

1 *Type of the Paper (Electronic Supplementary Material)*

2 **The three horses of sustainability – population, 3 affluence and technology**

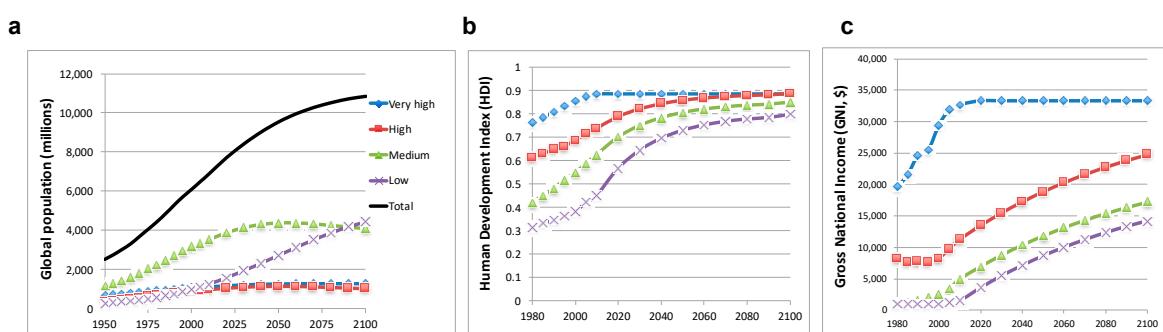
4 **David O. Obura**

5 This file includes:

6 Text S1 to S4.

7 Figures S1 and S2

8 Tables S1 and S2


9 **Text S1: The IPAT model**

10 The IPAT equation holds that the total impact of economic and social activity is a function of
11 population size (P), level of affluence (A) and an energy or technology factor (T) [9-11]:

12
$$\text{Impact} = f(\text{Population}, \text{Affluence}, \text{Technology}) \quad \text{Equation (1)}$$

13 Most simply, population, affluence and technology are multiplied together, providing a strong
14 first approximation of the classic photographs of weekly food consumed in countries with different
15 cultures, but also principally different levels of wealth [30]. The argument is made here at the level
16 of national economies and households in different countries, though it could apply to any entity such
17 as an organization, and individuals.

18 Population, Affluence (consumption of goods and services) and Technology (or energy/material
19 cost), can and have been framed differently by different authors [14,19,50] (and see main text). Here,
20 Population is given by the world population (fig. S1a). Affluence is approximated by the United
21 Nations Development Programme's (UNDP) Human Development Index (HDI, fig. S1b), where the
22 direct access to ecosystem services and other natural assets in lower income countries (e.g. through
23 local or home production of food) compensates for the mainly market access to these services in richer
24 countries. Technology is approximated by Gross National Income (GNI, fig. S1c), as a proxy for access
25 to and use of energy and manufactured products in richer vs. poorer countries. Quantitative
26 improvements can be made to this parametrization, that also deal better with correlation among the
27 factors, but the focus here is on broad properties [37].

30 **Figure S1.** Factors in the IPAT equation - population, affluence and technology. a) global population
31 (in millions), b) Human Development Index (HDI) and c) Gross National Income (GNI, \$ per capita)
32 in Very High, High, Medium and Low HDI countries. Impact (IPAT) is a product of these three, see
33 fig. 1. Numbers up to 2015 are measured data, after 2015 are projections [31,32].

34 The model proceeds on two premises, with three simplifying assumptions:

40

41 Premise 1 – countries are at various stages of economic development, expressed by HDI. Four
 42 groups are used: Very High (includes US, Europe, Japan, Australia); High (includes Russia, many
 43 Middle East states); Medium (includes China, India, South Africa) and Low (most developing and
 44 low-income countries) [31].

45

46 Premise 2 – country populations can be described by the model of demographic transition [51].
 47 They start at low population densities where birth and death rates are high (stage 1). As affluence
 48 increases first death rates decline first (stage 2) then birth rates (stage 3), which results in rapid
 49 increases in population growth in stage 2 and into stage 3, due to the differential between these. In
 50 stage 4 when affluence is high, birth and death rates equilibrate at low levels, so population growth
 51 slows and halts. Finally, in stage 5, at high affluence and ageing populations, death rates may exceed
 52 growth rates, resulting in population decline.

53

54 Assumption 1 – Population growth is based on median projections established by the United
 55 Nations (fig. S1a) [32].

56

57 Assumption 2 – Equity – all countries aspire to, and have the right to achieve, equivalent living
 58 standards to those experiencing the highest quality of life. Also by this principle countries should not
 59 be expected to accept a decline in living standards, so all must eventually converge towards the
 60 highest living standards, as currently experienced in Very High HDI and high GNI countries. To
 61 simplify calculations, the model caps HDI and GNI at current levels in Very High HDI countries (fig.
 62 S1b,c), as projecting these several decades into the future is not possible simply.

63

64 Assumption 3 – the principle of 'common but differentiated responsibilities' as accepted in the
 65 United Nations Framework Convention on Climate Change [52], holds that effort in reducing total
 66 impact should be proportional to current wealth (and this also reflects contribution to past impact) –
 67 i.e. wealthier countries adopt higher efficiency targets to reduce their total impact, while poorer
 68 countries adopt lower targets, and with later timelines. Over time, as wealth equilibrates across
 69 countries, they will converge towards the same efficiency targets.

70

71 For this application, the IPAT equation is modified by a coefficient 'e', where e varies between 0
 72 and 1 (0 < e < 1; presented in the text as a percentage). e represents a reduction in total impact achieved
 73 by reducing population, affluence, or technology, or a combination of these, below reference levels.
 74 Thus, (1-e) enables calculation of the resulting Impact. The parameters population, affluence and
 75 technology are multiplied together as the most simple expression of the model. The IPAT equation is
 76 thus modified to:

77

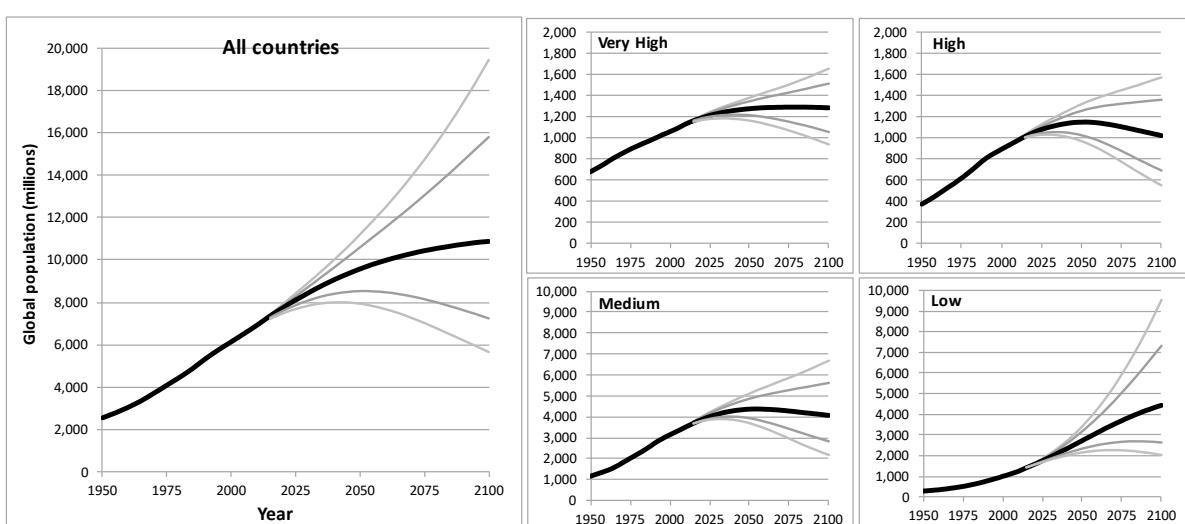
$$\text{Impact} = (1-e) * f(\text{Population} \times \text{Affluence} \times \text{Technology}) \quad \text{Equation (2)}$$

79

80 The model is used to consider two basic scenarios (figs. 1a,b), applied through varying the
 81 coefficient e (fig. 1c):

82 Business as usual – current trends in population, HDI and GNI continue into the future. e = 0.
 83 Using Assumption 2 to simplify calculations, HDI and GNI are capped at current levels in Very High
 84 HDI countries.

85 Sustainable future – total Impact is capped at 2020 levels, achieved by varying e between 0 and
 86 1. Assumption 3 is applied by applying different levels of e by HDI class such that Very High HDI
 87 countries adopt higher and earlier efficiencies than Low HDI countries.


88

89 **Text S2: exploration of the model factors, limitations and some assumptions for further research**

90

91 The three major factors each have a fundamental contribution, some key aspects of these being
 92 explored in the following text.
 93

94 Population – the model uses median estimates of population growth, but the same source
 95 provides lower and upper confidence limits for growth (fig. S2). At higher growth rates, population
 96 will be growing in all income categories in 2100, and Low HDI countries still show accelerating
 97 growth rates. At lower growth rates, population in all HDI categories is stabilized and decreasing by
 98 2100, with global population having peaked at under 9 billion in 2050, and declined to under 8 billion,
 99 just over today's levels, in 2100. Adjustment of the model to lower population levels (not presented
 100 in detail here) lessens the efficiency required from all countries, e.g. from 70 to 50 per cent for Very
 101 High and High HDI countries, from 60 to 40 per cent for Medium HDI countries, and from 50 to 30
 102 percent for Low HDI countries, representing significantly less effort needed. By contrast, higher
 103 population projections require correspondingly higher reductions in affluence and technology. Of
 104 critical importance with respect to political will across all countries is that differentiating these
 105 population-based scenarios does not occur until after 2030 in Very High HDI countries and after 2050
 106 in Low HDI countries, a dramatic 10 – 30 year lag that makes garnering political and social
 107 commitment to putting in place these long term solutions now extremely challenging.
 108

109
 110 **Figure S2.** Population growth rates projected by the United Nations for total world population, split
 111 by HDI levels: Very High, High, Medium and Low [31,32]. In each figure, the black line shows the
 112 median, and the grey lines the 80% and 95% percentile estimates of population.

113
 114 Affluence - reductions in affluence can occur only with a radical transformation in value systems
 115 from the current paradigm that primarily values monetary and material accumulation, to one that
 116 values more qualitative and non-material values. Economies and financial markets must no longer
 117 exclusively value material growth as the primary measure of wealth. This is recognized in many
 118 fields of contemporary writing (see Text S4), and means changing the 'usual' part of 'business as
 119 usual', however operationalizing this principle at scale is elusive. Repeated warnings that capital and
 120 financial markets have not transformed from the practices that produce repeated 'bubbles' are
 121 illustrative of the failure to change what is considered as affluent. Attempts to identify measures
 122 other than GDP to measure wealth of countries¹ and of corporations [53,54] are being prototyped.
 123 HDI is a step in this direction.

¹ for example, the Gross National Happiness index,

<http://www.grossnationalhappiness.com/articles/> Accessed 7 February 2016; Human

124

125 Technology - reductions in technology impact are perhaps the easiest to implement in that the
 126 physical, chemical and biological costs of production and consumption can be dramatically reduced
 127 through transforming the way energy and materials are used and recycled. Potential solutions for
 128 businesses and the corporate world are currently best expressed in the concept of circular economy².
 129 This transforms the linear business model – that extracts natural resources as essentially free goods
 130 and emits waste products with limited accounting of their impacts – into a circular one that does two
 131 fundamental things. First, it accounts for all raw material inputs from nature, such that all impacts
 132 are reduced to zero and/or mitigated in full. Second, waste is reduced to as close to zero as possible
 133 by making all outputs an input to another business process, such as in recycling material waste, or
 134 scrubbing carbon dioxide from emissions. These are viewed as costs in the linear model and therefore
 135 minimized to maximize profit of the business entity; however the costs they impose through
 136 pollution (or e.g. climate change) are borne by others, and may be much higher than the initial direct
 137 cost. In a circular model they reflect opportunities for investment and further generation of wealth
 138 and jobs – in another business, another sector, or in societal or other benefits (e.g. a clean
 139 environment).

140

141 Further exploration of the premises, assumptions and corollaries of the model is possible (Table
 142 S1) but beyond the scope of this paper.

143

144

Table S1. Some assumptions and caveats about the model, of interest for further exploration.

Issue	Description
Within-country application	Within countries and economies, similar principles can apply among businesses, income classes and households, to achieve sustainability solutions in an equitable and transparent way.
Current global footprint exceeds 1 planet earth	Though capping affluence and technology at today's levels, the model also provides for potential reductions. The need for greater reduction is explicit in that humanity's footprint today is 1.5 planet earths (WWF 2016), and this needs to reduce to under 1 for true sustainability. This is also illustrated by the need to reduce atmospheric carbon dioxide concentrations from today's level of 407 ppm to below the safe limit of 350 ppm that was passed before 1990 [55].
HDI and GNI cap (Assumption 2)	The assumption that caps HDI at current levels in Very High HDI countries could be relaxed, which would require greater efficiencies to be put in place. However, once transformations in P, A or T are underway, allowing HDI to grow may not have the same impact implications as it currently has.
Measures of affluence and technology	Use of HDI as the measure of affluence, and GNI for technology rather than affluence, may be debatable and provides avenues for improved parametrization of this model.
Does reducing impacts cost?	One assumption embedded within the principle of common but differentiated responsibilities (Assumption 3) is that there is a cost to reducing impact. This may not always be the case, as there may be multiple and broader benefits that stakeholders may obtain from more equitable approaches to reducing impact that transforms apparent costs into benefits, and this may be true for both richer [56] and poorer countries [57]. Further,

Development Index (HDI), United Nations Development Programme (UNDP) -

<http://hdr.undp.org/en/content/human-development-index-hdi> [Accessed 7 February 2016].

² See <https://www.ellenmacarthurfoundation.org/circular-economy/overview/concept> (accessed 10 August 2016) and <http://www.circularecology.com/> [accessed 10 August 2016]

	costs associated with reduction of impacts at source may be less than costs associated with those impacts borne by broader society, but not well-costed or accurately attributed, so this may be a matter of just attribution of costs.
--	---

145

146

147 The IPAT model has been debated extensively in the past and does have its weaknesses. These
 148 are summarized as follows [58]: "IPAT itself has been criticized because it does not account for
 149 interactions among the terms (e.g., increasing affluence can lead to more efficient technologies); it
 150 omits explicit reference to important variables such as culture and institutions (e.g., social
 151 organization); impact is not linearly related to the right side variables (there can be important
 152 thresholds); and it can simply lead to wrong conclusions." The intent here is not to ignore these
 153 problems, as they can be addressed in specific circumstances. Rather, the intent is to return to a
 154 simpler expression of causal relationships [37] that through their relevance and accessibility to
 155 people, businesses and politics, can stimulate behaviour change [8].

156

157 **Text S3 Estimating impact from images of household weekly food intake**

158 Images household weekly food intake [30] were downloaded and the data derived from them
 159 (Table S2). Various formulations of the IPAT equation were trialed (Table S2), with trial D being
 160 retained as being most descriptive of the information content of the images. These values are used in
 161 fig. 2, assigned to the year 2020.

162

163 **Table S2.** Data obtained from images of household weekly food intake (Menzel 2013).

Variable	Description	Value
Metadata		
Continent	Continent, based on country name	Text
Country	Country name	Text
City	City name assigned to image	Text
Photo Code	Image label, from image metadata	Label
Data obtained from images		
People	Number of people present in the image	Number
Food Expenditure (\$)	Weekly food expenditure published with each image	Value (\$)
Food cost per person (\$)	Weekly food expenditure divided by the number of people per household	Value (\$)
Food types	Sum of food types in each image. Each major item scored as: 1-vegetable/grain; 2-fish/aquatic; 3-meat/dairy; 4-Other (pizza, biscuits, wine, alcohol, crisps, chocolate, sugary drinks); and all these scores summed.	Number (sum of ranks/scores)
Packaging	Sum of packaging types in each image. Each major item scored as: 1- cardboard/cartons/glass ; 2- tins /plastic (reusable)/cans; 3- plastic single use; and all these scores summed.	Number (sum of ranks/scores)
Classification variables		
GDP per capita	Gross Domestic Product, obtained from	Value (\$)
HDI	HDI country category derived from UNDP (2015), for consistency with the years of data analyzed and photos (prior to 2013)	Index (0-1)
HDI group	Categories: Low, Medium, High, Very High; as classified by UNDP (2015)	Category
Technology	Sum of the energy source used in all appliances in the image (1-biomass; 2-gas; 3-electricity)	Number (sum of ranks/scores)

Examples of IPAT parametrizations attempted

Trial A	People * GDP * Technology	Index (scaled from 0-
Trial B	People * Food types * Packaging	100, where 100 is the
Trial C	People * Food cost per person * Packaging	maximum country
Trial D	People * cost per person * (Food types + Packaging + Technology)	score obtained)

164

165 To project the values of household impacts to 2030 and 2100 in accordance with model (figs.
 166 2b,c), assumption 2 was parametrized as follows: economic growth was accommodated by setting
 167 long term growth rates by HDI group that would enable eventual parity. These were selected
 168 arbitrarily as: Low HDI - 5%, Medium HDI - 2%, High HDI - 1 % and Very High HDI - 0%. Projected
 169 impact was calculated by multiplying the mean value for each HDI group (from fig. 2a) by
 170 compounded growth to 2030 and 2100, and the relevant reduction coefficient. This analysis is plotted
 171 in figs. 2b & c.

172

173

174 **Text S4 Illustrative citations on the call for transformative change**

175 A wide variety of sources including government, global media and online fora, illustrate the
 176 widespread acknowledgement of the need for radical transformation to enable sustainability. Some
 177 examples include:

- 178 • UNGA (2012) Resolution adopted by the General Assembly on 27 July 2012 A/RES/66/288. The
 179 future we want. Accessed at
 180 http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/66/288&Lang=E 1 December 2015;
- 181 • The Economist (2012) Boundary conditions. The idea of planet-wide environmental boundaries,
 182 beyond which humanity would go at its peril, is gaining ground. The Economist, Jun 16th 2012.
 183 Accessed at <http://www.economist.com/node/21556897> 7 February 2017;
- 184 • Gillis, Justin (2012) Are We Nearing a Planetary Boundary? International New York Times, June
 185 6, 2012, <https://green.blogs.nytimes.com/2012/06/06/are-we-nearing-a-planetary-boundary/>,
 186 accessed 1 February 2017;
- 187 • Revkin, Andrew C. (2015) Can Humanity's 'Great Acceleration' Be Managed and, If So, How?
 188 International New York Times January 15, 2015.
 189 <https://dotearth.blogs.nytimes.com/2015/01/15/can-humanitys-great-acceleration-be-managed-and-if-so-how/>, accessed 1 February 2017;
- 190 • The Millennium Alliance for Humanity and the Biosphere, <https://mahb.stanford.edu/>
- 191 • The Secretary-General to the UNFCCC, Mr. Antonio Gutierrez, on 12 December 2018, at the
 192 closing of the High-Level Segment of the Talanoa Dialogue, COP-24, imploring country
 193 delegations to generate the consensus needed to assure the appropriate levels of ambition are
 194 achieved in committing the finance and 'rulebook' necessary to achieve the Paris Agreement. [as
 195 delivered, 12 December 2018]. <https://www.un.org/sg/en/content/sg/statement/2018-12-12-secretary-generals-remarks-the-closing-of-the-high-level-segment-of-the-talanoa-dialogue-cop-24-delivered>.

199

200

201 **References**

202 See in main text.

203