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Abstract: Hardy Cross originally proposed a method for analysis of flow in networks of conduits or 

conductors in 1936. His method was the first really useful engineering method in the field of pipe 

network calculation. Only electrical analogs of hydraulic networks were used before the Hardy 

Cross method. A problem with the flow resistance versus the electrical resistance makes these 

electrical analog methods obsolete. The method by Hardy Cross is taught extensively at faculties 

and it still remains an important tool for analysis of looped pipe systems. Engineers today mostly 

use a modified Hardy Cross method which threats the whole looped network of pipes 

simultaneously (use of these methods without computers is practically impossible). A method from 

the Russian practice published during 1930s, which is similar to the Hardy Cross method, is 

described, too. Some notes from the life of Hardy Cross are also shown. Finally, an improved 

version of the Hardy Cross method, which significantly reduces number of iterations, is presented 

and discussed. 

Keywords: Hardy Cross method; Pipe networks; Piping systems; Hydraulic networks; Gas 

distribution. 

 

1. Introduction 

Hardy Cross solved the problem of distribution of flow in networks of pipes in his article 

“Analysis of flow in networks of conduits or conductors” [1] published on November 13th 1936. 

Networks of pipes are nonlinear systems since the relation between flow and pressure is not 

linear. On the contrary, the relation between current and voltage in electrical networks with regular 

resistors is governed by the linear Ohm’s law. Electrical circuits with diodes as well as hydraulic 

networks are nonlinear systems where resistance depends on current and voltage i.e. on flow and 

pressure, respectively [2].  

Distribution of flow in a network of pipes depends on the known inputs and consumptions at 

all nodes, on the given geometry of pipes and topology of network. A stable state of flow in a 

network must satisfy Kirchhoff's laws, which represent statements of the conservation of mass and 

energy. Although indefinite number of flow distributions, which satisfy the conservation of mass is 

possible in theory, only one distribution from this set satisfies also the conservation of energy for all 

closed paths formed by pipes in the network. This state is unique for the given network and in and 

out flows [3].  

Since the relation between flow and pressure is not linear, Hardy Cross used a relation between 

an increment of flow and an increment of pressure, which relation is linear for a given quantity of 

flow. If, however, the increments are fairly large, this linear relation is somewhat in error like for gas 

compressible flow. But if the pressure drop in pipes is minor like in municipality network for natural 

gas distribution, Hardy Cross method can be used without significant errors [4-6]. It can be used also 

for water pipe networks ventilation systems [7] (related formulation is in Appendix A of this paper). 

Hardy Cross method is an iterative method, i.e. the method of successive corrections [4]. 

Lobačev and Andrijašev in 1930s, writing in Russian, offered similar methods [8,9]. Probably 

because of the language and the political situation in Soviet Russia, Hardy Cross was not aware of 

Lobačev and Andrijašev contributions.  
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Today, engineers use the mostly improved version of Hardy Cross method (ΔQ method), which 

threats the whole looped network of pipes simultaneously [10]. 

One example of the pipe network for distribution of gas is analyzed using the original Hardy 

Cross method [1]; in Section 2.1, its related equivalent from Russian literature [8,9]; in Section 2.2, 

and finally the improved version of the Hardy Cross method [10,11]; in Section 2.3.  

2. Network piping system; Flow distribution calculation 

The first step in solving a pipe network problem is to make a network map showing pipe 

diameters, lengths and connections between pipes (nodes). Sources of natural gas supply and 

consumption rates have to be assigned to nodes. For convenience in locating pipes, to the each pipe 

and the closed loop of pipes there are assigned code numbers (represented by roman numbers for 

loops in Figure 1). Pipes on the network periphery are common to the one loop and those in the 

network interior are common to two loops. Figure 1 is an example of pipe network for distribution of 

natural gas for consumption in households. 

 

 

Figure 1. Network of pipes for natural gas distribution for domestic consumption 

The next step is to write initial gas flow distribution through pipes in the network. This 

distribution must be done according to the first Kirchhoff’s law. The choice of initial flows is not 

critical and the criterion should satisfy the first Kirchhoff’s law for every node in the network [3]. 

Total gas flow arriving at a node equals total gas flow that leaves the node. The same conservation 

law is also valid for the whole network in total (except of gas input and output nodes that cannot be 

changed during calculations; see consumption nodes in Figure 1). Sum of pseudo-pressure drops 

along any closed path must be approximately zero for the network to be in balance according to the 

second Kirchhoff’s law. In this paper, the flow distribution, which satisfies both Kirchhoff’s laws will 

be calculated using the Hardy Cross iterative method. Renouard formula; Eq. (1) fits best a natural 

gas distribution system built with polyethylene (PVC) pipes [12,13]. Computed pressure drops are 

always less than actual drop since the maximal consumption is occurred only during extremely 

severe winter days [14].  
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Where f is function of pressure, ρr is relative gas density (dimensionless); here ρr=0.64, L is 

length of pipe (m), D is diameter of pipe (m), Q is flow (m3/s), ΔQ is flow correction (m3/s), and p is 

pressure (Pa). 

As shown in Appendix A of this paper, another formulas are used in the case of waterworks 

systems [15,16] or ventilation networks [7]. 

Regarding to the Renouard formula; Eq. (1) one has to be careful since the pressure drop 

function, f, does not relate pressure drop but actually difference of the quadratic pressure at the 

input and the output of pipe. This means that          
    

  is not actually pressure drop in 
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spite of the same unit of measurement, i.e. the same unit is used as for pressure (Pa). Parameter 

      can be noted as pseudo-pressure drop. Fact is that gas is actually compressed and hence that 

volume of gas is decreased and then such compressed volume of gas is conveying with constant 

density through gas distribution pipeline. Operate pressure for typical distribution gas network is 

4x105Pa abs i.e. 3x105Pa gauge and accordingly volume of gas decreases four times compared to the 

volume of gas at normal (or standard) conditions. Pressure in the Renouard formula is for normal 

(standard) conditions.  

First derivative f’ of the Renouard relation; Eq. (2) where the flow is treated as variable is used 

in the Hardy Cross method. 
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First assumed gas flow in each pipe is listed in the third column of Table 1. The plus or minus 

preceding flow indicates the direction of the flow through pipe for the particular loop [11,17]. A plus 

sign denotes counterclockwise flow in the pipe within the loop while minus sign, clockwise. Loop 

direction can be chosen to be clockwise or counterclockwise (in Figure 1 all loops are 

counterclockwise). 

2.1. Hardy Cross method 

Pressure drop function for each pipe is listed in Table 1 (for initial flow pattern in the forth 

column). Sign in front of the pressure drop function shown in forth column is the same as for flow 

from the observed iteration. In the fifth column of Table 1 are listed the first derivatives of pressure 

drop function where flow is treated as variable. Column of the function of pressure drops is added 

algebraically while column of the first derivatives is added arithmetically for each loop. Flow 

correction ΔQ has to be computed for each loop x; Eq. (3). 
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 (3) 

For the network from Figure 1, the flow corrections for the first iteration in each loop can be 

calculated using Eq. (4). 
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In the second iteration, the calculated correction ΔQ has to be added algebraically to the 

assumed gas flow (first initial flow pattern). Further, the calculated correction ΔQ has to be 

subtracted algebraically from the gas flow computed in previous iteration. This means that the 

algebraic operation for the first correction is opposite of its sign, i.e. add when the sign is minus and 

opposite. A pipe common to two loops receives two corrections simultaneously. First correction is 

from the particular loop under consideration while the second one is from the adjacent loop which 

observed pipe also belong to.  
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Table 1. Procedure for solution of flow problem for network from figure 1 using modified Hardy 

Cross method (first two iterations) – First iteration 

  Iteration 1 

Loop Pipe aQ bf=
2
2

2
1 pp   c|f’| dΔQ1 eΔQ2 fQ1=Q 

I 

1 -0.3342 -144518566.8 787025109.2 -0.0994  -0.4336 

7 +0.7028 +859927106.7 2226902866.0 -0.0994  +0.6034 

8 +0.3056 +306964191.0 1828124435.8 -0.0994 -0.0532= +0.1530 

9 +0.2778 +800657172.4 5245486154.8 -0.0994 -0.0338= +0.1446 

10 -0.1364 -241342976.1 3220265516.7 -0.0994 +0.0142‡ -0.2217 

12 -0.0167 -6238747.4 679911398.4 -0.0994 +0.0651‡ -0.0511 

  Σ fI=+1575448179.8 13987715480.9    

II 

2 -0.0026 -80628.9 56440212.4 -0.0651  -0.0677 

11 -0.1198 -14582531.0 221537615.9 -0.0651 +0.0142‡ -0.1707 

12 +0.0167 +6238747.4 679911398.4 -0.0651 +0.0994   +0.0511 

  Σ fII=-8424412.4 957889226.7    

III 

3 -0.2338 -406110098.1 3161336093.1 -0.0142  -0.2480 

4 +0.0182 +1530938.1 153093808.5 -0.0142  +0.0040 

10 +0.1364 +241342976.1 3220265516.7 -0.0142 +0.0994   +0.2217 

11 +0.1198 +14582531.0 221537615.9 -0.0142 +0.0651   +0.1707 

14 -0.0278 -21840183.8 1429824980.5 -0.0142 -0.0338   -0.0757 

  Σ fIII=-170493836.7 8186058014.8    

IV 

5 +0.0460 +7523646.2 297674697.0 +0.0338  +0.0798 

9 -0.2778 -800657172.4 5245486154.8 +0.0338 +0.0994‡ -0.1446 

13 +0.0278 +21840183.8 1429824980.5 +0.0338 -0.0532= +0.0084 

14 +0.0278 +21840183.8 1429824980.5 +0.0338 +0.0142   +0.0757 

  Σ fIV=-749453158.7 8402810812.8    

V 

6 +0.0182 +3479197.2 347919720.0 +0.0532  +0.0714 

8 -0.3056 -306964191.0 1828124435.8 +0.0532 +0.0994‡ -0.1530 

13 -0.0278 -21840183.8 1429824980.5 +0.0532 -0.0338   -0.0084 

  Σ fV=-325325177.5 3605869136.3    

apipe lengths, diameters and initial flow distribution are shown in Table 2 and Figure 1, bf calculated using 

Renouard equation (1), cf’ calculated using first derivative of Renouard equation (2); flow is variable, dcalculate 

using matrix equation (10) and enter ΔQ with opposite sign (using original Hardy Cross method for iteration 1: 

ΔQI=+0.1126; ΔQII=-0.0088; ΔQIII=-0.0208; ΔQIV=-0.0892; ΔQV=-0.0902; using Lobačev method for iteration 1: 

ΔQI=-0.1041; ΔQII=-0.0644; ΔQIII=-0.0780; ΔQIV=+0.1069; ΔQV=-0.1824), eΔQ2 is ΔQ1 from adjacent loop, ffinal 

calculated flow in the first iteration is used for the calculation in the second iteration, etc., gif Q and Q1 have 

different sign, this means that flow direction is opposite than in previous iteration, etc (this will be with flow in 

pipe 13 between iteration 3 and 4).  
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Table 1. Cont. – Second iteration  

  Iteration 2    

Loop Pipe fQ1=Q bf =
2
2

2
1 pp   c|f’| dΔQ1 eΔQ2 Q2=Q 

I 

1 -0.4336 -232172997.6 974431560.7 -0.0058  -0.4394 

7 +0.6034 +651439280.6 1965036192.1 -0.0058  +0.5976 

8 +0.1530 +87112249.4 1036457217.8 -0.0058 -0.0178= +0.1294 

9 +0.1446 +243990034.4 3070921097.1 -0.0058 -0.0098= +0.1290 

10 -0.2217 -584137977.5 4795666298.0 -0.0058 +0.0018‡ -0.2257 

12 -0.0511 -47725420.6 1700518680.1 -0.0058 -2.1·10-5   -0.0569 

  Σ fI=+118505168.7 13543031045.9    

II 

2 -0.0677 -30372941.9 816962908.0 +2.1·10-5  -0.0676 

11 -0.1707 -27780459.9 296182372.8 +2.1·10-5 +0.0018‡ -0.1689 

12 +0.0511 +47725420.6 1700518680.1 +2.1·10-5 +0.0058   +0.0569 

  Σ fII=-10427981.2 2813663960.8    

III 

3 -0.2480 -451970989.4 3317464222.8 -0.0018  -0.2497 

4 +0.0040 +99061.2 44589235.4 -0.0018  +0.0023 

10 +0.2217 +584137977.5 4795666298.0 -0.0018 +0.0058   +0.2257 

11 +0.1707 +27780459.9 296182372.8 -0.0018 -2.1·10-5= +0.1689 

14 -0.0757 -135261698.0 3251481942.9 -0.0018 -0.0098   -0.0873 

  Σ fIII=+24784811.3 11705384072.0    

IV 

5 +0.0798 +20483898.1 467437803.0 +0.0098  +0.0896 

9 -0.1446 -243990034.4 3070921097.1 +0.0098 +0.0058‡ -0.1290 

13 +0.0084 +2454799.0 534076127.2 +0.0098 -0.0178= +0.0004 

14 +0.0757 +135261698.0 3251481942.9 +0.0098 +0.0018   +0.0873 

  Σ fIV=-85789639.2 7323916970.2    

V 

6 +0.0714 +41857166.9 1067095933.1 +0.0178  +0.0892 

8 -0.1530 -87112249.4 1036457217.8 +0.0178 +0.0058‡ -0.1294 

13 -0.0084 -2454799.0 534076127.2 +0.0178 -0.0098   -0.0004 

  Σ fV=-47709881.5 2637629278.1    

 

 

Figure 2. Rules for upper and lower sign (correction from adjacent loop; second correction) 
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The upper sign after second correction in Table 1 is plus if the flow direction in mutual pipe 

coincides with assumed orientation of adjacent loop, and minus if it does not (Figure 2). Lower sign 

is the sign in front of correction ΔQ calculated for adjacent loop (Figure 2). 

Details for signs of corrections can be seen in Brkić [11] and Corfield et al. [17]. 

The algebraic operation for second correction should be the opposite of its lower sign when its 

upper sign is the same as the sign in front of flow Q, and as indicated by its lower sign when its 

upper sign is opposite to the sign in front of flow Q.  

The calculation procedure is repeated until the net algebraic sum of pressure functions around 

each loop is as close to zero as the degree of precision desired demands. This also means that the 

calculated corrections of flow and change in calculated flow between two successive iterations is 

approximately zero. The pipe network is then in approximate balance and calculation after the 

Hardy Cross can be terminated. 

In the original Hardy Cross method, the corrections for the first iteration are:  

ΔQI=1575448179.8/13987715480.9=+0.1126,  

ΔQII=-8424412.4/957889226.7=-0.0088,  

ΔQIII=-170493836.7/8186058014.8=-0.0208,  

ΔQIV=-749453158.7/8402810812.8=-0.0892 and  

ΔQV=-325325177.5/3605869136.3=-0.0902. 

2.2. Version of Hardy Cross method from Russian practice 

As mentioned in introduction, two Russian authors, Lobačev [8] and Andrijašev [9], proposed 

similar method as Hardy Cross [1]. These two methods are also from the 1930’s. It is not clear if 

Hardy Cross had been aware of the contribution of these two authors from Soviet Russia and vice 

versa, but most probably answer to this question is no, for both sides. The main difference between 

Hardy Cross and Andrijašev method is that in method of Andrijašev contours can be defined to 

include few loops. This strategy only complicated situation while the number of required iteration 

remains unchanged.  

Further on Andrijašev method can be seen from the example in paper of Brkić [3].  

Here it will be shown the method of Lobačev in more details. 

In Hardy Cross method, influence of adjacent loops is neglected. Lobačev method takes into 

consideration this influence; Eq. (5): 
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(5) 

In previous system of equations; Eq. (5), sings in front of terms from the left side of equal sign 

have to be determined (this is much more complex than in the Hardy Cross method). So, in Lobačev 

method if (Σf)x>0 then sign in front of (Σ|f’|)x has to be positive, and opposite (for the first iteration 

this can be seen in table 1; fI=+1575448179.8>0, fII=-8424412.4<0, fIII=-170493836.7<0, 

fIV=-749453158.7<0, fV=-325325177.5<0). Sign for other terms (these terms are sufficient in the Hardy 

Cross method) will be determined using further rules and scheme from Figure 3. 
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Figure 3. Rules for terms from Lobačev equations which do not exist in Hardy Cross method 

From Figure 3 it can be seen that if (Σf)x>0 and if the assumed flow coincides with the loop 

direction, then the sing of flow in adjacent pipe is negative and if the flow does not coincide with the 

loop direction then the sing of flow in the adjacent pipe is positive. And opposite, if (Σf)x<0 and if the 

assumed flow coincides with the loop direction, then the sing of flow in the adjacent pipe is positive 

and if the flow does not coincide with the loop direction then the sing of flow in the adjacent pipe is 

negative. This procedure determines the sign in the front of flow correction (ΔQ) which are shown in 

Figure 3 with black letters (also in Figure 4 for our example network of pipes). 

 

 

Figure 4. Rules for terms from Lobačev equations which do not exist in the Hardy Cross method 

applied for the network from Figure 1 

If (Σf)x from adjacent loop is positive while loop direction and assumed flow do not coincide, 

flow correction from adjacent loop changes its sign and opposite if (Σf)x from adjacent loop is 

positive while loop direction and assumed flow coincide, flow correction from adjacent loop does 

not change its sign. If (Σf)x from adjacent loop is negative while loop direction and assumed flow do 

not coincide, flow correction from adjacent loop does not change its sign and opposite if (Σf)x from 

adjacent loop is negative while loop direction and assumed flow do not coincide, flow correction 

from adjacent loop changes its sign. These four parameters are connected in Figure 3 with the same 
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colored lines. Flow corrections (ΔQ) shown in Figure 4 with different colors are used with the related 

signs in Eq. (5). They are chosen in a similar way as explained in example from Figure 3. 

So, instead simple equations as in the original Hardy Cross method, in Lobačev method, the 

system of Eqs. (6) has to be solved. 
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(6) 

Underlined terms in Eqs. (6) do not exist in the Hardy Cross method. 

In the Lobačev method, corrections for the first iterations are ΔQx=Δ(ΔQx)/Δ, where Δ for the 

first iteration is; Eq. (7). 

48103.97

.33605869136-.51429824980-00.81828124435

.51429824980-.88402810812-.51429824980-0.85245486154

0.51429824980-.88186058014-9221537615.-.73220265516

009221537615.-7957889226.-4679911398.

.81828124435.85245486154.732202655164679911398.0.91398771548



 
(7) 

While ΔQx for the first iteration is; Eq. (8). 

  4710-4.14

.33605869136-.51429824980-005325325177.-

.51429824980-.88402810812-.51429824980-07749453158.-

0.51429824980-.88186058014-9221537615.-7170493836.-

009221537615.-7957889226.-8424412.4-

.81828124435.85245486154.732202655164679911398..81575448179

 IQ

 
(8) 

Correction for the first loop in the first iteration is; Eq. (9). 

 
-0.1041
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104.14-
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














I
I

Q
Q  (9) 

Other corrections in the first iteration are ΔQII=-0.0644, ΔQIII=-0.0780, ΔQIV=+0.1069 and 

ΔQV=-0.1824. 

The Lobačev method is more complex compared to the original Hardy Cross method. Number 

of required iterations is not reduced using Lobačev procedure compared with the original Hardy 

Cross procedure. 

 

2.3. Modified Hardy Cross method 

The Hardy Cross method can be noted in matrix form. Gas distribution network from Figure 1 

has five independent loops; Eq. (10). 
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 (10) 
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Same results for the corrections are by using Eq. (4) for each particular loop in the network and 

Eq. (10) using matrix calculation. Epp and Fowler [10] improved original Hardy Cross method [1] by 

replacing some of the zeroes in non-diagonal terms of Eq. (10). For example, if pipe 8 is mutual for 

loop I and V, first derivative of pressure drop function for the observed pipe where flow is treated as 

variable will be put with the negative sign in the first column and the fifth row and also in the fifth 

column and the first row; Eq. (11). 
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 (11) 

  

In the modified Hardy Cross method, corrections for the first iterations are (12); where 

solutions are listed in Table 1. 
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(12) 

This procedure reduces number of iterations required for solution of the problem significantly 

(Figure 5). 

 

 

Figure 5. Number of required iteration for solution using original vs. improved Hardy Cross method 

First two iterations for example network from Figure 1 is shown in Table 1. Pipe diameters and 

lengths, as well as first assumed and final, calculated flow distribution for the network in balance are 

shown in Table 2. 

Gas velocity in network is small (can be up to 10-15 m/s). Network can be subject of diameter 

optimization (as in [4]) which can be done also by using Hardy Cross method (diameter correction 

ΔD should be calculated for known and locked up flow where first derivative of Renouard function 

have to be calculated for diameter as variable). Network should stay as is if gas consumption in 
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distance future which cannot be estimated now, are planned to be detached on nodes 5, 6, 8 and 10 

(then pipes 4 and 13 will be useful in future with increased flow of gas). 

Some similar examples but in case of water flow can be seen in [18]. Optimization of pipe 

diameters in water distributive pipe network using this method can be seen in [6]. 

Table 2. Pipe diameters and lengths, flows and velocities of gas within pipes 

aPipe number Diameter (m) Length (m) 
bAssumed 

flows (m3/h) 

cCalculated 

flows (m3/h) 

Gas velocity 

(m/s) 

1 0.305 1127.8 1203.2 1583.6 1.5 

2 0.203 609.6 9.2 245.2 0.5 

3 0.203 853.4 841.6 899.7 1.9 

4 0.203 335.3 65.6 7.5 0.01 

5 0.203 304.8 165.6 320.2 0.7 

6 0.203 762.0 65.6 322.7 0.7 

7 0.203 243.8 2530.0 2149.6 4.6 

8 0.203 396.2 1100.0 462.4 1.0 

9 0.152 304.8 1000.0 465.0 1.8 

10 0.152 335.3 491.2 813.5 3.1 

11 0.254 304.8 431.2 609.1 0.8 

12 0.152 396.2 60.0 204.8 0.8 

13 0.152 548.6 100.0 d-2.6 -0.009 

14 0.152 548.6 100.0 312.7 1.2 

anetwork from figure 1 (flows are for normal pressure conditions; real pressure in network is 4x105 Pa abs i.e. 

3x105 Pa) 
bchosen to satisfy first Kirchhoff’s law for all nodes (dash arrows in figure 1) 
ccalculated to satisfy first Kirchhoff’s law for all nodes and second Kirchhoff’s law for all closed path formed by 

pipes (full errors in figure 1) 
dsign minus means that direction of flow is opposite then in initial pattern for assumed flows 

3. Conclusions 

Essentially what Hardy Cross did was to simplify the monumental mathematical task of 

calculating innumerable equations to solve complex problems in the fields of structural and 

hydraulic engineering long before the computer age. He revolutionized how the profession 

addressed complicated problems. Today, in engineering practice, the modified Hardy Cross method 

proposed by Epp and Fowler [10] is used rather than the original version of Hardy Cross method [1]. 

Also, methods proposed by Hamam and Brameller [19], and those by Wood, and Charles [20], and 

Wood and Rayes [21] are in common practice. Also, node oriented method proposed by Shamir and 

Howard [22] is also a sort of Hardy Cross method.  

Professional engineers use different kind of looped pipeline professional software [23], but even 

today, engineers invoke name of Hardy Cross with awe. When petroleum and natural gas or civil 

engineers have to figure out what was happening in looped piping systems [24], they inevitably 

turned to what is generally known as the Hardy Cross method. Original Hardy Cross is still 

extensively used for teaching and learning purpose [6]. This method is even today constantly being 

improved. 

View of Hardy Cross was that engineers lived in a real world with real problems and that it was 

their job to come up with answers to questions in design even if approximations were involved. 
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After Hardy Cross, essential idea which he wished to present involves no mathematical relations 

except the simplest arithmetic. 

Ruptures of pipes with leakage can be detected using the Hardy Cross method because every 

single-point disturbances affects the general distribution of flow and pressure [25,26]. 

Some details about life and work of Hardy Cross are given in Appendix B. 

 

Conflicts of Interest: The authors declare no conflict of interest. Neither the European Commission, Alfatec, 

VŠB—Technical University of Ostrava nor any person acting on behalf of them is responsible for the use which 
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Appendix A: Hydraulic models for water pipe networks and for ventilation systems 

To relate pressure p with flow Q, instead of Eq. (1) which is used for gas distribution networks in 

municipalities, for water distribution is recommended Darcy-Weisbach correlation and Colebrook 

equation; Eq. (A.1) [15], and for ventilation systems Atkinson equation; Eq. (A.2) [7]: 

 

 

  
          

    

  
 
 

  
 

 

      
 

   
          

     

     (A.1) 

   
 

    
    

          (A.2) 

Appendix B: Life and work of Hardy Cross 

Hardy Cross (1885-1959) was one of America’s most brilliant engineers [27-31]. He received BS 

degree in arts in 1902 and BS degree in science in 1903, both from Hampden-Sydney College where 

he taught English and Mathematics. Hardy Cross also took BS degree in 1908 from Massachusetts 

Institute of Technology and MCE degree from Harvard University in 1911, both in civil engineering. 

He taught civil engineering at Brown University from 1911 until 1918. He left teaching twice to get 

involved in the practice of structural and hydraulic engineering, from 1908 until 1909, and from 1918 

until 1921. The most creative years of Hardy Cross were spent at the University of Illinois in 

Champaign-Urbana where he was professor of structural engineering from 1921 until 1937. His 

famous article “Analysis of flow in networks of conduits or conductors” was published in 1936 in 

Urbana Champaign University Illinois Bulletin; Engineering Experiment Station number 286 [1]. His 

name is also famous in the field of structural engineering [32,33]. He developed moment distribution 

method for statically indeterminate structures in 1932 [34]. This method has been superseded by 

more powerful procedures, but still, the moment distribution method made possible the efficient 

and safe design of many reinforced concrete buildings during an entire generation. Furthermore, 

solution of the here discussed pipe network problems was a by-product of his explorations in 

structural analysis. Later, Hardy Cross was Chair of the Department of Civil Engineering at Yale, 

from 1937 until the early 1950s. 

 

Nomenclature  

The following symbols are used in this paper: 

ρr  relative gas density (-); here ρr=0.64 

  density of air (kg/m3); here ρ=1.2 kg/m3 

L  length of pipe (m) 

D diameter of pipe (m) 

Q  flow (m3/s) 

ΔQ flow correction (m3/s) 
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p  pressure (Pa) 

Δp  pressure correction (Pa) 

f function of pressure 

f' first derivative of function of pressure 

λ Darcy (Moody) flow friction factor (dimensionless) 

Re Reynolds number (dimensionless) 

 

 
 relative roughness of inner pipe surface (dimensionless) 

    flow discharge coefficient (dimensionless) 

A area of ventilation opening (m2) 

π Ludolph number; π≈3.1415 
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