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Abstract: Nanocellulose is cellulose in the form of nanostructures, i.e. features not exceeding 100 16 
nm at least in one dimension. These nanostructures include nanofibrils, e.g. in bacterial cellulose; 17 
nanofibers, e.g. in electrospun matrices; nanowhiskers and nanocrystals. These structures can be 18 
further assembled into bigger 2D and 3D nano-, micro- and macro-structures, such as nanoplatelets, 19 
membranes, films, microparticles and porous macroscopic matrices. There are four main sources of 20 
nanocellulose: bacteria (Gluonacetobacter), plants (trees, shrubs, herbs), algae (Cladophora) and 21 
animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology and 22 
biomedical applications, e.g. for adsorption, ultrafiltration, packaging, conservation of historical 23 
artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, 24 
controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use 25 
in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, 26 
urethra and dura mater, for repairing connective tissue and congenital heart defects, and for 27 
constructing contact lenses and protective barriers. This review is focused on applications of 28 
nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for 29 
delivering cells into wounds, and as a material for advanced wound dressings coupled with drug 30 
delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose 31 
are also discussed.  32 

Keywords: bacterial nanocellulose; nanofibrillated nanocellulose; animal nanocellulose; algal 33 
nanocellulose; tissue engineering; tissue repair; wound dressing; cell delivery; drug delivery; 34 
antimicrobial properties 35 
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1. Introduction 59 

Cellulose is a linear polymer of glucose, and is the most abundant biopolymer on Earth. 60 
Nanocellulose can be defined as cellulose in the form of nanostructures, which are features not 61 
exceeding 100 nm at least in one dimension. In other dimensions, these structures can reach hundreds 62 
of nm, micrometers or even more, particularly in the case of electrospun nanofibers. Cellulose 63 
nanostructures include nanofibrils, nanofibers, nanowhiskers, nanocrystals and nanorods (Table 1). 64 
Nanofibrils are typically present in bacterial cellulose, where they form a hydrogel [1–3], or they can 65 
be obtained from plants, particularly from wood, by acid hydrolysis or by oxidation [4–7]. The term 66 
“nanofibers” is usually used for fibrous structures thicker and longer than nanofibrils, particularly 67 
structures created by electrospinning of cellulose without additives or in composites with other 68 
natural and synthetic polymers. Electrospun nanofibers are often more than 100 nm in diameter (i.e. 69 
several hundreds of nm). In fact, they are submicron-scale fibers, but the term “nanofibers” has 70 
become widely used for them (for a review, see [8]). The distinction between the terms “nanofibrils” 71 
and “nanofibers” is often unspecified. For example, some authors have referred to the nanofibrils 72 
present in bacterial cellulose as “nanofibers” [9–11]. Similarly, very thin fibrous cellulosic structures 73 
with characteristics of nanofibrils, isolated from pineapple, have been referred to as “nanofibers” [12]. 74 
Cellulose nanowhiskers, nanocrystals and nanorods are also fibrous structures similar in diameter to 75 
nanofibrils, but usually shorter. Nanocrystals have a needle-like or rod-like morphology [13–15]; 76 
nanorods are in fact nanocrystals with a rod-like morphology [16] (Figure 1). Nanoplatelets are 77 
assemblies of nanofibrils into plate-like structures of nanoscale thickness but with other dimensions 78 
in micrometers [17]. 79 
 80 
 81 
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Table 1. Types of nanocellulose. 82 
 83 

Nanocellulose 
structures 

Example Dimensions Reference 

Nanofibrils In bacterial 
cellulose 

Diameter from 70 to 140 nm, length 
in µm 

[2] 

In wood-derived 
cellulose  

Diameter 3–5 nm, length several µm, 
form 20–50 nm thick aggregates 

[18,19] 

Nanofibers Created by 
electrospinning  

Cellulose acetate: average diameter 
about 400 nm 

[20] 

Bacterial cellulose (33 wt. %) with 
chitosan: diameters from 80 to 170 
nm 

[21] 

Isolated from 
pineapple  

Width 6.4 ± 4.6 nm, length in µm [12] 

Nanowhiskers Kenaf bast Diameter 10-15 nm, length hundreds 
nm  

[22] 

 Bacterial cellulose Diameter 10–100 nm, length 100–
1000 nm 

[23] 

Nanocrystals Cotton-derived  Mean width 7.3 nm, mean length 135 
nm 

[24] 

Nanorods Grass-derived Width 15 ± 3 nm, length 120 ± 15 nm [16] 
Nanoplatelets Agave-derived Thickness 80 nm, other dimensions 

in µm 
[17] 

 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 

 94 
 95 
 96 
 97 
 98 
 99 
 100 
 101 
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 102 
Figure 1. Examples of various forms of nanocellulose. 103 
A: Bacterial cellulose nanofibrils synthesized by Acetobacter xylinum subsp. Sucrofermentas BPR2001 [1];  104 
B: Nanofibers created by electrospinning of cellulose acetate [20];  105 
C: Cellulose nanowhiskers obtained from kenaf bast, AFM image [22];  106 
D: Cellulose nanocrystals obtained from cotton, AFM image 1x1 µm [24];  107 
E: Cellulose nanorods in a monolayer generated from a colloidal suspension with a concentration of 0.1 wt.%, 108 
AFM image [16];  109 
F: Detail of a nanoplatelet 80 nm in thickness and containing cellulose nanofibrils approx. 14 nm in diameter, 110 
SEM image [17]. 111 

Cellulose nanostructures, especially nanofibrils, can be further assembled into bigger two-112 
dimensional (2D) and three-dimensional (3D) micro- and macro-structures. 2D structures include 113 
membranes and films in the self-supporting form [5,25] or in the form of material coatings [26,27]. 3D 114 
structures include microparticles, such as microneedles [28] and porous microbeads [29,30], and 115 
macroscopic matrices, such as porous aerogels and hydrogels, foams and sponges [31–34]. 116 
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As a natural polymer, cellulose, including nanocellulose, is usually obtained from natural 117 
sources, although industrial residues, e.g. from beer production [35] or from municipal solid wastes 118 
(Panax ginseng, spent tea residue, waste cotton cloth, old cardboard) are considered as new important 119 
precursors of "green" nanocellulose [36]. There are four natural sources of nanocellulose: bacteria, 120 
plants, algae and animals (Figure 2). Bacterial cellulose, also known as microbial cellulose [37,38], is 121 
produced extracellularly by gram-negative bacteria of various genera, e.g. Acetobacter, Achromobacter, 122 
Aerobacter, Agrobacterium, Alkaligenes, Azotobacter, Pseudomonas, Rhizobium, Rhodobacter, Salmonella, 123 
Sarcina, and particularly Gluconacetobacter, which is the most efficient producer (for a review, see 124 
[39,40]). The most widely used species of Gluconacetobacter is Gluconacetobacter xylinus (synonyms 125 
Acetobacter xylinus, Komagataeibacter xylinus) [1,41]. Other important species include Gluconacetobacter 126 
hansenii [3,42,43], Gluconacetobacter kombuchae [44], Komagataeibacter (Gluconacetobacter) europaeus [45], 127 
and low pH-resistant strain Komagataeibacter (Gluconacetobacter) medellinensis [34]. The bacterial 128 
growth and production of nanocellulose can be further enhanced by the presence of yeasts or yeast 129 
extract in the culture medium [44,46], or by symbiotic co-cultivation with Мedusomyces gisevii [47].  130 

Bacterial cellulose is chemically identical with plant cellulose, but is free of byproducts like 131 
lignin, pectin and hemicelluloses, featuring a unique reticulate network of fine fibers [48]. 132 

Plant nanocellulose can be obtained from abundant sources derived from trees, shrubs, various 133 
herbs, grasses, flowers, root vegetables, succulents, etc. The trees include leaved trees, e.g. birch 134 
[25,49–53], and various coniferous trees [18,19,54–56], e.g. Pinus radiata [57]. Other trees are Acacia 135 
mangium [58], balsa [59], Syzygium cumini [60], banana pseudostem [5], palm [7,61], Khaya senegalensis 136 
[62] and citrus trees [63]. Nanocellulose from leaved trees is usually referred to as hardwood-derived, 137 
while nanocellulose from coniferous trees is softwood-derived. Shrub sources of nanocellulose are 138 
cotton [24] and hibiscus [22,64]. Other important plant sources include sugar cane [65,66], grass, e.g. 139 
Miscanthus Giganteus [67] or Imperata brasiliensis [68], bamboo [69], rice husk [70], corn leaf [26], 140 
triticale straw [71], pineapple leaf [12], carrot [72], and agave [17], particularly Agave sisalana, i.e. sisal 141 
[73]. 142 

Algae as sources of nanocellulose are Cladophora [29,30,74–78] and Cystoseria myrica [79]. 143 
Nanocellulose materials derived from Cladophora have been tested mainly for their potential 144 
biomedical applications in terms of the presence of impurities, such as heavy metals, glucans and 145 
endotoxins [76]. Their suitability as scaffolds for cell cultivation [75], their hemocompatibility [29], 146 
and their adsorption capacity for Congo Red dye [30] have also been evaluated. Nanocellulose 147 
derived from Cystoseria myrica combined with Fe3O4 has been tested for removal of mercury ion 148 
pollution [79].  149 

Animal sources of nanocellulose include tunicates, i.e. animals belonging to the phylum 150 
Chordata, such as Styela clava [80–82] (for a review, see [83]) and Halocynthia roretzi Drasche [84]. 151 
Cellulose films derived from Styela clava tunics have been tested for wound dressings [81,82], and 152 
they also have potential for other biomedical applications, such as stitching fibers, scaffolds for tissue 153 
engineering, absorbable hemostats and hemodialysis membranes [80]. Animal-derived nanocellulose 154 
also has potential applications in industry and in technology. A composite nanocellulose membrane 155 
derived from Halocynthia roretzi Drasche, endowed with TiO2 nanoparticles, has been used for 156 
removing oils from wastewater [84]. 157 
 158 
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 159 
Figure 2. Examples of various forms of nanocellulose. Examples of bacterial (A, B), plant (C, D), algal (E, F) and 160 
animal (G, H) sources of nanocellulose. Gluconacetobacter xylinus in culture in a Petri dish (A) [85], cells in 161 
microscopic detail (B) [86]. Birch trees as an example of hardwood (C) [87] and Pinus radiata as an example of 162 
softwood (D) [88]. Cladophora in total (E) [89] and in microscopic detail (F) [90]. Styela clava (G) [91] and 163 
Halocynthia roretzi Drasche (H) [92]. 164 

Nanocellulose possesses a wide spectrum of advantageous physical, chemical and biological 165 
properties. Its large specific surface area enables the adsorption of various atoms, ions, molecules and 166 
microbial cells, and porous nanocellulose materials are able to separate various molecules and to 167 
retain microbial objects. Nanocellulose-based materials in general have high mechanical strength, 168 
chemical inertness, and tailorable morphological, physical, chemical, electrical, thermal and optical 169 
properties, barrier properties, antimicrobial effects and biocompatibility with no toxicity or low 170 
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toxicity and with low immunogenicity. At the same time, they are relatively low-cost materials with 171 
high availability and renewability. Nanocellulose materials have therefore emerged as promising 172 
materials for a wide range of industrial, technological and biomedical applications, namely 173 
purification of air and aqueous solutions, filtration and ultrafiltration, packaging of food and other 174 
sensitive products, conservation of historical artifacts, construction of thermal insulators and fire 175 
retardants, energy extraction and storage, acoustics, sensorics and controlled drug delivery. All these 176 
applications are summarized with some examples in Table 2. The following part of this review is 177 
focused more deeply on applications of nanocellulose in tissue engineering, tissue repair and wound 178 
healing.  179 
 180 
Table 2. Industrial and (bio)technological applications of nanocellulose. 181 
 182 

Application Specification Example Reference 
Adsorption  Air purification Odor removal (in combination 

with zeolites) 
[93] 

Removal of 
pollutants from 
aqueous solutions 

Heavy metal ions 
(Cu2+, Pb2+, Hg2+) 

[79,94] 

Toxic dyes (methylene blue, 
Congo Red) 

[30,95] 

Mefenamic acid (a nonsteroidal 
anti-inflammatory drug, a 
potential endocrine disruptor) 

[96] 

Oily substances [31,84]  
Insecticides (neonicotinoids in 
milk)  

[97] 

Immobilization of 
atoms and (bio) 
molecules 

Metal catalysts (copper) [98] 
Proteins (bovine serum 
albumin, lysozyme, γ-globulin, 
and human IgG 

[77] 

Enzymes (trypsin, laccase, 
lysozyme, lipase)  

[61,99–101] 

Ingested lipids (obesity 
management) 

[102] 

DNA oligomers [103] 
(Ultra)filtration Removal of toxic 

dyes 
Methylene blue, methylene 
orange, rhodamine  

[104] 

Hemodialysis 
membranes 

Nanofibrillated cellulose with 
polypyrrole 

[105]  

Removal of 
viruses 

Swine influenza virus [74] 
Murine leukemia virus [106] 
Bacteriophages [78] 

Packaging Food, sensitive 
devices 

Self-standing nanocellulose 
films from birch pulp 

[25] 
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Paper sheets modified with 
nanocellulose and chitosan 

[107] 

Conservation Historical papers, 
cotton canvas 

Cellulose nanofibrils, 
carboxymethylated cellulose 
nanofibrils, cellulose 
nanocrystals 

[108] 

Thermal 
applications 

Thermal 
insulators 

Wood-derived nanofibrils with 
extremely low thermal 
conductivity 

[109] 

Fire retardants Wood-derived cellulose 
nanofibrils with silica 
nanoparticles  

[110] 

Wood-derived nanocellulose 
with montmorillonite clay 

[59] 

Energy 
extraction and 
storage 

Lithium batteries Nanocellulose/polypyrrole [111] 
Nanocellulose/polyethylene  [112] 
Graphene/nanocellulose/silicon [113] 

Solar cells/panels Nanofibers from sisal with 
graphene oxide 

[73] 

(Super)capacitors Bacterial nanocellulose/carbon 
nanotubes/triblock-copolymer 
ion gels 

[114]  

Nanocellulose with polyaniline [115] 

Acoustics Membranes for 
loudspeakers 

Cellulose nanofibers with 
Fe3O4 nanoparticles 

[71] 

(Bio)sensors Optical SERS-
based 

Detection of pesticides, dyes, 
bacteria 

[116,117] 

Optical 
fluorescence-
based 

Detection of heavy metals [118]  
Detection of thiols [119]  
Detection of elastase [120] 

Chemical  Detection of vapors (NH3.H2O, 
H2O, HCl, acetic acid) 

[16] 

Electrochemical  Detection of cations in 
biological fluids (Na+, K+, Ca2+)  

[38] 

Detection of cholesterol [121] 
Detection of avian leukosis 
virus 

[122] 

Piezoelectric 
 

Based on bacterial cellulose [123] 
Based on plant-derived 
cellulose nanofibrils 

[124] 

Based on nanocellulose with 
chitosan 

[125] 
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Tactile sensor (simultaneous 
sensing of temperature and 
pressure) 

[126] 

Strain-sensing protonated 
aerogels from cellulose 
nanofibrils 

[127] 

Drug delivery Peroral Paracetamol [49] 
Ibuprofen (colonic release) [70] 
Methotrexate (colonic release) [128] 

Transdermal Analgesics, antiphlogistics, 
corticoids, antihypertensives  

[50,51] 

Diclophenac [129] 
Propranolol  [130] 

Topical  Local anesthetics [131] 

Antiseptics [132,133] 

Antibiotics (gentamycin, 
ceftriaxone) 

[33,43] 

Antibacterial peptides [134] 

Other antimicrobial, anti-
inflammatory and antitumor 
drugs  

[135,136] 

 183 

2. History of nanocellulose research 184 

Cellulose in general has been investigated for tens of years (for a review, see [137]). However, 185 
nanocellulose has emerged as a promising material in the last 10 years. In the PubMed database, 671 186 
papers on nanocellulose can be found from December 2007 to December 2018 using the search term 187 
“nanocellulose” (Figure 3). 188 

 189 
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 190 
Figure 3. The number of publications on nanocellulose found in the PubMed database from 2007 to 2018 using 191 
the search term “nanocellulose”. Blue columns: total number of papers, orange columns: papers on cell-material 192 
interaction, tissue engineering and wound healing. 193 

Interestingly, the first paper on nanocellulose to appear in the PubMed database in December 194 
2007 was dedicated to the potential use of this material in tissue engineering, namely in creating 195 
bacterial cellulose nanofibrous scaffolds functionalized with cell adhesion-mediating GRGDS 196 
oligopeptides. These scaffolds enhanced the adhesion of human vascular endothelial cells in vitro and 197 
were promising for vascular tissue engineering [138]. The second paper, which was the only paper 198 
on nanocellulose to appear in the PubMed database in 2009, was focused on preparing and 199 
characterizing nanoscale cellulose films with different crystallinities [139]. The five studies in the 200 
PubMed database published in 2010 were focused on further development of cellulose films, namely 201 
on nanocellulose-reinforced methylcellulose-based biodegradable films [140] and on nanocellulose-202 
reinforced chitosan composite films as edible films or coatings that enhance the shelf life of foods 203 
[141]. Other studies have dealt with safe, effective and well-controlled production of bacterial 204 
nanocellulose [1,142] and electrically-conductive nanocellulose-polypyrrole composites [143]. 205 

In 2011 and 2012, the number of studies focused on the use of cellulose in various technological 206 
applications, including biotechnology, increased rapidly. For example, nanocellulose aerogels were 207 
proposed as oil absorbents for water purification [31], and nanocellulose liners were designed as 208 
adsorbents for protecting personnel from chemical and biological hazards [144]. Hybrid materials 209 
consisting of bacterial nanocellulose and photocatalytically active TiO2 nanoparticles were developed 210 
for drinking water purification and air cleaning [145], and nanocellulose-TiO2 hybrid films were 211 
shown to be promising as transparent coatings, where high wear resistance and UV activity are 212 
required [146]. Nanofibrillated cellulose was also investigated as a carrier for titanium dioxide, zinc 213 
oxide and aluminum oxide nanotube aerogels for potential application in sensorics, e.g. as humidity 214 
sensors [32]. Supercapacitors consisting of bacterial nanocellulose papers, carbon nanotubes and 215 
triblock-copolymer ion gels were proposed for energy storage [114]. Nanocellulose was isolated from 216 
sources other than bacterial cellulose, namely from plant materials such as sugar cane bagasse [65], 217 
birch pulp [49–51] and kraft pulp [147]. In the field of biotechnological applications, nanocellulose 218 
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paper sheets were used for extracting DNA oligomers [103], and a cellulose-based hydrogel was used 219 
for immobilizing trypsin [99]. Cellulose nanofibers were tested as a novel tableting material [49], and 220 
were also proposed for the construction of films for sustained parenteral delivery of drugs, e.g. 221 
analgesics, antiphlogistics, corticoids and antihypertensives [50,51]. In combination with silver 222 
nanoclusters, nanofibrillated cellulose was designed as a novel composite with fluorescence and 223 
antibacterial activity for potential wound dressings [148]. In combination with polypyrrole, 224 
nanocellulose was proposed for constructing hemodialysis membranes [105]. 225 

In 2013, there was a great burst of studies dealing with the potential use of nanocellulose in 226 
tissue engineering: eight out of 34 studies found in the PubMed database, i.e. 23.5%, were focused on 227 
this topic, or at least on the interaction of cells with nanocellulose. The first study published in 228 
January 2013 was concentrated on the potential use of nanocellulose in neural tissue engineering 229 
[149]. In this study, composite membranes consisting of bacterial nanocellulose (BNC) and 230 
polypyrrole (PPy) were used as a template for seeding PC12 rat neuronal cells. These cells adhered 231 
and grew significantly better on BNC/PPy composites than on pure BNC. In addition, the presence 232 
of electrically conductive PPy made electrical stimulation of cells possible, and this is considered to 233 
be beneficial for various cell functions [149]. In another study, tubular structures made of bacterial 234 
nanocellulose were successfully applied in rats in vivo as conduits for regeneration of the damaged 235 
femoral nerve. These structures prevented excessive proliferation of connective tissue and 236 
penetration of the damaged nerve with scar tissue, which is the main obstructive agent for the growth 237 
of neurites during nerve regeneration. In addition, cellulosic “neurotubes” allowed the accumulation 238 
of neurotrophic factors inside, which further facilitated nerve regeneration [150]. Nanocellulose was 239 
also tested for reconstructing human auricle in vitro using bacterial nanocellulose scaffolds [151], 240 
combined with primary human chondrocytes obtained during routine septorhinoplasties and 241 
otoplasties [152]. Another in vitro model of articular cartilage was bovine knee cartilage with a punch 242 
defect filled with bacterial nanocellulose [153]. Bacterial nanocellulose wound dressings were 243 
successfully applied for healing large-area and full-thickness skin defects in mice in vivo [154]. 244 
Bacterial nanocellulose scaffolds, improved by conjugation with fibronectin and type I collagen, 245 
proved to be excellent substrates for the adhesion of human umbilical vein endothelial cells and 246 
mouse mesenchymal stem cells of the line C3H10T1/2 [155]. Not only cellulose nanofibrils present in 247 
bacterial nanocellulose, but also other forms of nanocellulose, such as nanowhiskers or nanocrystals, 248 
were shown to have great potential in tissue engineering and in other biomedical applications [156]. 249 

3. Recent use of nanocellulose in tissue engineering and tissue repair 250 

In the last five years, i.e. from 2014 to 2018, the use of nanocellulose in tissue engineering and 251 
related areas, such as wound healing and cell-material interaction, has been further developed, 252 
although the proportion of these studies in the PubMed database did not exceed the value from 2013, 253 
and ranged approx. between 13% and 21%. This was due to the rapid concurrent development of 254 
applications of nanocellulose in industry and technology, including various biotechnologies, such as 255 
biosensing and controlled drug delivery (Table 2; for a review, see [83,157–162]. Nevertheless, 256 
research on the potential use of nanocellulose in neural tissue engineering, cartilage tissue 257 
engineering and skin wound dressings, as mentioned above, continued with several promising 258 
achievements.  259 
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In neural tissue engineering, it was demonstrated for the first time that SH-SY5Y neuroblastoma 260 
cells, cultured on three-dimensional (3D) bacterial nanocellulose (BNC) scaffolds, not only adhered 261 
and proliferated, but also differentiated toward mature neurons, as indicated by functional action 262 
potentials detected by electrophysiological recordings [163]. The adhesion, proliferation and 263 
formation of 3D neuronal networks on 3D BNC scaffolds can be further enhanced by cationic 264 
modification of this material, i.e. on trimethyl ammonium betahydroxy propyl cellulose, as 265 
demonstrated on PC12 cells, a widely-used model of neurons [164]. In addition to their potential use 266 
in neural tissue replacements, nanocellulose-based neural tissue-engineered constructs were 267 
designed as innovative tools for brain studies. For this purpose, an ink that contained wood-derived 268 
cellulose nanofibrils and carbon nanotubes was used for 3D printing of electrically-conductive 269 
scaffolds, which promoted the adhesion, growth and differentiation (manifested by elongation of 270 
neurites) of human SHY5Y human neuroblastoma cells [165]. 271 

In cartilage tissue engineering, the high water-retention capacity and the high mechanical 272 
strength of cellulose nanofibrils have led to the further development of applications of bacterial 273 
nanocellulose for auricular cartilage reconstruction. It was found that BNC with an increased cellulose 274 
content of 17% is a promising non-resorbable biomaterial for auricular cartilage tissue engineering, 275 
due to its similarity with auricular cartilage in terms of mechanical strength and host tissue response 276 
[2]. Other promising materials for this application were bilayered scaffolds composed of BNC and 277 
alginate, which were non-cytototoxic, non-pyrogenic and promoted the growth of human nasoseptal 278 
chondrocytes [166]. For articular cartilage engineering, BNC scaffolds modified by laser perforation 279 
were used as substrates for the cultivation of human chondrocytes derived from the cartilage 280 
covering femoral condyles. These novel scaffolds improved the diffusion of nutrients, the ingrowth 281 
and differentiation of chondrocytes, and the deposition of their newly synthesized extracellular 282 
matrix within the scaffolds [41]. A further novelty was the application of nanocellulose-based bioink 283 
in 3D bioprinting with living cells. A bioink consisting of wood-derived nanofibrillated cellulose and 284 
alginate, and containing human articular chondrocytes, was used for 3D printing of anatomically-285 
shaped cartilage structures, such as a human ear and sheep meniscus [167]. A similar bioink was used 286 
for 3D printing together with irradiated human chondrocytes and induced pluripotent stem cells 287 
(iPSC), both derived from articular cartilage [168]. An alginate sulfate/BNC bioink promoted 288 
spreading, proliferation, and collagen II synthesis in bovine chondrocytes from femoral condyle 289 
cartilage [169]. Another interesting composite material developed for cartilage tissue engineering was 290 
a double cross-linked interpenetrating polymer network of sodium alginate and gelatin hydrogels, 291 
reinforced with 50 wt% cellulose nanocrystals [170]. Nanocellulose is also promising for the treatment 292 
of intervertebral disc degeneration. Gellan gum hydrogels reinforced with cellulose nanocrystals 293 
were designed as substrates for regenerating the annulus fibrosus, i.e. the outer part of the discs [171].  294 

From 2014 to 2018, nanocellulose has been increasingly applied in other interesting areas of 295 
experimental tissue engineering, namely in liver tissue engineering, adipose tissue engineering, 296 
vascular tissue engineering, bone tissue engineering and bone implant coating, and in reconstruction 297 
of the urethra and the dura mater.  298 

In liver tissue engineering, the first idea was to create a 3D culture of hepatic cells, which is 299 
more physiologically relevant than the two-dimensional (2D) culture that is traditionally used to 300 
predict and estimate the metabolism, excretion and toxicity of drugs and other chemicals in the 301 
human liver. For this purpose, 3D scaffolds based on birchwood-derived nanofibrillar cellulose were 302 
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generated. These scaffolds promoted differentiation and proper functioning of human liver 303 
progenitor cells of the line HepaRG, derived from a liver tumor of a female patient who was suffering 304 
from a hepatitis C virus infection and hepatocarcinoma. Specifically, the HepaRG cells formed 3D 305 
multicellular spheroids with apicobasal polarity and functional bile canaliculi-like structures. In 306 
addition, hepatobiliary drug transporters, i.e. MRP2 and MDR1, were localized on the canalicular 307 
membranes of the spheroids, and vectorial transport of fluorescent probes towards the biliary 308 
compartment was demonstrated. Cell culture in a 3D hydrogel supported the mRNA expression of 309 
hepatocyte markers (albumin and CYP3A4), and the metabolic activity of CYP3A4 in the HepaRG 310 
cell cultures [172]. 311 

Similarly, in adipose tissue engineering, efforts were made to create a 3D in vitro model of 312 
adipose tissue for studies on adipose biology and on metabolic diseases, such as obesity and diabetes. 313 
For this purpose, 3D scaffolds were prepared by crosslinking homogenized bacterial nanocellulose 314 
fibrils using alginate and by freeze-drying the mixture to obtain a porous structure. When seeded 315 
with mesenchymal stem cells of the line C3H10T1/2, derived from mouse embryos and incubated in 316 
an adipogenic medium, the 3D scaffolds contained more cells with markers of adipogenic cell 317 
differentiation, i.e. growing in clusters and containing large lipid droplets, than 2D bacterial 318 
nanocellulose scaffolds. 3D scaffolds therefore have great potential not only for in vitro studies, but 319 
also for adipose tissue engineering, for reconstructive surgery after trauma, tumor removal or 320 
congenital defects [173]. A similar system was created in a study by Henriksson et al. [174] by 3D 321 
printing with the use of a bioink made of nanocellulose and hyaluronic acid, and containing 322 
adipocytes. The adipocytes showed uniform distribution throughout the scaffolds, high viability and 323 
more mature phenotype than the cells in conventional 2D culture systems. 324 

For vascular tissue engineering, tubular structures were created from BNC using silicone tubes 325 
as molds. These tubes were also considered to have great potential for substituting other hollow 326 
organs, including the ureter and the esophagus [175]. In a study by Weber et al. [176], BNC tubes 327 
were used to replace the right carotid artery in sheep in vivo. After explantation, a histologic analysis 328 
revealed no acute signs of foreign body reaction, such as immigration of giant cells or some other 329 
acute inflammatory reaction, and therefore provided evidence for good biocompatibility of the tubes. 330 
However, the tubes were highly prone to thrombotic occlusion, and their implantation required 331 
antiplatelet therapy [176]. Another interesting idea was to use bacterial nanocellulose coupled with 332 
superparamagnetic iron oxide nanoparticles for coating endovascular stents, which will then attract 333 
vascular smooth muscle cells (VSMCs) for in situ reconstruction of the tunica media in blood vessels. 334 
In experiments in vitro, magnetic BNC coated with polyethylene glycol proved to form suitable 335 
scaffolds for porcine VSMCs, showing minimum cytotoxicity and supportive effects on cell viability 336 
and migration. This material also possessed suitable mechanical properties, and was considered to 337 
be promising for the treatment of brain vascular aneurysms [177,178]. Nanocellulose scaffolds were 338 
also applied for studies on vasculogenesis. BNC scaffolds functionalized with IKVAV peptide, i.e. a 339 
laminin-derived ligand for integrin adhesion receptors on cells, were used for studies on 340 
vasculogenic mimicry of human melanoma SK-MEL-28 cells, and appeared to provide a promising 341 
3D platform for screening antitumor drugs [42]. 342 

BNC, even in its unmodified state, also showed a great promise for bone tissue engineering. 343 
BNC without additives stimulated the adhesion, multilayered growth and osteogenic differentiation 344 
of bone marrow mesenchymal stem cells (MSCs) derived from rat femur. As revealed by Second 345 
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Harmonic Generation (SHG) imaging, the MSCs on BNC scaffolds produced a mature type of 346 
collagen I and showed activity of alkaline phosphatase [179]. Wood-derived nanofibrillated cellulose 347 
is also promising for the construction of scaffolds for bone tissue engineering, as proved on human 348 
MSCs grown on composite scaffolds containing this cellulose and chitin [180]. 349 

The performance of MSCs and other bone-forming cells, e.g. rat calvarial osteoblasts, on 350 
nanocellulose-based scaffolds can be further improved by biomimetic mineralization with calcium 351 
phosphates, such as hydroxyapatite and tricalcium phosphate [7,181,182]. In addition, these scaffolds 352 
can be coupled with collagen I or with osteogenic growth peptide [44]. Nanocellulose is also 353 
promising for bone implant coating. A hybrid coating, consisting of 45S5 bioactive glass individually 354 
wrapped and interconnected with fibrous cellulose nanocrystals (CNCs), was deposited on 316L 355 
stainless steel in order to strengthen bone-to-implant contact and to accelerate the bone healing 356 
process. This coating substantially accelerated the attachment, spreading, proliferation and 357 
differentiation of mouse MC3T3-E1 osteoblast progenitor cells in vitro, and also mineralization of the 358 
extracellular matrix deposited by these cells [183]. Similarly, coating 3D-printed polycaprolactone 359 
scaffolds with wood-derived hydrophilic cellulose nanofibrils enhanced the attachment, proliferation 360 
and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells [27].  361 

Urethral reconstruction was performed in a rabbit model using 3D porous bacterial cellulose 362 
scaffolds seeded with rabbit lingual keratinocytes [184], and in a dog model using smart bilayer 363 
scaffolds comprising a nanoporous network of bacterial cellulose and a microporous network of silk 364 
fibroin [185]. The bilayer scaffolds were pre-seeded with keratinocytes and smooth muscle cells 365 
isolated from dog lingual tissue obtained by biopsy. The nanoporous network provided good 366 
support for epithelial cells, while the microporous scaffolds supported the growth and penetration 367 
of smooth muscle cells [185]. 368 

For reconstruction of the dura mater, bacterial cellulose membranes were tested as potential 369 
dural patches to prevent leakage of cerebrospinal fluid, which is a common complication after cranial 370 
and spinal surgery. These membranes supported the attachment and the viability of human dural 371 
fibroblasts [186].  372 

Other interesting applications of nanocellulose have included connective tissue repair, repair of 373 
congenital heart defects, ophthalmologic applications, creation of protective barriers and cell 374 
transfection.  375 

For connective tissue repair, softwood pulp-derived cellulose nanocrystals were injected into 376 
skin and tendon specimens, isolated from pigs and stretch-injured using a mechanical testing 377 
machine. This treatment mechanically reinforced these matrices, which was manifested by the 378 
increased elastic moduli and yield strength of the matrices. At the same time, the cellulose 379 
nanoparticles showed no cytotoxicity for rat primary patella tendon fibroblasts, as revealed by a 380 
WST-1 assay of the activity of mitochondrial enzymes. Moreover, the activity of mitochondrial 381 
enzymes in cells cultivated for 2-3 weeks in the presence of cellulose nanocrystals was significantly 382 
higher than in the control untreated cells [54]. 383 

For the repair of congenital heart defects, bacterial nanocellulose was used as a new patch 384 
material for closing ventricular septal defects in a pig model. This material could serve as an 385 
alternative to materials currently used in clinical practice, namely polyester, expanded 386 
polytetrafluoroethylene (ePTFE) and autologous or bovine pericardium, which are often associated 387 
with compliance mismatch and with a chronic inflammatory response [187]. 388 
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Ophthalmologic applications of nanocellulose include the construction of contact lenses. For 389 
the construction of contact lenses, a highly transparent macroporous hydrogel was developed, 390 
consisting of poly(vinyl alcohol) reinforced with cellulose nanofibrils and containing more than 90% 391 
of water. The hydrogel exhibited high transparency with a refractive index close to that of water, very 392 
good UV-blocking properties and elastic collagen-like mechanical behavior typical for soft tissues 393 
[188]. 394 

Creating protective barriers involves designing materials that prevent intraperitoneal 395 
adhesions or immune rejection of transplanted cells. For example, in experimental abdominal defects 396 
in dogs, which were repaired using BNC membranes, negligible intraperitoneal adhesions were 397 
detected between the BNC and the intestinal loops in comparison with conventionally-used 398 
polypropylene meshes [47]. Modifying polypropylene meshes, and also metallic meshes, with BNC 399 
enhanced their potential applicability in hernioplasty and cranioplasty [189]. For immunoprotection 400 
of transplanted cells, a composite hydrogel consisting of 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-401 
oxidized bacterial cellulose and sodium alginate was developed for encapsulation of cells, e.g. 402 
insulin-secreting β-cells of Langerhans islets [190]. A sophisticated nanocomposite membrane was 403 
developed for encapsulation of PC12 cells. One of the surfaces of bacterial cellulose (BC) pellicles was 404 
coated with collagen to enhance cell adhesion, and the opposite side of the BC pellicles was coated 405 
with alginate to protect the transplanted cells from immune rejection. The nanocomposite membrane 406 
was permeable to small molecules, i.e. dopamine secreted by the cells, but was impermeable to large 407 
molecules, such as IgG antibodies [191].  408 

An interesting finding was that nanocellulose can also modulate the efficiency of cell 409 
transfection by its structure and electrical charge density. Nanofibrillated cellulose was prepared 410 
from birch kraft pulp in the form of films or hydrogels with low or high charge density. The films 411 
with low charge density showed a more pronounced increase in the efficiency of transfection of HeLa 412 
cells with DNA constructs, encoding the Red Fluorescent Protein, than the films with high charge 413 
density and hydrogels with both low and high charge densities [53]. 414 

The following part of this review is focused on the use of nanocellulose for skin tissue 415 
engineering and wound healing.  416 

4. Nanocellulose in skin tissue engineering 417 

4.1. Bacterial nanocellulose in skin tissue engineering 418 
Skin tissue engineering involves reconstructing two main layers of the skin, namely the 419 

epidermis, i.e. the superficial skin layer formed mainly by keratinocytes, and the dermis, i.e. the skin 420 
inner layer formed mainly by fibroblasts. Due to its certain resemblance to natural soft tissues, 421 
including skin, bacterial cellulose is the most widely used type of nanocellulose for reconstructing 422 
these layers [192]. In fact, bacterial cellulose is a hydrogel containing nanofibrils, which mimics the 423 
fibrillar component of natural extracellular matrix. Bacterial cellulose has a great capacity to retain 424 
moisture, and it also has appropriate mechanical properties, such as strength, Young's modulus, 425 
elasticity and conformability [11,21,193]. The use of bacterial cellulose in skin reconstruction started 426 
long before the first appearance of the word “nanocellulose” in the PubMed database. It was simply 427 
called “bacterial cellulose”, though it is a hydrogel containing cellulose nanofibrils. The first report 428 
of the use of bacterial cellulose in skin wound therapy came from 1990, when bacterial cellulose 429 
pellicles were proposed as “temporary skin substitutes” for treating burns, ulcers, abrasions and 430 
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other skin injuries [194]. In 2006, thin films of bacterial cellulose were used as substrates for the 431 
cultivation of human transformed skin keratinocyte and human normal skin fibroblast cell lines. The 432 
films supported spreading, growth and migration in keratinocytes but not in fibroblasts, which 433 
formed clusters and detached from the films. This phenomenon was explained by relatively weak 434 
cell-material adhesion in comparison with the relatively strong cell-cell adhesion in fibroblasts, which 435 
generates a contractile force [195]. However, in a study by Kingkaew et al. [196], bacterial cellulose 436 
films proved to be good substrates for the adhesion, spreading and growth of both human skin 437 
keratinocytes and fibroblasts. Similarly, a surface-structured 3D network of bacterial cellulose 438 
nanofibers also provided good support for human keratinocytes and fibroblasts and stimulated the 439 
healing of experimental skin wounds in mice [10]. 440 

The adhesion and growth of skin cells on bacterial cellulose can be further improved by 441 
combining it with other biologically active molecules. For example, the adhesion of human 442 
keratinocytes on bacterial cellulose films was improved by enriching these films with chitosan [196]. 443 
Incorporation of keratin, isolated from human hair, into bacterial cellulose improved the attachment, 444 
proliferation and morphology of human skin keratinocytes of the HS2 cell line and human skin 445 
fibroblasts of the Detroit 562 cell line [197]. Composite scaffolds made of microporous regenerated 446 
bacterial cellulose and gelatin provided good support for the adhesion and proliferation of human 447 
keratinocytes of the HaCaT line, and for their penetration into the scaffolds (to a depth of 300 µm). In 448 
experiments in vivo performed in mice, scaffolds with gelatin showed greater wound closure efficacy 449 
(93%) than pure bacterial cellulose (63%) [198]. Electroactive composites of bacterial cellulose and 450 
conducting polymers, such as polypyrrole and polyaniline, also hold promise for skin tissue 451 
engineering [199]. 452 

The potential use of bacterial cellulose in skin regeneration and in other areas of tissue 453 
engineering has been reviewed by many authors, e.g. [9,37,40,158,193,200–202]. Novel microporous 454 
3D scaffolds with controllable pore size were prepared from bacterial nanocellulose using paraffin 455 
microspheres. These scaffolds supported the proliferation of mouse embryonic NIH 3T3 fibroblasts, 456 
and were considered to be promising for soft tissue engineering [34].  457 

4.2. Plant- and algae-derived nanocellulose in skin tissue engineering 458 

Like bacterial nanocellulose, plant-derived nanocellulose has repeatedly been shown to be 459 
promising for skin tissue engineering, especially after its physical and chemical properties have been 460 
modified. For example, CNFs were modified either by introducing a negative electrical charge using 461 
TEMPO-mediated oxidation, or by introducing a positive charge using glycidyltrimethylammonium 462 
chloride (EPTMAC) [203–205]. In a study by Skogberg et al. [203], unmodified (u-), anionic (a-), and 463 
cationic (c-) cellulose nanofibrils (CNFs), derived from hardwood kraft pulp (u-, c-CNF) or from 464 
softwood kraft pulp (a-CNF) were fabricated using an evaporation-induced droplet-casting method 465 
on glass. Atomic force microscopy showed a significantly higher degree of orientation of nanofibers 466 
along a single line on c- and u-CNF surfaces than on a-CNF surfaces. Both a-CNF and c-CNF surfaces 467 
supported the adhesion, spreading, viability and proliferation of mouse embryonic fibroblasts, 468 
though the cell performance was better on a-CNF. However, the cells on aligned c-CNF surfaces 469 
showed orientation in parallel, which could be utilized for guided cell growth. Recently, transferrable 470 
free-standing nanocellulose films have also been produced with a similar alignment of CNFs in 471 
parallel to an evaporating liquid boundary line during evaporation [206]. When an electrical charge 472 
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is introduced into nanocellulose, it can be functionalized with various biomolecules, e.g. cell adhesion 473 
peptides [204] and silk fibroin [205], which improves the capacity of nanocellulose for colonization 474 
with cells and for wound healing.  475 

In our recent experiments in collaboration with Skogberg and her colleagues, human dermal 476 
fibroblasts were cultured on cellulose meshes in a DMEM medium with 10% of fetal bovine serum 477 
and 40 µg/ml of gentamycin. Two different types of nanocellulose solutions, i.e. c-CNF, a-CNF, were 478 
applied on the surface of a cellulose mesh (obtained from Holzbecher Ltd., Czech Republic) in order 479 
to cover its microfibrous structure. Both c-CNF and a-CNF were expected to improve the surface 480 
properties of the cellulose mesh for cell adhesion and proliferation. A 0.15 wt% c-CNF solution 481 
formed a thin film on the surface of the cellulose meshes, while the 0.15 wt% a-CNF solution covered 482 
individual cellulose microfibers and filled the wide spaces between them. This may be due to a lower 483 
degree of fibrillation of c-CNF in comparison with a-CNF, which results in a solution with larger 484 
fibers in the case of c-CNF. Larger c-CNF fibers cannot penetrate into the pores of the cellulose mesh. 485 
They cumulate on the top of the mesh and form a film-like structure there. However, the smaller a-486 
CNF fibers can leak in to the pores of the cellulose mesh. Our results have shown positive effects of 487 
both types of CNF coverings on the adhesion and proliferation of dermal fibroblasts. However, we 488 
observed that a-CNF was more suitable for adhesion and growth of dermal fibroblasts than c-CNF, 489 
on which the cells were often round, less spread and proliferated relatively slowly. The morphology 490 
of human dermal fibroblasts was more physiological on a-CNF than on c-CNF. The cells on a-CNF 491 
adhered along the cellulose fibers, spread between them and formed a better-developed filamentous 492 
actin (F-actin) cytoskeleton (Figure 4). 493 

 494 
Figure 4. Morphology of human dermal fibroblasts on day 4 after seeding on a cellulose mesh modified with 495 
cationic cellulose nanofibers (A), with anionic cellulose nanofibers (B), and on pristine cellulose mesh (C). The 496 
cells were stained with phalloidine conjugated with TRITC (stains F-actin, red fluorescence). Leica TCS SPE 497 
DM2500 confocal microscope, obj. 20x/1.15 NA oil. 498 

 499 
Other chemical modifications of plant nanocellulose intended for skin tissue engineering include 500 

converting it to cellulose acetate or to hydroxyethyl cellulose. Conversion to cellulose acetate is 501 
known to enhance the electrospinnability of cellulose, as was demonstrated in cellulose extracted 502 
from sugar cane bagasse, and the electrospun fibrous scaffolds then supported the adhesion and 503 
growth of mouse subcutaneous fibroblasts of the line L929. The cell behavior was further improved 504 
by blending the cellulose with poly (L-lactide) or with polydioxanone [66]. Three-dimensional 505 
cellulose acetate scaffolds, produced by an electrohydrodynamic direct jet process called spin-506 
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printing, stimulated the adhesion and metabolic activity of human dermal fibroblasts to a greater 507 
extent than polycaprolactone scaffolds with a similar fibrous morphology and pore geometry [207]. 508 
Blending cellulose acetate with gelatin can modulate its applicability for skin tissue engineering or 509 
for wound dressing. The scaffolds with a lower content of cellulose acetate and a higher content of 510 
gelatin (ratio 25:75) promoted high proliferation activity of human dermal fibroblasts and adhered to 511 
a wound, showing that they were promising for skin tissue engineering. By contrast, the scaffolds 512 
with a higher content of cellulose acetate and a lower content of gelatin (ratio 75:25) appeared to be 513 
suitable for low-adherent wound dressings [208]. Other cellulose acetate-based scaffolds with 514 
potential for skin tissue engineering include composite 3D electrospun cellulose acetate/pullulan 515 
scaffolds, which promoted the adhesion and growth of mouse L929 fibroblasts [209], and composite 516 
biomimetic nanofibrous gelatin/cellulose acetate/elastin scaffolds, which promoted the adhesion and 517 
growth of human gingival fibroblasts [210]. Nanofibrous scaffolds prepared by rotary jet spinning 518 
from cellulose acetate and soy protein hydrolysate are another promising material. In vitro, these 519 
scaffolds promoted the migration and proliferation of dermal fibroblasts, their infiltration inside the 520 
scaffolds and their expression of β1-integrin adhesion receptors. In vivo, these scaffolds accelerated 521 
re-epithelialization and epidermal thinning, and also reduced scar formation and collagen anisotropy 522 
[211]. 523 

Hydroxyethyl cellulose is another modification of cellulose that can be used for creating 524 
nanostructures. This modification of cellulose is water-soluble and, like cellulose acetate, it can be 525 
used for electrospinning of nanofibrous scaffolds. Nanofibrous scaffolds made of hydroxyethyl 526 
cellulose blended with poly(vinyl alcohol) supported the adhesion and growth of human skin 527 
fibroblasts [212]. The behaviour of the fibroblasts was further improved by adding collagen into the 528 
blend, and the antimicrobial activity of the scaffolds was established by adding silver nanoparticles 529 
without a considerable increase in the cytotoxicity of the scaffold for the fibroblasts [213]. 530 

Plant-derived nanocellulose in the form of nanocrystals can be used advantageously for 531 
reinforcing materials typically used for tissue engineering, such as degradable natural and synthetic 532 
polymers, which are relatively weak. Cellulose nanocrystals (CNCs) are produced by acid hydrolysis 533 
of cellulose fibers, employing either sulfuric acid or hydrochloric acid. Due to their structural defects, 534 
CNCs have a very large elasticity modulus (about 130 GPa), which is similar to that of Kevlar, and 535 
they have high strength (about 7 GPa). In addition, CNCs have low extension to break, high aspect 536 
ratios, high surface areas, high crystallinity, and apparent biocompatibility [13,70]. CNCs were used 537 
to reinforce collagen films, and these composites, also supporting the viability of mouse embryonic 538 
3T3 fibroblasts, were promising for skin tissue engineering [13]. In another study, cotton-derived 539 
cellulose nanocrystals were electrospun together with poly(lactic-co-glycolic acid) (PLGA). The 540 
resulting scaffolds improved the adhesion, spreading and proliferation of 3T3 fibroblasts in 541 
comparison with neat PLGA nanofiber membranes [214].  542 

Nanocellulose derived from Cladophora algae can also be improved for tissue engineering 543 
purposes by physicochemical modifications. The adhesion and spreading of human dermal 544 
fibroblasts were relatively poor on unmodified Cladophora nanocellulose films, but they increased on 545 
nanocellulose carboxylated by electrochemical TEMPO-mediated oxidation. This increase was 546 
proportional to the degree of oxidation of the material [75]. 547 

 548 
 549 
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4.3. Limitations of the use of nanocellulose in skin tissue engineering 550 

In spite of all the encouraging results mentioned above, the use of nanocellulose (and cellulose 551 
in general) in skin tissue engineering is limited by its non-degradability in the human organism. The 552 
retention of non-degradable material in skin could induce scar formation. Degradability of cellulose 553 
can be induced by incorporating cellulase enzymes, as demonstrated in bacterial cellulose [215], 554 
especially in conjunction of these enzymes with β-glucosidase [216]. Degradable cellulose can also be 555 
created by introducing N-acetylglucosamine residues into the cellulose molecule during its synthesis 556 
by metabolically-engineered Gluconacetobacter xylinus. These residues then render the cellulose 557 
molecules susceptible to degradation by lysozyme, an enzyme that is widespread in the human body 558 
[217,218]. Another approach for rendering cellulose-based scaffolds degradable, at least partially, is 559 
oxidation. Oxidized acetyl cellulose sponges, implanted subcutaneously into rats in vivo, showed 560 
degradation of 47% of their dry mass after 60 weeks, while in ethyl cellulose the proportion was only 561 
18% [219]. Regenerated cellulose (methylolcellulose) and 2,3-dialdehydecellulose (DAC) have also 562 
been considered as degradable, although only at a slow rate. In addition, DAC membranes supported 563 
adhesion, growth and extracellular matrix formation in human neonatal skin fibroblasts cultured on 564 
these materials [220]. Last but not least, cellulose derived from Styela clava tunics is also slowly 565 
degradable. After subcutaneous implantation into rats for 90 days, the weight loss was greater in 566 
cellulose films from Styela clava (almost 24% of their initial weight) than in films prepared from wood 567 
pulp cellulose (less than 10%) [80].  568 

4.4. Nanocellulose as a carrier for cell delivery into skin defects  569 

Although there has been only limited direct use of cellulosic materials, including nanocellulose, 570 
in skin tissue engineering, these materials, even in their non-degradable forms, can be used indirectly 571 
for skin tissue engineering, i.e. as carriers for delivering cells into wounds. After the cells have 572 
adhered to the wound bed, they can be released from the scaffolds, and the scaffolds can be removed. 573 
Experiments in vitro, performed on a bacterial cellulose/acrylic acid (BC/AA) hydrogel colonized by 574 
epidermal keratinocytes (EK) and dermal fibroblasts (DF), showed that from day 1 to day 3 after 575 
seeding on BC/AA, about 63% of EK and 69% of DF were cumulatively transferred from BC/AA on 576 
to an ovine collagen hydrogel [192]. Experiments in vivo performed in mice showed that BC/AA 577 
hydrogels loaded with cells produced the greatest acceleration on burn wound healing, followed by 578 
treatment with hydrogel alone, and by the untreated group. On day 13 after wound coverage, the 579 
percentage of wound reduction for the hydrogel loaded with cells, for the pure hydrogel and for the 580 
control untreated group of animals were about 77%, 72% and 65%, respectively. The transferred cells 581 
are believed to assist in initiating the wound healing process, where the fibroblasts play a role in 582 
forming the granulation tissue and the keratinocytes help in re-epithelialization [221]. Wound healing 583 
can also be accelerated by transferring mesenchymal stem cells, seeded on nanocellulose-based 584 
carriers, into the damaged skin. For example, membranes of bacterial cellulose with gellan gum, 585 
incorporated with the antifungal drug fluconazole, were developed for delivery of human adipose-586 
derived mesenchymal stem cells (ASCs), obtained by liposuction. The membranes with ASCs were 587 
applied for covering second-degree burn wounds produced in rats. Fluorescence staining with FITC 588 
and DAPI proved that the ASCs were transferred into the wounds. The transferred ASCs can improve 589 
wound healing not only directly, by proliferating and differentiating in the host tissue, but mainly 590 
indirectly, by their paracrine secretion of a wide range of bioactive molecules, such as cell-adhesion 591 
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mediating molecules, immunomodulatory molecules, growth factors and angiogenic factors [222]. 592 
Carboxymethylcellulose (CMC) combined with rat ASCs, obtained from visceral fat, was tested for 593 
treating skin lesions created by punch in a dorsal region of rats. In this model, commercially available 594 
sodium CMC at a concentration of 10 mg per 1 ml of the culture medium associated with ASCs, 595 
increased the rate of cell proliferation of the granulation tissue and the epithelium thickness in 596 
comparison with untreated lesions, but did not increase the collagen fibers or alter the overall speed 597 
of wound closure. In addition, the use of CMC was safe up to a concentration of 20 mg/ml. At a higher 598 
concentration of 40 mg/ml, the sodium CMC showed a certain genotoxicity, although this was small 599 
and transient, as revealed by an alkaline comet assay [223]. Other cellulose-based carriers for human 600 
ASCs were threads prepared from nanofibrillated cellulose, extracted from plants and cross-linked 601 
with glutaraldehyde. Cross-linked threads were not cytotoxic for ASCs and supported their 602 
adhesion, migration and proliferation in vitro. After intradermal suturing with ASC-decorated 603 
threads in an ex vivo experiment performed on porcine skin, the ASCs remained attached to the 604 
multifilament sutures without displaying morphological changes or reducing their metabolic activity 605 
[224]. In our recent study, novel cell carriers based on clinically used carboxymethylcellulose fabrics 606 
(Hcel® NaT), modified with fibrin nanofibers, were designed for potential delivery of dermal 607 
fibroblasts into skin wounds [225]. 608 

5. Nanocellulose in wound healing 609 

5.1. Bacterial nanocellulose  610 

5.1.1. Bacterial nanocellulose without additives 611 

Similarly as in skin tissue engineering, bacterial nanocellulose (BNC) is considered to be one of 612 
the most suitable materials for wound dressing. This is due to its favorable physical, chemical and 613 
biological properties, as mentioned above, such as chemical purity, favorable mechanical properties 614 
and water-absorbing capacity [11,21,48,193]. BNC itself, i.e. without any additives, showed a great 615 
capacity to stimulate wound healing, i.e. regeneration of the epidermis and dermis. For example, as 616 
mentioned above, BNC wound dressings improved the healing of full-thickness skin defects of a 617 
relatively large area (2 x 2 cm), created surgically on the back in mice in vivo, in comparison with the 618 
control untreated mice. At the same time, BNC-treated mice showed a lower inflammatory response, 619 
evaluated by the amount of neutrophils, lymphocytes and macrophages in histological sections. In 620 
addition, a cytotoxicity test, performed in vitro on NIH/3T3 fibroblasts, demonstrated that the growth 621 
rate of the cells seeded on BNC films was more than 80% of the value obtained in cells grown in 622 
standard culture wells, which indicated low cytotoxicity of BNC [37]. Similar results were obtained 623 
when bacterial cellulose membranes were applied for 15 days on second-degree burn wounds (1 x 1 624 
cm) produced by contact with a heated metal plate. Bacterial cellulose accelerated the process of 625 
healing in comparison with a conventionally used gauze, as manifested by greater thickness of the 626 
regenerated epidermis and dermis, a higher number of newly-created blood vessels, a higher level of 627 
collagen expression and a lower number of mast cells infiltrating the damaged site. At the same time, 628 
bacterial cellulose did not show toxic effects on the liver and kidney, as revealed by the levels of 629 
alanine transaminase, aspartate transaminase, alkaline phosphatase, blood urea nitrogen, creatine 630 
and lactate dehydrogenase in the blood serum [226]. A recent study by Kaminagakura et al. [46] 631 
showed that bacterial cellulose membranes (Nanoskin®) promoted healing of full-thickness skin 632 
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wounds in guinea pigs, created by surgical removal of skin from their dorsal region (2 x 4 cm), to a 633 
similar extent as in the control autologous skin implants. A coating of Nanoskin® with gelatin did not 634 
further improve the healing effect. However, skin wound healing can be modulated by the 635 
architecture of bacterial cellulose films. The bottom side of these films was constructed with a larger 636 
pore size, and with a looser and rougher structure than that of the top side. A microfluidics-based in 637 
vitro wound healing model revealed that the bottom side of the films better promoted the migration 638 
of cells to facilitate wound healing. These scaffolds are therefore also promising for skin tissue 639 
engineering. Moreover, full-thickness skin wounds in Wistar rats, covered by the bottom side of the 640 
films, showed faster recovery and less inflammatory response than the top side of these films and the 641 
traditionally-used gauze [227]. Finally, an interesting application of bacterial nanocellulose was for 642 
creating transparent wound coverings, which allowed optical real-time monitoring of wound 643 
healing, and also diagnostics of the infection and inflammation in chronic wounds [228]. Another 644 
transparent wound dressing was developed by combining bacterial cellulose whiskers with a poly 645 
(2-hydroxyethyl methacrylate) hydrogel and silver nanoparticles, which endowed the dressing with 646 
antibacterial activity. At the same time, this material facilitated the growth of NIH 3T3 fibroblasts, 647 
which indicated its non-toxicity [23]. 648 

5.1.2. Bacterial nanocellulose with additives 649 

In order to further improve the healing effect of bacterial (nano)cellulose, this material has been 650 
combined with other biologically-active molecules, such as other polysaccharides, proteins, 651 
glycosides, cytokines and growth factors, local anesthetics, and even nanoparticles. For example, 652 
combination with chitosan improved the mechanical properties and endowed bacterial cellulose-653 
based wound dressings with antimicrobial properties [229]. The mechanical properties of composite 654 
electrospun nanofibrous mats containing bacterial nanocellulose and chitosan were further improved 655 
by adding medical grade diamond nanoparticles to the electrospinning solution. Introducing these 656 
nanoparticles facilitated the electrospinning process and reduced the diameter of the fibers. 657 
Moreover, the nanodiamond-modified mats were more hydrophilic and thus more attractive for the 658 
adhesion and growth of mouse skin L929 fibroblasts, which made them promising for skin tissue 659 
engineering [21].  660 

An important protein for modifying bacterial cellulose is sericin, which is created by silkworms 661 
(Bombyx mori) as a component of silk. A silk sericin-releasing bacterial nanocellulose gel was 662 
developed to be applied as a bioactive mask for facial treatment [230]. Silk sericin diffusing from 663 
bacterial cellulose did not influence the growth of keratinocytes but enhanced the proliferation of 664 
fibroblasts, increased the cell viability and improved the production of extracellular matrix. Bacterial 665 
cellulose/silk sericin composites are therefore promising not only for wound dressing applications 666 
but also for tissue engineering [231]. A bacterial nanocellulose wound dressing with sericin and 667 
polyhexamethylene biguanide (PHMB), an antimicrobial agent, was clinically tested in volunteers 668 
[132].  669 

An important cytokine used for bacterial cellulose modification was macrophage-stimulating 670 
protein (MSP), a cytokine highly expressed in ASCs and probably playing a critical role in wound 671 
healing. In an in vivo study, MSP was applied to a full-thickness skin wound with bacterial cellulose 672 
membranes, and this treatment accelerated the wound healing, probably by migration of dermal 673 
fibroblasts, which have receptors for MSP, and by enhanced synthesis and remodeling of collagen 674 
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[232]. Smart membranes made of oxidized bacterial cellulose incorporated with epidermal growth 675 
factor (EGF) were developed in order to enhance the process of re-epithelialization. The release of 676 
EGF was triggered by lysozyme, an enzyme commonly found at infected skin wounds [233]. Re-677 
epithelialization of skin wounds in rats was also enhanced by bacterial cellulose membranes 678 
incorporated with vaccarin, a flavonoid glycoside known to promote neovascularisation [39]. In the 679 
field of local anesthetics, lidocaine was incorporated into bacterial cellulose in order to reduce pain, 680 
especially in burn wounds, and thus to improve the wound healing [131]. Another system developed 681 
for lidocaine delivery was based on biodegradable microneedles manufactured from bacterial 682 
cellulose and fish scale-derived collagen [28]. A further useful modification of bacterial cellulose is 683 
the introduction of glycerin. Glycerin has a characteristic moisturizing effect, which could be 684 
clinically relevant for the treatment for skin diseases accompanied by dryness, such as psoriasis and 685 
atopic dermatitis [234]. Bacterial nanocellulose usually occurs in the form of nanofibrils, but 686 
nanocrystals have also been prepared from this material. The bacterial cellulose nanocrystals were 687 
then used to reinforce regenerated chitin fibers, and these composite fibers are applicable for suturing 688 
skin wounds [235].  689 

An important issue is that wound dressings should protect the wound from microbial infections, 690 
which are caused mainly by bacteria. Although bacterial nanocellulose is considered to be an almost 691 
ideal wound dressing, it exhibits no antibacterial properties when used by itself. Therefore, numerous 692 
studies have dealt with incorporating bacterial cellulose with various antibacterial agents, such as 693 
metal-based agents, antiseptics, antibiotics and various nature-derived antibacterial molecules. 694 
Metal-based agents used for bacterial cellulose modification include various forms of silver, such as 695 
silver sulfadiazine [236] and silver nanoparticles [237], both of which are active against Pseudomonas 696 
aeruginosa, Escherichia coli and Staphylococcus aureus. Silver nanoparticles were further combined with 697 
magnetic Fe3O4 nanoparticles in order to increase the wound healing efficiency of bacterial 698 
nanocellulose [238]. Other metal-based nanoparticles with activity against Gram-negative bacteria, 699 
combined with bacterial cellulose, were 4,6-diamino-2-pyrimidinethiol (DAPT)-modified gold 700 
nanoparticles [239]. Antiseptics used in bacterial cellulose-based wound dressings included 701 
povidone-iodine and polyhexamethylene biguanide (PHMB; [48,132]), and also octenidine [240]. 702 
Prolonged release of octenidine was achieved by incorporating it into Poloxamer micelles, which 703 
were introduced into bacterial nanocellulose [133]. Other antimicrobial drugs incorporated into 704 
bacterial cellulose were antimicrobial quaternary ammonium compounds based on fatty acids and 705 
amino acids ([EDA][DLA-Tyr]), which were active against Staphylococcus aureus and Staphylococcus 706 
epidermidis [241]. A representative of antibiotics is ceftriaxone, a third-generation cephalosporin [43]. 707 
Nature-derived antibacterial molecules used for modifying bacterial cellulose include chitosan, 708 
which exhibited bacteriostatic properties against Escherichia coli and Staphylococcus aureus [229,242]. 709 
Other antimicrobial compounds are bromelain, a protease present in pineapple tissues, which also 710 
has anti-inflammatory and anticancer properties [243], lignin and lignin-derived compounds [244], 711 
and particularly curcumin, i.e. a naturally occurring polyphenolic compound isolated from Curcuma 712 
longa. The application of curcumin is limited by its extremely low water solubility, which leads to its 713 
poor bioavailability. For wound dressings, curcumin was applied mainly with plant-derived and 714 
chemically-modified nanocellulose, and, in rare cases, in combination with bacterial cellulose. In a 715 
recent study, curcumin was entrapped into a composite containing gelatin and ionically modified 716 
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self-assembled bacterial cellulose, and showed wound healing activity and antimicrobial activity 717 
[245].  718 

In our experiments, we prepared bacterial cellulose loaded with pristine curcumin or with 719 
curcumin degradation products. As was mentioned above, pristine curcumin is almost insoluble in 720 
polar solvents. In addition, curcumin is unstable in neutral and alkaline pH, and it degrades mainly 721 
to ferulic acid, feruloylmethane and vanillin [246]. The degradation of curcumin can also be 722 
modulated by temperature. It is known that curcumin starts to degrade at a temperature of approx. 723 
180°C [247]. In our experiments, degradation products of curcumin were therefore prepared by 724 
thermal decomposition of curcumin molecules at temperatures of 180 °C and 300 °C. Fourier-725 
transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC) 726 
detected vanillin and feruloylmethane as the major product at 180 °C, and feruloylmethane at 300 °C.  727 

Our results showed that bacterial cellulose loaded with curcumin, and particularly with its 728 
degradation products obtained at 180°C, reduced the number of growing colonies of Staphylococcus 729 
epidermis. Antibacterial activity against Escherichia coli was obtained only in samples loaded with the 730 
degradation products of curcumin obtained at 180 °C (Figure 5). 731 

 732 

 733 
Figure 5. Antibacterial activity against S. epidermis (A) and E. coli (B) in unmodified bacterial cellulose 734 
(text.cellulose), bacterial cellulose with curcumin (text.cellulose+curc.) and bacterial cellulose with curcumin 735 
degraded at 180 °C (text.cellulose +degr.curc. 180 °C) for 1 hour [248].  736 

 737 
In vitro tests performed on human dermal fibroblasts revealed that curcumin degraded at 180 °C 738 

showed a significant cytotoxic effect on these cells, while curcumin degraded at 300 °C supported the 739 
adhesion, spreading and growth of these cells (Figure 6). It therefore appears that vanillin - as the 740 
major degradation product at 180 °C - is cytotoxic, and feruloylmethane - as the major degradation 741 
product at 300 °C - is non-cytotoxic. However, the antimicrobial and cytotoxic effect of curcumin-742 
loaded bacterial cellulose is strongly dependent on the concentration of curcumin or its degradation 743 
products. We observed no cytotoxic effect on fibroblasts at very low doses of curcumin degraded at 744 
180 °C, incorporated into cellulose.  745 
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 746 

 747 
Figure 6. Human dermal fibroblasts on bacterial cellulose in a pristine state (Pristine), loaded with curcumin (C) 748 
or with degraded curcumin at 180 °C (DC 180) or at 300°C (DC 300) after 7 days of cell seeding. The cells were 749 
stained with Texas Red C2-Maleimide (red fluorescence, cell membrane and cytoplasm) and Hoechst #33258 750 
(blue fluorescence, cell nuclei).  751 

 752 
Other drugs that can be incorporated into bacterial cellulose are anticancer drugs, such as α-753 

mangostin, an antioxidant and antigenotoxic agent derived from the mangosteen tree, which 754 
suppressed the growth of B16F10 melanoma cells and MCF-7 breast cancer cells [249]. Bacterial 755 
cellulose can also be used for transdermal drug delivery, such as systemic delivery of propranolol, a 756 
non-selective β-adrenergic receptor antagonist [130] or diclophenac, a non-steroidal anti-757 
inflammatory drug [129]. Another interesting application of bacterial nanocellulose is in epidermal 758 
electronics, e.g. self-adhering bioelectronic decal monitoring of the concentration of cations (Na+, K+ 759 
and Ca2+) in sweat as a marker of the physiological status of the organism [38].  760 

The use of bacterial cellulose in skin tissue engineering and wound healing, including its clinical 761 
applications, has been reviewed by Fu et al. [37]. 762 

5.2. Plant- and animal-derived nanocellulose in wound healing 763 

5.2.1. Plant-derived nanocellulose without additives 764 

Like bacterial nanocelullose, plant cellulose can also appear in the form of a hydrogel containing 765 
nanofibrils. Unlike bacterial nanocelullose, however, plant cellulose can induce wound healing by 766 
itself, i.e. without any additives. Wood-derived nanofibrillar cellulose (NFC) has been tested for 767 
wound dressing applications due to its high capability to absorb liquids and to form translucent films. 768 
These properties are required for non-healing and chronic wounds, where exudates need to be 769 
managed adequately. In addition, the translucency of NFC makes it possible to evaluate the 770 
development of the wound without needing to remove the dressing [250]. The healing potential of 771 
wood-derived NFC was tested in a clinical trial on burn patients. An NFC dressing was applied to 772 
split thickness skin graft donor sites. The NFC dressing was compared with the Suprathel® 773 
commercial lactocapromer dressing (PMI Polymedics, Germany). Epithelialization of the donor site 774 
was faster when covered by the NFC dressing than when Suprathel® was used. The NFC dressing 775 
seemed to be promising for skin graft donor site treatment, since it was biocompatible, it attached 776 
easily to the wound bed, and it remained in place until the donor site had renewed. It also detaches 777 
from the epithelialized skin by itself [52].  778 

Wood-derived NFC (obtained from commercial never-dried bleached sulfite softwood 779 
dissolving pulp), crosslinked with calcium ions, also had hemostatic potential, especially when 780 
enriched with kaolin or collagen [55]. In addition, inflammatory response studies with blood-derived 781 
mononuclear cells revealed the inert nature of NFC hydrogels in terms of cytokine secretion and 782 
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reactive oxygen species production. Water retention tests showed the potential of NFC hydrogels to 783 
maintain a suitably moist environment for various types of wounds [18]. 784 

Hemostatic potential was also observed in oxidized cellulose (OC) modified in an inert argon 785 
plasma [251]. The plasma-modified OC was more acidic, and had a larger surface area and greater 786 
ability to absorb water. These factors are crucial for effective haemostasis. In addition, the acidity of 787 
plasma-modified OC increased its antibacterial activity. Plasma-modification could therefore be 788 
utilized for advantageous modification and also for sterilizing the OC haemostat in a single easy step 789 
[251]. 790 

Similarly, nanofibrillated cellulose, prepared from Pinus radiata pulp fibers and pre-treated with 791 
TEMPO-mediated oxidation, in the form of films, impaired the growth of Pseudomonas aeruginosa, a 792 
frequent wound pathogen, and led to more death of bacterial cells than Aquacel®, a commercial 793 
control wound dressing [57]. The same NFC in suspension and in the form of aerogels also showed 794 
activity against Pseudomonas aeruginosa PAO1. In the case of aerogels, bacterial biofilm formation 795 
decreased with decreasing porosity and surface roughness of the material [252]. Incorporating 796 
cellulose nanocrystals (derived from Hibiscus cannabinus) into chitosan/poly(vinyl pyrrolidone) 797 
composite membranes, developed for wound dressing applications, enhanced their antibacterial 798 
activity, as revealed in Staphylococcus aureus and Pseudomonas aeruginosa [64]. The antibacterial 799 
activity was further increased by coating these membranes with hydrophobic stearic acid, which 800 
hampered the adhesion of bacterial cells [253]. 801 

5.2.2. Plant-derived nanocellulose with additives 802 

Similarly as in bacterial nanocellulose, the antibacterial properties of plant-derived 803 
nanocellulose can be further improved by various chemical modifications, and by adding various 804 
ions, nanoparticles and synthetic or nature-derived molecules. An example of chemical modification 805 
is carboxymethylation and periodate oxidation of nanocellulose, which was then used as bioink for 806 
preparing porous antibacterial wound dressings [254]. As concerns the ions, the antibacterial 807 
properties of softwood pulp-derived NFC were modulated by using divalent calcium or copper ions 808 
as crosslinking agents. Calcium-crosslinked hydrogels were more active against Pseudomonas 809 
aeruginosa, while copper-crosslinked hydrogels were more active against Staphylococcus epidermidis 810 
[19]. In addition, Ca2+-crosslinked NFC hydrogels could be used for topical drug delivery applications 811 
in a chronic wound healing context [56]. Copper-containing nanocellulose materials also showed 812 
angiogenic activity. Composites of wood-derived NFC and copper-containing mesoporous bioactive 813 
glass showed not only antibacterial activity against Escherichia coli, but also angiogenic activity, as 814 
revealed in a 3D spheroid culture system of human umbilical vein endothelial cells, and also in 815 
cultures of mouse 3T3 fibroblasts, which upregulated the expression of pro-angiogenic genes in these 816 
cells [255]. Nanocomposite hydrogels containing carboxylated cellulose nanofibers (prepared by 817 
TEMPO-mediated oxidation), gelatin and aminated silver nanoparticles showed strong mechanical 818 
and self-recovery properties, antibacterial activity against Staphylococcus aureus and Pseudomonas 819 
aeruginosa, satisfactory hemostatic performance, and an appropriate balance of fluids on the bed of 820 
skin wounds created in mice [6]. Micro- and nanofibrillated cellulose incorporated with bismuth 821 
complexes was effective against Escherichia coli, Staphylococcus aureus, methicillin-resistant 822 
Staphylococcus aureus and vancomycin-resistant Enterococcus [256].  823 
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Examples of synthetic and nature-derived molecules that have been incorporated into plant-824 
derived nanocellulose in order to enhance its antibacterial activity include antibiotics, antiseptics, 825 
antimicrobial peptides, alkanin, shikonin, isoliquiritigenin, coumarin and curcumin. From this point 826 
of view, nanocellulose-based materials can serve as carriers for topical and transdermal drug 827 
delivery. For example, a gentamycin-grafted nanocellulose sponge, prepared by multi-crosslinking 828 
of CNF (extracted from wood pulp), cellulose acetoacetate and 3-aminopropyl(triethoxy)silane, 829 
showed excellent antibacterial performance against Escherichia coli and Staphylococcus aureus, with 830 
bactericidal rates of over 99.9% [35]. Similarly, a hydrogel containing cellulose nanofibrils (produced 831 
by TEMPO-mediated oxidation from bleached softwood kraft pulp), and polydopamine loaded with 832 
tetracycline, was active against Escherichia coli and Staphylococcus aureus, and stimulated the healing 833 
of skin defects created in rats in vivo [6]. Due to the increasing resistance to antibiotics, attention has 834 
also been paid to other antimicrobial compounds. Composite films containing spherical cellulose 835 
nanocrystals and titania nanoparticles complexed with triclosan, i.e. an antibacterial and antifungal 836 
agent, showed activity against Escherichia coli and Staphylococcus aureus [257]. Another novel strategy 837 
for fighting bacterial infections involves delivering antibacterial peptides, e.g. nisin, a polycyclic 838 
antibacterial peptide produced by the bacterium Lactococcus lactis. This peptide was incorporated into 839 
TEMPO-oxidized nanofibrillated cellulose (TONFC) via electrostatic attraction between the 840 
negatively-charged TONFC surface and the positively-charged nisin molecules. The capacity of 841 
TONFC to bind nisin was regulated by pH and ionic strength. The activity against Bacilus subtilis and 842 
Staphylococcus aureus was higher in nisin-TONFC composites than in free nisin [134]. In another 843 
nanocellulose-based material, i.e. nanocrystalline cellulose functionalized with aldehyde groups, also 844 
known as sterically stabilized nanocrystalline cellulose, nisin was combined with lysozyme, another 845 
antibacterial agent [101]. Other interesting molecules are alkannin, shikonin and their derivatives, 846 
which are naturally occurring hydroxynaphthoquinones with wound healing potential and 847 
antimicrobial, anti-inflammatory, antioxidant and antitumor activities. In a study by 848 
Kontogiannopoulos et al. [135], these agents were for the first time incorporated in electrospun 849 
cellulose acetate nanofibrous meshes for potential wound dressings. Isoliquiritigenin, a phenolic 850 
compound found in licorice, was incorporated into pH-sensitive hydroxyethyl cellulose/hyaluronic 851 
acid complex hydrogels. These composites showed antimicrobial activity against Propionibacterium 852 
acnes, and they were therefore considered to be promising for treating acne [258].  853 

Other important plant-derived molecules for incorporation into wound dressings are coumarin 854 
and curcumin. These compounds have a wide spectrum of biological and pharmacological activities, 855 
including antioxidant, anti-inflammatory, antimicrobial and anticancer activities. However, as was 856 
mentioned above, their potential therapeutic applications are hindered by the low stability and the 857 
poor water-solubility of these molecules. Attempts have been made to overcome these drawbacks 858 
and to improve the bioavailability of these compounds, e.g. using a Pickering emulsion, i.e. a kind of 859 
emulsion stabilized by solid particles located at the oil-water interface, in which aminated 860 
nanocellulose particles were used [136]. Another approach was a nanocellulose-reinforced chitosan 861 
hydrogel incorporated with Tween 20, i.e. a non-ionic surfactant, in order to improve the solubility 862 
of curcumin [259]. Other relatively simple cellulosic materials for curcumin delivery include capsules 863 
made of ethyl cellulose blended with methyl cellulose [260]. More complicated materials are 864 
polyvinyl alcohol/polyethylene oxide/carboxymethyl cellulose matrix blended with nanosilver 865 
nanohydrogels, Aloe vera and curcumin, deposited on a hydrolysed PET fabric [261], electrospun 866 
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nanofibers containing PLGA, cellulose nanocrystals, curcumin and polyethyleneimine-867 
carboxymethyl chitosan/pDNA-angiogenin nanoparticles [262], and composites made of complexes 868 
of curcumin/gelatin microspheres and porous collagen-cellulose nanocrystals [263]. 869 

Another important material with antimicrobial activity is chitosan. Chitosan and pectin with 870 
organic rectorite, i.e. a layered silicate, were used for deposition on electrospun cellulose acetate 871 
nanofibers in order to inhibit bacterial growth, which was proven on Escherichia coli and 872 
Staphylococcus aureus. At the same time, the material supported the growth of human epidermal cells. 873 
This material was considered to be suitable not only for wound dressing, but also for food packaging 874 
[8]. In a study by Vosmanská et al. [264], a three-step modification of the standard cellulose wound 875 
dressing was prepared. This modification included argon plasma-treatment, chitosan impregnation 876 
and AgCl precipitation. The plasma treatment oxidized the material surface, which increased the 877 
hydrophilicity of the material surface and the amount of chitosan impregnated on to the surface. In 878 
addition, plasma treatment almost doubled the amount of AgCl precipitated on the plasma-activated 879 
surface. All these factors endowed the cellulose-based wound dressing with antibacterial activity 880 
against E. coli and S. epidermidis [264]. 881 

Various antibacterial nanocellulose-based materials have been reviewed by Li et al. [265]. 882 
Nanocellulose in the form of nanocrystals has been widely used for delivering drugs for wound 883 

healing and for treating various skin disorders. Cellulose nanocrystals conjugated with folic acid are 884 
promising vectors for the targeted delivery of chemotherapeutic agents to folate receptor-positive 885 
cancer cells [266]. Cellulose nanocrystals (CNCs) isolated from Syzygium cumini leaves or bamboo, 886 
impregnated with silver nanoparticles, have been proposed for accelerated healing of acute and 887 
diabetic wounds [62,71]. Other potential wound dressings for accelerated healing of diabetic wounds 888 
are composite nanofibrous membranes containing PLGA fibres and cellulose nanocrystals loaded 889 
with neurotensin, an inflammatory modulator [267]. Cellulose nanocrystals loaded with 890 
hydroquinone, which inhibits the production of melanin, were designed for treating 891 
hyperpigmentation, a disorder occurring during pregnancy and sun exposure [268]. The use of 892 
various cellulose-based nanocarriers, such as bacterial cellulose, cellulose acetate, microcrystalline 893 
cellulose, carboxymethyl cellulose, cellulose nanocrystals, cellulose nanofibrils, etc., in drug delivery 894 
systems for cancer treatment has been reviewed in [269]. Advanced “intelligent” nanocellulose-based 895 
wound dressings were combined with biosensors, e.g. for human neutrophil elastase present in 896 
chronic wound fluid [120,270,271]. 897 

5.2.3. Animal-derived nanocellulose 898 

Animal-derived nanocellulose also has potential for application in wound dressings. Cellulose 899 
membranes manufactured from Styela clava tunics, by themselves and in combination with alginate 900 
or selenium, stimulated healing of surgically-created wounds in normal rats and in rats with diabetes 901 
induced by treatment with streptozotocin [75,83], probably through regulation of angiogenesis and 902 
connective tissue formation. 903 

6. Potential cytotoxicity and immunogenicity of nanocellulose 904 

Nanocellulose materials are often considered as materials with no cytotoxicity and 905 
immunogenicity, or with low cytotoxicity and immunogenicity. Cellulose nanofibers isolated from 906 
Curauá leaf fibers (Ananas erectifolius) provide an example of non-cytotoxicity. They showed no signs 907 
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of cytotoxicity in direct or indirect assays for cell viability and cell morphology using Vero cells, i.e. 908 
monkey-derived kidney epithelial cells. Moreover, during an adhesion test, the cells demonstrated a 909 
relatively high affinity to the CNF surface [16]. Cotton-derived cellulose nanocrystals (mean width 910 
7.3 nm, mean length 135 nm, concentrations from 30 to 300 µg/µl per ml of cell culture medium) are 911 
an example of non-immunogenic nanocellulose. These nanocrystals did not induce any release of 912 
pro-inflammatory cytokines, namely tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), 913 
from human macrophages derived from peripheral blood monocytes, while microcrystalline 914 
cellulose (particle size ∼50 µm) induced the release of these cytokines [26].  915 

However, several studies documenting considerable cytotoxicity and pro-inflammatory activity 916 
of nanocellulose in vitro and in vivo have also emerged. In vitro, five types of wood-derived 917 
nanocellulose materials (doses up to 100 µg/ml of cell culture medium) were practically non-cytotoxic 918 
for human macrophage-like THP-1 cells, when compared with multi-walled carbon nanotubes and 919 
nanomaterials based on ZnO, Ag and SiO2, as revealed by an Alamar blue assay. However, multiplex 920 
profiling of cytokine and chemokine secretion indicated that nanocellulose materials induced potent 921 
inflammatory responses at sub-cytotoxic doses [272]. In vivo, wood-derived cellulose nanocrystals 922 
were shown to induce an inflammatory response in mice after aspiration, manifested by an increase 923 
in leukocytes and eosinophils in the lungs, recovered by bronchoalveolar lavage (BAL), and up-924 
regulation of pro-inflammatory cytokines and chemokines, such as TNF-a, G-CSF, GM-CSF, INF-γ, 925 
MCP-1, MIP-1α, MIP-1β, RANTES and various interleukins (including IL-1β), in the BAL fluid. These 926 
nanocrystals also induced oxidative stress and tissue damage, manifested by an accumulation of 927 
oxidatively modified proteins and an increase in lactate dehydrogenase activity in BAL fluid [18]. 928 
Similar results were obtained in a study by Shvedova et al. [4]. The exposure of mice to respirable 929 
wood-derived cellulose nanocrystals caused pulmonary inflammation and damage, induced 930 
oxidative stress, increased levels of collagen and transforming growth factor- β (TGF-β) in the lung, 931 
and impaired pulmonary functions. In addition, these effects were more pronounced in female mice 932 
than in male mice [4]. Sulphonated nanocellulose obtained from Khaya sengalensis seed showed renal 933 
toxicity in rats, manifested by hypernatremia, enhancement of the antioxidant status and 934 
immunohistochemical expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 935 
(COX-2) in the kidneys [64]. 936 

The cytotoxicity and immunogenicity of nanocellulose can be modulated by its physicochemical 937 
properties, e.g. by functionalizing it with specific chemical groups or by endowing it with an electrical 938 
charge. Wood-derived nanofibrillated cellulose (NFC) modified with carboxymethyl and 939 
hydroxypropyltrimethylammonium groups elicited a lower pro-inflammatory effect than 940 
unmodified NFC in human dermal fibroblasts, in lung MRC-5 cells and in human macrophage-like 941 
THP-1 cells [273]. Anionic NFC films significantly activated THP-1 cells towards a pro-inflammatory 942 
phenotype, whereas cationic and unmodified cellulose induced only mild activation of these cells 943 
[274]. 944 

The morphology of cellulose nanoparticles can also influence their cytotoxicity and 945 
immunogenicity. Nanofibrillated cellulose (NCF) showed more pronounced cytotoxicity and 946 
oxidative stress responses in human lung epithelial A549 cells than cellulose nanocrystals (CNC). 947 
However, exposure to CNC caused an inflammatory response with significantly elevated pro-948 
inflammatory cytokines and chemokines compared to NCF. Interestingly, cellulose staining indicated 949 
that CNC particles, but not NCF particles, were taken up by the cells [275]. In vivo experiments 950 
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performed in mice also confirmed different immune responses to NFC and to CNC. Pulmonary 951 
exposure to NFC led to discrete local immune cell polarization patterns with TH1-like immune 952 
reaction, while CNC caused non-classical or non-uniform responses. However, the response to both 953 
types of nanocellulose was milder than the response to asbestos and carbon nanotubes [276]. In 954 
addition, curcumin was able to suppress, at least in part, the immune response to cationic needle-like 955 
cellulose nanocrystals, as observed by diminished IL-1β secretion in mouse J774A.1 macrophages 956 
primed with LPS [19]. The immunogenicity of bacterial, wood-based and algal nanocellulose may 957 
also be because these types of nanocellulose can contain immunogenic contaminants, such as 958 
endotoxin and (1,3)-β-d-glucan [76,277].  959 

7. Conclusions 960 

Nanocellulose is a promising material for a wide range of applications in industry, technology, 961 
biotechnology and medicine, including tissue engineering and wound healing. However, the non-962 
degradability of nanocellulose in the human organism is a limiting factor for its direct use in skin 963 
tissue engineering as a scaffold for skin cells, because scaffolds persisting in the skin could lead to 964 
scar formation and other complications. A more promising approach is therefore to use nanocellulose 965 
as a temporary carrier for delivering cells into wounds, which can be removed after the cells have 966 
adhered to the wound bed. However, artificial skin constructed in vitro could be used for 967 
experimental purposes, e.g. for studies on the biology, metabolism and vascularization of skin tissue, 968 
and for studies on the effects of various drugs, similarly as was demonstrated in artificial liver, 969 
adipose and tumor tissues. In skin applications, nanocellulose seems to hold the greatest promise as 970 
an advanced dressing material for topical, transdermal and systemic applications of various drugs, 971 
as a transparent dressing material enabling direct inspection of wounds, as a dressing material 972 
coupled with sensors, and as a material for constructing epidermal electronics.  973 
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