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Abstract: Hardy Cross originally proposed a method for analysis of flow in networks of conduits or
conductors in 1936. His method was the first really useful engineering method in the field of pipe
network calculation. Only electrical analogs of hydraulic networks were used before the Hardy
Cross method. A problem with the flow resistance versus the electrical resistance makes these
electrical analog methods obsolete. The method by Hardy Cross is taught extensively at faculties
and it still remains an important tool for analysis of looped pipe systems. Engineers today mostly
use a modified Hardy Cross method which threats the whole looped network of pipes
simultaneously (use of these methods without computers is practically impossible). A method from
the Russian practice published during 1930s, which is similar to the Hardy Cross method, is
described, too. Some notes from the life of Hardy Cross are also shown. Finally, an improved
version of the Hardy Cross method, which significantly reduces number of iterations, is presented
and discussed.

Keywords: Hardy Cross method; Pipe networks; Piping systems; Hydraulic networks; Gas
distribution.

1. Introduction

Hardy Cross solved the problem of distribution of flow in networks of pipes in his article
“Analysis of flow in networks of conduits or conductors” [1] published on November 13th 1936.

Networks of pipes are nonlinear systems since the relation between flow and pressure is not
linear. On the contrary, the relation between current and voltage in electrical networks with regular
resistors is governed by the linear Ohm’s law. Electrical circuits with diodes as well as hydraulic
networks are nonlinear systems where resistance depends on current and voltage i.e. on flow and
pressure, respectively [2].

Distribution of flow in a network of pipes depends on the known inputs and consumptions at
all nodes, on the given geometry of pipes and topology of network. A stable state of flow in a
network must satisfy Kirchhoff's laws, which represent statements of the conservation of mass and
energy. Although indefinite number of flow distributions, which satisfy the conservation of mass is
possible in theory, only one distribution from this set satisfies also the conservation of energy for all
closed paths formed by pipes in the network. This state is unique for the given network and in and
out flows [3].

Since the relation between flow and pressure is not linear, Hardy Cross used a relation between
an increment of flow and an increment of pressure, which relation is linear for a given quantity of
flow. If, however, the increments are fairly large, this linear relation is somewhat in error like for gas
compressible flow. But if the pressure drop in pipes is minor like in municipality network for natural
gas distribution, Hardy Cross method can be used without significant errors [4-6]. It can be used also
for water pipe networks ventilation systems [7] (related formulation is in Appendix A of this paper).

Hardy Cross method is an iterative method, i.e. the method of successive corrections [4].
Lobacev and Andrijasev in 1930s, writing in Russian, offered similar methods [8,9]. Probably
because of the language and the political situation in Soviet Russia, Hardy Cross was not aware of
Lobacev and Andrijasev contributions.
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Today, engineers use the mostly improved version of Hardy Cross method (AQ method), which
threats the whole looped network of pipes simultaneously [10].

One example of the pipe network for distribution of gas is analyzed using the original Hardy
Cross method [1]; in Section 2.1, its related equivalent from Russian literature [8,9]; in Section 2.2,
and finally the improved version of the Hardy Cross method [10,11]; in Section 2.3.

2. Network piping system; Flow distribution calculation

The first step in solving a pipe network problem is to make a network map showing pipe
diameters, lengths and connections between pipes (nodes). Sources of natural gas supply and
consumption rates have to be assigned to nodes. For convenience in locating pipes, to the each pipe
and the closed loop of pipes there are assigned code numbers (represented by roman numbers for
loops in Figure 1). Pipes on the network periphery are common to the one loop and those in the
network interior are common to two loops. Figure 1 is an example of pipe network for distribution of
natural gas for consumption in households.
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Figure 1. Network of pipes for natural gas distribution for domestic consumption

The next step is to write initial gas flow distribution through pipes in the network. This
distribution must be done according to the first Kirchhoff’s law. The choice of initial flows is not
critical and the criterion should satisfy the first Kirchhoff’s law for every node in the network [3].
Total gas flow arriving at a node equals total gas flow that leaves the node. The same conservation
law is also valid for the whole network in total (except of gas input and output nodes that cannot be
changed during calculations; see consumption nodes in Figure 1). Sum of pseudo-pressure drops
along any closed path must be approximately zero for the network to be in balance according to the
second Kirchhoff’s law. In this paper, the flow distribution, which satisfies both Kirchhoff’s laws will
be calculated using the Hardy Cross iterative method. Renouard formula; Eq. (1) fits best a natural
gas distribution system built with polyethylene (PVC) pipes [12,13]. Computed pressure drops are
always less than actual drop since the maximal consumption is occurred only during extremely
severe winter days [14].

1.82
f=A52=pf—p§=4810-pr% 1)

Where f is function of pressure, or is relative gas density (dimensionless); here 0=0.64, L is
length of pipe (m), D is diameter of pipe (m), Q is flow (m?3/s), AQ is flow correction (m?/s), and p is
pressure (Pa).

As shown in Appendix A of this paper, another formulas are used in the case of waterworks
systems [15,16] or ventilation networks [7].

Regarding to the Renouard formula; Eq. (1) one has to be careful since the pressure drop
function, f, does not relate pressure drop but actually difference of the quadratic pressure at the
input and the output of pipe. This means that \/A_ﬁz = /p? — p5 is not actually pressure drop in
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spite of the same unit of measurement, i.e. the same unit is used as for pressure (Pa). Parameter
\/A—ﬁz can be noted as pseudo-pressure drop. Fact is that gas is actually compressed and hence that
volume of gas is decreased and then such compressed volume of gas is conveying with constant
density through gas distribution pipeline. Operate pressure for typical distribution gas network is
4x10°Pa abs i.e. 3x10°Pa gauge and accordingly volume of gas decreases four times compared to the
volume of gas at normal (or standard) conditions. Pressure in the Renouard formula is for normal
(standard) conditions.

First derivative ' of the Renouard relation; Eq. (2) where the flow is treated as variable is used
in the Hardy Cross method.

0.82
fr= Q) g gp.4g10. 0L Q°F )
aQ D4.82

First assumed gas flow in each pipe is listed in the third column of Table 1. The plus or minus
preceding flow indicates the direction of the flow through pipe for the particular loop [11,17]. A plus
sign denotes counterclockwise flow in the pipe within the loop while minus sign, clockwise. Loop
direction can be chosen to be clockwise or counterclockwise (in Figure 1 all loops are
counterclockwise).

2.1. Hardy Cross method

Pressure drop function for each pipe is listed in Table 1 (for initial flow pattern in the forth
column). Sign in front of the pressure drop function shown in forth column is the same as for flow
from the observed iteration. In the fifth column of Table 1 are listed the first derivatives of pressure
drop function where flow is treated as variable. Column of the function of pressure drops is added
algebraically while column of the first derivatives is added arithmetically for each loop. Flow
correction AQ has to be computed for each loop x; Eq. (3).

0.PrL-QM

Zif Z+481 D482
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x ZP 82-4810- pr4782

For the network from Figure 1, the flow corrections for the first iteration in each loop can be
calculated using Eq. (4).
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In the second iteration, the calculated correction AQ has to be added algebraically to the
assumed gas flow (first initial flow pattern). Further, the calculated correction AQ has to be
subtracted algebraically from the gas flow computed in previous iteration. This means that the
algebraic operation for the first correction is opposite of its sign, i.e. add when the sign is minus and
opposite. A pipe common to two loops receives two corrections simultaneously. First correction is
from the particular loop under consideration while the second one is from the adjacent loop which
observed pipe also belong to.
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Table 1. Procedure for solution of flow problem for network from figure 1 using modified Hardy
Cross method (first two iterations) — First iteration

Iteration 1
Loop Pipe  *Q bf=pZ —p3 <If| IAQ: AQ 1Qi=Q

1 -0.3342 -144518566.8 7870251092  -0.0994 -0.4336
7 +0.7028 +859927106.7 22269028660  -0.0994 +0.6034
8  +0.3056 +306964191.0 18281244358 -0.0994 -0.0532= +0.1530
! 9 +0.2778 +800657172.4 5245486154.8  -0.0994 -0.0338= +0.1446
10 -0.1364 -241342976.1 32202655167  -0.0994  +0.0142% 02217
12 -0.0167 -6238747.4 6799113984  -0.0994  +0.0651% -0.0511

b fi=+1575448179.8  13987715480.9
2 -0.0026 -80628.9 564402124 -0.0651 -0.0677
I 11 -0.1198 -14582531.0 2215376159  -0.0651 +0.0142% -0.1707
12 +0.0167 +6238747 4 6799113984  -0.0651  +0.0994F +0.0511

b fi=-8424412.4 957889226.7
3 -0.2338 -406110098.1 31613360931  -0.0142 -0.2480
4 400182 +1530938.1 153093808.5  -0.0142 +0.0040
m 10  +0.1364 +241342976.1 32202655167  -0.0142  +0.0994F +0.2217
11 +0.1198 +14582531.0 2215376159  -0.0142  +0.0651 F +0.1707
14 -0.0278 -21840183.8 14298249805  -0.0142  -0.0338+ -0.0757

b fi=-170493836.7 8186058014.8
5 +0.0460 +7523646.2 297674697.0  +0.0338 +0.0798
9  -02778 -800657172.4 5245486154.8  +0.0338  +0.0994% -0.1446
v 13 +0.0278 +21840183.8 14298249805  +0.0338 -0.0532= +0.0084
14 +0.0278 +21840183.8 1429824980.5  +0.0338  +0.0142F +0.0757

b fiv=-749453158.7 8402810812.8
6  +0.0182 +3479197.2 3479197200  +0.0532 +0.0714
\% 8  -0.3056 -306964191.0 18281244358  +0.0532  +0.0994% -0.1530
13 -0.0278 -21840183.8 1429824980.5  +0.0532  -0.0338 % -0.0084

T fv=-325325177.5 3605869136.3

apipe lengths, diameters and initial flow distribution are shown in Table 2 and Figure 1, ®f calculated using
Renouard equation (1), <f" calculated using first derivative of Renouard equation (2); flow is variable, dcalculate
using matrix equation (10) and enter AQ with opposite sign (using original Hardy Cross method for iteration 1:
AQ=+0.1126; AQu=-0.0088; AQu=-0.0208; AQiv=-0.0892; AQv=-0.0902; using Lobacev method for iteration 1:
AQ=-0.1041; AQi=-0.0644; AQu=-0.0780; AQiv=+0.1069; AQv=-0.1824), *AQ:2 is AQ: from adjacent loop, final
calculated flow in the first iteration is used for the calculation in the second iteration, etc., 8if Q and Qi1 have
different sign, this means that flow direction is opposite than in previous iteration, etc (this will be with flow in

pipe 13 between iteration 3 and 4).
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Table 1. Cont. — Second iteration
Iteration 2

Loop Pipe  Qi=Q o =p; —p; clf | IAQi eAQ2 Q=Q
1 -0.4336 -232172997.6 974431560.7 -0.0058 -0.4394
7 +0.6034 +651439280.6 1965036192.1 -0.0058 +0.5976
8 +0.1530 +87112249.4 1036457217.8 -0.0058 -0.0178=  +0.1294
! 9  +0.1446 +243990034.4 3070921097.1 -0.0058 -0.0098= +0.1290
10 -0.2217 -584137977.5 4795666298.0 -0.0058 +0.00181 -0.2257
12 -0.0511 -47725420.6 1700518680.1 -0.0058 -2.17105+  -0.0569

X fr=+118505168.7 13543031045.9
2 -0.0677 -30372941.9 816962908.0 +2.1-105 -0.0676
1I 11 -0.1707 -27780459.9 296182372.8 +2.1-105 +0.0018% -0.1689
12 +0.0511 +47725420.6 1700518680.1 +2.1-105 +0.0068 +  +0.0569

X fi=-10427981.2 2813663960.8
3 -0.2480 -451970989.4 3317464222.8 -0.0018 -0.2497
4 +0.0040 +99061.2 44589235.4 -0.0018 +0.0023
111 10 +0.2217 +584137977.5 4795666298.0 -0.0018 +0.0058+ +0.2257
11 +0.1707 +27780459.9 296182372.8 -0.0018 -2.1'110°=  +0.1689
14 -0.0757 -135261698.0 3251481942.9 -0.0018 -0.0098t  -0.0873

X fmr=+24784811.3 11705384072.0
5 +0.0798 +20483898.1 467437803.0 +0.0098 +0.0896
9 -0.1446 -243990034.4 30709210971 +0.0098 +0.00581 -0.1290
v 13 +0.0084 +2454799.0 534076127.2 +0.0098 -0.0178= +0.0004
14 +0.0757 +135261698.0 3251481942.9 +0.0098 +0.0018 + +0.0873

2 frv=-85789639.2 7323916970.2
6 +0.0714 +41857166.9 1067095933.1 +0.0178 +0.0892
\Y 8 -0.1530 -87112249.4 1036457217.8 +0.0178 +0.0058% -0.1294
13 -0.0084 -2454799.0 534076127.2 +0.0178 -0.0098t  -0.0004

by fv=-47709881.5 2637629278.1

O O
Upper
sign (+) _ Lower
ToooTT Usign ()
AQn:'I"V
Upper % /,
sign (+) -7
Llower - —————__ | _____- -7
sign (+)
QO

Figure 2. Rules for upper and lower sign (correction from adjacent loop; second correction)
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The upper sign after second correction in Table 1 is plus if the flow direction in mutual pipe
coincides with assumed orientation of adjacent loop, and minus if it does not (Figure 2). Lower sign
is the sign in front of correction AQ calculated for adjacent loop (Figure 2).

Details for signs of corrections can be seen in Brkic¢ [11] and Corfield et al. [17].

The algebraic operation for second correction should be the opposite of its lower sign when its
upper sign is the same as the sign in front of flow Q, and as indicated by its lower sign when its
upper sign is opposite to the sign in front of flow Q.

The calculation procedure is repeated until the net algebraic sum of pressure functions around
each loop is as close to zero as the degree of precision desired demands. This also means that the
calculated corrections of flow and change in calculated flow between two successive iterations is
approximately zero. The pipe network is then in approximate balance and calculation after the
Hardy Cross can be terminated.

In the original Hardy Cross method, the corrections for the first iteration are:
AQ=1575448179.8/13987715480.9=+0.1126,
AQr=-8424412.4/957889226.7=-0.0088,
AQu=-170493836.7/8186058014.8=-0.0208,
AQw=-749453158.7/8402810812.8=-0.0892 and
AQv=-325325177.5/3605869136.3=-0.0902.

2.2. Version of Hardy Cross method from Russian practice

As mentioned in introduction, two Russian authors, Lobacev [8] and AndrijaSev [9], proposed
similar method as Hardy Cross [1]. These two methods are also from the 1930’s. It is not clear if
Hardy Cross had been aware of the contribution of these two authors from Soviet Russia and vice
versa, but most probably answer to this question is no, for both sides. The main difference between
Hardy Cross and Andrijasev method is that in method of Andrijasev contours can be defined to
include few loops. This strategy only complicated situation while the number of required iteration
remains unchanged.

Further on Andrijasev method can be seen from the example in paper of Brkic¢ [3].

Here it will be shown the method of Lobacev in more details.

In Hardy Cross method, influence of adjacent loops is neglected. Lobacev method takes into
consideration this influence; Eq. (5):

+q_ fl.‘""f%""‘fs“‘*"f;"*"_ flvo“*"_ fl.z‘)'AQl +‘f1v2"AQ|| +‘fllo"AQm +‘f9.“AQ|v + fé 'AQV =_f1 + f7 + fs + fg - flO - f12
+‘fllz"AQ| 7q7 fz“w* f1'1‘+‘f1‘2‘)'AQu 7‘f1‘1"AQm :7f2 - f11Jr f12
+‘f1lo“AQ| _q_ fa“‘*‘fg“*‘fllo""‘f;l“"‘_ fl;i‘)'AQIII _‘f1I1 ‘AQu _‘f1;1"AQ|v =_f3 + f4 + f10 + f11_ flA (5)
+‘fgl"AQ| _‘fl.zt"AQlll —QfQ‘-;—‘— fg“""ﬂs""‘flg‘ 'Ale _‘fl.S 'AQV = fs - fg + f13+ f14
+‘f8l"AQ| 7‘f1‘3"AQIV 7qf6"+‘7 f;‘*‘ﬂa‘ AQ, =fo —fg + fyy

In previous system of equations; Eq. (5), sings in front of terms from the left side of equal sign
have to be determined (this is much more complex than in the Hardy Cross method). So, in Lobacev
method if (Xf)x>0 then sign in front of (X 1f'|)x has to be positive, and opposite (for the first iteration
this can be seen in table 1; f=+1575448179.8>0, fi=-8424412.4<0, fu=-170493836.7<0,
frv=-749453158.7<0, fv=-325325177.5<0). Sign for other terms (these terms are sufficient in the Hardy
Cross method) will be determined using further rules and scheme from Figure 3.
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Figure 3. Rules for terms from Lobacev equations which do not exist in Hardy Cross method

From Figure 3 it can be seen that if (Xf)x>0 and if the assumed flow coincides with the loop
direction, then the sing of flow in adjacent pipe is negative and if the flow does not coincide with the
loop direction then the sing of flow in the adjacent pipe is positive. And opposite, if (£f)x<0 and if the
assumed flow coincides with the loop direction, then the sing of flow in the adjacent pipe is positive
and if the flow does not coincide with the loop direction then the sing of flow in the adjacent pipe is
negative. This procedure determines the sign in the front of flow correction (AQ) which are shown in
Figure 3 with black letters (also in Figure 4 for our example network of pipes).

' fi<
SR DA 0
)12
£V (g -
+ -
- o e
+ 10 PRET
+ -
- - 1
14
fi<0

Figure 4. Rules for terms from Lobacev equations which do not exist in the Hardy Cross method
applied for the network from Figure 1

If (Xf)x from adjacent loop is positive while loop direction and assumed flow do not coincide,
flow correction from adjacent loop changes its sign and opposite if (Xf)x from adjacent loop is
positive while loop direction and assumed flow coincide, flow correction from adjacent loop does
not change its sign. If (Xf)x from adjacent loop is negative while loop direction and assumed flow do
not coincide, flow correction from adjacent loop does not change its sign and opposite if (Xf)x from
adjacent loop is negative while loop direction and assumed flow do not coincide, flow correction
from adjacent loop changes its sign. These four parameters are connected in Figure 3 with the same
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colored lines. Flow corrections (AQ) shown in Figure 4 with different colors are used with the related
signs in Eq. (5). They are chosen in a similar way as explained in example from Figure 3.

So, instead simple equations as in the original Hardy Cross method, in Lobacev method, the
system of Egs. (6) has to be solved.

+1398771548.9-AQ, +6799113984-AQ, +32202655167-AQ,, +52454861548-AQ,, +18281244358-AQ, = +15754481798
+6799113984-AQ, —9578892267-AQ, — 2215376159 AQ,, =-8424412.4
+32202655167-AQ, ~81860580148-AQ,, —~ 2215376159-AQ, ~14208249805-AQ,, =-1704938367 . ()
+52454861548-AQ, —14298249805- AQ,, —84028108128-AQ,, —14298249805-AQ, =-7494531587
+18281244358- AQ, —14298249805- AQ,, — 36058691363 AQ, =-3253251775

Underlined terms in Egs. (6) do not exist in the Hardy Cross method.

In the Lobacev method, corrections for the first iterations are AQx=A(AQx)/A, where A for the
first iteration is; Eq. (7).

1398771548.9 6799113984 32202655167 52454861548 18281244358
6799113984 -9578892267 -2215376159 0 0
A =|32202655167 -2215376159 -81860580148 -14298249805 0 =+3.97-10"* (7)
52454861548 0 -14298249805 -84028108128 -14298249805
18281244358 0 0 -14298249805 -36058691363
While AQx for the first iteration is; Eq. (8).
15754481798 6799113984 32202655167 52454861548 18281244358
-8424412.4 -9578892267 -2215376159 0 0
A(AQ,)=|-1704938367 -2215376159 -81860580148 -14298249805 0 =-4.14.10" 8)
- 7494531587 0 -14298249805 -84028108128 -14298249805
-3253251775 0 0 -14298249805 -36058691363
Correction for the first loop in the first iteration is; Eq. (9).
AlA -4.14-10"
aQ, = A4Q) _ ~-0.1041 ©)

A +3.97-10"

Other corrections in the first iteration are AQn=-0.0644, AQmu=-0.0780, AQw=+0.1069 and
AQv=-0.1824.

The Lobacev method is more complex compared to the original Hardy Cross method. Number
of required iterations is not reduced using Lobacev procedure compared with the original Hardy
Cross procedure.

2.3. Modified Hardy Cross method

The Hardy Cross method can be noted in matrix form. Gas distribution network from Figure 1
has five independent loops; Eq. (10).

Yoo 0 0 0 |rag 1 [ 2#h ]

o Y| o 0 0 | aQu| | Dt

0 0 Z‘fllu‘ 0 0 [XAQy (= Zifm (10)
0 0 0 Z‘f,\,‘ 0 AQyy Zifw

o 0 0 o S LAQv ]| >ty |
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Same results for the corrections are by using Eq. (4) for each particular loop in the network and
Eq. (10) using matrix calculation. Epp and Fowler [10] improved original Hardy Cross method [1] by
replacing some of the zeroes in non-diagonal terms of Eq. (10). For example, if pipe 8 is mutual for
loop I and V, first derivative of pressure drop function for the observed pipe where flow is treated as
variable will be put with the negative sign in the first column and the fifth row and also in the fifth
column and the first row; Eq. (11).

DIl fe o fe o g [k, ]
1 z‘flll‘ ~f 0 0 AQ, Zif"
T Z‘fllu‘ —fy, 0 |X AQy |= Zif,“ (11)
—fo 0 —fi Z‘f v ‘ ~fi | |AQw Z hy
f 00 -ty YR HV [ 2]

In the modified Hardy Cross method, corrections for the first iterations are (12); where
solutions are listed in Table 1.

+1398771548.9 -6799113984 -32202655167 -52454861548 -18281244358 | | AQ, +15754481798
-6799113984  +9578892267 -2215376159 0 0 AQ, -8424412.4
-32202655167 -2215376159 +81860580148 -14298249805 0 X| AQ,, |=| -1704938367 (12)
-52454861548 0 -14298249805 +84028108128 -14298249805 | | AQ,, - 7494531587
-18281244358 0 0 -14298249805 +36058691363 | | AQ, -3253251775
This procedure reduces number of iterations required for solution of the problem significantly
(Figure 5).
200 1 AQ, (m¥n)
400 T eseeees Original Hardy Cross
300
Modified Hardy Cross
200 -
100 -
0 - . - T seeesscens
-100 - v
‘~o
-200 - Iteration
1 2 3 4 5 6 7 8 9 10

Figure 5. Number of required iteration for solution using original vs. improved Hardy Cross method

First two iterations for example network from Figure 1 is shown in Table 1. Pipe diameters and
lengths, as well as first assumed and final, calculated flow distribution for the network in balance are
shown in Table 2.

Gas velocity in network is small (can be up to 10-15 m/s). Network can be subject of diameter
optimization (as in [4]) which can be done also by using Hardy Cross method (diameter correction
AD should be calculated for known and locked up flow where first derivative of Renouard function
have to be calculated for diameter as variable). Network should stay as is if gas consumption in
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distance future which cannot be estimated now, are planned to be detached on nodes 5, 6, 8 and 10
(then pipes 4 and 13 will be useful in future with increased flow of gas).

Some similar examples but in case of water flow can be seen in [18]. Optimization of pipe
diameters in water distributive pipe network using this method can be seen in [6].

Table 2. Pipe diameters and lengths, flows and velocities of gas within pipes

+Pipe number Diameter (m) Length (m) PAssumed Calculated Gas velocity
flows (m3/h) flows (m3h) (m/s)

1 0.305 1127.8 1203.2 1583.6 1.5

2 0.203 609.6 9.2 245.2 0.5

3 0.203 853.4 841.6 899.7 1.9

4 0.203 335.3 65.6 7.5 0.01

5 0.203 304.8 165.6 320.2 0.7

6 0.203 762.0 65.6 3227 0.7

7 0.203 243.8 2530.0 2149.6 4.6

8 0.203 396.2 1100.0 462.4 1.0

9 0.152 304.8 1000.0 465.0 1.8

10 0.152 335.3 491.2 813.5 3.1

11 0.254 304.8 431.2 609.1 0.8

12 0.152 396.2 60.0 204.8 0.8

13 0.152 548.6 100.0 4-2.6 -0.009

14 0.152 548.6 100.0 312.7 1.2

anetwork from figure 1 (flows are for normal pressure conditions; real pressure in network is 4x10° Pa abs i.e.

3x10° Pa)

bchosen to satisfy first Kirchhoff’s law for all nodes (dash arrows in figure 1)

ccalculated to satisfy first Kirchhoff’s law for all nodes and second Kirchhoff’s law for all closed path formed by
pipes (full errors in figure 1)

dsign minus means that direction of flow is opposite then in initial pattern for assumed flows

3. Conclusions

Essentially what Hardy Cross did was to simplify the monumental mathematical task of
calculating innumerable equations to solve complex problems in the fields of structural and
hydraulic engineering long before the computer age. He revolutionized how the profession
addressed complicated problems. Today, in engineering practice, the modified Hardy Cross method
proposed by Epp and Fowler [10] is used rather than the original version of Hardy Cross method [1].
Also, methods proposed by Hamam and Brameller [19], and those by Wood, and Charles [20], and
Wood and Rayes [21] are in common practice. Also, node oriented method proposed by Shamir and
Howard [22] is also a sort of Hardy Cross method.

Professional engineers use different kind of looped pipeline professional software [23], but even
today, engineers invoke name of Hardy Cross with awe. When petroleum and natural gas or civil
engineers have to figure out what was happening in looped piping systems [24], they inevitably
turned to what is generally known as the Hardy Cross method. Original Hardy Cross is still
extensively used for teaching and learning purpose [6]. This method is even today constantly being
improved.

View of Hardy Cross was that engineers lived in a real world with real problems and that it was
their job to come up with answers to questions in design even if approximations were involved.
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After Hardy Cross, essential idea which he wished to present involves no mathematical relations
except the simplest arithmetic.

Ruptures of pipes with leakage can be detected using the Hardy Cross method because every
single-point disturbances affects the general distribution of flow and pressure [25,26].

Some details about life and work of Hardy Cross are given in Appendix B.

Conflicts of Interest: The authors declare no conflict of interest. Neither the European Commission, Alfatec,
VSB—Technical University of Ostrava nor any person acting on behalf of them is responsible for the use which
might be made of this publication.

Appendix A: Hydraulic models for water pipe networks and for ventilation systems

To relate pressure p with flow Q, instead of Eq. (1) which is used for gas distribution networks in
municipalities, for water distribution is recommended Darcy-Weisbach correlation and Colebrook
equation; Eq. (A.1) [15], and for ventilation systems Atkinson equation; Eq. (A.2) [7]:

L 2511, ¢
7= 2 logio ( re i 3.71-D) Al
_ 8pAL-Q? @D
Ap - w2.ps
. b g (A.2)

= 2-C3-A2

Appendix B: Life and work of Hardy Cross

Hardy Cross (1885-1959) was one of America’s most brilliant engineers [27-31]. He received BS
degree in arts in 1902 and BS degree in science in 1903, both from Hampden-Sydney College where
he taught English and Mathematics. Hardy Cross also took BS degree in 1908 from Massachusetts
Institute of Technology and MCE degree from Harvard University in 1911, both in civil engineering.
He taught civil engineering at Brown University from 1911 until 1918. He left teaching twice to get
involved in the practice of structural and hydraulic engineering, from 1908 until 1909, and from 1918
until 1921. The most creative years of Hardy Cross were spent at the University of Illinois in
Champaign-Urbana where he was professor of structural engineering from 1921 until 1937. His
famous article “Analysis of flow in networks of conduits or conductors” was published in 1936 in
Urbana Champaign University Illinois Bulletin; Engineering Experiment Station number 286 [1]. His
name is also famous in the field of structural engineering [32,33]. He developed moment distribution
method for statically indeterminate structures in 1932 [34]. This method has been superseded by
more powerful procedures, but still, the moment distribution method made possible the efficient
and safe design of many reinforced concrete buildings during an entire generation. Furthermore,
solution of the here discussed pipe network problems was a by-product of his explorations in
structural analysis. Later, Hardy Cross was Chair of the Department of Civil Engineering at Yale,
from 1937 until the early 1950s.

Nomenclature

The following symbols are used in this paper:

or relative gas density (-); here 0:=0.64
density of air (kg/m?); here 0=1.2 kg/m3

L length of pipe (m)

D  diameter of pipe (m)

Q flow (m?¥/s)

AQ flow correction (m?/s)
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p  pressure (Pa)

Ap pressure correction (Pa)

f  function of pressure

f'  first derivative of function of pressure

A Darcy (Moody) flow friction factor (dimensionless)
Re Reynolds number (dimensionless)

relative roughness of inner pipe surface (dimensionless)

Cy flow discharge coefficient (dimensionless)
A area of ventilation opening (m?)

n  Ludolph number; m~3.1415
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