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Abstract: Due to the increasing importance of mangroves in climate change mitigation projects, 16 
more accurate and cost-effective aboveground biomass (AGB) monitoring methods are required. 17 
However, field measurement of AGB may be a challenge because of its remote location and the 18 
difficulty to walk in these areas. This study is based on the Livelihoods Fund’ Oceanium project of 19 
10,000 hectare mangrove plantations monitoring. In a first step, the possibility of replacing 20 
traditional field measurements of sample plots in a young mangrove plantation by a semiautomatic 21 
processing of UAV-based photogrammetric point clouds was assessed. In a second step, Sentinel-1 22 
radar and Sentinel-2 optical imagery were used as auxiliary information to estimate AGB and its 23 
variance for the entire study area under a model-assisted framework. AGB was measured using 24 
UAV imagery in a total of 95 sample plots. UAV plot data was used in combination with 25 
non-parametric Support Vector Regression (SVR) models for the estimation of the study area AGB 26 
using model-assisted estimators. Purely UAV-based AGB estimates and their associated standard 27 
error (SE) were compared with model-assisted estimates using (1) Sentinel-1, (2) Sentinel-2 and (3) 28 
a combination of Sentinel-1 and Sentinel-2 data as auxiliary information. The validation of the 29 
UAV-based individual tree height and crown diameter measurements showed a root mean square 30 
error (RMSE) of 0.21 m and 0.32 m respectively. Relative efficiency of the three model-assisted 31 
scenarios ranged between 1.61 and 2.15. Although all SVR models improved the efficiency of the 32 
monitoring over UAV-based estimates, the best results were achieved when a combination of 33 
Sentinel-1 and Sentinel-2 data was used. Results indicated that the methodology used in this 34 
research can provide accurate and cost-effective estimates of AGB in mangrove young plantations. 35 

Keywords: Digital Aerial Photogrammetry; SAR; Model-assisted; Biomass estimation; Copernicus; 36 
Unmanned aerial vehicles 37 

 38 

1. Introduction 39 
Mangroves are highly productive ecosystems and are able to sequester and store large amounts 40 

of carbon [1–3]. They also play a key role in production of timber and non-timber forest products, 41 
shoreline protection, providing fishing areas or filtering water pollution [1,4]. For these reasons 42 
mangrove ecosystems are highly interesting zones for climate mitigation and adaptation projects [5]. 43 

In the last few years, the attention in afforestation and reforestation projects as well 44 
conservation programs such as Reducing Emissions from Deforestation and Forest Degradation Plus 45 
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(REDD+) has been increased. These programs require accurate estimations of biomass and carbon 46 
stocks in vegetation and soils to monitor changes and account carbon emissions and sequestration 47 
rates. The use of new technologies based in remote sensing can improve the accuracy of monitoring 48 
and enhance our understanding of the changes in forested mangrove areas [6]. 49 

Traditional inventory data collection methods may be accurate and offer detailed information 50 
on composition and structure of forests[7]. However, this task can be inefficient or time-consuming 51 
[8] in remote or hard-to-reach locations and difficult to work areas (i.e. mangroves). Monitoring 52 
mangrove forests is also arduous because of their large extent [9], thus remote sensing data has been 53 
widely used for this purpose. The kind of remote sensing platform used depends on the scale and 54 
the goal of the research [10]. Low and medium resolution space-borne sensors availability is 55 
generally free of charges or cheaper than airborne sensors and they offer larger coverage area while 56 
airborne and Unmanned Aerial Vehicles (UAV) sensors have much more spatial resolution but 57 
limited autonomy, which can result in a higher cost per hectare. Giving that soil is the main carbon 58 
pool in this type of forests [3,11] most studies have focused on investigating changes in mangroves 59 
land cover [12] since soil carbon is relatively stable [11].  60 

Many studies have monitored the mangrove forests coverage using space-borne imagery, from 61 
low-resolution sensors such as MODIS [13], or medium resolution satellite imagery such as 62 
LANDSAT [14] to Very-High Resolution (VHR) imagery from WorldView-2 [15]. Recent studies 63 
have analyzed the vertical structure of mangrove forests from space-borne and airborne 64 
observations. Simard et al. [11] and Fatoyinbo et al. [12] used the Shuttle Radar Topography Mission 65 
(SRTM) for mangroves canopy height estimation while Polarimetric Synthetic Aperture Radar 66 
Interferometry (Pol-InSAR) was applied to data collected from the TanDEM-X InSAR (TDX) by Lee 67 
and Fatoyinbo [13]; Lee et al. [14]; Lagomasino et al. [15] and Fatoyimbo et al. [16]. VHR satellite 68 
stereophotogrammetry has also been used to create canopy height models (CHM) [6]. On the other 69 
hand, airborne laser scanner (ALS) also provides elevation data to estimate canopy heights and to 70 
calibrate and validate estimations from space-borne remote sensing sensors [6,9,20].  71 

Within the satellite remote sensing techniques, synthetic aperture radar (SAR) sensors are the 72 
more effective to monitor forest biomass since they are independent of cloud conditions [21] and can 73 
penetrate the canopy [22,23]. SAR sensors use different wavelengths which are able to penetrate the 74 
forest in different ways [23]. The X- band and C-band are sensitive to leaves and needles [24]. These 75 
bands are suitable for monitoring young growth stages of mangrove forests or plantations [25]. The 76 
launch of Sentinel-1A and Sentinel-1B enables very frequent SAR data acquisitions under a free data 77 
policy. Sentinel-1 provides SAR images with a high geometric resolution (5 m×20 m on ground) with 78 
HH+HV or VV+VH polarizations in C-band [26]. Nevertheless, C-band backscatter saturation levels 79 
are typically low in mangrove biomass estimations (50-70 Mg ha-1) [27,28]. Some studies have 80 
demonstrated that the integration of SAR and optical sensors data improves forest biomass 81 
estimates since optical data contributes to offset the saturation effect [29,30]. Thus, the opportunities 82 
for mangroves biomass monitoring have improved with the subsequent launch of Sentinel-2 83 
(multispectral) satellites of the Copernicus program of the European Commission. 84 

Models relating observations forest attributes measured on field plots and remotely sensed data 85 
for the same plots are often used when plot-based estimates are not sufficiently precise or not 86 
enough field plots are available [31]. These attributes are then estimated as the mean of the model 87 
wall-to-wall predictions. Under model-based framework, estimators may be both biased and 88 
imprecise depending on the goodness of the model [32]. On the other hand, design-based inference 89 
framework does not have this problem and models may be used to enhance the variance [33]. In this 90 
way, an inadequately specified model using design-based inference through model-assisted 91 
estimation will not lead to bias estimators [32]. Model-assisted has been extensively used in 92 
large-area aboveground biomass (AGB) monitoring [31,33–35]. 93 

Non-parametric models have been widely used for AGB estimation [29,30,36–38]. The use of 94 
machine learning algorithms such as k-Nearest Neighbor (k-NN), Back Propagation Neural 95 
Networks (BPNN), Multilayer Perceptron Neural Network (MLPNN), Random Forest (RF) or 96 
Support Vector Regression (SVR) has been extended due to its ability to model relatively easy 97 
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complex non-lineal relationships between the variables and to process large dataset efficiently [39]. 98 
Although parametric models have been more frequently used in connection with model-assisted 99 
estimation, non-parametric models have also been employed [40,41]. 100 

During the past few years, Dense Image Matching (DIM) has reached a great importance in 101 
digital surface models (DSM) generation due to the improvements in hardware and 102 
photogrammetric algorithms, such as Structure-from-Motion (SfM) [42,43]. Three-dimensional (3D) 103 
ALS-like point clouds may be produced by photogrammetric matching of digital aerial images [44–104 
46]., However, DIM-based point clouds only provide information above top surface therefore an 105 
accurate bare-earth digital elevation model (DEM) for estimating canopy height and structure is 106 
essential [47]. However, DEMs may be produced by photogrammetry without any support from 107 
other sensors in open canopy forests [48]. Furthermore, recent studies have shown the application of 108 
UAVs in forest variables estimation [49–54]. One of the main advantages of DIM-based point clouds 109 
generated from UAV imagery is the capacity to detail the vegetation at a centimeter level [55]. VHR 110 
imagery allows for Individual Tree Crown (ITC) extraction from the DIM-derived canopy models 111 
[56] and for measuring parameters like individual tree height or crown surface. Such measurements 112 
are very useful as they are good estimators of other interest variables as, inter alia, diameter at breast 113 
height, volume, AGB or tree growth [54,57]. Thus, these facts coupled with the low operational cost 114 
of UAVs [58] has resulting in UAV as become a popular alternative in ecosystems for surveying and 115 
mapping [59].  116 

Particularly, only a few studies have researched the application of UAVs to the mangrove 117 
ecosystems [60–62]. Nevertheless, UAVs may be a practical solution in remote areas since they allow 118 
us to develop rapid and cost-effective surveying forest attributes [52,61,63,64]. Using UAVs implies 119 
also a great advantage over other remote sensing systems due to the possibility to plan imagery 120 
capture during low sea tide. Although digital photogrammetry from UAV leads to good estimations 121 
of mangrove forests parameters, it is costly practical for wall-to-wall large-scale forest inventories. 122 
Instead, UAVs may be used in assessing tree variables at the plot-scale. To our knowledge, only 123 
Mayr et al. [51] have researched the use of photogrammetric point clouds from UAV to delineate tree 124 
crowns in separate plots. 125 

This study purposes a novel technique to quantify AGB in large-area young mangrove 126 
reforestations replacing traditional field sampling methods by photogrammetric point cloud based 127 
measurements and using wall-to-wall Sentinel-1 and Sentinel-2 data as auxiliary information. The 128 
aims of this study were (1) to evaluate the performance of low-cost UAV-derived photogrammetric 129 
point clouds for the measurement of individual tree heights and crown diameters, (2) to investigate 130 
the usability of wall-to-wall Sentinel-1 and Sentinel-2 data as auxiliary information for estimating 131 
the AGB using a probability sampling design and (3) compare the AGB estimates and their 132 
precisions for the different satellite data and their combined use. 133 

2. Materials and Methods  134 

2.1. Study area 135 

This study was conducted in the mangrove forest of Senegal in the Sine Saloum and Casamance 136 
Deltas (12°20′-14°10′N; 15°24′-16°47′ W) located in the west coast of the country (Figure 1). The study 137 
area is located in a mangrove restoration project with a total area of 10,415.12 ha that was planted 138 
between 2009 and 2012 (1,550.05 in 2009; 4,285.14 in 2010; 3,337.47 in 2011 and 1,242.46 in 2012). The 139 
project area consists of 2,657 planted parcels, scattered in the deltas, with a mean area of 3.92 ha. The 140 
species planted is Rhizophora mangle L. with a mean planting density of 5,000 trees/ha [66]. 141 

The Sine Saloum delta is in the Sudanese climate domain with annual precipitation ranging 142 
from 450-920 mm while the parcels located in the Casamance area are in the Sudanese-Guinean and 143 
sub-Guinean climate domains where annual precipitation range between 800-1,700 mm [67]. 144 
Average air temperature ranges from 26 °C to 29.7 °C in the Casamance area and between 27.2 °C 145 
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and 30 °C in the case of Sine Saloum [68]. The rainy season due to monsoon resulting from the 146 
anticyclone of St. Helene lasts from June to September [69]. 147 

 148 

Figure 1. . Overview of the study area on the west coast of Senegal, stratification and sampling 149 
design. 150 

2.2. Satellite data. Acquisition and Preprocessing  151 

Sentinel-1 dual-polarized images in Interferometric Wide Swath (IW, 250 km swath width) and 152 
Sentinel-2 images were acquired, from the European Space Agency (ESA) Sentinel science hub 153 
(https://scihub.copernicus.eu/) (Table 1), to provide AGB estimations. Additionally, Sentinel-2 data 154 
was used to stratify the study area. 155 

Table 1. Remote sensed data acquisition. 156 

Satellite sensor Dates Processing 
levels Bands Application 

S2 

February 2017 
March 2017 

Level-1C 
B2, B3, B4, B5, 
B6, B7, B8A, 
B9, B11, B12 

Stratification 

(7 scenes) 
  

July 2017 
August 2017 

(6 scenes) 

AGB prediction 
 

S1 

18 July 2017 
11 August 2017 

28 September 2017 
 

Level-1 
GRD 

 

 
C-band 

 (VH polarization) 
 
 

AGB prediction 
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 157 
The study area region is covered by two Sentinel-1 scenes and for each one, 3 Standard Level 1 158 

Products GRDH (ground-range detected) were acquired in ascending mode taking into account the 159 
time period when the UAV-based inventory was carried out and the sea tide level at the satellite 160 
acquisition time over the study area.  161 

Sentinel-1 products processing workflow consisted of four steps achieved in SNAP 6.0 software 162 
[70]: (i) radiometric calibration (output was sigma0 band), (ii) Terrain-Correction, based on SRTM 163 
Digital Elevation Model (3 seconds resolution), (iii) Single-product Speckle Filtering based on a 3 164 
pixel size Lee filter and (iv) a Linear conversion to dB. The outputs were backscatter images at 20 m 165 
resolution. In this study, only VH polarization images were included in the modeling scheme since it 166 
has been shown to be more efficient than VV and HH for the AGB estimation because it is less 167 
influenced by soil moisture [71]. The three date data were averaged to generate a mean VH 168 
polarization image. 169 

For our study purposes, we used the spectral bands with 10 m and 20 m were used while bands 170 
at 60 m were excluded from the analysis. The Sentinel-2A Level 1-C at the top of the atmosphere 171 
(TOA) reflectance tiles were processed to Level-2A bottom-of-atmosphere (BOA) values using the 172 
freely available SNAP toolbox [70] and the associated Sen2Cor plug-in [72]. Sentinel-2 bands were 173 
resampled to match the 20 m spatial resolution of the Sentinel-1 VH polarized backscatter. Ten 174 
different vegetation indices were generated from multispectral Sentinel-2 data (Table 2). 175 

Table 2. Sentinel-2 imagery data bands and vegetation indices used in this study. 176 
Predictor variable Band/index Definition 

Multispectral bands B2 Blue, 490 nm 
B3 Green, 560 nm, 
B4 Red, 665 nm 
B5 Red edge 705 nm 
B6 Red edge, 749 nm 
B7 Red edge, 783 nm 
B8 Near Infrared (NIR), 842 nm 

B8A Near Infrared (NIR), 865 nm 
B9 Water vapour, 945 nm 
B11 Short-wavelength infrared (SWIR-1), 1610 nm 
B12 Short-wavelength infrared (SWIR-2), 2190 nm 

Vegetation indices NDVI1 (B8 – B4) / (B8 + B4) 
NDVI2 (B8A – B4) / (B8A + B4) 
NDI45 (B5 − B4) / (B5 + B4), 
SAVI (B8 - B4) / (B8 + B4 + L) * (1.0 + L) 

L = 0.5 
TCARI 3 * [(B5 - B4) - 0.2*(B5 - B3) * (B5 / B4)] 
OSAVI (1.16) * (B8 – B4) / (B8 + B4 + 0.16) 
MCARI [(B5 – B4) - 0.2 (B5 – B3)] * (B5 / B4) 
GNDVI (B8 – B3) / (B8 + B3) 
PSSRa B8 / B4 
IRECI (B8 –B4) / (B5 / B6) 

* NDVI = Normalized Difference Vegetation Index; SAVI = Soil Adjusted Vegetation Index; TCARI = Transformed 177 
Chlorophyll Absorption Ratio Index; OSAVI = Optimized Soil Adjusted Vegetation Index; MCARI = Modified Chlorophyll 178 
Absorption in Reflectance Index; GNDVI = Green Normalized Difference Vegetation Index; PSSRa = Simple Ratio 800/680 179 
Pigment Specific Simple Ratio (Cholophyll a); IRECI = Inverted Red-Edge ChlorophyllIndex. 180 

S2 =  Sentinel-2; S1 =  Sentinel-1; GRD = ground-range detected 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 December 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 December 2018                   doi:10.20944/preprints201812.0227.v1

Peer-reviewed version available at Remote Sens. 2019, 11, 77; doi:10.3390/rs11010077

http://dx.doi.org/10.20944/preprints201812.0227.v1
http://dx.doi.org/10.3390/rs11010077


 6 of 25 

 

For all survey plots, bands, vegetation indices from the Sentinel-2 level 2-A and backscatter 181 
mean values from the Sentinel-1 products were computed using the Extract function in the Raster 182 
package [73] within R environment software [74].  183 

A flowchart showing the general research framework for estimating the AGB of mangrove 184 
plantations used in this study is presented in Figure 2. 185 

 186 

Figure 2. . General methodology workflow used for AGB estimation integrating the Sentinel SAR 187 
and multispectral data. UAV-derived imagery was used for sampling plots measuring. 188 

2.3. Stratification and sampling design  189 
A total of 7 Sentinel-2 images were initially used as auxiliary information to generate a wall to 190 

wall stratification of the mangrove plantations in the study area, which aids to encompass the full 191 
range of available AGB. Two main strata were defined to allocate efficiently a stratified systematic 192 
sample of UAV-based plots in each of them, i) one with very low AGB densities due to high 193 
plantation mortality and low plantation development stage (Stratum I) and ii) the second stratum 194 
with higher AGB densities and therefore, lower mortality rates and higher tree cover and plantation 195 
development stage (Stratum II). 196 

The Random Forest (RF) classifier [75] was selected to perform the stratificationclassification 197 
and it was implemented using the R-Package Random Forest: Breiman and Cutler's Random Forests for 198 
classification and regression [76]. Random Forests improve classification accuracy by growing an 199 
ensemble of classification trees and letting them vote on the classification decision. For the model 200 
training, regions of interest (ROIs) of the two strata were manually defined based on field 201 
information and observations of canopy cover over high resolution images from Google Earth. 202 

Two RF models were fitted, one for the classification of 9th March 2017 (western zone of the 203 
study area) images and one for classifying 24th February 2017 images (eastern zone). A total of 20 204 
variables were used as predictors in the image classification procedure: 10 Sentinel-2 spectral bands 205 
and 10 Sentinel-2 vegetation indices (Table 2). A Random Forest variable selection algorithm VSURF 206 
[77] was applied to reduce the number of predictor variables and to improve the performance of the 207 
Random Forest models (Table 3). 208 
  209 
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Table 3. Predictor variables from Sentinel-2 imagery data used in Random Forest classification and 210 
variables finally selected by VSURF. 211 

Images date RF predictor variables VSURF selected variables 

9th March 2017 
B2, B3, B4, B5, B6, B7, B8, B8A, B9, B12, 
NDVI1, NDVI2, NDI45, SAVI, TCARI, 

OSAVI, MCARI , GNDVI, PSSRa, IRECI 

B3, B12, OSAVI, NDVI2, NDI45, 
B9, B8 

24th February 
2017 

B2, B3, B4, B5, B6, B7, B8, B8A, B9, B12, 
NDVI1, NDVI2  NDI45, SAVI, TCARI, 
OSAVI, MCARI , GNDVI, PSSRa, IRECI 

NDVI2, B3, B9, B12 

The areas of the two strata in the study region were 6,927.03 ha for stratum I and 3,488.09 ha for 212 
stratum II. A stratified systematic sample of UAV-based plots was designed for the two pre-defined 213 
strata. The sample size was adapted to suit the time available to carry out the inventory, so the 214 
sample consisted of 95 circular plots of size 314.2 m2 plots. The dataset was randomly divided into 215 
60% training and 40% validation data samples (57 and 38 sample plots respectively). Based on a 216 
target of equal allocation of nh = 50 plots per stratum, the systematic sample was distributed on a grid 217 
of 1200 m by 1200 m and 850 by 850 m in stratum I and II respectively. The spacing of the grid was 218 
determined as: 219 

푙 = 	,	 (1)

where lh is the spacing of the grid for the stratum h, Ah is the size of the stratum h (m2) and nh is 220 
the initial number of sample plots for the stratum h. 221 

2.4. Sampling data collection and processing 222 
Aerial and field measurement campaigns were done simultaneously during the months of July 223 

and August 2017 in low tide conditions. UAV imagery was acquired in 95 flights (i.e. one per each 224 
sample plot) using a commercial compact quadricopter Parrot Bebop 2. Pix4dCapture software was 225 
used to design and guide each mission flight. In order to achieve a better 3-D representation of the 226 
plots, circular mission option was chosen since it is recommended for small areas and 3D model 227 
outputs (e.g. point clouds) at an altitude of 25 m above ground. This kind of mission ensures that the 228 
images are taken from all angles around a point of interest with the required overlap for 229 
photogrammetric processing [78]. The oblique imagery provides a more detailed characterization of 230 
the sample trees [79]. 231 

Tree height and crown diameters were measured on field in a sample of 100 trees (between 1 232 
and 3 trees per plot) to compare and validate field and UAV-based measurements. Previously to the 233 
UAV flights, coloured disks were placed next to the measured trees to locate them in the point 234 
clouds. Tree heights and crown diameters measured over the photogrammetric point cloud were 235 
added to the trees database.  236 

Each of the 95 flights was processed separately for DIM point clouds and orthomosaics 237 
generation using the photogrammetry software Pix4Dmapper (Pix4D SA,  Switzerland). 238 
Pix4Dmapper uses proprietary algorithms based on computer vision Structure-from-Motion (SfM) 239 
and stereo-matching algorithms to align images and build a georeferenced sparse point cloud. For 240 
images taken with the drone Bebop 2, the sky is automatically removed in the image alignment 241 
phase in Pix4D. After this step the point cloud is densified using multi-view stereo-reconstruction 242 
algorithms. For this study, a half size image scale was used for the point clouds densification as it is 243 
recommended by the software developers [78]. As no additional ground control points (GCP) were 244 
collected for enhancing accuracy, only the GPS coordinates of the tagged images were used in this 245 
process. Hence, coordinates of sample plots were determined by the UAV GPS/INS system and the 246 
photogrammetric reconstruction. 247 
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Bare-earth was extracted from the point clouds and the height above the ground was computed 248 
for each point using the Lasground tool in Lastools [81]. The algorithm parameters were also 249 
fine-tuned for an optimum result (step was 2 m, bulge was 1 m, spike was 0.01 m and standard 250 
deviation was 10 m). Sample plot area was clipped from each point cloud. Ground points were used 251 
to generate a 0.5 m DTM and 0.1 m resolution CHM were generated for each point cloud by 252 
subtracting bare earth heights from the DSM heights. FUSION software [82] was used for DTM and 253 
CHM creation. 254 

Heights and position of individual trees inside the plot were determined using local maxima 255 
filters based on a locally variable window size [83–85]. This algorithm identifies the highest point 256 
within a variable window. For this, the filter moves the window over the CHM and uses a circular 257 
window to determine if the center pixel is a local maximum by comparing this pixel with the 258 
surroundings pixels within the window. Window size depends on tree height by referring to a 259 
predefined height- crown equation. In order to achieve the best results and taking in account that 260 
tree sizes are different in each plot, various windows sizes were tested using the CanopyMaxima 261 
function of FUSION. Afterwards, a manual debug of the results was carried out using the 262 
orthomosaics derived from UAV data as reference to ensure the measurement of all trees in plots. 263 
Finally, tree crown surfaces were delineated computing the rLidar package [86] within R 264 
environment software [74]. The tree crown diameter was calculated as the diameter of the circle with 265 
equivalent area. 266 

cd = 	,	 (2)

where cd is the tree crown diameter (cm) and CCUAV is the tree crown area. 267 
Only trees with a 50% of its crown surface within the plots were taken into account in sampling. 268 

An exhaustive manual revision of the detected trees was done to avoid committing omission and 269 
commission errors. In order to ensure the quality of UAV-based measurements, all plots were 270 
reviewed by a different expert than the one who carried out the semiautomatic process of the sample 271 
plot measuring. 272 

 273 

2.5. Allometric equation  274 
AGB for individual trees was estimated using an allometric equation developed specifically for 275 

the project (Table 4) [87]. A specific equation was developed for Rhizophora based on a destructive 276 
sample of 71 trees from the study area. AGB was defined as the sum of stem, stilt roots, branches, 277 
leaves and fruits biomass. The AGB allometric equation adjusted in the project has considered two 278 
independent variables (tree crown diameter and total height). These variables were the necessary 279 
ones for the estimation of tree AGB based on the photogrammetric information. The point clouds 280 
obtained during the UAV-based sampling of this study were analyzed obtaining information at a 281 
tree level of crown diameter and total height. 282 

Table 4. Tree allometric equation used for aboveground biomass estimates. 283 

Equation r2 
Number of 
individuals CD range (cm)  h range (cm) 

agb = 0.004932696 × cd . × h .  0.93 71 10.5-210.0 37-285 

1 agb = estimated individual tree oven-dry aboveground biomass (g); h = total height (cm); cd = tree 284 
crown diameter (cm) 285 

Table 5. Summary of AGB results for the 95 UAV-based sample plots (m3 ha−1). 286 
Stratum Number of plots Minimum Mean Maximum Standard. deviation 

I 55 0.00 0.33 1.60 0.49 
II 42 0.00 8.05 36.93 9.72 
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2.6. Aboveground biomass modelling and performance assessment 287 

Remote sensing data from Sentinel-1 and Sentinel-2 was used to enhance estimators of AGB 288 
predictions under the model-assisted inferential framework since this study was designed according 289 
to design-based principles. This method requires of models that relate AGB to the variables 290 
extracted from satellite data.  291 

In the current study, SVR was used to estimate machine-learning models of the mean function. 292 
SVR has been used with good results in other remote sensing derived biomass estimations including 293 
mangrove plantations [29,30,37,88,89]. The SVR basis is to transform the multidimensional 294 
regression problem into a linear one to predict one-dimensional variables. This problem is solved by 295 
using appropriate kernel functions to map the training data into a new hyperspace feature [90]. In 296 
this study, the radial basis function (RBF) kernel was used due to it has been widely used in other 297 
studies for modelling forest AGB [29,30,91]. The Vapnik’s ε-insensitive loss function [92] was used to 298 
reduce model complexity by ignoring differences between predicted and true values smaller than ε. 299 
In order to minimize problems due to overfitting and achieve parsimonious models the best 300 
kernel-parameter combination of ε, the regularization parameter (C) and the kernel width (γ) was 301 
selected using the grid search method. During this step a 10-fold cross-validation was performed to 302 
assess the quality of the models.  303 

To improve the accurateness of the models a backwards selection of predictors based on the 304 
predictor importance ranking was used by applying the recursive feature elimination (RFE) 305 
algorithm. For the implementation, the R-package caret [93] was used. The relative variable 306 
importance was also assessed using the same R-package. 307 

Three different models were adjusted; one per each data source and another one by combing 308 
both satellite data. A selection of predictive variables was applied in a first step except for the 309 
Sentinel-1 model. In order to assess the goodness-of-fit of the models, predictions were compared to 310 
the validation dataset using a variety of metrics: absolute (RMSE), mean absolute error (MAE) and 311 
coefficient of determination (r2). 312 

RMSE = ∑ ( ) 	,	 (3)

MAE	 =
1
푛

|y −y |	, (4)

푟 = 1 −
∑ (y −y )
∑ (y − y) ,	 (5)

where n is the total number of validation plots; yi is the observed AGB value plot i; 푦  is the 313 
predicted AGB value for plot i, and 푦 is the mean of observed AGB values for all validation sample 314 
plots.  315 

Akaike information criterion (AIC) was used to compare the performance of the different 316 
models. AIC has been recently used for comparing models in other studies that have estimated AGB 317 
based on remote sensed data [38,94].  318 

2.7. Aboveground biomass estimation methods 319 
The fitted SVR regression models were used to estimate AGB of the entire area by a 320 

model-assisted procedure. The design used allowed to estimate AGB on the basis of stratum and 321 
region-specific information. The plantation area was tessellated into grid cells using regular grids 322 
with the same area as backscatter image raster (400 m2). Utilizing the nomenclature proposed by 323 
Särndal, Swensson, and Wretman [95] used in Næsset et al. [24] for a stratified random sampling 324 
(STRS), the entire population of grid cells in the study area is named U, where U = {1, ..., N}. Let U be 325 
partitioned into H non-overlapping strata, Uh. In this case H=2. Let Nh denote the size of U, with h = 1, 326 
…, H. Let bk be the AGB of the k:th unit in the population.  327 
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The following estimator was used to estimate the mean AGB from the purely UAV-based 328 
sampling for each stratum: 329 

B =
∑ ∈ 	,	 (6)

where sh is a sample of fixed size nh randomly designed. 330 
The mean AGB for a particular stratum may be estimated using the model-assisted regression 331 

estimator (MAR) described in Næsset et al. [26] as follows: 332 

B =
∑ ∈ +

∑ ∈ 	,	 (7)

where 푏  is predicted AGB for the k:th grid cell, 푁 is the total number of grid cells for the stratum h, 333 
and 푒̂  = 푏  − 푏 . The first term of Equation (7) is the synthetic regression estimator described in 334 
Särndal, Swensson, and Wretman [69]. This estimator is a sum of model estimates of each element in 335 
the population.  336 

On the other hand, the second term is a Horvitz-Thompson estimator of the bias between the 337 
model predictions and the observed values in the sample for the stratum h. The Horvitz-Thompson 338 
estimator functions as a correction factor that makes the MAR asymptotically unbiased when nh is 339 
not too small [95]. 340 

The following estimator of the variance of the mean AGB estimation from the UAV-based alone 341 
was used: 342 

V B =
∑ b − B∈

n (n − 1) 	 (8)

The variance of the mean AGB for the MAR was estimated as follows: 343 

V B =
∑ e −

∑ e∈
n∈

n (n − 1) 		
(9)

The stratified estimator was used to estimate mean AGB for the entire study area. Equation (10) 344 
is the stratified estimator of AGB for the UAV-based sample and Equation (11) is the stratified 345 
estimator of mean AGB for the MAR. 346 

B = ∑ B 	,	 (10)

B =
N
N B 		 (11)

Finally, the following variance estimators for the entire study area were used: 347 

V B = ∑ V B 	,	 (12)

V B =
N
N V B 		 (13)

The standard errors (SE) were calculated for each stratum as the square root of the estimator of 348 
the variance of the mean AGB based on UAV-based and model-assisted methods, respectively. The 349 
relative efficiency (RE) parameter was computed for each model-assisted to compare UAV-based 350 
sample precision with the different model-assisted precision as follows: 351 

RE =
V B
V B

	,	 (14)

where RE is the relative efficiency of different model-assisted over purely UAV-based sample. The 352 
greater than 1.0 is RE the higher is the efficiency of model-assisted estimates than UAV-based and 353 
the larger is the UAV-based sample size required to achieve the same results as model-assisted. 354 
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3. Results 355 

3.1. Tree measurements 356 
Figure 3 shows the results of location and measurement of individual trees from the 357 

semiautomatic processing of the photogrammetric point clouds manually revised. 358 

 359 

Figure 3. Example of individual tree detection from UAV-derived CHM, local maxima (m) and 360 
crown delineation for a sample plot. 361 

The correlation coefficient between field-measured heights and UAV-measured heights was 362 
significant with a value of 0.95 (intercept of 6.1 cm and slope of 1.07) (Figure 4.a). Paired t-test 363 
showed that both measures are significantly different. The mean difference between field height and 364 
the UAV height was 11.59 cm (95% confidence interval from 7.99 cm to 15.19 cm). UAV point cloud 365 
measurements tended to underestimate the tree heights (Table 6). The root mean square error 366 
(RMSE) for individual tree heights was 0.21 m.  367 

Figure 4.b shows the strong linear relationship between the point cloud-derived and field 368 
measured tree crown diameters (r2=0.75). As in the case of tree height, tree crown diameters were 369 
slightly underestimated with a bias of 3.17 cm (95% confidence interval from -3.47 cm to 9.81 cm). 370 
The two-sided t-test revealed that there were no significant differences (p ≥ 0.95) between the mean 371 
of the crown diameters measured over the point clouds and reference values. RMSE of tree crown 372 
measurements was 0.32 m. 373 

Table 6.. Summary of the measured and estimated tree variables (m). 374 

 Field tree 
height UAV tree height  Field tree crown 

diameter  
UAV tree crown 

diameter  
Minimum 0.35 0.23 0.08 0.01 

Mean 1.12 1.00 0.85 0.81 
Maximum 3.40 2.89 3.03 2.67 
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(a) (b) 

Figure 4. Scatter plot detailing the coefficient of determination (r2) between (a) field measured height 375 
(m) and the maximum height from UAV-derived point clouds for individual trees and (b) field 376 
measured tree crown diameters (m) and tree crown diameters from UAV-derived point clouds. The 377 
red line shows the linear fit of the UAV-derived point clouds measurements and field observed 378 
values. The grey line in the center indicates 1:1. 379 

3.2. Model fitting 380 
AGB in the 95 UAV-measured plots was regressed against the predictor variables computed 381 

from Sentinel-1 and Sentinel-2 data using SVR. Table 7 shows the performance for the validation 382 
dataset of the different SVR models generated using Sentinel-1, Sentinel-2 and the combination of 383 
both datasets to estimate the mangrove plantations AGB (Mg ha-1). The selected SVR models 384 
explained 71–90% of the variability. AGB modelling results showed higher accuracy using SAR data 385 
than using optical data alone or in combination with SAR data. The SVR models for AGB contained 386 
a maximum of 5 explanatory variables (Table 7) with Sentinel-2-derived vegetation indices being 387 
more important than spectral bands. SAR-based model achieved the highest r2 and the smallest 388 
RMSE and MAE values, while the model based only on spectral indices showed the worst results. 389 
The combination of both satellite data did not improve the RMSE and MAE as results are slightly 390 
worse compared to the SAR-based model. Regarding AIC values, the best model for AGB included 391 
both SAR and multispectral data. Scatter plots of observed versus predicted AGB in the validation 392 
dataset for the different models are displayed in Figure 5. Figure 6 summarizes the variable 393 
importance metrics for AGB model predictors. 394 

Table 7. Performance of the selected SVR models. 395 

Inputs Selected 
variables r2 

RMSE 
(Mg ha-1) MAE (Mg ha-1) AIC 

Sentinel-1 VH 0.90 2.22 0.89 89.27 

Sentinel-2 
PSSRa, NDVI2, 
GNDVI, IRECI, 

OSAVI 
0.71 3.74 1.91 218.23 

Sentinel-1+ 
Sentinel-2 

VH, IRECI, 
SAVI, OSAVI 0.89 2.35 1.20 67.33 
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(a) 

(c) 

 

(b) 

Figure 5. Scatterplot of observed against predicted values from the cross-validation for the (a) 396 
Sentinel-1 SVR model, (b) Sentinel-2 SVR model and (c) Sentinel-1+Sentinel-2 SVR model. The red 397 
line shows the linear fit of the predicted and observed values. The grey line in the center indicates 398 
1:1. 399 
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 400 

Figure 6. Variable importance measures generated for a SVR model including all variables. 401 

3.3. Estimations of aboveground biomass 402 
For the entire studied area, the UAV-based estimation produced a mean AGB value of 2.90 Mg 403 

ha−1 (SE = 0.55 Mg ha−1) (Table 8). Using remote sensed auxiliary data under a model-assisted 404 
framework the corresponding estimations ranged between 2.51 Mg ha-1 (SE = 0.43 Mg ha−1) to 3.66 405 
(SE = 0.38 Mg ha−1). The combination of SAR and optical data showed the greatest RE. Consequently, 406 
combining both spaceborne data resulted in an improvement in an efficiency improvement of 115% 407 
compared to purely UAV-based method. 408 

The mean model-assisted AGB estimates in the stratum I ranged from 0.75to 0.99 Mg ha−1 (SE = 409 
0.30-0.35 Mg ha−1) while for the UAV-based the mean AGB estimate was 0.33 Mg ha−1 (SE = 0.35 Mg 410 
ha−1). The highest RE was obtained using Sentinel-2-assisted estimates (RE = 1.32). For the stratum II, 411 
the estimated mean AGB values ranged between 6.04 and 9.12 (SE = 0.88-1.16 Mg ha−1). The best 412 
results in terms of RE were achieved using the combination of spectral indices from Sentinel-2 and 413 
the backscatter from Sentinel-1 (RE = 2.87). Figure 7 shows the estimated AGB maps generated using 414 
the three adjusted SVR models. All maps showed similar patterns of AGB density distribution, but 415 
model based on Sentinel-2 data variables led to lower AGB estimated values than the models 416 
including Sentinel-1 VH polarization.  417 

Table 8. Estimated mean AGB (퐵) and standard error (SE) estimates (Mg ha−1) based on UAV-based  418 
sampling and model-assisted estimation from Sentinel-1, Sentinel-2 and the combination of both 419 
satellite data. 420 

Stratum UAV-based Model-assisted 

 
 Sentinel-1 Sentinel-2  Sentinel-1 + Sentinel-2  

푩 SE 푩 SE RE 푩 SE RE 푩 SE RE 
I 0.33 0.35 0.99 0.31 1.27 0.75 0.30 1.32 0.95 0.35 0.98 
II 8.05 1.50 8.50 0.97 2.37 6.04 1.16 1.68 9.12 0.88 2.87 

All 2.90 0.55 3.49 0.38 2.06 2.51 0.43 1.61 3.66 0.38 2.15 
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 421 

Figure 7. Study area AGB maps derived from the three SVR models used in this research. The upper 422 
row shows a general view of the AGB estimations while the lower row shows details at a 423 
smaller-scale. 424 

4. Discussion 425 
This study described a new method for large-scale forest AGB monitoring in remote and 426 

difficult to work areas by combining the use of UAVs for aerial plot measurements and data from 427 
Sentinel-1 and Sentinel-2 as auxiliary information. This methodology was used to assist in the 428 
development of monitoring of large-scale carbon sequestration projects on multiple plots. In the last 429 
few years, CHMs derived from UAV imagery have been extensively used to determine tree location 430 
for various purposes such as measuring tree height and crown sizes, estimating diameter at breast 431 
height and assessing AGB [48,54,57,61,96]. In this case, however, an affordable UAV has been used 432 
to generate a specific CHM for each sample plot to measure AGB of plots. Sentinel imagery was used 433 
as auxiliary data to estimate AGB in the different strata and the entire study area in a model-assisted 434 
framework as in Næsset et al. [26] since the estimators are approximately design-unbiased [32]. 435 

Although high tide can make the generation of a quality DIM-derived DTM difficult or even 436 
impossible, all flights were planned avoiding this condition. In addition, flat terrain and open 437 
canopies helped to the DTM generation as in [97,98]. Successful CHMs were built in every aerial 438 
plot. ITC delineation algorithms used in the sample plot measurement led to a more efficient, 439 
accurate and productive job. Sample plots were always placed at the central zone of each point cloud 440 
which had the highest overlaps.  441 

The accuracy of tree height measures was lower than in other studies in terms of relative RMSE 442 
(22.26%) [54,57,99]. This fact can be due to the significantly lower height that present those trees in 443 
comparison with previous studies. However, RMSE (20.64 cm) is considered relatively small, so 444 
results on measurements of tree heights were satisfactory. UAV-based tree height measures were 445 
negative biased meaning that this parameter was underestimated in agreement with other surveys 446 
[51,65,100]. The comparison between UAV and ground measurements showed that it is possible to 447 
make conservative and realistic measures of tree heights from the photogrammetric 3D models. The 448 
findings from our study demonstrated that UAV-derived point clouds may be successfully used to 449 
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estimate tree heights and crown diameters in recently stablished mangrove reforestations. This 450 
allows estimating AGB if accurate allometric equations based on tree height or crown dimensions 451 
are available. For this study, conservative values of AGB were estimated for each sample plot 452 
resulting from the negative biased estimations of individual tree heights. A conservative approach in 453 
the estimation of AGB is recommended by the different forest carbon standards to avoid 454 
overestimation of GHG removals. A potential weakness of the methodology followed in assessing 455 
the sample plot AGB by measuring tree variables over UAV-derived point clouds is the lack of 456 
accuracy of ITC algorithm with increasing density of stands [48,101]. Tree crown diameters 457 
measurements may be inaccurate in mature forests due to irregular shapes of crowns [48]. In 458 
addition, this method may not be suitable in forests with heterogeneous structure since only the 459 
upper canopy is detected [61].  460 

While accuracy of UAV-based tree variables measurement was studied using a 100 trees 461 
validation sample, the accuracy of plot level AGB estimations was not investigated. Sample plot 462 
AGB prediction uncertainty may be assessed using a Monte Carlo bootstrapping approach [102]. We 463 
recommend that future research focus on assess UAV-based AGB estimation uncertainty at the plot 464 
level in order to evaluate all potential sources of error.  465 

The second phase of this study was to generate precise estimations of AGB for the whole study 466 
area combining the stratified systematic sample of UAV-based plots and full-coverage moderate 467 
resolution SAR and optical satellite data. As expected, the models fitted using SAR auxiliary data 468 
were able to explain more variability (r2 = 0.89-0.90) and had lower RMSE values (RMSE = 2.22-2.35 469 
Mg ha-1) than the model based only on optical imagery (r2 = 0.71, RMSE = 3.74 Mg ha-1). These results 470 
are satisfactory compared to previous studies on integration of SAR and optical data for AGB 471 
estimation. Aslan et al. [103] estimated AGB of the coastal wetland vegetation in Indonesian Papua 472 
by fusing Landsat-8 OLI and ALOS-2 PALSAR-2 data with r2 = 0.46. Pham et al. [30] reported a r2 473 
value of 0.60 in a mangrove plantation on the Northern coast of Vietnam. They used SVR models 474 
with Sentinel-2 and ALOS-2 PALSAR-2 data. Jachowski et al. [89] used very high resolution 475 
GeoEye-1 and ASTER GDEM V2 elevation data (resolution of 30 m) in mangroves of Southwest 476 
Thailand with r2 = 0.66. Higher goodness of fit found in this study may be due to low AGB density in 477 
the plantation area compared to the rest of studies which were developed in mangrove forests with 478 
denser biomass. 479 

Results showed that VH backscatter was the most important variable for modelling AGB in the 480 
study area. This result was consistent with the findings of Alan et al. [104] and Pham et al. [30] 481 
Although VH polarization showed the best performance estimating AGB in the study area, not using 482 
other C-band polarization was the main limitation. Other studies found strong correlation between 483 
VV, HH, HV, VV/HH, HH/HV or VV/HV and AGB [30,37,104]. The other main limitation could be 484 
the saturation of C-band in high biomass areas. While C-band is not sensitive to values of AGB 485 
exceeding 50-70 Mg ha-1, the saturation level of the AGB estimation in mangrove forests using 486 
L-band has been detected at 100-150 Mg ha-1 [25,28,30]. Nevertheless, sample plot AGB in our study 487 
area ranged from 0 to 36.93 Mg ha-1 and C-band is favored for these low biomass areas, i.e. forest 488 
regeneration or young plantations [22]. This study showed that VH polarization from Sentinel-1 489 
may be used to correctly estimate AGB in mangrove plantations bellow 30 Mg ha-1 using machine 490 
learning algorithms such as support vector machine. 491 

Although other authors have demonstrated that long wavelength bands such as L-band and 492 
P-band are the most sensitive to monitor mangrove forest biomass [30,38,105,106], the lower biomass 493 
density in our study area made more suitable the use of C-band. Prior studies using machine 494 
learning methods and L-band showed overestimations of AGB in mangrove plantations at values 495 
bellow 50 Mg ha-1 [30,38]. As expected, using Sentinel-1 C-band to estimate AGB of young mangrove 496 
plantations is more accurate than L-band.  497 

A model combining Sentinel-1 and Sentinel-2 was adjusted to enhance the sensitivity of C-band 498 
backscatter at high AGB levels in mangroves (i.e. areas with pre-existing trees). Although this model 499 
resulted in a decrease of accuracy for the very low AGB densities stratum, the findings showed that 500 
it was more sensitive to higher AGB levels. No saturation issues were found in the study area for 501 
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Sentinel-1 data since sample plot AGB values were bellow typical saturation levels for mangrove 502 
areas. In this sense, more research is needed to analyze whether Sentinel-2 multispectral data is able 503 
to minimize the saturation problem in denser AGB level sites such as natural mangrove forests or 504 
older plantations.  505 

Indices using NIR spectrum (B8 and B8A) and red edge bands were the most important 506 
variables among optical data for predicting AGB (Figure 6). This is consistent with the findings of 507 
Sibanda, Mutanga and Rouget [107]. None of the individual bands were included in the models. 508 
Unlikely our results, NIR bands had the most important role rather than vegetation indices in 509 
previous studies [30,89]. However, Alan et al. [104] found the highest correlation values for spectral 510 
indices such as IRECI for modelling AGB in mangrove forests. 511 

The findings of this study has shown that incorporating Sentinel data in a young mangrove 512 
plantation monitoring may enhance AGB estimations and achieve more accurate results compared 513 
to those obtained by an only UAV-based inventory. Combining data from the stratified systematic 514 
sampling and a model based on data from Sentinel constellation reduced in all cases SE values 515 
except for the stratum I. Model-assisted estimation of AGB for the low density biomass stratum 516 
using auxiliary data from both satellites produced the greatest SE value (SE = 0.35 Mg ha-1). 517 
However, this model was the most sensitive to higher biomass densities. The best RE values were 518 
achieved in the stratum II using the combination of both satellite data. For this stratum and model, 519 
187% more plots would be needed to obtain the same accuracy by a purely UAV-based inventory 520 
under simple random sampling. In this way, a hybrid approach might be recommended, i.e. using 521 
Sentinel-1 variables as auxiliary data for the very low density stands (plantation areas in the first 522 
years of establishment) and a combination of SAR and multispectral data for older stands or areas 523 
with pre-existing trees. 524 

A correction of the bias was used in this study by a Horvitz-Thompson estimator under the 525 
model-assisted framework. This conferred an advantage on the estimation of AGB as compared to 526 
purely model-based inference because mean and total unbiased estimators are not model accuracy 527 
dependant, the model is only improving the design-based estimator [32,95].  528 

The results of our study have demonstrated that Sentinel-1 and Sentinel-2 data may be used to 529 
develop accurate, rapid up-to-date estimates of AGB of young mangrove plantations in large areas. 530 
The European Commission has adopted a free, full and open data policy for all Copernicus data, so 531 
Sentinel products may be used as cost-effective data to reduce the number of sample plots and 532 
improve the results of afforestation, reforestation and/or revegetation mangrove plantations 533 
monitoring. The use of multi-source remote sensing data helped in the stratification phase and led to 534 
better results in the modelling and estimation phases. In addition, using UAV made sample plot 535 
measuring easier, reduced costs of inventory and made it possible to work in the most remote areas. 536 
However, the promising results reported in this research must be tested in older plantations and 537 
natural forests where saturation issues are expected and denser canopy cover makes ITC delineation 538 
more difficult. 539 

5. Conclusions 540 
The main innovation of this study was the development of a novel approach to large-scale 541 

young mangrove forest monitoring combining spaceborne optical and radar data and replacing 542 
traditional field plot measurements by semiautomatic measures over low-cost UAV-derived 543 
photogrammetric point clouds. The assessment of accuracy showed that individual tree variables 544 
were successfully measured and confirmed that the followed workflow may be an alternative for 545 
quick and precise sampling plot measurements in remote areas.  546 

This study has also confirmed the good performing of SVR modelling AGB in mangrove 547 
plantations. Although Sentinel-1 based SVR model had the best results in terms of r2, RMSE and 548 
MAE, the integration of Sentinel-1 and Sentinel-2 led to achieve more accurate estimations in the 549 
higher biomass areas. The study has demonstrated that remote sensing assisted monitoring 550 
substantially improved the precision of AGB estimates compared to pure UAV-based inventory. The 551 
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integration of radar and optical data produced the lowest standard errors of the model-assisted 552 
estimations, more especially in the higher AGB stratum. 553 

Specific studies focusing on the shape and tree size influence on the UAV-derived accuracy 554 
measures and the remote sensing based models are needed to support mangrove AGB monitoring in 555 
different conditions depending of country landscapes. 556 
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