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Abstract. We review some new approaches to the description of the evolution
of states of many-particle quantum systems by means of the correlation operators.
Using the definition of marginal correlation operators within the framework of dy-
namics of correlations governed by the von Neumann hierarchy, we establish that a
sequence of such operators is governed by the nonlinear quantum BBGKY hierarchy.
The constructed nonperturbative solution of the Cauchy problem to this hierarchy of
nonlinear evolution equations describes the processes of the creation and the propa-
gation of correlations in many-particle quantum systems. Moreover, we consider the
problem of the rigorous description of collective behavior of many-particle quantum
systems by means of a one-particle (marginal) correlation operator that is a solution
of the generalized quantum kinetic equation with initial correlations, in particular,
correlations characterizing the condensed states of systems.
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1 Introduction

In this review we consider mathematical problems concerning the description of processes of a
creation and a propagation of correlations in quantum many-particle systems, namely, correlations
in quantum systems both finitely and infinitely many particles in the condensed states and also
the description of correlations by means of the state of typical particle of large quantum particle
system.

As known, the marginal correlation operators give an equivalent approach to the description
of the evolution of states of quantum systems of many particles in comparison with marginal
density operators [1]. The physical interpretation of marginal correlation operators is that on the
microscopic scale the macroscopic characteristics of fluctuations of mean values of observables of
a system are determined by them [1], [2].

Traditionally marginal correlation operators are introduced by means of the cluster expansions
of the marginal density operators governed by the BBGKY hierarchy [2]- [4]. In articles [5], [6] it
was developed an approach based on the definition of the marginal correlation operators within
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Evolution of correlations in condensed states 2

the framework of dynamics of correlations governed by the von Neumann hierarchy. As a result
of which it is established that the marginal correlation operators are governed by the hierarchy of
nonlinear evolution equations, known as the quantum nonlinear BBGKY hierarchy (Bogolyubov–
Born–Green–Kirkwood–Yvon hierarchy), and its solution is represented in the form of series, the
generating operator of every term of which are the corresponding-order cumulant of groups of
nonlinear operators of the von Neumann hierarchy for correlation operators [7].

In the paper we also consider the problem of the rigorous description of the evolution of corre-
lations in quantum many-particle systems by means of a one-particle (marginal) density operator
that is a solution of the generalized quantum kinetic equation with initial correlations [9]. We
remark that initial states specified by correlations are typical for the condensed states of many-
particle systems in contrast to their gaseous state [1], [10].

We note that in modern researches [11]- [19], the conventional approach to the problem the
rigorous derivation of kinetic equations lies in the construction of various scaling limits of a solution
of equations, describing the evolution of the state of many-particle systems [20], in particular, of
a mean field limit of a perturbative solution of the BBGKY hierarchy for a sequence of marginal
density operators.

2 Dynamics of quantum correlations

As known [1], [2], quantum systems are described in terms of observables and states. The func-
tional of the mean value of observables defines a duality between observables and states and as a
consequence there exist two approaches to the description of the evolution of quantum systems,
namely, in terms of observables that are governed by the Heisenberg equation and in terms of
states governed by the von Neumann equation for the density operator, respectively. An equiv-
alent approach to the description of states of quantum systems is given by means of operators
determined by the cluster expansions of the density operator which are interpreted as correla-
tion operators. In this section we consider fundamental equations describing the evolution of
correlations of quantum systems with a finite number of particles.

2.1 Preliminaries

We denote by FH =
⊕∞

n=0H⊗n the Fock space over the Hilbert space H, where H⊗n ≡ Hn is the
n-particle Hilbert space. Let L1(Hn) be the space of trace class operators fn ≡ fn(1, . . . , n) ∈
L1(Hn) that satisfy the symmetry condition fn(1, . . . , n) = fn(i1, . . . , in) for arbitrary (i1, . . . , in) ∈
(1, . . . , n), and equipped with the norm

‖fn‖L1(Hn) = Tr1,...,n|fn(1, . . . , n)|,

where Tr1,...,n are partial traces over 1, . . . , n particles. We denote by L1
0(Hn) the everywhere dense

set of finite sequences of degenerate operators with infinitely differentiable kernels with compact
supports.

On the space of trace class operators L1(Hn) it is defined the one-parameter mapping

R1 3 t 7→ G∗n(t)fn
.
= e−itHnfne

itHn , (1)
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where the following units are used: m = 1 is the mass of a particle, h = 2π~ = 1 is a Planck
constant, and the self adjoint operator Hn is the Hamiltonian of n particles, obeying Maxwell–
Boltzmann statistics. Further an inverse group to group (1) we will denote by (G∗n)−1(t) = G∗n(−t).

On its domain of the definition the infinitesimal generator N ∗n of the group of operators (1) is
determined in the sense of the strong convergence of the space L1(Hn) by the operator

lim
t→0

1

t

(
G∗n(t)fn − fn

)
= −i (Hnfn − fnHn)

.
= N ∗nfn, (2)

that has the following structure: N ∗n =
∑n

j=1N ∗(j) + ε
∑n

j1<j2=1N ∗int(j1, j2), where the operator
N ∗(j) is a free motion generator of the von Neumann equation (the dual operator to the generator
of the Heisenberg equation for observables) [2], the operator N ∗int is defined by means of the
operator of a two-body interaction potential Φ by the formula: N ∗int(j1, j2)fn

.
= −i (Φ(j1, j2)fn −

fnΦ(j1, j2)), and we denoted a scaling parameter by ε > 0.
Let the symbol

∑
P: (1,...,s)=

⋃
j Xj

denote the sum over all possible partitions P of the set (1, . . . , s)

into |P| nonempty mutually disjoint subsets Xj and the set ({X1}, . . . , {X|P|}) consists from
elements which are subsets Xj ⊂ (1, . . . , s) of the set (1, . . . , s), i.e. |({X1}, . . . , {X|P|})| = |P|.
On the space L1(FH) = ⊕∞n=0L

1(Hn) of sequences f = (f0, f1, . . . , fn, . . .) of trace class operators
fn ∈ L1(Hn) and f0 ∈ C it is defined the following nonlinear one-parameter mapping

G(t; 1, . . . , s | f)
.
=

∑
P: (1,...,s)=

⋃
j Xj

A|P|(t, {X1}, . . . , {X|P|})
∏
Xj⊂P

f|Xj |(Xj), s ≥ 1, (3)

where the generating operator A|P|(t) of this expansion is the |P|th-order cumulant of the groups
of operators (1) defined by the following expansion [2]

A|P|(t, {X1}, . . . , {X|P|})
.
=

∑
P′ : ({X1},...,{X|P|})=

⋃
k Zk

(−1)|P
′ |−1(|P′| − 1)!

∏
Zk⊂P′

G∗|θ(Zk)|(t, θ(Zk)), (4)

and θ is the declusterization mapping, namely, θ({X1}, . . . , {X|P|})
.
= (1, . . . , s).

Below we adduce the examples of mapping expansions (3):

G(t; 1 | f) = A1(t, 1)f1(1),

G(t; 1, 2 | f) = A1(t, {1, 2})f2(1, 2) + A1+1(t, 1, 2)f1(1)f1(2),

G(t; 1, 2, 3 | f) = A1(t, {1, 2, 3})f3(1, 2, 3) + A1+1(t, 1, {2, 3})f1(1)f2(2, 3) +

A1+1(t, 2, {1, 3})f1(2)f2(1, 3) + A1+1(t, 3, {1, 2})f1(3)f2(1, 2) +

A3(t, 1, 2, 3)f1(1)f1(2)f1(3).

For fs ∈ L1(Hs), s ≥ 1, the mapping G(t; 1, . . . , s|f) is defined and, according to the inequality∥∥A|P|(t, {X1}, . . . , {X|P|})fs
∥∥
L1(Hs)

≤ |P|! e|P|
∥∥fs∥∥L1(Hs)

,

the following estimate is true ∥∥G(t; 1, . . . , s | f)
∥∥
L1(Hs)

≤ s!e2scs, (5)

where c ≡ e3 max(1,maxP: (1,...,s)=
⋃

iXi
‖f|Xi|‖L1(H|Xi|)

). On the space L1(FH) one-parameter map-

ping (3) is a bounded strong continuous group of nonlinear operators.
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2.2 The von Neumann hierarchy for correlation operators

The evolution of all possible states of a quantum system of non-fixed, i.e. arbitrary but finite,
number of identical particles, obeying the Maxwell–Boltzmann statistics, can be described by
means of the sequence g(t) = (g0, g1(t), . . . , gs(t), . . .) ∈ L1(FH) of the correlation operators gs(t) =
gs(t, 1, . . . , s), s ≥ 1, governed by the Cauchy problem of the von Neumann hierarchy [5]:

∂

∂t
gs(t, 1, . . . , s) = N ∗s gs(t, 1, . . . , s) + (6)

ε
∑

P: (1,...,s)=X1
⋃
X2

∑
i1∈X1

∑
i2∈X2

N ∗int(i1, i2)g|X1|(t,X1)g|X2|(t,X2),

gs(t)
∣∣
t=0

= g0,εs , s ≥ 1, (7)

where ε > 0 is a scaling parameter, the symbol
∑

P: (1,...,s)=X1
⋃
X2

means the sum over all possible

partitions P of the set (1, . . . , s) into two nonempty mutually disjoint subsets X1 and X2, and the
operator N ∗s is defined on the subspace L1

0(Hs) by formula (2).
We remark that correlation operators can be introduced by means of the cluster expansions of

the density operators [2] (the kernel of a density operator is known as a density matrix) governed
by a sequence of the von Neumann equations, and hence, they describe of the evolution of states
by an equivalent method in comparison with the density operators. For quantum systems of fixed
number of particles the state is described by finite sequence of correlation operators governed by
a corresponding system of the von Neumann equations (6).

A solution (nonperturbative solution) of the Cauchy problem of the von Neumann hierarchy
for correlation operators (6),(7) is represented by group of nonlinear operators (3)

g(t, 1, . . . , s) = G(t; 1, . . . , s | g(0)), s ≥ 1, (8)

where a sequence of initial correlation operators (7) we denote by g(0) = (g0, g
0,ε
1 , . . . , g0,εn , . . .) and

g0 ∈ C.
We remark, if at initial time there are no correlations between particles, i.e. in case of ini-

tial states, satisfying a chaos condition [2], a sequence of initial correlation operators takes the
form g(0) = (0, g0,ε1 , 0, . . . , 0, . . .). Then solution (8) of the Cauchy problem of the von Neumann
hierarchy (6),(7) is represented by the following expansions:

gs(t, 1, . . . , s) = As(t, 1, . . . , s)
s∏
i=1

g0,ε1 (i), s ≥ 1,

where the operator As(t) is the sth-order cumulant of groups of operators (1) determined by the
expansion

As(t, 1, . . . , s) =
∑

P: (1,...,s)=
⋃

iXi

(−1)|P|−1(|P| − 1)!
∏
Xi⊂P

G∗|Xi|(t,Xi), (9)

and we used notations accepted in formula (3).
We remark also that nonperturbative solution (8) of the Cauchy problem of the von Neumann

hierarchy (6),(7) can be transformed to the perturbation (iteration) expansion as a result of the
application of analogs of the Duhamel equation to cumulants (4) of groups of operators (1).
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The following statement is true [6]. In case of bounded interaction potentials for t ∈ R a
solution of the Cauchy problem of the von Neumann hierarchy (6),(7) is determined by a sequence
of correlation operators represented by formula (8). If g0,εn ∈ L1

0(Hn) ⊂ L1(Hn), it is a strong
solution and for arbitrary initial data g0,εn ∈ L1(Hn) it is a weak solution.

The stated above results can be extended to quantum systems of bosons and fermions like in
paper [6].

3 The evolution of correlations in large quantum particle

systems

An equivalent approach to describing the states of quantum systems of many particles consists
in describing states by means of marginal density operators governed by the BBGKI hierarchy or
by means of operators determined by their cluster expansions, which are interpreted as marginal
correlation operators [1]. On the microscopic scale the macroscopic characteristics of fluctuations
of observables are directly determined by the marginal correlation operators. Such approach allows
us to describe the evolution of correlations in quantum systems both with finite and infinite number
of particles.

3.1 The hierarchy of evolution equations for marginal correlation op-
erators

Traditionally marginal correlation operators are determined by means of the cluster expansions
of the marginal density operators [2]- [4]. We introduce the marginal correlation operators in the
framework of the solution of the Cauchy problem for the von Neumann hierarchy (6),(7) by the
following series expansions:

Gs(t, 1, . . . , s)
.
=
∞∑
n=0

1

n!
Trs+1,...,s+n G(t; 1, . . . , s+ n | g(0)), s ≥ 1. (10)

According to estimate (5), series (10) exists and the following estimate holds:
∥∥Gs(t)

∥∥
L1(Hs)

≤
s!(2e2)scs

∑∞
n=0(2e

2)ncn, where c ≡ e3 max(1,maxP: (1,...,s)=
⋃

iXi
‖g|Xi|(0)‖L1(H|Xi|)

).
We remark that the macroscopic characteristics of fluctuations of observables are directly de-

termined by marginal correlation operators (10), for example, the functional of the dispersion of
the additive-type observables, i.e. A(1) = (0, a1(1), . . . ,

∑n
i1=1 a1(i1), . . .), is represented by the

formula [1]

〈(A(1) − 〈A(1)〉)2〉(t) = Tr1 (a21(1)− 〈A(1)〉2(t))G1(t, 1) + Tr1,2 a1(1)a1(2)G2(t, 1, 2),

where 〈A(1)〉(t) = Tr1 a1(1)G1(t, 1) is a mean-value functional of the additive-type observable [2].
Then the evolution of all possible states of large quantum particle systems, obeying the Maxwell–

Boltzmann statistics, can be described by means of the sequence G(t) = (I,G1(t), G2(t), . . . , Gs(t),
. . .) ∈ L1(FH) of marginal correlation operators governed by the Cauchy problem of the following
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hierarchy of nonlinear evolution equations (the nonlinear quantum BBGKY hierarchy):

∂

∂t
Gs(t, 1, . . . , s) = N ∗sGs(t, 1, . . . , s) + (11)

ε
∑

P: (1,...,s)=X1
⋃
X2

∑
i1∈X1

∑
i2∈X2

N ∗int(i1, i2)G|X1|(t,X1)G|X2|(t,X2)) +

εTrs+1

∑
i∈Y

N ∗int(i, s+ 1)
(
Gs+1(t, 1, . . . , s+ 1) +∑

P : (1, . . . , s+ 1) = X1
⋃
X2,

i ∈ X1; s+ 1 ∈ X2

G|X1|(t,X1)G|X2|(t,X2)
)
,

Gs(t)
∣∣
t=0

= G0,ε
s , s ≥ 1, (12)

where ε > 0 is a scaling parameter and we use accepted in hierarchy (6) notations.
If G(0) = (I,G0,ε

1 (1), . . . , G0,ε
s (1, . . . , s), . . .) is a sequence of initial marginal correlation opera-

tors (12), then a nonperturbative solution of the Cauchy problem (11),(12) is represented by the
following sequence of self-adjoint operators:

Gs(t, 1, . . . , s) =
∞∑
n=0

1

n!
Trs+1,...,s+nA1+n(t; {1, . . . , s}, s+ 1, . . . , s+ n | G(0)), s ≥ 1, (13)

where the generating operator A1+n(t; {1, . . . , s}, s + 1, . . . , s + n | G(0)) of this series is the
(1 + n)th-order cumulant of groups of nonlinear operators (3):

A1+n(t; {1, . . . , s}, s+ 1, . . . , s+ n | G(0))
.
= (14)∑

P: ({1,...,s},s+1,...,s+n)=
⋃

kXk

(−1)|P|−1(|P| − 1)!G(t; θ(X1) | . . .G(t; θ(X|P|) | G(0)) . . .), n ≥ 0,

and composition of mappings (3) of the corresponding noninteracting groups of particles we de-
noted by G(t; θ(X1) | . . .G(t; θ(X|P|) | G(0)) . . .), for example,

G
(
t; 1 | G(t; 2 | f)

)
= A1(t, 1)A1(t, 2)f2(1, 2),

G
(
t; 1, 2 | G(t; 3 | f)

)
= A1(t, {1, 2})A1(t, 3)f3(1, 2, 3) +

A2(t, 1, 2)A1(t, 3)
(
f1(1)f2(2, 3) + f1(2)f2(1, 3)

)
.

Below we adduce the examples of expansions (14). The first order cumulant of the groups of
nonlinear operators (3) is the same group of nonlinear operators, i.e.

A1(t; {1, . . . , s} | G(0)) = G(t; 1, . . . , s | G(0)).

In case of s = 2 the second order cumulant of nonlinear operators (3) has the structure

A1+1(t; {1, 2}, 3 | G(0)) = G(t; 1, 2, 3 | G(0))− G
(
t; 1, 2 | G(t; 3 | G(0))

)
=

A1+1(t, {1, 2}, 3)G0,ε
3 (1, 2, 3) +

(
A1+1(t, {1, 2}, 3)− A1+1(t, 2, 3)A1(t, 1)

)
G0,ε

1 (1)G0,ε
2 (2, 3) +(

A1+1(t, {1, 2}, 3)− A1+1(t, 1, 3)A1(t, 2)
)
G0,ε

1 (2)G0,ε
2 (1, 3) +

A1+1(t, {1, 2}, 3)G0,ε
1 (3)G0,ε

2 (1, 2) + A3(t, 1, 2, 3)G0,ε
1 (1)G0,ε

1 (2)G0,ε
1 (3),
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where the operator

A3(t, 1, 2, 3) = A1+1(t, {1, 2}, 3)− A1+1(t, 2, 3)A1(t, 1)− A1+1(t, 1, 3)A1(t, 2)

is the third order cumulant (9) of groups of operators (1).
In case of initial data specified by the sequence of marginal correlation operators

G(c) =
(
0, G0,ε

1 , 0, . . . , 0, . . .
)
, (15)

i.e. initial states satisfying a chaos property [20], according to definition (14), marginal correlation
operators (13) are represented by the following series expansions:

Gs(t, 1, . . . , s) =
∞∑
n=0

1

n!
Trs+1,...,s+nAs+n(t; 1, . . . , s+ n)

s+n∏
i=1

G0,ε
1 (i), s ≥ 1, (16)

where the generating operator As+n(t) is (s+ n)th-order cumulant (9) of groups of operators (1).
We note that within the framework of the description of states by means of marginal density

operators defined by cluster expansions over marginal correlation operators:

F 0,ε
s (1, . . . , s) =

∑
P : (1, . . . , s) =

⋃
iXi

∏
Xi⊂P

G0,ε
|Xi|(Xi), s ≥ 1,

initial states described like to sequence (15) is specified by the sequence F (c) =
(
I, F 0,ε

1 (1), . . . ,∏n
i=1F

0,ε
1 (i), . . .

)
, and in case of sequence (16) the marginal density operators are represented by

the following series expansions (a nonperturbative solution of the quantum BBGKY hierarchy [2]):

Fs(t, 1, . . . , s) =
∞∑
n=0

1

n!
Trs+1,...,s+nA1+n(t; {1, . . . , s}, s+ 1, . . . , s+ n)

s+n∏
i=1

F 0,ε
1 (i), s ≥ 1,

where the generating operator A1+n(t) is the (1 + n)th-order cumulant of groups of operators (1).
One of the possible methods to derive series expansion (13) for the marginal correlation opera-

tors lies in the substitution of the cluster expansions of groups of nonlinear operators (3) over cumu-
lants (14) and the sequence of initial correlation operators g(0) = (I, g0,ε1 (1), . . . , g0,εn (1, . . . , n), . . .)
determined by means of the marginal correlation operators:

g0,εs (1, . . . , s)
.
=
∞∑
n=0

(−1)n
1

n!
Trs+1,...,s+n G

0,ε
s+n(1, . . . , s+ n), s ≥ 1, (17)

into the definition of marginal correlation operators (10). Indeed, developing the generating
operators of series (13) as the following cluster expansions:

G(t; 1, . . . , s+ n | f) =
∑

P: (1,...,s+n)=
⋃

kXk

A|X1|(t;X1 | . . .A|X|P||(t;X|P| | f) . . .), n ≥ 0, (18)

according to definition (17), we derive expressions (13). The solutions of recursive relations (18)
are represented by expansions (14).
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We remark that on the space L1(FH) the generating operator (14) of series expansion (13) can
be represented as the (1 + n)th-order reduced cumulant of the groups of nonlinear operators (3)
of the von Neumann hierarchy [2]:

U1+n(t; {1, . . . , s}, s+ 1, . . . , s+ n | G(0))
.
= (19)

n∑
k=0

(−1)k
n!

k!(n− k)!

∑
P: (θ({1,...,s}),s+1,...,s+n−k)=

⋃
iXi

A|P|
(
t, {X1}, . . . , {X|P|}

)
k∑

k1=0

k!

k1!(k − k1)!
. . .

k|P|−2∑
k|P|−1=0

k|P|−2!

k|P|−1!(k|P|−2 − k|P|−1)!
G0,ε
|X1|+k−k1(X1,

s+ n− k + 1, . . . , s+ n− k1) . . . G0,ε
|X|P||+k|P|−1

(X|P|, s+ n− k|P|−1 + 1, . . . , s+ n), n ≥ 0,

as examples, we adduce the simplest examples of reduced cumulants (19):

U1(t; {1, . . . , s} | G(0)) = G(t; 1, . . . , s | G(0)) =∑
P: (1,...,s)=

⋃
iXi

A|P|
(
t, {X1}, . . . , {X|P|}

) ∏
Xi⊂P

G0,ε
|Xi|(Xi),

U1+1(t; {1, . . . , s}, s+ 1 | G(0)) =
∑

P: (1,...,s+1)=
⋃

iXi

A|P|
(
t, {X1}, . . . , {X|P|}

) ∏
Xi⊂P

G0,ε
|Xi|(Xi)−

∑
P: (1,...,s)=

⋃
iXi

A|P|
(
t, {X1}, . . . , {X|P|}

) |P|∑
j=1

G0,ε
|Xj |+1(Xj, s+ 1)

∏
Xi ⊂ P,
Xi 6= Xj

G0,ε
|Xi|(Xi).

We note also that a nonperturbative solution of the nonlinear quantum BBGKY hierarchy
(13) or in the form of series expansions with generating operators (19) can be transformed to the
perturbation (iteration) series as a result of the application of analogs of the Duhamel equation
to cumulants (4) of groups of operators (1).

The following statement is true [7]. If maxn≥1
∥∥G0,ε

n

∥∥
L1(Hn)

< (2e3)−1, then in case of bounded

interaction potentials for t ∈ R a solution of the Cauchy problem of the nonlinear quantum
BBGKY hierarchy (11),(12) is determined by a sequence of marginal correlation operators rep-
resented by series expansions (13). If G0,ε

n ∈ L1
0(Hn) ⊂ L1(Hn), it is a strong solution and for

arbitrary initial data G0,ε
n ∈ L1(Hn) it is a weak solution.

3.2 A mean field asymptotic behavior of marginal correlation opera-
tors

Now we deals with a scaling asymptotic behavior of the constructed marginal correlation operators
in a mean field limit in case of initial states satisfied condition (15).

Let us observe that, if fs ∈ L1(Hs), then for arbitrary finite time interval for an asymptotically
perturbed first-order cumulant (9) of the groups of operators (1), i.e. for the strongly continuous
group (1), the following equality is valid

lim
ε→0

∥∥∥G∗s (t, 1, . . . , s)fs − s∏
j=1

G∗1(t, j)fs

∥∥∥
L1(Hs)

= 0.
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As a result of this for the (s+n)th-order cumulants of asymptotically perturbed groups of operators
(1) the following equalities are true:

lim
ε→0

∥∥∥ 1

εn
As+n(t, 1, . . . , s+ n)fs+n

∥∥∥
L1(Hs+n)

= 0, s ≥ 2. (20)

We assume the existence of a mean field limit for initial marginal correlation operator (or a
one-particle density operator) in the following sense

lim
ε→0

∥∥εG0,ε
1 − g01

∥∥
L1(H)

= 0. (21)

Then, taking into account equality (20), and since the nth term of series expansion (16) for
s-particle marginal correlation operator is determined by the (s+ n)th-order cumulant of asymp-
totically perturbed groups of operators (1), we establish the property of the propagation of initial
chaos (15):

lim
ε→0

∥∥εsGs(t)
∥∥
L1(Hs)

= 0, s ≥ 2. (22)

If for the initial marginal correlation operator equality (21) holds, then in case of s = 1 for
series expansion (16) the following equality is true

lim
ε→0

∥∥εG1(t)− g1(t)
∥∥
L1(H)

= 0,

where for arbitrary finite time interval the limit one-particle marginal correlation operator g1(t, 1)
is given by the norm convergent series on the space L1(H)

g1(t, 1) =
∞∑
n=0

t∫
0

dt1 . . .

tn−1∫
0

dtn Tr2,...,n+1G∗1(t− t1, 1)N ∗int(1, 2)
2∏

j1=1

G∗1(t1 − t2, j1) . . . (23)

n∏
in=1

G∗1(tn − tn, in)
n∑

kn=1

N ∗int(kn, n+ 1)
n+1∏
jn=1

G∗1(tn, jn)
n+1∏
i=1

g01(i).

In series expansion (23) the operator N ∗int(j1, j2) is defined by formula (2) and the group of oper-
ators G∗1(t) is defined by (1). For bounded interaction potential series (23) is norm convergent on

the space L1(H) under the condition that t < t0 ≡
(
2 ‖Φ‖L(H2)‖g01‖L1(H)

)−1
.

As a result of differentiation in the sense of the norm convergence of the space L1(H) by the
time variable of the operator represented by series expansion (23) we conclude that limit one-
particle marginal correlation operator (23) is governed by the Cauchy problem of the quantum
Vlasov kinetic equation

∂

∂t
g1(t, 1) = N ∗(1)g1(t, 1) + Tr2N ∗int(1, 2)g1(t, 1)g1(t, 2), (24)

g1(t)|t=0 = g01. (25)
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Then for pure states we derive the Hartree equation [2], indeed, in terms of the kernel g1(t, q; q
′) =

ψ(t, q)ψ(t, q′) of operator (23), describing a pure state, quantum kinetic equation (24) is reduced
to the Hartree equation

i
∂

∂t
ψ(t, q) = −1

2
∆qψ(t, q) +

∫
dq′Φ(q − q′)|ψ(t, q′)|2ψ(t, q),

where the function Φ is a two-body interaction potential.
We note that in case of pure states kinetic equation (24) can be reduced to the nonlinear

Schrödinger equation [13] or to the Gross–Pitaevskii kinetic equation [14].

4 The description of processes of a creation and a propa-

gation of correlations by means of kinetic equations in

the condensed states

In this section we consider mathematical problems concerning the description of processes of
creation and propagation of correlations within the framework of the state of typical particle of a
quantum systems of many particles, in other words, an approach to the description of evolution
of correlations by means of quantum kinetic equations is developing.

4.1 Marginal correlation functionals of the state

Further we shall consider the case of initial states specified by a one-particle marginal density
operator with correlations, namely, initial states specified by the following sequence of marginal
correlation operators:

G(c) =
(
I,G0,ε

1 (1), gε2(1, 2)
2∏
i=1

G0,ε
1 (i), . . . , gεn(1, . . . , n)

n∏
i=1

G0,ε
1 (i), . . .

)
, (26)

where the operators gεn(1, . . . , n) ≡ gεn ∈ L1
0(Hn), n ≥ 2, are specified the initial correlations. We

remark that such assumption about initial states is intrinsic for the kinetic description of many-
particle systems. On the other hand, initial data (26) is typical for the condensed states of large
quantum systems of particle, for example, the equilibrium state of the Bose condensate satisfies
the weakening of correlation condition with the correlations which characterize the condensed
state [1], [10].

For initial states specified in terms of a one-particle density operator and correlation operators
(26) the evolution of states given within the framework of the sequence G(t) = (I,G1(t), . . . ,
Gs(t), . . .) of marginal correlation operators (13) can be described by means of the sequence
G(t | G1(t)) = (I,G1(t), G2(t | G1(t)), . . . , Gs(t | G1(t)) , . . .) of marginal correlation functionals
Gs(t, 1, . . . , s | G1(t)), s ≥ 2, with respect to the one-particle correlation operator G1(t) governed
by the kinetic equation [8], [9].

In the case under consideration the marginal correlation functionals Gs(t | G1(t)), s ≥ 2, are
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defined with respect to the one-particle (marginal) density operator

G1(t, 1) = (27)
∞∑
n=0

1

n!
Tr2,...,1+nA1+n(t, 1, . . . , n+ 1)

∑
P : (1, . . . , n+ 1) =

⋃
iXi

∏
Xi⊂P

gε|Xi|(Xi)
n+1∏
i=1

G0,ε
1 (i),

where the generating operator A1+n(t) is the (1 + n) − th order cumulant (4) of the groups of
operators (1), and these functionals are represented by the series expansions:

Gs

(
t, 1, . . . , s | G1(t)

)
= (28)

∞∑
n=0

1

n!
Trs+1,...,s+nGs+n

(
t, θ({1, . . . , s}), s+ 1, . . . , s+ n

) s+n∏
i=1

G1(t, i), s ≥ 2,

where the (s+ n)th-order generating operator Gs+n(t), n ≥ 0, of this series is determined by the
following expansion

Gs+n

(
t, θ({1, . . . , s}), s+ 1, . . . , s+ n

)
= (29)

n!
n∑
k=0

(−1)k
n∑

n1=1

. . .

n−n1−...−nk−1∑
nk=1

1

(n− n1 − . . .− nk)!
×

Ăs+n−n1−...−nk
(t, θ({1, . . . , s}), s+ 1, . . . , s+ n− n1 − . . .− nk)×

k∏
j=1

∑
Dj : Zj =

⋃
lj
Xlj ,

|Dj | ≤ s+ n− n1 − · · · − nj

1

|Dj|!

s+n−n1−...−nj∑
i1 6=... 6=i|Dj |=1

∏
Xlj
⊂Dj

1

|Xlj |!
Ă1+|Xlj

|(t, ilj , Xlj).

In formula (29) the sum over all possible dissections [23] of the linearly ordered set Zj ≡ (s+ n−
n1− . . .−nj + 1, . . . , s+n−n1− . . .−nj−1) on no more than s+n−n1− . . .−nj linearly ordered
subsets we denote by

∑
Dj :Zj=

⋃
lj
Xlj

and the (s+n)th-order scattering cumulant is defined by the

formula

Ăs+n(t, θ({1, . . . , s}), s+ 1, . . . , s+ n)
.
= As+n(t, 1, . . . , s+ n)gεs+n(1, . . . , s+ n)

s+n∏
i=1

A−11 (t, i),

where the operator gεs+n(1, . . . , s+ n) is specified initial correlations (26), and notations accepted
above were used. If ‖G1(t)‖L1(H) < e−(3s+2), then for arbitrary t ∈ R series expansion (28)
converges in the norm of the space L1(Hs).

We adduce simplest examples of generating operators (29):

Gs(t, θ({1, . . . , s})) = Ăs(t, θ({1, . . . , s})) = As(t, 1, . . . , s))g
ε
s(1, . . . , s)

s∏
i=1

A−11 (t, i),

Gs+1(t, θ({1, . . . , s}), s+ 1) = As+1(t, 1, . . . , s+ 1)gεs+1(1, . . . , s+ 1)
s+1∏
i=1

A−11 (t, i)−

As(t, 1, . . . , s)g
ε
s(1, . . . , s)

s∏
i=1

A−11 (t, i)
s∑
j=1

A2(t, j, s+ 1)gε2(j, s+ 1)A−11 (t, j)A−11 (t, s+ 1).
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A method of the construction of marginal correlation functionals (28) is based on the application
of kinetic cluster expansions [2] to the generating operators of series (13).

We emphasize that marginal correlation functionals (28) describe the all possible correlations
generated by dynamics of large quantum particle system with initial correlations by means of a
one-particle density operator.

4.2 The generalized quantum kinetic equation with initial correlations

Now we establish the evolution equation for one-particle (marginal) density operator (27). As a
result of the differentiation over time variable of the operator represented by series expansion (27)
in the sense of the norm convergence of the space L1(H), then due to the application of the kinetic
cluster expansions [22] to the generating operators of obtained series expansion, for one-particle
density operator (27) we derive the following identity:

∂

∂t
G1(t, 1) = N ∗(1)G1(t, 1) + εTr2N ∗int(1, 2)G1(t, 1)G1(t, 2) + (30)

+εTr2N ∗int(1, 2)G2

(
t, 1, 2 | G1(t)

)
,

where the second part of the collision integral in equality (30) is determined in terms of the
marginal correlation functional represented by series expansions (28) in case of s = 2. This
identity we treat as the quantum kinetic equation and we refer to this evolution equation as the
generalized quantum kinetic equation with initial correlations.

We emphasize that the coefficients in an expansion of the collision integral of the non-Markovian
kinetic equation (30) are determined by the operators specified initial correlations (26).

On the space L1(H) for the Cauchy problem of the established generalized quantum kinetic
equation with initial correlations the following statement is true [22]. If ‖G0,ε

1 ‖L1(H) < (e(1+e9))−1,
a global in time solution of the Cauchy problem of kinetic equation (30) is determined by series
expansion (27). For initial data G0,ε

1 ∈ L1
0(H) it is a strong solution and for an arbitrary initial

data it is a weak solution.
The proof of this existence statement is similar to the proof in the case of the generalized

quantum kinetic equation given in [23].

4.3 On a propagation of initial correlations in a mean field limit

Further we establish a mean field asymptotic behavior of constructed marginal correlation func-
tionals (28) in case of initial states specified by a one-particle density operator and correlation
operators (26).

We assume the existence of a mean field limit of initial a one-particle density operator in sense
(21) and for initial correlation operators as follows:

lim
ε→0

∥∥gεn − gn∥∥L1(Hn)
= 0, n ≥ 2. (31)

Then in consequence of the validity of equalities (20) for one-particle density operator (27) the
following statement is true [9]. If conditions (21) and (31) hold, then for series expansion (27) the
equality holds

lim
ε→0

∥∥εG1(t)− g1(t)
∥∥
L1(H)

= 0,
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where for finite time interval the limit one-particle density operator g1(t) is represented by the
following norm convergent series on the space L1(H)

g1(t, 1) =
∞∑
n=0

t∫
0

dt1 . . .

tn−1∫
0

dtn Tr2,...,n+1G∗1(t− t1, 1)N ∗int(1, 2)
2∏

j1=1

G∗1(t1 − t2, j1) . . . (32)

n∏
in=1

G∗1(tn − tn, in)
n∑

kn=1

N ∗int(kn, n+ 1)
n+1∏
jn=1

G∗1(tn, jn)
∑

P : (1, . . . , n+ 1) =
⋃

iXi

∏
Xi⊂P

g|Xi|(Xi)
n+1∏
i=1

g01(i).

In series expansion (32) the operator N ∗int(j1, j2) is defined according to formula (2) and the
group of operators G∗1(t) is defined by (1). For bounded interaction potentials series (32) is norm
convergent on the space L1(H) under the condition that: t < t0 ≡ (2 ‖Φ‖L(H2)‖g01‖L1(H))

−1.
For marginal correlation functionals (28) the following statement is true [9]. Under conditions

(21) and (31) on initial state (26) there exists a mean field limit of marginal correlation functionals
(28) in the following sense:

lim
ε→0

∥∥∥εsGs

(
t, 1, . . . , s | G1(t)

)
− gs

(
t, 1, . . . , s | g1(t)

)∥∥∥
L1(Hs)

= 0, s ≥ 2,

where the limit marginal correlation functionals gs
(
t | g1(t)

)
, s ≥ 2, are represented by the

expansions:

gs
(
t, 1, . . . , s | g1(t)

)
=

s∏
i1=1

G∗1(t, i1)gs(1, . . . , s)
s∏

i2=1

(G∗1)−1(t, i2)
s∏
j=1

g1(t, j), s ≥ 2, (33)

and, respectively, the limit one-particle density operator g1(t) is represented by series (32).
The proof of these statements is based on the validity of equality (20) for cumulants of asymp-

totically perturbed groups of operators (1) and the explicit structure of the generating operators
of series expansions (28) of marginal correlation functionals and of series expansion (27).

We remark that limit marginal correlation functionals (32), (33) are a solution of the Cauchy
problem of the quantum Vlasov hierarchy of nonlinear evolution equations [6], which describes a
mean field asymptotic behavior of marginal correlation operators in case of arbitrary initial states,
namely,

∂

∂t
gs(t, 1, . . . , s) =

s∑
i=1

N ∗(i)gs(t, 1, . . . , s) +

Trs+1

s∑
i=1

N ∗int(i, s+ 1)
(
gs+1(t, 1, . . . , s+ 1) +

∑
P : (1, . . . , s+ 1) = X1

⋃
X2,

i ∈ X1; s+ 1 ∈ X2

g|X1|(t,X1)g|X2|(t,X2)
)
,

gs(t)
∣∣
t=0

= g0s , s ≥ 1,

where we used notations similar to accepted above.
It should be noted that limit marginal correlation functionals (33) describe the process of the

evolution of correlations of large quantum particle systems by means of a one-particle density
operator in a mean field approximation.
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Similar to the derivation of kinetic equation (30) we establish that the one-particle density
operator represented by series expansion (32) is a solution of the Cauchy problem of the Vlasov-
type quantum kinetic equation with initial correlations:

∂

∂t
g1(t, 1) = N ∗(1)g1(t, 1) + (34)

Tr2N ∗int(1, 2)
2∏

i1=1

G∗1(t, i1)(g2(1, 2) + I)
2∏

i2=1

(G∗1)−1(t, i2)g1(t, 1)g1(t, 2),

g1(t)|t=0 = g01, (35)

and consequently, for pure states we derive the Hartree-type equation with initial correlations.
We point out that equation (34) is the non-Markovian quantum kinetic equation.

Thus, we established that a mean field behavior of processes of the creation of correlations and
the propagation of initial correlations in condensed states are governed by kinetic equation (34).

Moreover, in the case under consideration the processes of the creation of correlations generated
by dynamics of many-particle systems and the propagation of initial correlations are described by
the constructed marginal functionals of the state (28) governed by the non-Markovian generalized
kinetic equation with initial correlations (26).

5 Conclusion

In this paper it was been described the process of a creation and a propagation of correlations
in quantum many-particle systems within the framework of the Cauchy problem of the quantum
BBGKY hierarchy of nonlinear equations (11),(12). A nonperturbative solution for a sequence of
marginal correlation operators is represented in the form of series (13) the generating operator of
every term of which are corresponding-order cumulant (14) of groups of nonlinear operators (3).
In case of initial state specified by a sequence of the marginal correlation operators that satisfy
chaos property (15) the correlations generated by dynamics of large quantum particle system (16)
is completely determined by the corresponding-order cumulants (4) of groups of operators (1).
The obtained results can be extended to large quantum systems of bosons and fermions like in
paper [6].

In case of initial states satisfied condition (15) a mean eld asymptotic behavior of the processes
of a creation and a propagation of correlations was described. It was directly proved the property
called the propagation of initial chaos (22), which underlies in mathematical derivation of effective
evolution equations of systems of infinitely many particles [18].

It was been also considered the problem of the rigorous description of collective behavior of
quantum many-particle systems by means of a one-particle (marginal) correlation operator that
is a solution of the generalized quantum kinetic equation [23] with initial correlations [22], for
instance, the initial correlations, characterizing the condensed states [1] or initial correlations that
influence on ultrafast relaxation processes in plasmas [4].

In particular, such an approach to the derivation of the Vlasov-type quantum kinetic equation
with initial correlations (34) from underlying dynamics governed by the generalized quantum
kinetic equation with initial correlations (30) enables to construct the higher-order corrections to
the mean field evolution of large quantum systems of particle.
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We note that in paper [24] other approach to the description of the propagation of initial
correlations of many-particle systems in a mean field limit was developed, namely the process
of the propagation of initial correlations was described within the framework of the evolution of
marginal observables governed by the dual BBGKY hierarchy [21], [25].
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[17] M. Porta, S. Rademacher, C. Saffirio, B. Schlein, Mean field evolution of fermions with Coulomb
interaction. J. Stat. Phys., 166, (6), 1345, 2017.

[18] F. Golse, On the dynamics of large particle systems in the mean field limit, In: Macroscopic and
large scale phenomena: coarse graining, mean field limits and ergodicity, Lect. Notes Appl. Math.
Mech., Springer, 3, 1, 2016.

[19] F. Golse, C. Mouhot, T. Paul, On the mean-field and classical limits of quantum mechanics. Com-
mun. Math. Phys., 343, 165, 2016.

[20] H. Spohn, Kinetic equations from Hamiltonian dynamics. Rev. Modern Phys., 53, 600, 1980.

[21] V.I. Gerasimenko, Approaches to derivation of quantum kinetic equations. Ukrainian J. Phys. 54,
(8-9), 834, 2009.

[22] V.I. Gerasimenko, Zh.A. Tsvir, On quantum kinetic equations of many-particle systems in condensed
states. Physica A: Stat. Mech. Appl., 391, (24), 6362, 2012.

[23] V.I. Gerasimenko, Zh.A. Tsvir, A description of the evolution of quantum states by means of the
kinetic equation. J. Phys. A: Math. Theor. 43, (48), 485203, 2010.

[24] V.I. Gerasimenko, New approach to derivation of quantum kinetic equations with initial correlations,
Carpathian Math. Publ., 7, 38, 2015.

[25] V.I. Gerasimenko, Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinet. Relat.
Models, 4, (1), 385, 2011.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 December 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 December 2018                   doi:10.20944/preprints201812.0286.v1

http://dx.doi.org/10.20944/preprints201812.0286.v1

	1 Introduction
	2 Dynamics of quantum correlations
	2.1 Preliminaries
	2.2 The von Neumann hierarchy for correlation operators

	3 The evolution of correlations in large quantum particle systems
	3.1 The hierarchy of evolution equations for marginal correlation operators
	3.2 A mean field asymptotic behavior of marginal correlation operators

	4 The description of processes of a creation and a propagation of correlations by means of kinetic equations in the condensed states
	4.1 Marginal correlation functionals of the state
	4.2 The generalized quantum kinetic equation with initial correlations
	4.3 On a propagation of initial correlations in a mean field limit

	5 Conclusion
	References

