Legal Amazon (see table 3 and Figure 15 in SupMat).

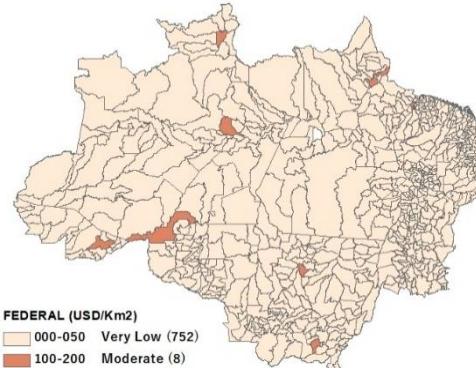

370 Federal government projects are the most evenly distributed across the landscape, averaging
371 below 26 USD/ha, which could be due to the all-encompassing nature of the GIS and remote sensing
372 activities that these projects tend to promote. At the same time, disbursements to larger federal
373 agencies, such as EMBRAPA, tend to concentrate in eight cities in the Legal Amazon, including Rio
374 Branco, Manaus, Boa Vista and Macapá, where these agencies are located (Fig. 5d). Finally, while
375 municipalities benefit indirectly from various types of support, direct support only went to 6 of the
376 772 municipalities in the Legal Amazon and amounted to only USD 7.8 million. Most of these
377 resources (65.2%) went to the municipal government of Alta Floresta, in northern Mato Grosso. In
378 addition, the Amazon Fund had also financed research of the state universities of Pará (in Belém) and
379 Amazonas (in Manaus) as well as to the development of satellite-based monitoring systems by INPE
380 (in Manaus).

381

382

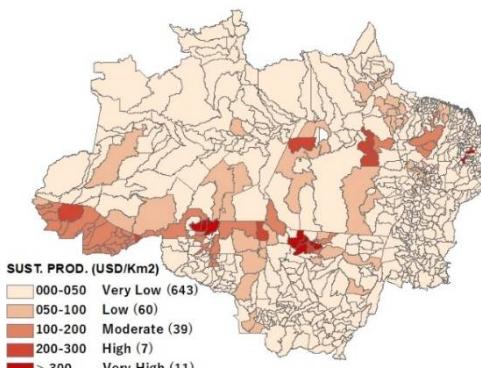


a

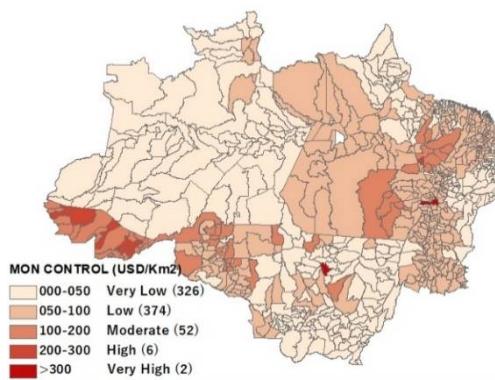


b

383

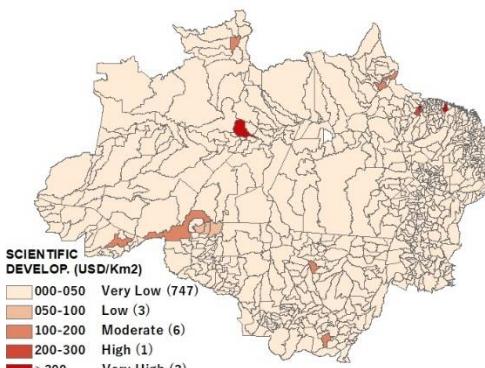


c

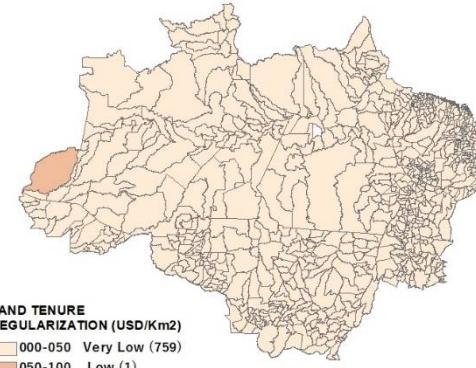


d

384



e

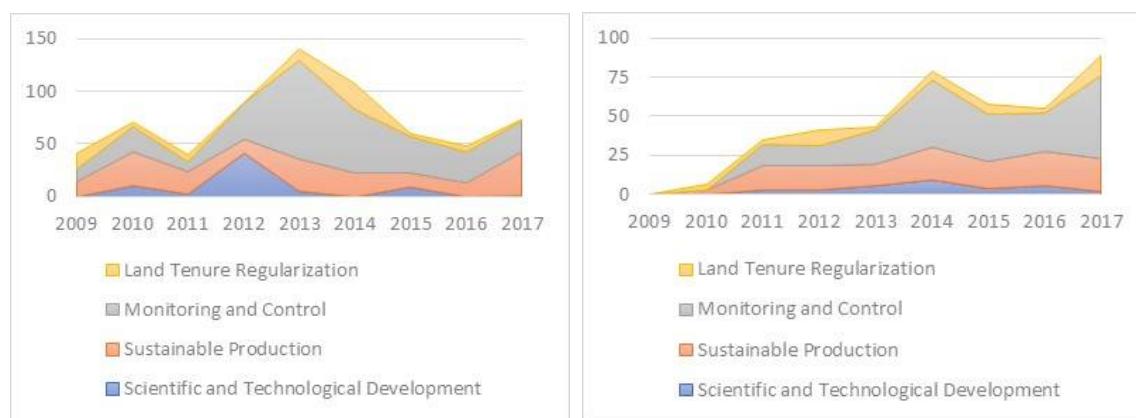


f

385

g

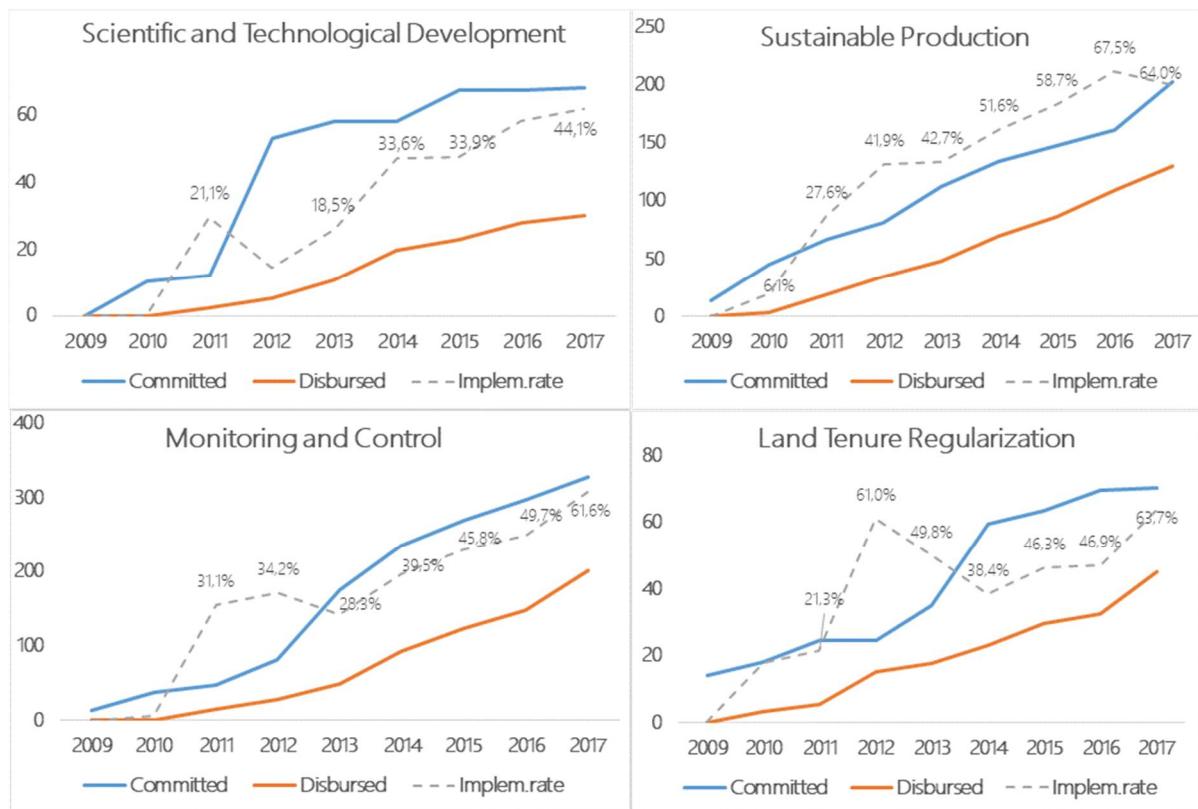
h


386

387

Figure 5. Spatial distribution of Amazon Fund investments per municipality by Stakeholder and by main-component.

388 4.3. Distribution across Activities


389 Almost half of total commitments (USD 667.3 million) has gone to monitoring and control (USD
390 326.7 million) while one third (USD 201.9 million) went to sustainable production (see figure 6 and
391 table 1). The latter category has been relatively steady over time, as have the small land tenure
392 commitments. By contrast, the large investments monitoring and control have been uneven over
393 time: starting slow with an average of USD 20.3 million in the first four years, peaking in 2013 at USD
394 94.0 million, and then settling at an average of USD 30.6 million from 2015 on (Fig.6 left panel).
395 Finally, nearly all commitments for scientific and technological development occurred in 2012 (USD
396 40.7 million).
397

398

399 **Figure 6.** Annual committed (L) and disbursed (R) amounts per main-component (in million USD).

400 Although slightly slower than noted above, actual disbursements to individual projects have
401 corresponded with commitments, with most disbursements going to monitoring and control (49.6%)
402 and sustainable production (31.9%). Monitoring and Control was responsible for most of the
403 variation (see right graph of figure 3), peaking in 2014 (USD 43.1 million) and 2017 (USD 53.5 million).
404 Disbursements for scientific and technological development have notably never really gotten much
405 traction, only slightly peaking in 2013 and 2014.

406 **Figure 7.** Implementation rates as disbursed divided by committed (consolidated amounts), by main-
 407 component.
 408

409 Monitoring and control efforts involved mostly state and federal government projects (USD
 410 187.1 million and USD 100.1 million, respectively). It was the only category, though, that included
 411 the unique international project supported by the AF aiming help develop the capacity to monitor
 412 deforestation in 8 neighboring countries that also contain the Amazon biome (USD 11.8 million). Yet
 413 most of the monitoring and control investments (USD 113.0 million) was allocated to CAR
 414 implementation. A large share of the funds provided for this activity (USD 102.5 million) was used
 415 by state governments to acquire equipment (GPS, computers, software) and provide training for
 416 effective processing of CAR proposals. Another share (USD 52 million) was invested in capacity-
 417 building of environmental secretariats for CAR implementation and other environmental policies,
 418 including the creation of municipal secretariats, the acquisition of cars and buildings, the hiring of
 419 employees and training in monitoring deforestation, landscape analysis, sustainable supply chains
 420 and measurement. In addition, some resources were used to promote CAR among landowners and
 421 to provide georeferencing services for landowners. A small amount went to development of a state
 422 system for granting environmental licensing to new businesses and companies. Therefore, in total
 423 18% of the resources committed by the fund has been invested in the implementation of CAR.

424 Monitoring activities that were exclusively promoted by federal government organizations
 425 involved the improvement of satellite-based monitoring systems for fighting deforestation (PRODES
 426 and DETER, USD 76.1 million) and forest fires (PREVFOGO, USD 6.3 million). State governments
 427 also invested in forest fire combat (USD 32.5 million), but emphasized control activities (e.g. creation
 428 of firefighter units) rather than monitoring activities. Other investments by federal government
 429 organizations targeted the strengthening of law enforcement (USD 29.6 million) in two projects by
 430 IBAMA and FNSP, mostly spent on the acquisition of vehicles, helicopters, equipment and buildings.
 431 While NGOs received much financial support from the Amazon Fund (USD 241.1 million), their
 432 support to monitoring and control activities were relatively small (USD 11.6 million) and only
 433 involved CAR implementation.

434 In the category of sustainable production, resources mostly went to NGOs (USD 154.7 million)
 435 and state government organizations (USD 42.1 million) (see table 1). Nearly all state governments

436 investments went to the promotion of sustainable forest activities, acquisition of equipment (tanks,
 437 driers, processing units' machines, warehouses) and the provision of professional training and
 438 technical assistance (in pisciculture and aquaculture, nut and Açaí extraction, pasture management,
 439 as well as forestry and agroforestry systems). This suggests that the social benefits from the Amazon
 440 Fund in terms of rural poverty reduction and sustainable farming were carried out mostly by NGOs
 441 and state governments.

442 Investments in regularizing land tenure almost exclusively came from state governments (USD
 443 23.8 million) and NGOs (USD 46.6 million), notably spending on territorial zoning and protected-
 444 area management and indigenous lands. This provides indirect benefits for indigenous peoples,
 445 quilombos (descendants from fugitive slaves), riverine people, smallholders and settlements. No
 446 such investments were federal. Federal governments did invest substantially in scientific and
 447 technological development, which involved field data collection by the Brazilian Forest Service (SFB)
 448 for building the National Forest Inventory (USD 31.7 million).

449 Universities, by contrast, invested most financial resources in scientific research (USD 4.7
 450 million) and development of the research infrastructure (USD 3.9 million). For instance, one project
 451 from the Federal University of Pará conducted research for the development of new products from
 452 bioactive compounds of plants typical of the Amazon Biome (USD 0.7 million), and investments in
 453 the development of new forest products such as herbal medicines, cosmetics and food products,
 454 among others. Natura, a private cosmetics company from Brazil, announced in 2016 an investment
 455 of more than USD 70 million in biodiversity inputs as part of its Amazon Program that aims to
 456 develop a new line of products with origins in Amazon Biodiversity.

457 **Table 1.** Distribution of project approvals to Amazon Fund projects (USD).

ACTIVITIES	Stat. Gov.	Fed. Gov.	Mun. Gov	Int.	NGOs	Univ.	TOTAL
Scientific and Technological Development	4.457.301	40.461.961			13.990.780	9.383.341	68.293.383
Field collection and data inventory (Forest, Socioeconomic, Biodiversity, Maps)	1.771.039	31.709.135			366.095		33.846.268
Disseminate Environmental Education (Museum)					5.818.209		5.818.209
Development of New Forest Products					732.695		732.695
Develop environmental diagnoses and shared management tools, edit bulletins and publications					1.693.133	4.736.591	6.429.724
Investment in research infrastructure (Laboratories, equipment, facilities, universities)	1.771.039				1.263.966	3.914.055	6.949.059
Research on the production of native seedlings and techniques for reforestation of degraded areas, development of Demonstration Units (pilots) to disseminate knowledge *	915.224	8.752.827			4.849.377		14.517.427
Sustainable Production Activities	41.186.376		5.984.174		154.736.705		201.907.255
Economic Activities for Sustainable Forest Use and Recovery of Degraded Areas	41.186.376		5.984.174		154.736.705		201.907.255
Monitoring and Control	187.105.638	100.146.294	1.788.272	11.791.988	25.845.426		326.677.619
Structuring and strengthening of State and Municipal Environment Secretariats (Acquire infrastructure, training in Monitoring deforestation, Landscape Analysis, Sustainable Chain and Recovery Measure techniques)	52.018.486		1.376.210		14.254.668		58.656.955
Inspections, Enforcement and Environmental Police		29.571.660					29.571.660
Combat Forest Fires (States – Firefighters / Federal – GIS and Satellites)	32.543.336	6.282.451					38.825.788
Regularize the environmental situation or/and implement CAR	102.543.816		412.062		11.590.759		113.007.430

Improve Deforestation Monitoring System (GIS and Satellites) **	64.292.183	11.791.988	76.084.171
Land tenure regularization	23.829.953	62.995	46.552.443
Land Regularization of Small and Middle size properties (Tenure, Deeds)	1.141.031		3.219.703
Territorial and Ecological Zoning, strengthening and empowerment of PA and IT Management	22.688.922	62.995	43.332.740
Total	256.579.269	140.608.255	7.835.441
		11.791.988	241.125.355
			9.383.341
			667.323.649

458 5. Amazon Fund design choices and effectiveness

459 The findings of our analysis of the recipient projects in the Brazilian Amazon Fund reflect a
 460 broad variety of stakeholders and activities. Following the categorization of Luttrell, Loft, Fernanda
 461 Gebara, Kweka, Brockhaus, Angelsen and Sunderlin [27], the recipient projects of the financial
 462 resources from the Amazon Fund often involve the largely indirect contributions of effective
 463 facilitators, legal rights holders, cost-incurring groups, forest stewards or poor communities.
 464 Moreover, the Amazon Fund's financial resources were channeled towards the direct and structural
 465 drivers of deforestation, but this was not proportional to the importance of addressing these drivers
 466 as argued by some scholars [e.g. 32]. Investment patterns tend to reflect specific relations between
 467 specific stakeholder groups and project activities. Although activities also vary considerably, there
 468 are some general patterns. Federal government organizations tend to invest in development of
 469 monitoring systems (45.7%) and inventory data (22.6%), which denotes a main concern with gaining
 470 control over deforestation dynamics. State government organizations tend to invest mostly in CAR
 471 implementation (40.1%) and capacity-building for state and municipal organizations (20.3%), thereby
 472 incurring many of the costs of federal policies. Finally, investments by NGOs have mainly benefited
 473 local communities that aim to adopt sustainable production activities (64.2%), but have also
 474 supported (more than federal or state government organizations) land tenure regularization projects
 475 (19.3%).

476 The geographical distribution of financial resources seemed to follow a more focused rationale.
 477 We found that many project organizations were located in municipalities with the highest
 478 consolidated deforestation rater of Brazil. For instance, NGO projects for territorial and ecological
 479 zoning, strengthening of PA and IT management as well sustainable production represent 30% of
 480 total disbursements from the Amazon Fund and were largely located in this region. Disbursements
 481 from the Amazon Fund to the three main recipient categories have generally benefited municipalities
 482 located in areas where deforestation threats are highest [50]. This observation only partially
 483 corresponds with findings by Wolosin, Breitfeller and Schaap [10] as we found no evidence of
 484 substantial contributions to areas with high tree cover, which are more commonly found in remote
 485 areas of the Amazon biome [35].

486 Within the pre-established main-components of the Amazon Fund, we also found variation in
 487 the activities that compose these categories. For instance, while most financial resources were
 488 channeled to the strengthening of monitoring and control activities by federal and state governments
 489 (USD 287.2 million), their investments have focused on monitoring activities like satellite imaging
 490 (USD 70.6 million) and CAR implementation (USD 102.5 million). This contrasts with the
 491 substantially smaller investments in control activities like combat forest fires (USD 32.5 million) or
 492 law enforcement (USD 29.6 million). This trend is representative of the broader resource allocation
 493 within the monitoring and control category. Similarly, investments in land regularization were
 494 mainly directed at indigenous territories and protected areas (USD 66.0 million), whereas
 495 smallholders (USD 4.3 million) received much less support. These findings suggest that financial
 496 resources are not evenly distributed across stakeholders, activities and geographies even within the
 497 main-components of the Amazon Fund.

498 Based on our findings on the variations in financial resource distribution, we argue that the
 499 project owners impose a substantial influence on the nature of activities that forest conservation

500 funding ultimately supports. The four main-components of the Amazon Fund, which aim drive the
501 projects to deforestation reduction, had a limited influence in the activities developed. As projects
502 owners exert influence on funding effectiveness to some extent, the Amazon Fund may either seek to
503 regulate the allocation of financial resources more actively or adopt funding effectiveness evaluations
504 that account for this influence more comprehensively. Corresponding with the study by Weatherley-
505 Singh and Gupta [32], for example, the Amazon Fund restricts financial resource allocation to the
506 four main-components of its theory of change, while not addressing alternative factors such as the
507 impacts of cattle ranching, road construction, international demand for agricultural products or
508 corruption. However, any project proposal that adheres to the project quality criteria and guidelines
509 of the Amazon Fund [13] may become eligible for financial support. In other words, the Amazon
510 Fund takes a more passive stance towards resource allocation after the criteria and guidelines are in
511 place. This view accounts for the great variety of stakeholders, activities and geographies, as
512 described above, since each stakeholder category seems to prefer a different investment strategy.
513 Such behavior may ultimately undermine the effectiveness of conservation funding provided by
514 Norwegian and German donor organizations, at least in terms of emissions reductions.

515 The influence of individual projects on decisions related to how financial resources will be
516 allocated may have substantial impact on the effectiveness of forest conservation funding. As already
517 argued in section 2, the Amazon Fund's theory of change is generally geared towards deforestation
518 reduction, but the design choices of individual projects are primarily directed at contributing to one
519 or more main-components. The evaluation of a completed project in northern Mato Grosso [43], for
520 instance, indicates that the project geared its intervention logic upon its contribution to the main-
521 components "sustainable development" and "monitoring and control", and stated that the main
522 contribution to emissions reductions was coming from "the restoration of native vegetation and
523 pastures and the planting of native species in permanent protection areas". The extent to which such
524 projects achieved emissions reductions was not stated in the report and would admittedly be a
525 complex methodological endeavor. The leeway that projects have in contributing to these main-
526 components, although important for attracting project proposals, accounts (at least partially) for the
527 imbalanced allocation of financial resources discussed above and may undermine the Amazon
528 Fund's contribution to deforestation reduction to some extent.

529 It is important to note that this undermining of the Amazon Fund's overall contribution is by no
530 means intentional. At the same time, there are also indications that some projects require a more in
531 depth evaluation. Particularly but not exclusively, projects from governmental organizations are
532 under greater pressure from critical considerations of their contribution to emissions reductions. One
533 may argue that investments in CAR implementation, for example, support more structural
534 improvement of a nation-wide instrument that enhances monitoring capacity, but some studies point
535 out that it is still unclear whether and to which extent this instrument indeed contribute to reducing
536 deforestation [45,51]. In addition, our analysis indicates that federal government organizations (i.e.
537 CENSIPAM, INPE and IBAMA) tend to lack financial additionality. Particularly the substitutive
538 nature of Amazon Fund financial resources of IBAMA projects is worrying, because these
539 investments often involve more direct contributions to reducing deforestation, most notably the
540 enhancement of (the capacity for) environmental inspections and fire combat. While the lack of
541 funding for law enforcement may have led to an even higher spike on deforestation rates, a country
542 with a mature enough environmental governance should be able to grant a stable source of public
543 funding by giving priority to this agenda.

544 6. Conclusions

545 Our analysis of financial resource allocation from the Amazon Fund to individual projects has
546 provided a more nuanced understanding of the complexity of evaluating the effectiveness of
547 conservation results-based funding. Perhaps the main challenge is to evaluate (and enhance) its
548 effectiveness on the basis of a singular objective (i.e. emissions reductions from deforestation) while
549 also taking into account the project-level complexity that influences the outcome. For instance,
550 deforestation rates have been rising since 2013 despite increased disbursements from the Amazon

551 Fund, which already incite a more critical approach from aid provider organizations [19]. The
552 critiques on some governmental projects that address both effectiveness and financial additionality
553 may further weaken the credibility of financial support from the Amazon Fund. The sustainable
554 development activities in NGO projects seem to incite less critiques, but these projects require much
555 closer scrutiny in order to understand the extent to which they indeed reduce deforestation. Our
556 analysis confirms the argument by Van der Hoff, Rajão and Leroy [19] that the "demands for
557 demonstrating the results of the Amazon Fund in scientifically rigorous manner are likely to become
558 an important topic for donor countries". Alternatively, the Amazon Fund could adopt a more active
559 approach to the allocation of financial resources, for example by prioritizing control activities,
560 emphasizing projects in northern Mato Grosso and/or ensure additionality to governmental budgets
561 by improving transparency on spending. This is especially important as the political climate in Brazil,
562 United States and other countries has become more hostile to environmental interests [49,50,52].

563 Our analysis also helps to understand why empirical studies seem ambiguous about the
564 effectiveness of forest conservation funding. As explained in section 3, BNDES' approach to
565 distributing financial resources from the Amazon Fund to individual projects occurs based on the
566 evaluation of project proposals from diverse organizations rather than a strategic selection of projects
567 based on a predetermined theory of change. As a consequence, our findings show that disbursements
568 by the Amazon Fund to individual projects reflect an arbitrary support of different projects that
569 adhere to very diverging theories of change within a broader REDD+ and RBF strategy. Although
570 this refutes any suggestion that BNDES pursues other interests than deforestation reduction, this
571 arbitrariness of disbursements suggests that the Amazon Fund is not primarily concerned with
572 attaining further deforestation reductions, but rather supports the broader policies that are or should
573 be. The financial transactions to Amazon Fund, as an intermediary organization, are conditional on
574 demonstrated achievements in reducing emissions from deforestation, whereas the conditions for
575 redistribution require adherence to national policies. Although the Amazon Fund contributes to
576 attaining REDD+ objectives to some extent, as an intermediary organization it is not responsible for
577 this attainment and may therefore foment political controversy [19]. Similar processes may underlie
578 some of the aid effectiveness studies [17,18,22], but empirical analysis will be necessary to verify this
579 hypothesis. Finally, this article providing an on-the-ground reference point to reflect on the need of
580 advancing the theoretical framework of RBF to include the intermediate stages of international forest
581 conservation funding.

582 **Supplementary Materials:** See at the end of this file.

583 **Author Contributions:** Conceptualization, Juliano Correa, Richard van der Hoff and Raoni Rajão; Data curation,
584 Juliano Correa; Formal analysis, Richard van der Hoff and Raoni Rajão; Investigation, Juliano Correa and
585 Richard van der Hoff; Methodology: Juliano Correa and Raoni Rajão; Visualization, Raoni Rajão; Writing –
586 review & editing, Juliano Correa, Richard van der Hoff and Raoni Rajão.

587 **Funding:** This research received no external funding.

588 **Acknowledgments:** We thank Alexander Pfaff from Duke University.

589 **Conflicts of Interest:** The authors declare no conflict of interest.

590 **Bibliography**

- 591 1. Stern, N. *Stern Review of the Economics of Climate Change*; Cambridge University Press: Cambridge, 2006.
- 592 2. Angelsen, A. REDD+ as Result-based Aid: General Lessons and Bilateral Agreements of Norway.
593 *Review of Development Economics* 2017, 21, 237–264, doi:10.1111/rode.12271.
- 594 3. Turnhout, E.; Gupta, A.; Weatherley-Singh, J.; Vijge, M.J.; de Koning, J.; Visseren-Hamakers, I.J.;
595 Herold, M.; Lederer, M. Envisioning REDD+ in a post-Paris era: between evolving expectations and
596 current practice. *Wiley Interdisciplinary Reviews: Climate Change* 2016, 10.1002/wcc.425, n/a-n/a,
597 doi:10.1002/wcc.425.

598 4. Eichler, R. *Can "Pay-for-Performance" increase utilization by the poor and improve the quality of health*
599 *services? Discussion paper for the first meeting of the Working Group on Performance-Based Incentives*; Center
600 for Global Development: Washington, 2006.

601 5. Eldridge, C.; Palmer, N. Performance-based payment: some reflections on the discourse, evidence and
602 unanswered questions. *Health Policy and Planning* 2009, 24, 160-166, doi:10.1093/heapol/czp002.

603 6. Van der Hoff, R.; Rajão, R.; Leroy, P.; Boezeman, D. The parallel materialization of REDD+
604 implementation discourses in Brazil. *Forest Policy and Economics* 2015, 55, 37-45,
605 doi:<http://dx.doi.org/10.1016/j.forepol.2015.03.005>.

606 7. Paul, E. Performance-Based Aid: Why It Will Probably Not Meet Its Promises. *Development Policy Review*
607 2015, 33, 313-323, doi:doi:10.1111/dpr.12115.

608 8. Den Besten, J.W.; Arts, B.; Verkooijen, P. The evolution of REDD+: an analysis of discursive-institutional
609 dynamics. *Environmental Science & Policy* 2014, 35, 40-48,
610 doi:<http://dx.doi.org/10.1016/j.envsci.2013.03.009>.

611 9. Carvalho, F.V.d. The Brazilian position on forests and climate change from 1997 to 2012: from veto to
612 proposition. *Revista Brasileira de Política Internacional* 2012, 55, 144-169.

613 10. Wolosin, M.; Breitfeller, J.; Schaap, B. *The Geography of REDD+ Finance: Deforestation, Emissions and the*
614 *Targeting of Forest Conservation Finance*; Forest Trends: Washington, 2016.

615 11. Cunha, F.A.F.d.S.; Börner, J.; Wunder, S.; Cosenza, C.A.N.; Lucena, A.F.P. The implementation costs of
616 forest conservation policies in Brazil. *Ecological Economics* 2016, 130, 209-220,
617 doi:<http://dx.doi.org/10.1016/j.ecolecon.2016.07.007>.

618 12. Boucher, D.; Roquemore, S.; Fitzhugh, E.J.T.C.S. Brazil's success in reducing deforestation. 2013, 6, 426-
619 445.

620 13. BNDES. *Amazon Fund Activity Report 2017*; BNDES: Rio de Janeiro, 2018.

621 14. Voigt, C.; Ferreira, F. The Warsaw Framework for REDD+: Implications for National Implementation
622 and Access to Results-based Finance. *Carbon & Climate Law Review* 2015, 9, 113-129.

623 15. Oxman, A.D.; Fretheim, A. Can paying for results help to achieve the Millennium Development Goals?
624 Overview of the effectiveness of results-based financing. *Journal of Evidence-Based Medicine* 2009, 2, 70-
625 83, doi:10.1111/j.1756-5391.2009.01020.x.

626 16. Miller, D.C.; Agrawal, A.; Roberts, J.T. Biodiversity, Governance, and the Allocation of International
627 Aid for Conservation. *Conservation Letters* 2013, 6, 12-20, doi:doi:10.1111/j.1755-263X.2012.00270.x.

628 17. Restivo, M.; Shandra, J.M.; Sommer, J.M. The United States Agency for International Development and
629 forest loss: A cross-national analysis of environmental aid. *The Social Science Journal* 2018, 55, 171-181,
630 doi:<https://doi.org/10.1016/j.soscij.2017.09.001>.

631 18. Bare, M.; Kauffman, C.; Miller, D.C. Assessing the impact of international conservation aid on
632 deforestation in sub-Saharan Africa. *Environmental Research Letters* 2015, 10, 125010.

633 19. Van der Hoff, R.; Rajão, R.; Leroy, P. Clashing interpretations of REDD+ "results" in the Amazon Fund.
634 *Climatic Change* 2018, 10.1007/s10584-018-2288-x, doi:10.1007/s10584-018-2288-x.

635 20. Birdsall, N.; Savedoff, W.; Seymour, F.J.C.f.G.D.A.f.h.w.c.o.p.f.b.-a.-p.-b.-p.-f.-c.-s. The Brazil-Norway
636 Agreement with Performance-Based Payments for Forest Conservation: Successes, Challenges, and
637 Lessons. 2014.

638 21. Dalene, E. An assessment of the Brazilian REDD+ governance system. A case study of the Amazon
639 Fund. Norwegian University of Life Sciences, Ås, 2011.

640 22. Hermanrud, K.; de Soysa, I. Lazy thinking, lazy giving? Examining the effects of Norwegian aid on
641 forests in developing countries. *International Area Studies Review* 2017, 20, 19-41,
642 doi:10.1177/2233865916682430.

643 23. Miller, D.C. Explaining Global Patterns of International Aid for Linked Biodiversity Conservation and
644 Development. *World Development* 2014, 59, 341-359, doi:<https://doi.org/10.1016/j.worlddev.2014.01.004>.

645 24. Brockhaus, M.; Korhonen-Kurki, K.; Sehring, J.; Di Gregorio, M.; Assembe-Mvondo, S.; Babon, A.;
646 Bekele, M.; Gebara, M.F.; Khatri, D.B.; Kambire, H., et al. REDD+, transformational change and the
647 promise of performance-based payments: a qualitative comparative analysis. *Climate Policy* 2017, 17,
648 708-730, doi:10.1080/14693062.2016.1169392.

649 25. Korhonen-Kurki, K.; Brockhaus, M.; Sehring, J.; Di Gregorio, M.; Assembe-Mvondo, S.; Babon, A.;
650 Bekele, M.; Benn, V.; Gebara, M.F.; Kambire, H.W., et al. What drives policy change for REDD+? A
651 qualitative comparative analysis of the interplay between institutional and policy arena factors. *Climate
652 Policy* 2018, 10.1080/14693062.2018.1507897, 1-14, doi:10.1080/14693062.2018.1507897.

653 26. Wong, G.Y.; Loft, L.; Brockhaus, M.; Yang, A.L.; Pham, T.T.; Assembe-Mvondo, S.; Luttrell, C. An
654 Assessment Framework for Benefit Sharing Mechanisms to Reduce Emissions from Deforestation and
655 Forest Degradation within a Forest Policy Mix. *Environmental Policy and Governance* 2017, 27, 436-452,
656 doi:10.1002/eet.1771.

657 27. Luttrell, C.; Loft, L.; Fernanda Gebara, M.; Kweka, D.; Brockhaus, M.; Angelsen, A.; Sunderlin, W.D.
658 Who Should Benefit from REDD+? Rationales and Realities. *Ecology and Society* 2013, 18, doi:10.5751/ES-
659 05834-180452.

660 28. Pham, T.T.; Brockhaus, M.; Wong, G.Y.; Le, N.D.; Tjajadi, J.S.; Loft, L.; Luttrell, C.; Assembe Mvondo,
661 S. *Approaches to benefit sharing: A preliminary comparative analysis of 13 REDD+ countries*; Center for
662 International Forestry Research (CIFOR): Bogor, Indonesia, 2013.

663 29. Dunlop, T.; Corbera, E. Incentivizing REDD+: How developing countries are laying the groundwork
664 for benefit-sharing. *Environmental Science & Policy* 2016, 63, 44-54,
665 doi:<https://doi.org/10.1016/j.envsci.2016.04.018>.

666 30. Vatn, A.; Vedeld, P.O. National governance structures for REDD+. *Global Environmental Change* 2013,
667 23, 422-432, doi:<http://dx.doi.org/10.1016/j.gloenvcha.2012.11.005>.

668 31. Simonet, G.; Subervie, J.; Ezzine-de-Blas, D.; Cromberg, M.; Duchelle, A.E.J.A.J.o.A.E. Effectiveness of
669 a REDD+ Project in Reducing Deforestation in the Brazilian Amazon. 2018.

670 32. Weatherley-Singh, J.; Gupta, A. Drivers of deforestation and REDD+ benefit-sharing: A meta-analysis
671 of the (missing) link. *Environmental Science & Policy* 2015, 54, 97-105,
672 doi:<https://doi.org/10.1016/j.envsci.2015.06.017>.

673 33. Busch, J.; Ferretti-Gallon, K. What Drives Deforestation and What Stops It? A Meta-Analysis. *Review of
674 Environmental Economics and Policy* 2017, 11, 3-23, doi:10.1093/reep/rew013.

675 34. Nori, J.; Lescano, J.N.; Illoldi-Rangel, P.; Frutos, N.; Cabrera, M.R.; Leynaud, G.C. The conflict between
676 agricultural expansion and priority conservation areas: Making the right decisions before it is too late.
677 *Biological Conservation* 2013, 159, 507-513, doi:<https://doi.org/10.1016/j.biocon.2012.11.020>.

678 35. Potapov, P.; Hansen, M.C.; Laestadius, L.; Turubanova, S.; Yaroshenko, A.; Thies, C.; Smith, W.;
679 Zhuravleva, I.; Komarova, A.; Minnemeyer, S., et al. The last frontiers of wilderness: Tracking loss of
680 intact forest landscapes from 2000 to 2013. *Science Advances* 2017, 3, doi:10.1126/sciadv.1600821.

681 36. Soares-Filho, B.; Moutinho, P.; Nepstad, D.; Anderson, A.; Rodrigues, H.; Garcia, R.; Dietzsch, L.; Merry,
682 F.; Bowman, M.; Hissa, L., et al. Role of Brazilian Amazon protected areas in climate change mitigation.
683 *Proceedings of the National Academy of Sciences* **2010**, *107*, 10821-10826, doi:10.1073/pnas.0913048107.

684 37. Pfaff, A.; Robalino, J.; Herrera, D.; Sandoval, C. Protected Areas' Impacts on Brazilian Amazon
685 Deforestation: Examining Conservation – Development Interactions to Inform Planning. *PLOS ONE*
686 **2015**, *10*, e0129460, doi:10.1371/journal.pone.0129460.

687 38. Tierney, M.J.; Nielson, D.L.; Hawkins, D.G.; Roberts, J.T.; Findley, M.G.; Powers, R.M.; Parks, B.;
688 Wilson, S.E.; Hicks, R.L. More Dollars than Sense: Refining Our Knowledge of Development Finance
689 Using AidData. *World Development* **2011**, *39*, 1891-1906,
690 doi:<https://doi.org/10.1016/j.worlddev.2011.07.029>.

691 39. Cordero Salas, P.; Roe, B.E.; Sohngen, B. Additionality When REDD Contracts Must be Self-Enforcing.
692 *Environmental and Resource Economics* **2018**, *69*, 195-215, doi:10.1007/s10640-016-0072-9.

693 40. Chiroleu-Assouline, M.; Poudou, J.-C.; Roussel, S. Designing REDD+ contracts to resolve additionality
694 issues. *Resource and Energy Economics* **2018**, *51*, 1-17, doi:<https://doi.org/10.1016/j.reseneeco.2017.10.004>.

695 41. Dutschke, M.; Michaelowa, A. Development assistance and the CDM – how to interpret 'financial
696 additionality'. *Environment and Development Economics* **2006**, *11*, 235-246,
697 doi:10.1017/S1355770X05002780.

698 42. LTS International. *Real-Time Evaluation of Norway's International Climate and Forest Initiative: Synthesizing
699 Report 2007-2013*; Norwegian Agency For Development Cooperation: 2014.

700 43. Anache, B.; Toni, F.; Maia, H.T.; Queiroz, J. *Effectiveness Evaluation Report: Amazon's Water Springs
701 Project*; GIZ & BNDES: 2016.

702 44. BNDES. *Amazon Fund Activity Report 2016*; BNDES: Rio de Janeiro, 2017.

703 45. Azevedo, A.; Rajão, R.; Costa, M.; Stabile, M.; Alencar, A.; Moutinho, P. Cadastro Ambiental Rural e
704 sua influência na dinâmica do desmatamento na Amazônia Legal. In *Boletim Amazônia em Pauta N. 3*,
705 IPAM: Brasília, 2014.

706 46. Hermansen, E. I will write a letter and change the world: the knowledge base kick-starting Norway's
707 Rainforest Initiative. *Nordic Journal of Science and Technology Studies* **2015**, *3*, 34-46.

708 47. Aamodt, S. The Ability to Influence: A Comparative Analysis of the Role of Advocacy Coalitions in
709 Brazilian Climate Politics. *Review of Policy Research* **2018**, *35*, 372-397, doi:doi:10.1111/ropr.12282.

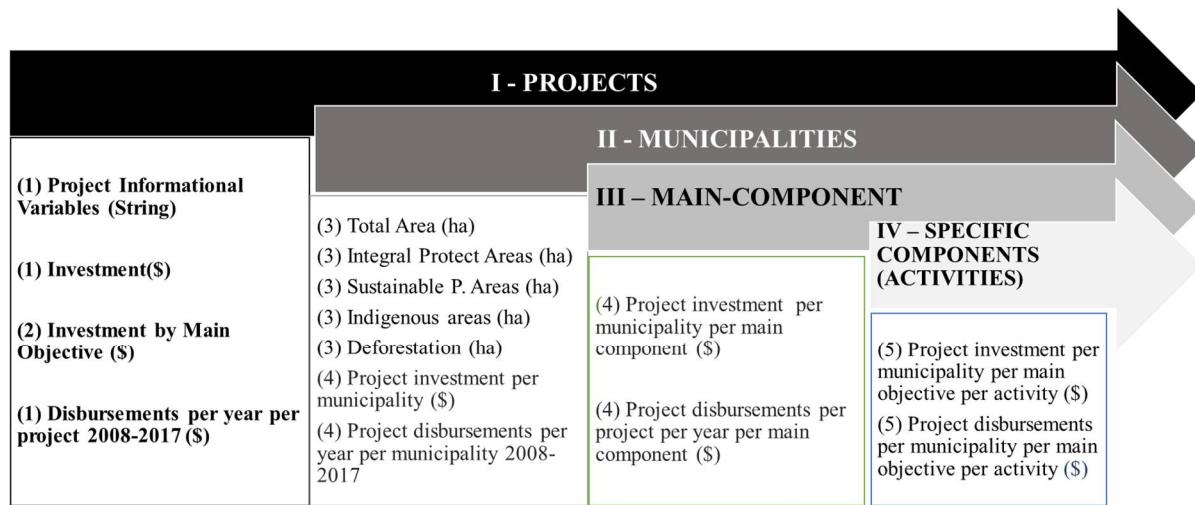
710 48. Sauer, S.; França, F.C.d. Código Florestal, função socioambiental da terra e soberania alimentar. *Caderno
711 CRH* **2012**, *25*, 285-307.

712 49. Rochedo, P.R.R.; Soares-Filho, B.; Schaeffer, R.; Viola, E.; Szklo, A.; Lucena, A.F.P.; Koberle, A.; Davis,
713 J.L.; Rajão, R.; Rathmann, R. The threat of political bargaining to climate mitigation in Brazil. *Nature
714 Climate Change* **2018**, 10.1038/s41558-018-0213-y, doi:10.1038/s41558-018-0213-y.

715 50. Lovejoy, T.E.; Nobre, C. Amazon Tipping Point. *Science Advances* **2018**, *4*, doi:10.1126/sciadv.aat2340.

716 51. Costa, M.A.; Rajão, R.; Stabile, M.C.; Azevedo, A.A.; Correa, J.J.E.S.A. Epidemiologically inspired
717 approaches to land-use policy evaluation: The influence of the Rural Environmental Registry (CAR) on
718 deforestation in the Brazilian Amazon. **2018**, *6*.

719 52. Fearnside, P.M. Brazilian politics threaten environmental policies. *Science* **2016**, *353*, 746-748,
720 doi:10.1126/science.aag0254.


721 53. U.N REDD+ Programme. <https://www.unredd.net/documents/global-programme-191/community-based-redd-2992/16012-cbr-progress-update.html>, accessed in Feb 10th, 2019

723

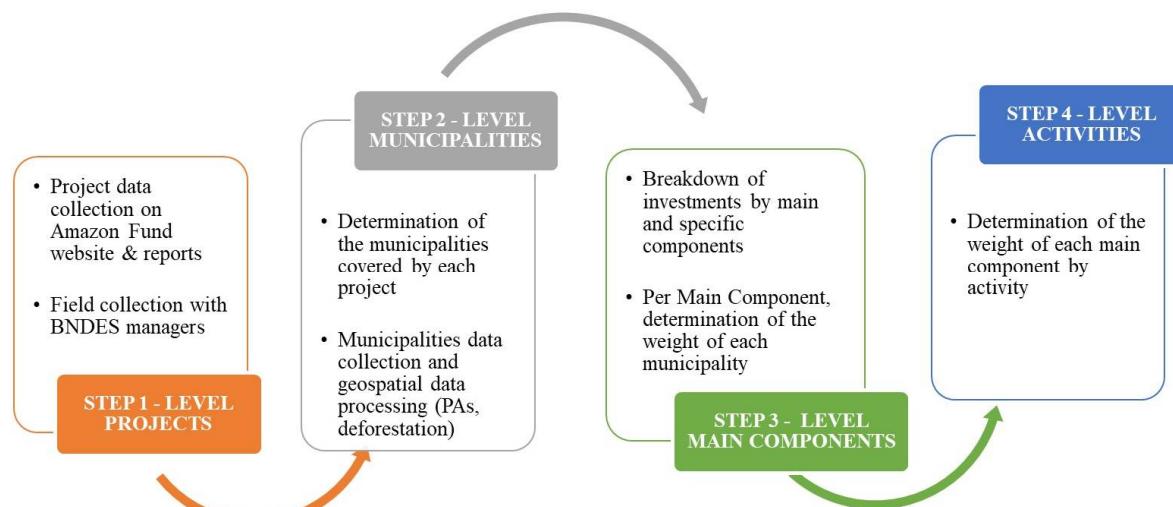
724

725 **Supplementary Material**726 *General approach to dataset Structuration*

727 Our database was structured according to four categories: project, municipality, main
 728 component and activity (specific-component) (Fig. 8). Data collection for the different variables in
 729 these categories came from 5 different origins, namely (1) the website or annual reports of the
 730 Amazon Fund, (2) field research in BNDES, (3) Spatial information obtained from various sources
 731 (see Fig. 8) and processed with GIS software, (4) mathematical propositions based on decision rules,
 732 and (5) assumptions adopted by the authors of this study. In order to process and organize the data,
 733 we followed a series of steps, as depicted in Fig. 9.

734 (1) Website or annual reports of the Amazon Fund

735 (2) Field research in BNDES


(3) Spatial information processed with GIS software.

Sources: IBGE, FUNAI, MMA, IBAMA, INPE

(4) Mathematical propositions based on decision rules

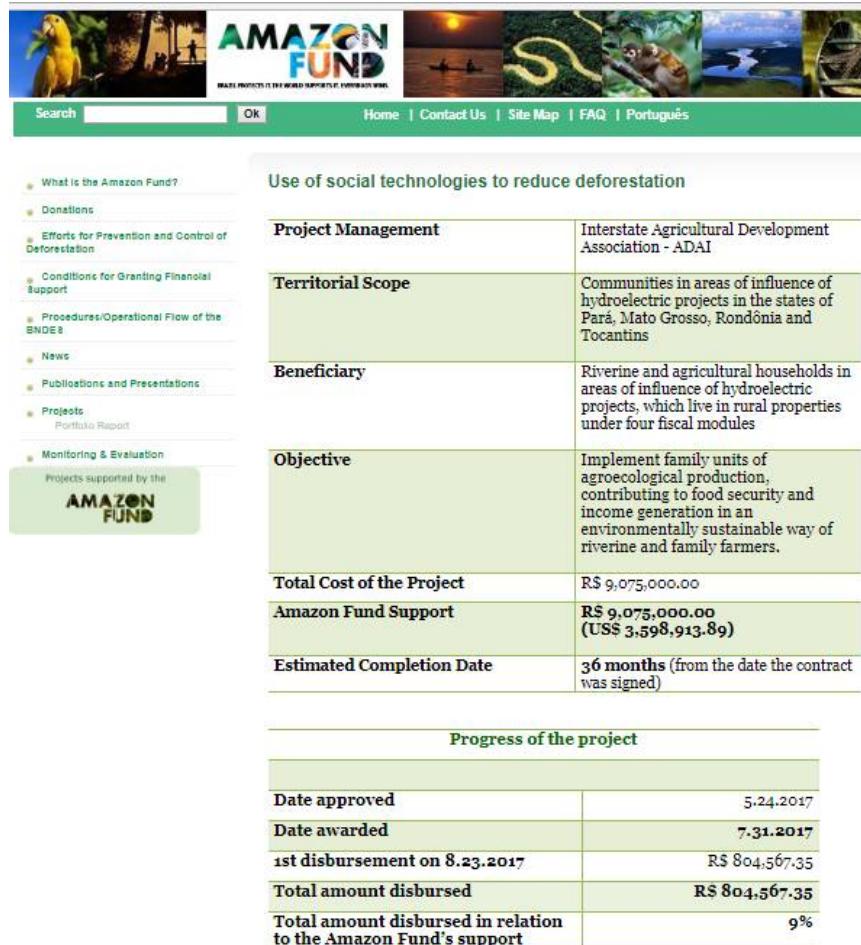
(5) Assumptions adopted by the authors of this study

Figure 8 Model for Database Structuration.

736

737

738 *Data Collection*


Figure 9 Steps to collect the variables.

739 In the initial step, the core source is the Amazon Fund website (Fig. 10). We collected all of the
 740 data available on all of the 96 projects. The variables included for the project level are:

- 741 • Stakeholder (Project Manager): Shows the name of the entities that receive the financial support
 742 and are responsible for the project implementation. Occasionally, secondary organizations are
 743 used to sub allocate the funds to several small associations without the formal structure required
 744 to receive funds directly from the Amazon Fund (e.g. local traditional population NGO's);
- 745 • Stakeholder category: Federal Government, States Government, Municipalities Government,
 746 NGO, Universities or International
- 747 • Territorial Scope (text characters): Represents the area covered by the project. It may be a state
 748 administrative region, one or several states, biomes, hydrographic basins, protected areas,
 749 indigenous territories;
- 750 • Beneficiary (text characters): Population that will be directly benefited by the project, like the
 751 traditional populations that live in the area, ranchers, indigenous people;
- 752 • Objective (text characters): reflects the project objectives;
- 753 • Total Cost of the Project (numeric): The total cost of the project is presented, that is, the sum of
 754 the amounts financed by the Amazon Fund added by the counterpart of project implementer;
- 755 • $AFInv_p$ – Amazon Fund investments per project p (numeric);
- 756 • Estimation Completion Data (numeric): Estimated duration of the project from the date that the
 757 project was signed with Amazon Fund;
- 758 • Date approved (date): Date of approval in the Amazon Fund;
- 759 • Date awarded (date): Contracted date, starting the project and disbursements;
- 760 • Disbursements (numeric / date): Amazon Fund disbursements for the project;
- 761 • D_{pt} - Disbursements per project per year (numeric), calculated as:

$$762 D_{pt} = \sum_{\substack{p=1 \\ y=2008}}^{p=96 \\ a=2017} d_{pt}$$

763 where d reflects the disbursements from Amazon Fund to the project p , and $p \in \{1, 2, \dots, 96\}$
 764 represents the 96 approved projects from Amazon Fund in the year t , and $t \in$
 765 $\{2008, 2009, \dots, 2017\}$.

The screenshot shows the Amazon Fund website with a search bar and navigation links. The main content area displays a project titled 'Use of social technologies to reduce deforestation' with detailed information including project management, territorial scope, beneficiary, objective, total cost, and estimated completion date. Below this is a section for 'Progress of the project' with specific dates and amounts.

Use of social technologies to reduce deforestation	
Project Management	Interstate Agricultural Development Association - ADAI
Territorial Scope	Communities in areas of influence of hydroelectric projects in the states of Pará, Mato Grosso, Rondônia and Tocantins
Beneficiary	Riverine and agricultural households in areas of influence of hydroelectric projects, which live in rural properties under four fiscal modules
Objective	Implement family units of agroecological production, contributing to food security and income generation in an environmentally sustainable way of riverine and family farmers.
Total Cost of the Project	R\$ 9,075,000.00
Amazon Fund Support	R\$ 9,075,000.00 (US\$ 3,598,913.89)
Estimated Completion Date	36 months (from the date the contract was signed)

Progress of the project	
Date approved	5.24.2017
Date awarded	7.31.2017
1st disbursement on 8.23.2017	R\$ 804,567.35
Total amount disbursed	R\$ 804,567.35
Total amount disbursed in relation to the Amazon Fund's support	9%

766

767

Figure 10 Individual Project Page on Amazon Fund website.

768 The Amazon Fund website only contains the supported amount per project, lacking information
 769 of how much was committed for each main component. we conducted one interview by email with
 770 an BNDES manager, the managing organization of the Amazon Fund, that replied a spreadsheet with
 771 the data dividing the investments of each Amazon Fund project by main component. Thus, the
 772 following variables were added to each project:

773 • Per project support to Main Component 1 (numeric): Sustainable Production Activities;
 774 • Per project support to Main Component 2 (numeric): Land Tenure Regularization;
 775 • Per project support to Main Component 3 (numeric): Monitoring and Control;
 776 • Per project support to Main Component 4 (numeric): Scientific and Technological Development.

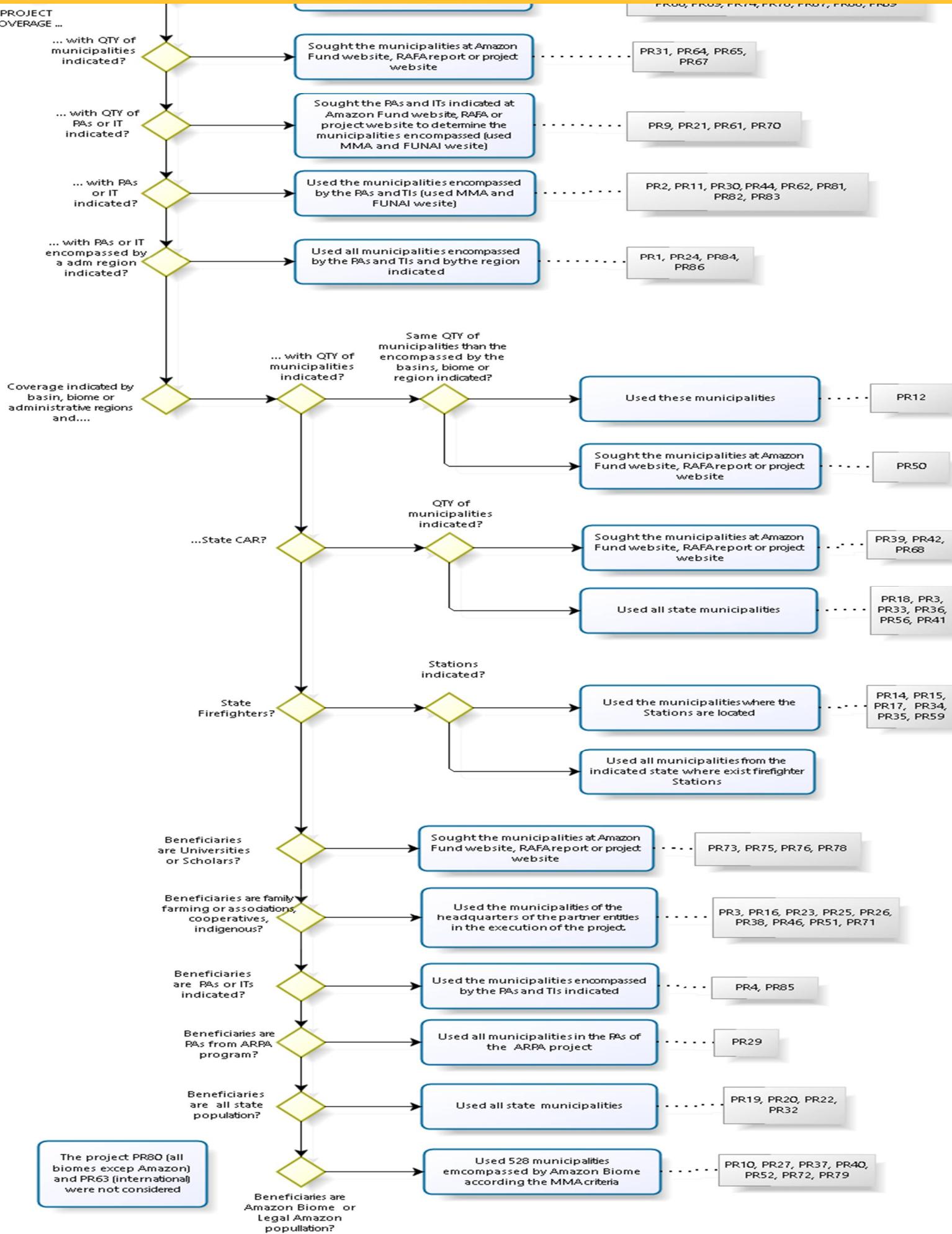
777 The sum of the values of these four columns, per project, should be the same as the variable
 778 $AFInv_p$ – Amazon Investments per project. This completes the database structuring for the level
 779 Projects as highlighted in Figure 11 in which there are 96 lines in the database, one for each approved
 780 project.

781

782

Figure 11 Database structured at Level I - Projects.783 *Dataset Structuration*

784 Once all data was collected, we started to structure the dataset by defining which municipalities
 785 are encompassed by each project (step 2 in the overall process, see Fig. 9). The reliable information
 786 on the projects of the Amazon Fund at the municipal level are the basis for the construction of our
 787 research database. The information made available by the Amazon Fund through its annual activity
 788 reports and on its website, however, are organized by project. As the vast majority of these projects
 789 cover areas like watersheds, indigenous territories or environmental conservation units, they
 790 commonly encompass several municipalities.


791 One of the main challenges of this research, therefore, is to construct a database that
 792 distinguishes the municipalities that were considered by each project. For this purpose, we designed
 793 decision rules based on the literature to identify the municipalities that were covered by each project
 794 (PR_n) of the Amazon Fund, which is visualized in diagram 1. We applied this tool to our primary
 795 data sources (see table 3). In addition, we added spatial data obtained from various Brazilian agencies
 796 (see table 2) that were processed with the ARGIS and Python packages in order to include, for each
 797 municipality (m) supported directly or indirectly by the Amazon Fund, the following variables:

A_m	Total area (ha) for the municipality m (Numeric);
PAi_m	Integral Protected area (ha) for the municipality m (Numeric);
PAs_m	Sustainable Protected area (ha) for the municipality m (Numeric);
IT_m	Indigenous Territory area (ha) for the municipality m (Numeric);
DE_m	Deforestation for the municipality m 2002-2017 (Numeric).

798

Table 2. Municipalities geospatial information sources.

GEOSPATIAL MAP (SHAPES)	RESPONSIBLE ENTITIES	PERIOD
Political Administrative Maps (Municipalities)	Geographic and Statistic Brazilian Institute - IBGE	2014
Legal Amazon Boundaries	Ministry of Environment - MMA	2008
Amazon Biome Boundaries	Ministry of Environment - MMA	2008
Indigenous Territories Protected Areas	Brazilian Environment Institute - IBAMA	2014
	Brazilian Environment Institute - IBAMA	2014
Deforestation	Project for Estimate the Amazon Deforestation – PRODES, developed by the National Institute of Space Research – INPE	2002- 2017

Table 3. Municipalities Data Source.

INFORMATION	SOURCE	RESPONSIBLE ENTITY	PERIOD
Amazon Biome Municipalities	Ordinance n. 96 MMA 03/27/2008	Ministry of Environment- MMA	2008
Municipalities encompassed by Protected Areas	CNUC -Protected Areas National Registry	Ministry of Environment- MMA	2015
Municipalities encompassed by Indigenous Territories	Indigenous Territories National Registry	Indigenous National Foundation - FUNAI	2015
Municipalities from the administrative regions of Alto Acre, Baixo Acre and Purus	Acre in Numbers Report	Planning State Secretariat from - SEPLAM, state government of Acre	2013
Municipalities per Brazilian States	City System	Geographic and Statistic Brazilian Institute - IBGE	2015
Protected Areas Supported by ARPA Project	ARPA spreadsheet	Amazon Protected Areas Program - ARPA, Ministry of Environment - MMA	2015
Municipalities encompassed by State Protected Areas of Pará in the North Channel of the Amazon River	Report State Protected Areas of Para in the North Channel of the Amazon River	Institute of Man and Environment of the Amazon – IMAZON	2013
Green Municipalities Program of Pará	Website with the enrolled municipalities	Geographic and Statistic Brazilian Institute - IBGE	2017
Headquarters municipalities of associations and entities partners for the implementation of projects	Amazon Fund Annual Report - RAFA	Green Municipalities State Secretariat - SEPMV, state government of Pará	2010, 2011, 2012, 2013, 2014
Municipalities encompassed by Amazon Fund projects	Amazon Fund Annual Website and annual Report - RAFA	National Bank of Socio-Economic Development - BNDES	2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017
List of critical municipalities for deforestation	Report MMA	Ministry of Environment - MMA	2014
Municipalities encompassed by Amazon Fund projects	Websites from the project managers entities	Several	2017

The next step for dataset structuration (step 3 in Fig. 9), is to identify the main components per municipality for each project. Beyond the project information from the Amazon Fund website, each project in the Amazon Fund presents a tree diagram to show their activities contribute to the main-components of the Amazon Fund, which reflects their intervention logic or theory of change (see Fig. 13 for an example). In order to identify how the financial resources of each project were divided over the main-components per municipality, we designed a second set of decision rules for determining their weights, as shown in diagram 2. In this way, the following variables were added to the main-component dataset (table 4):

809

Table 4. Variables included in the main-component level.

Variable	Description	Formula
ω_{pmk}	Weight by project/municipality/main-component (numeric);	See table 5
D_{pmkt}	Annual disbursement by project/municipality/main-component (numeric);	$D_{pmkt} = \sum_{\substack{p=1 \\ m \\ k=1 \\ t=2008}}^{p=96} (D_{pt} \times \omega_{pmk})$
$AFInv_{pmk}$	Amazon Fund investments per project/municipality/main-component (numeric);	$AFInv_{pmk} = AFInv_p \times \omega_{pmk}$
$AFInv_m$	Amazon Fund investments per municipality (numeric);	$AFInv_m = \sum_{\substack{p=1 \\ m \\ k=1}}^{k=4} (AFInv_{pmk})$
$AFInv_{mk}$	Amazon Fund investments per municipality/main-component (numeric).	$AFInv_{mk} = \sum_{p=1}^{96} (AFInv_m \times \omega_{pmk})$

810 Variable ω_{pmk} represents the ratio of representation (%) to be applied for main-component k (\in
 811 $\{1,2 \dots 4\}$) in municipality m that were supported by Amazon Fund project p ($\in \{1, 2, \dots, 96\}$) in
 812 year t ($\in \{2008, 2009, \dots, 2017\}$). In accordance with the Amazon Fund's theory of change, the main-
 813 components include Sustainable Production Activities ($k=1$), Monitoring and Control ($k=2$), Land
 814 Tenure Regularization ($k=3$), and Scientific and Technological Development ($k=4$). Monitoring and
 815 Control projects are subdivided in CAR and no CAR. Finally, the Land Tenure Regularization
 816 category was subdivided into activities exclusively related to indigenous territories ($IT=1$), protected
 817 areas ($PA=1$), territorial and ecological zoning or land management, ($OReg=1$), related to IT and PA
 818 ($ITPA=1$), and other projects ($Out=1$). The formulas for these main-components are reflected in table
 819 5.

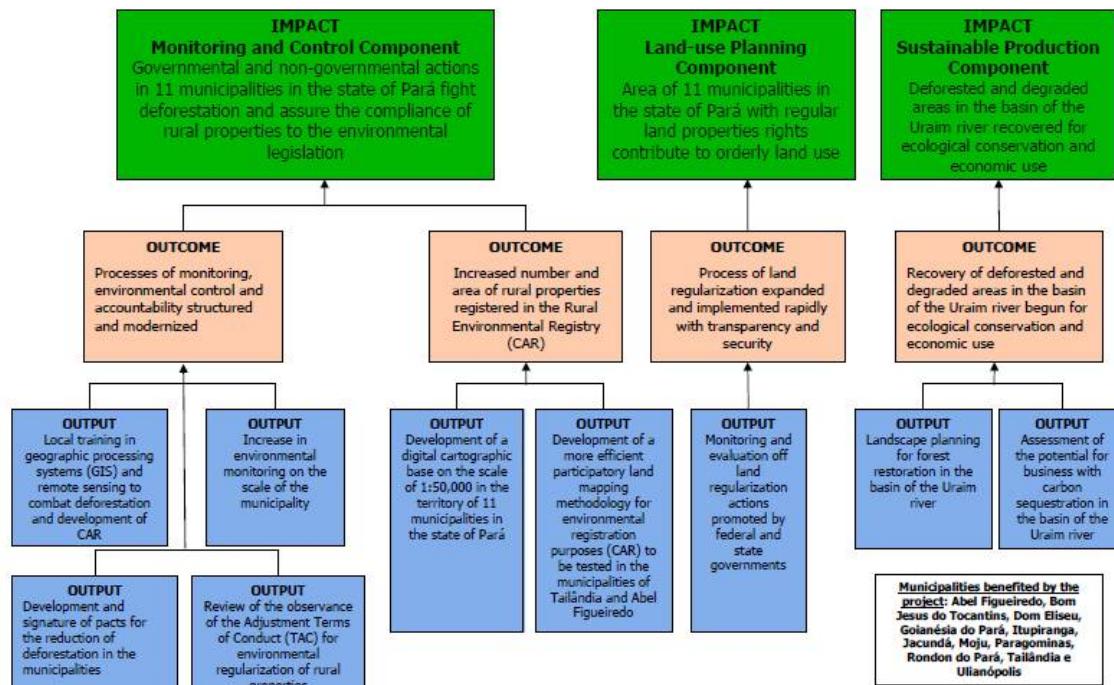
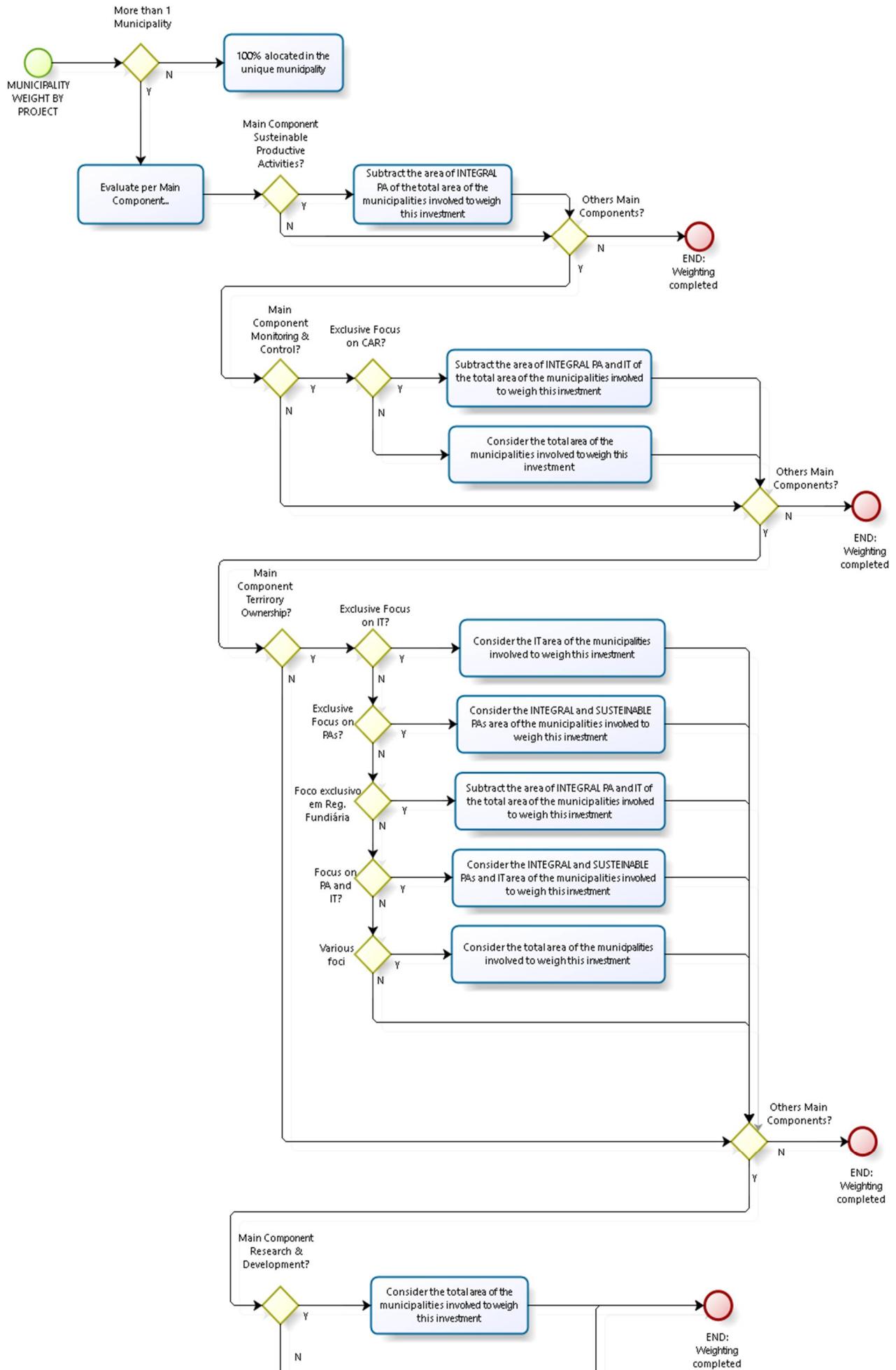

820

Table 5. Weight calculations per main-component

$k=n$	Variation	Formula
$k=1$	No variation	$\omega_{pm1} = \frac{A_{pm} - PAi_{pm}}{\sum A_{pm} - PAi_{pm}}$
$k=2$	CAR, no CAR	$\omega_{pm2}_{NO_CAR} = \frac{A_{pm}}{\sum A_{pm}} \cup \omega_{pm2}_{CAR} = \frac{A_{pm} - APi_{pm} - IT_{pm}}{\sum A_{pm} - APi_{pm} - IT_{pm}}$
$k=3$	$IT = 1$	$\omega_{pm3}_{IT=1} = \frac{IT_{pm}}{\sum IT_{pm}}$
	$PA = 1$	$\omega_{pm3}_{PA=1} = \frac{PAi_{pm} + PAs_{pm}}{\sum PAi_{pm} + PAs_{pm}}$
	$OReg = 1$	$\omega_{pm3}_{oreg=1} = \frac{A_{pm} - PAi_{pm} - TI_{pm}}{\sum A_{pm} - PAi_{pm} - TI_{pm}}$
	$ITPA = 1$	$\omega_{pm3}_{ITPA=1} = \frac{PAi_{pm} + Tl_{pm}}{\sum PAi_{pm} + Tl_{pm}}$
	$Out = 1$	$\omega_{pm3}_{out=1} = \frac{A_{pm}}{\sum A_{pm}}$
$k=4$		$\omega_{pm4} = \frac{A_{pm}}{\sum A_{pm}}$

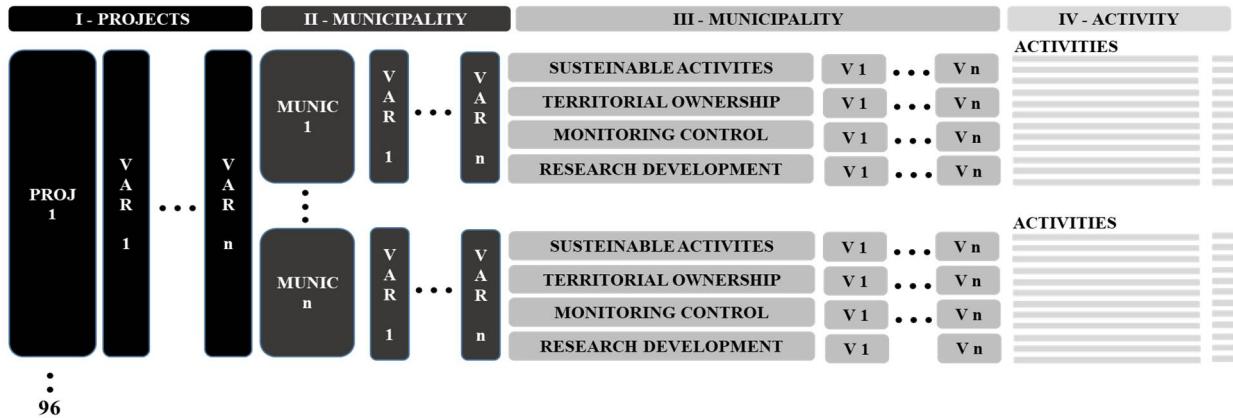
Project: Socio-environmental Management in Municipalities of Pará


Project management: IMAZON – Instituto do Homem e Meio Ambiente da Amazônia

821

822

Figure 13 Project Tree.


824 The final step for dataset structuration (step 4 in Fig. 9) concerns the break-down of the dataset
 825 by activity (also called specific-components). As a main-component can be composed by multiple
 826 activities, if more than one activity by main-component was verified, then the amounts was equally
 827 divided across them. The following variables were added:
 828

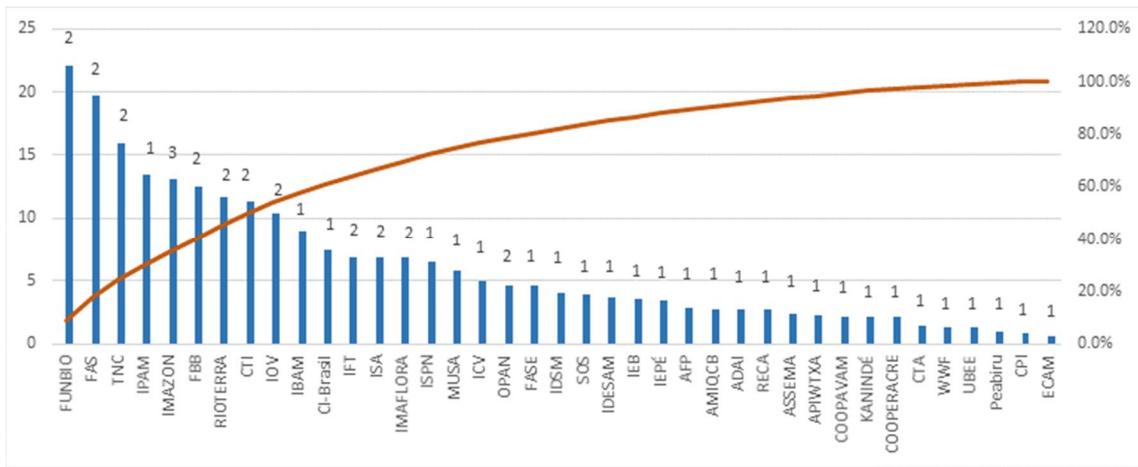
Variable	Description	Formula
$FAInv_{pmka}$	Investment per project/municipality/main-component/activity (numeric);	$FAInv_{pmks} = \frac{FAInv_{pmk}}{Q}$
D_{pmka}	Annual disbursement per project/municipality/main-component/activity (numeric).	$Des_{pmks} = \frac{Des_{pmkt}}{Q}$

829

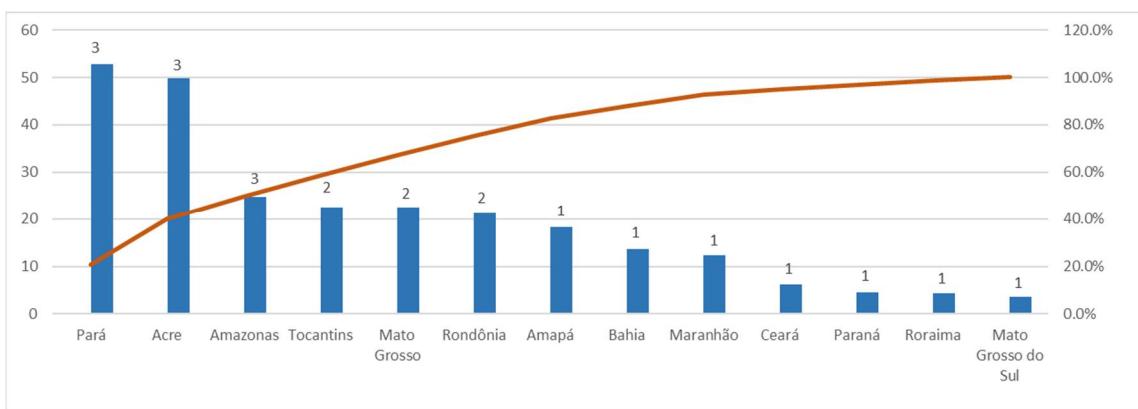
830 where Q is the quantity of activities s ;

831 After the new rows and variables added, the final database structure now provides very detailed
 832 information on how the financial resources from the Amazon Fund were allocated to individual
 833 projects and the activities and municipalities that they support (see Fig. 14 for an impression).

834


96

835


Figure 14 Final Database Structure.

836

837 Additional graphs


838

839

840
841

Figure 15 Pareto graft for NGO's and State projects (USD left bar and % of committed amounts right side).

842

843

Figure 15 Deforestation in Legal Amazon, PRODES-INPE (2017).

844

845
846**Table 3.** 10 Municipalities with the higher deforestation rates between 2016 to 2017. PRODES-INPE (2017)

Municipio	Codibge	Estado	AreaKm2	Desmatado2017	Incremento 2016-2017	Taxa de Desmatamento 2016-2017
Nova Nazaré	5106174	MT	4042	413,6	211,6	0,511605416
Novo Aripuanã	1303304	AM	41452	1336,3	127,4	0,095337873
Senador José Porfírio	1507805	PA	14389	1040,2	98,9	0,09507787
Tonantins	1304237	AM	6619	93,4	8,1	0,086723769
Portel	1505809	PA	25425	2076,2	167,8	0,08082073
Recursolândia	1718501	TO	2230	41,7	3	0,071942446
Apuí	1300144	AM	54490	2460,2	170	0,069100073
Lábrea	1302405	AM	69672	4459,4	283,7	0,063618424
Trairão	1508050	PA	11997	1407,3	81,5	0,057912314
Medicilândia	1504455	PA	8272	2190,6	116,2	0,053044828

847

*Limitations and considerations*848
849
850
851

Due to information gaps between the field surveys carried out by the BNDES and the information available on the Amazon Fund website, some premises are identified for the assembly of this database, as shown in Table 4.

Table 4. Research assumptions in response at divergences / limitations of data collection.

There is no value per principal component in field collection with BNDES	The value per main component from the field research at the BNDES worksheet were divided into 2 rows, inside and outside Amazon Biome	Project has more than 1 main component, with some of them ignored in the BNDES field collection	Project Name	Project Number	Author Premises
X			Sustainable Indigenous Amazon Project	2	Prorated 80% for the Main Component "Sustainable Activities" and 20% for "Territorial Ownership"
X			High Juruá	4	Prorated 80% for the Main Component "Sustainable Activities" and 20% for "Territorial Ownership"
X			Amazonia SAR	10	Prorated 80% for the Main Component "Monitoring & Control" and 20% for "P&D"
X			Value Chains in Indigenous Lands in Acre	11	100% on "Sustainable Acrivities", unique Main Component
X			Amazon Integrated Project	16	100% for "P&D", unique Main Component
			Sustainable Mato Grosso	21	Small divergence of R\$0.4
			Banco do Brasil Foundation - Amazon Fund	26	Considering the value of the field research at the BNDES worksheet that considers 100% in the "Sustainable Activities" component, ignoring "Territorial Planning", "Monitoring & Control" and "Scientific Development" provided by the Amazon Fund website
	X		Agroforestry business - Jari		Project considered Canceled...
X			CAR Bahia	31	100% on "Monitoring & Control", unique Main Component
	X		CAR Tocantins	36	The prorated per Main Component was calculated considering the sum of the values inside and outside the Amazon Biome
X			Strengthening environmental management in the Amazon	38	Prorated 40% for the Main Component "Monitoring & Control", 40% for "Territorial Ownership" and 20% for "P&D"
X			Sustainable Bem Viver	44	Prorated 50% for the Main Component "Sustainable Activities" and 50% for "Territorial Ownership"
		X	IREHI – Taking Care of Territory	61	Considering the value of the field research at the BNDES worksheet that considers 100% in the "Sustainable Activities" component, ignoring "Territorial Ownership" provided by the Amazon Fund website
		X	ARAPAIMA: Production Networks	62	Considering the value of the field research at the BNDES worksheet that considers 100% in the "Sustainable Activities" component, ignoring "Territorial Planning" provided by the Amazon Fund website
		X	Sustainable Environmental Management of Indigenous Lands in the State of Amazonas	65	Considering the value of the field research at the BNDES worksheet that considers 100% in the "Territorial Ownership" component, ignoring "Sustainable Acrivities" provided by the Amazon Fund website
		X	Strengthening Territorial and Environmental Management of Indigenous Land in the Amazon	70	Considering the value of the field research at the BNDES worksheet that considers 100% in the "Territorial Ownership" component, ignoring "Sustainable Activities" provided by the Amazon Fund website
X			Fruits from the Forest	71	100% on "Sustainable Acrivities", unique Main Component
X			Environmental Monitoring of Brazilian Biomes	80	Prorated 80% for the Main Component "Monitoring & Control" and 20% for "P&D"
X			Management and governance at Rio Negro Basin and Xingu - PGTAs	81	Prorated 50% for the Main Component "Sustainable Activities" and 50% for "Territorial Ownership"
X			Indigenous Territorial Management in the South of Amazonas State	82	Prorated 50% for the Main Component "Sustainable Activities" and 50% for "Territorial Ownership"
X			Consolidating Territorial and Environmental Management in Indigenous Lands	83	Prorated 50% for the Main Component "Sustainable Activities" and 50% for "Territorial Ownership"
X			Bolsa Floresta+	84	Prorated with same values than the Bolsa Floresta phase 1 Project
X			Valuable Forests - New business models for the Amazon	85	100% on "Sustainable Acrivities", unique Main Component
X			Communal Forests	86	100% on "Sustainable Acrivities", unique Main Component
X			Use of social technologies to reduce deforestation	87	100% on "Sustainable Acrivities", unique Main Component
X			Sustainable Tapajós	88	Prorated 90% for the Main Component "Sustainable Activities" and 10% for "Territorial Ownership"
X			Adding Value to Amazonian Socioprodutive Chains	89	
X			Everlasting Forest	90	Prorated 90% for the Main Component "Sustainable Activities" and 10% for "R&D"
X			Sowing Rondônia	91	Prorated 80% for the Main Component "Sustainable Activities" and 20% for "Monitoring & Control"
X			Preserving the Babassu Forest	92	100% on "Sustainable Acrivities", unique Main Component
X			Forest Cities	93	Prorated 90% for the Main Component "Sustainable Activities" and 10% for "R&D"