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Abstract

The aim of this article is to extend the local as well as the semi-
local convergence analysis of multi-point iterative methods using center
Lipschitz conditions in combination with our idea, of the restricted con-
vergence region. It turns out that this way a finer convergence analysis for
these methods is obtained than in earlier works and without additional
hypotheses. Numerical examples favoring our technique over earlier ones
completes this article.
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1 Introduction

Let X ,Y be Banach spaces and Ω ⊂ X be a nonempty and open set. By
B(X ,Y), we denote the space of bounded linear operators from X into Y. Let
also U(w, d), be an open set centered at w ∈ X and of radius d > 0 and Ū(w, d)
be its closure.

Many problems from diverse disciplines such that Mathematics, Optimiza-
tion, Mathematical Programming, Chemistry, Biology, Physics, Economics, Statis-
tics, Engineering and other disciplines [?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,
?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?], can be reduced to finding a solution x∗ of the
equation

H(x) = 0, (1.1)

where H : Ω −→ Y is a continuous operator. Since,a unique solution x∗ of
equation (??) in a neighborhood of some initial data x0 can be obtained only
in special cases. Researchers construct iterative methods which generate a se-
quence converging to x∗.

The most widely used iterative method is Newton’s defined for each n =
0, 1, 2, . . . by

x0 ∈ Ω, xn+1 = xn −H′(xn)−1H(xn). (1.2)
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The order of convergence is an important concern when dealing with iterative
methods. The computational cost increases in general especially when the con-
vergence order increases.

That is why researchers and practitioners have developed iterative methods
that on the one hand avoid the computation of derivatives and on the other
hand achieve high order of convergence.

We consider the following multi-step iterative method defined for each n =
0, 1, 2, . . . by

un = v(0)n

v(1)n = v(0)n −H′(v(0)n )−1H(v(0)n )

v(2)n = v(1)n −H′(v(0)n )−1H(v(1)n ) (1.3)

· · ·
un+1 = v(k)n = v(k−1)n −H′(v(0)n )−1H(v(k−1)n ).

The semi-local convergence of method (??) was given in [?]. It is well known
that as the convergence order increases the convergence region decreases in
general. To avoid this problem, we introduce a center-Lipschitz-type condition
that helps us determine an at least as small region as before containing the
iterates {un}. This way the resulting Lipschitz constants are at least as small.
A tighter convergence analysis is obtained this way. The order of convergence
was shown using Taylor expansions and conditions reaching up to the k + 1
order derivative of H, although these derivatives do not appear in this method.
As an academic example: Let X = Y = R, Ω = [− 5

2 ,
3
2 ]. Define ϕ on Ω by

ϕ(x) = x3 log x2 + x5 − x4

Then
ϕ′(x) = 3x2 log x2 + 5x4 − 4x3 + 2x2,

ϕ′′(x) = 6x log x2 + 20x3 − 12x2 + 10x,

ϕ′′′(x) = 6 log x2 + 60x2 = 24x+ 22.

Obviously ϕ′′′(x) is not bounded on Ω. So, the convergence of methods (??) is
not guaranteed by the analysis in [?,?,?].

The rest of the article is organized as follows: Section 2 contains the condi-
tions to be used in the semi-local convergence that follows in Section 3. Finally
the numerical examples are given in the concluding Section 4.

2 Local convergence

Let L0 > 0, L > 0 and L1 ≥ 1 be parameters. Define the scalar quadratic
polynomial p by

p(t) = (2L0 + L)L0t
2 − (4L0 + 4L0L1 + L)t+ 2. (2.1)
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The discriminant D of p is given by

D = (4L0 + 4L0L1 + L)2 − 8L0(2L0 + L)

= 16(L0L1)2 + L2 + 32L2
0L1 + 8L0L1L > 0,

so p has roots s1 and s2 with 0 < s1 < s2 by the Descarte’s rule of signs. Define
also parameters

γ =

(
L

2(1− L0s1)
+

2L0L1

(1− L0s1)2

)
s1 (2.2)

and

rA =
2

2L0 + L
. (2.3)

Notice that γ ∈ (0, 1], since p(s1) = 0. The local convergence analysis of method
(??) uses the conditions (A):

(a1) H : Ω −→ Y is a differentiable operator in the sense of Fréchet and there
exists x∗ ∈ Ω such that H(x∗) = 0 and H′(x∗)−1 ∈ L(Y,X ).

(a2) There exists L0 > 0 such that for each x ∈ Ω

‖H′(x∗)−1(H′(x)−H′(x∗))‖ ≤ L0‖x− x∗‖.

Set Ω0 = Ω ∩B(x∗,
1
L0

).

(a3) There exist L = L(L0) > 0 and L1 = L1(L0) ≥ 1 such that for each
x, y ∈ Ω0

‖H′(x∗)−1(H′(y)−H′(x))‖ ≤ L‖x− y‖

and
‖H′(x∗)−1H′(x)‖ ≤ L1‖x− x∗‖.

(a4) B̄(x∗, s1) ⊂ Ω.

(a5) There exists s3 ≥ s1 such that s3 <
2
L0
. Set Ω1 = Ω ∩ B̄(x∗,

2
L0

).

Based on the preceding conditions and notations we can show a local con-
vergence result for method (??).

THEOREM 2.1 Under the conditions (A), further assume that u0 ∈ B(x∗, s1)−
{x∗}. Then, limn−→∞ un = x∗, and the following estimations hold

‖v1n − x∗‖ ≤
L‖v0n − x∗‖2

2(1− L0‖v00 − x∗‖)
, (2.4)

‖vin − x∗‖ ≤ γi‖v0n − x∗‖ for each i = 2, . . . , k (2.5)

and
‖un+1 − x∗‖ ≤ γk+n‖u0 − x∗‖. (2.6)

Moreover, the point x∗ is the unique solution of equation H(x) = 0 in the set
Ω1 given in (a5).
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Proof. We use an induction based proof to show estimations (??)-(??). Let
x ∈ B(x∗, s1)− {x∗}. By (a1) and (a2), we obtain that

‖H′(x∗)−1(H′(x)−H′(x∗))‖ ≤ L0‖x− x∗‖ < L0s1 < 1. (2.7)

It follows from the Banach lemma on invertible operators [?] and (??) that
H′(x∗)−1 ∈ L(Y,X ) and

‖H′(x)−1H′(x∗)‖ ≤
1

1− L0‖x− x∗‖
. (2.8)

Then, x0 = v00 , v
1
0 , . . . , v

k
0 are well defined by method (??) for n = 0. We can

write
v10 − x∗ = v00 − x∗ −H′(v00)−1H(v00). (2.9)

Then, by using (a1), (a3), (??) and (??), we get in turn that

‖v10 − x∗‖ = ‖v00 − x∗ −H′(v00)−1H(v00)‖
≤ ‖H′(v00)−1H′(x∗)‖∫ 1

0

‖H′(x∗)−1[H′(x∗ + θ(v00 − x∗))−H′(v00)]dθ(v00 − x∗)‖

≤ L‖v00 − x∗‖2

2(1− L0‖v00 − x∗‖)

<
Ls1

2(1− L0s1)
‖v00 − x∗‖

< ‖v00 − x∗‖ < s1, (2.10)

which shows (??) for n = 0 and v10 ∈ B(x∗, s1). Similarly by the second substep
for n = 0, k = 2 we also get

v20 − x∗ = v10 − x∗ −H′(v00)−1H(v10)

= v10 − x∗ −H′(v10)−1H(v10)

+H′(v10)−1[(H′(v00)−H′(x∗)) + (H′(x∗)−H′(v10))]

×H′(v00)−1H(v10), (2.11)

so by (a3), the definition of s1 and (??) (for x = v10 , v
0
0), we get in turn that

‖v20 − x∗‖ ≤
L‖v10 − x∗‖2

2(1− L0‖v10 − x∗‖)

+
L0(‖v10 − x∗‖+ ‖v00 − x∗‖)

(1− L0‖v10 − x∗‖)(1− L0‖v00 − x∗‖)

≤
(

L

2(1− L0s1)
+

2L0L1

(1− :0 s1)2

)
s1‖v10 − x∗‖

≤ γs1‖v10 − x∗‖ < s1, (2.12)
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which shows (??) for n = 0 and k = 2. Similarly, from

vi0 − x∗ = vi−10 − x∗ −H′(v00)−1(H(vi−10 ))

= vi−10 − x∗ −H′(vi−10 )H(vi−10 )

+H′(vi−10 )−1[(H′(v00)−H′(x∗))
+(H′(x∗)−H′(vi−10 ))]H′(v00)−1H(vi−10 ) (2.13)

so
‖vi0 − x∗‖ ≤ γ‖vi−10 − x∗‖ ≤ γi‖v00 − x∗‖ < s1, (2.14)

and
‖x1 − x∗‖ ≤ γk+1‖x0 − x∗‖ < s1, (2.15)

which show (??) and (??) for n = 1, i = 2, 3, . . . , k and vi0, x1 ∈ B(x∗, s1).
Similarly, by induction we have in turn (as in (??))

‖v1j − x∗‖ = ‖v0j − x∗ −H′(v
j
0)−1H(v0j )‖

≤
L‖v0j − x∗‖2

2(1− L0‖v0j − x∗‖)
< s1, (2.16)

‖vij − x∗‖ = ‖vi−1j − x∗ −H′(v0j )−1H(v1j )

+H′(vi−1j )−1[(H′(vi−1j )−H′(x∗))
+(H′(x∗)−H′(v0j ))]H′(v0j )−1H(vi−1j )‖

leading to (as in (??))

‖vij − x∗‖ ≤ γi‖v0j − x∗‖ < s1 (2.17)

and (as in (??))

‖un+1 − x∗‖ = ‖vkn − x∗‖ ≤ γk+n‖u0 − x∗‖ < s1, (2.18)

which completes the induction for (??)-(??) and also show that un+1 ∈ B(x∗, s1).
It also follows from (??) that limn−→∞ un = x∗, since γ ∈ [0, 1). Let x∗∗ ∈ Ω1

with H(x∗∗) = 0. It then follows from the definition of Ω1, (a2) and T =∫ 1

0
H′(x∗∗ + τ(x∗ − x∗∗))dτ that

‖H′(x∗)−1(T −H(x∗))‖ ≤
L0

2

∫ 1

0

‖x∗ − x∗∗‖dτ ≤
L0

2
s3 < 1,

so T−1 ∈ L(Y,X ). Then, from the estimate

0 = H(x∗)−H(x∗∗) = T (x∗ − x∗∗), (2.19)

we get x∗ = x∗∗.
�
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REMARK 2.2 (a) In view of (a2), we can write

‖H′(x∗)−1H′(x) = ‖H′(x∗)−1[(H′(x)−H′(x∗)) +H′(x∗)]‖
≤ 1 + ‖H′(x∗)−1(H′(x)−H′(x∗))‖
≤ 1 + L0‖x− x∗‖, (2.20)

so the second condition in (a3) can be dropped, and we choose L1 = 2,
since ‖x− x∗‖ ≤ s1 < 1

L0
.

(b) It follows from the definition of s1 and rA that s1 < rA. That is the radius
of convergence s1 cannot be larger than the radius of convergence rA of
Newton’s method obtained by us [?,?,?,?,?].

(c) The local convergence of method (??) was not studied in [?]. But if it was
call; s̄1 the smallest positive solution of p̄(t) = 0, where

p̄(t) = (2L0 + L̄)L0t
2 − (4L0 + 4L0L̄1 + L̄)t+ 2, (2.21)

where L̄ and L̄1 are the constants for the conditions in (a3) holding on Ω.
But, we have

L ≤ L̄ (2.22)

L1 ≤ L̄1 (2.23)

and
γ ≤ γ̄, (2.24)

since Ω0 ⊂ Ω. Hence, we have

s̄1 ≤ s1. (2.25)

Moreover, if strict inequality holds in (??) or (??), then, we have s̄1 < s1.
Furthermore, by (??), our error bounds are more precise than the ones using
L0, L̄, L̄1 and γ̄. Hence, we have expanded the applicability of method (??) in
the local convergence case.

In a similar way, we improve the semi-local convergence analysis of method
(??) given in [?]. The work is given in the next section.

3 Semi-local convergence

We need the following auxiliary result on majorizing sequences for method (??).

LEMMA 3.1 Let K0 > 0,K > 0, and r10 be parameters. Denote by δ the
unique root in the interval (0, 1) of the polynomial ϕ given by

ϕ(t) = 2K0t
k+1 +K(tk + tk−1 − 2).

Define the sequence {qn} for each n = 0, 1, 2, . . . and i = 1, 2, . . . , k − 1 by

r00 = 0, r0n = rn, r
1
n+1 = qn+1 +

K(qn+1 − qn + rk−1n − qn)(qn+1 − rk−1n )

1− 2K0qn+1
(3.1)
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and

rkn = qn+1, r
i+1
n = rin +

K(rin − qn + ri−1n − qn)(rin − ri−1n )

1− 2K0qn
.

Moreover, suppose that

0 <
K(q1 + rk−10 )

1− 2K0q1
≤ δ < 1− 2K0r

1
0. (3.2)

Then, the sequence {qn} is increasing, bounded from above by q∗∗ =
r10

1−α and
converges to its unique least upper bound q∗ satisfying q1 ≤ q∗ ≤ q∗∗,

r1n − ri−1n ≤ δ(ri−1n − ri−2n ) ≤ δkn+i−1r10, (3.3)

r1n+1 − rkn ≤ δ(rkn − rk−1n ) ≤ δk(n+1)r10 (3.4)

and
qn = r0n ≤ r1n ≤ r2n ≤ . . . ≤ rk−1n ≤ rkn = qn+1. (3.5)

Proof. Replace tn, s
i
n, L0, L, α in [?] by qn, r

i
n,K0,K, δ.

Next, we present the semi-local convergence analysis of method (??).

THEOREM 3.2 Let H : Ω −→ Y be a continuously differentiable operator in
the sense of Fréchet and [., .;H] : Ω −→ L(X ,Y) be a divided difference of order
one of H. Suppose there exist x0 ∈ Ω and K0 > 0 such that

H′(x0)−1 ∈ L(Y,X ). (3.6)

‖H′(x0)−1H(x0)‖ ≤ r10, (3.7)

‖H−1(x0)([x, y;H]−H′(x0))‖ ≤ K0(‖x− x0‖+ ‖y − x0‖). (3.8)

Set Ω2 = Ω ∩B(x0,
1

2K0
). Moreover, suppose that for each x, y, z, w ∈ Ω2

‖H′(x0)−1([x, y;H]− [z, w;H])‖ ≤ K(‖x− z‖+ ‖y − w‖), (3.9)

and the hypotheses of Lemma ?? hold. Then, {un} ∈ B(v0, q∗), limn−→∞ un =
u∗ ∈ B̄(v0, q∗), H(u∗) = 0. and

‖u∗ − un‖ ≤ q∗ − vn. (3.10)

Moreover, u∗ is the unique solution of equation H(x) = 0 in B̄(v0, q∗).

Proof. Replace xn, yn, s
i
n, tn, α, L0, L in [?] by un, vn, r

i
n, qn, δ,K0,K.

�

REMARK 3.3 The condition

‖H′(x0)−1([x, y;H]− [z, w;H])‖ ≤ L(‖x− z‖+ ‖y − w‖) (3.11)

for each x, y, z, w ∈ Ω, some L > 0 is used in [?] instead of (??). But we have

K0 = L0 (3.12)
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K ≤ L, (3.13)

and
δ ≤ α, (3.14)

since Ω2 ⊆ Ω. Denote by q̄n, r̄
i
n the majorizing sequences used in [?] and defined

as sequences qn, r
i
n but with K0 = L0 and K replaced by L. Then, we have by a

simple induction argument, that

qn ≤ q̄n (3.15)

rin ≤ r̄in (3.16)

0 ≤ rin − qn ≤ r̄in − q̄n (3.17)

0 ≤ rin − ri−1n ≤ r̄in − r̄i−1n (3.18)

0 ≤ qn+1 − rk−1n ≤ q̄n − r̄k−1n (3.19)

and
q∗ ≤ q̄∗. (3.20)

Moreover, if K < L, then (??-(??) hold as strict inequalities. Let us consider
the set Ω3 = Ω ∩ B(x1,

1
2K − r

1
0) provided that r10 <

1
2K . Moreover, suppose for

each x, y, z, w ∈ Ω3

‖H−1(x0)([x, y;H]− [z, w;H])‖ ≤ λ(‖x− z‖+ ‖y − w‖). (3.21)

Notice that Ω3 ⊆ Ω2, so λ ≤ K. Then, Ω3, (??), λ can replace Ω2, (??), and
K respectively in Theorem ??. Clearly, the corresponding to {tn} majorizing
sequence call it {t̄n} is even tighter than {tn}. Hence, we have extended the
applicability of method (??) in the semi-local convergence analysis too. These
improvements are derived under the same conditions as in [?], since the com-
putation of L is included in the computation of K as a special case. Examples
where the new constants are smaller than the older ones can be found in the
numerical section that follows and in [?,?,?,?,?].

4 Numerical examples

We present the following examples to test the convergence criteria. Define the
divided difference by

[x, y;H] =

∫ 1

0

H′(τx+ (1− τ)y)dτ.

EXAMPLE 4.1 Let X = Y = R3, Ω = U(0, 1), x∗ = (0, 0, 0)T and define H
on Ω by

H(x) = H(x1, x2, x3) = (ex1 − 1,
e− 1

2
x2

2 + x2, x3)T . (4.1)

8
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For the points u = (u1, u2, u3)T , the Fréchet derivative is given by

H′(u) =

 eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1

 .

Using the norm of the maximum of the rows and (a3)-(a4) and since H′(x∗) =
diag(1, 1, 1), we can define parameters for method (??) by L0 = e−1, L1 = L =

e
1

e−1 , L̄ = L̄1 = e. Then, s1 = 0.0997 The old radius is s̄1 = 0.0727.

EXAMPLE 4.2 Let X = Y = R, Ω = Ū(x0, 1 − ξ), x0 = 1 and ξ ∈ [0, 12 ).
Define function H on Ω by

H(x) = x3 − ξ.
Then, we get by (??)-(??) and (??) that for
(i) k = 1, q1 = r10 = 1

3 (1 − ξ), L0 = K0 = 1
2 (3 − ξ), L = 2 − ξ, and K =

1 + 1
2K0

. Notice that L0 < K < L. The conditions of Lemma ?? are satisfied
for ξ ∈ I1 = [0.434523, 0.5) but the earlier conditions in [?] are satisfied for
ξ ∈ I2 = [0.464523, 0.5), and I2 ⊂ I1. Moreover, if λ = 1

3(3−ξ) (−2ξ2 + 5ξ + 6)

then conditions of Lemma ?? are satisfied for ξ ∈ I3 = [0.3720452, 0.5).
(ii)For k = 2, the conditions of Lemma ?? are satisfied for ξ ∈ I1 = [0.6161045, 0.7)
but the earlier conditions in [?] are satisfied for ξ ∈ I2 = [0.6266523, 0.7), and
I2 ⊂ I1. Moreover, if λ = 1

3(3−ξ) (−2ξ2 + 5ξ + 6) then conditions of Lemma ??

are satisfied for ξ ∈ I3 = [0.5966523, 0.7).

5 Conclusion

Our idea of the convergence region in connection to the center Lipschitz condi-
tion were utilized to provide a local as well as a semilocal convergence analysis
of method (??). Due to the fact that we locate a region at least as small as
in earlier works [?] containing the iterates, the new Lipschitz parameters are
also at least as small. This technique leads to a finer convergence analysis
(see also Remark ??, Remark ?? and the numerical examples). The novelty
of the paper not only lies in the introduction of the new idea but also ob-
tained using special cases of Lipschitz parameters appearing in [?]. Hence, no
additional work to [?] is needed to arrive at these developments. This idea
can be used to extend the applicability of other iterative methods appear-
ing [?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?] along the
same lines.
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