

1 *Review*2

Nanocellulose in biotechnology and medicine: focus 3 on skin tissue engineering and wound healing

4 **Lucie Bacakova** ^{1,*}, **Julia Pajorova** ², **Marketa Bacakova** ¹, **Anne Skogberg** ², **Pasi Kallio** ², **Katerina**
5 **Kolarova** ³ and **Vaclav Svorcik** ³6 ¹ Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of
7 Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic; E-mail: Lucie.Bacakova@fgu.cas.cz;
8 Julia.Pajorova@fgu.cas.cz; Marketa.Bacakova@fgu.cas.cz9 ² BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of
10 Technology, Korkeakoulunkatu 3, 33720 Tampere, Finland; E-mail: anne.skogberg@tut.fi; pasi.kallio@tut.fi11 ³ Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166
12 28 Prague 6-Dejvice, Czech Republic; E-mail: Katerina.Kolarova@vscht.cz; Vaclav.Svorcik@vscht.cz

13 * Correspondence: Lucie.Bacakova@fgu.cas.cz; Tel.: +420-2-9644-3743

14 Received: date; Accepted: date; Published: date

15

16 **Abstract:** Nanocellulose is cellulose in the form of nanostructures, i.e. features not exceeding 100
17 nm at least in one dimension. These nanostructures include nanofibrils, e.g. in bacterial cellulose;
18 nanofibers, e.g. in electrospun matrices; nanowhiskers and nanocrystals. These structures can be
19 further assembled into bigger 2D and 3D nano-, micro- and macro-structures, such as nanoplatelets,
20 membranes, films, microparticles and porous macroscopic matrices. There are four main sources of
21 nanocellulose: bacteria (*Gluconacetobacter*), plants (trees, shrubs, herbs), algae (*Cladophora*) and
22 animals (*Tunicata*). Nanocellulose has emerged for a wide range of industrial, technology and
23 biomedical applications, e.g. for adsorption, ultrafiltration, packaging, conservation of historical
24 artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics,
25 controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use
26 in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue,
27 urethra and *dura mater*, for repairing connective tissue and congenital heart defects, and for
28 constructing contact lenses and protective barriers. This review is focused on applications of
29 nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for
30 delivering cells into wounds, and as a material for advanced wound dressings coupled with drug
31 delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose
32 are also discussed.33 **Keywords:** bacterial nanocellulose; nanofibrillated nanocellulose; animal nanocellulose; algal
34 nanocellulose; tissue engineering; tissue repair; wound dressing; cell delivery; drug delivery;
35 antimicrobial properties

36

37

38

39

40 0. Table of Contents**41 1. Introduction****42 2. History of nanocellulose research****43 3. Recent use of nanocellulose in tissue engineering and tissue repair****44 4. Nanocellulose in skin tissue engineering****45 4.1. Bacterial nanocellulose in skin tissue engineering****46 4.2. Plant- and algae-derived nanocellulose in skin tissue engineering****47 4.3. Limitations of the use of nanocellulose in skin tissue engineering****48 4.4. Nanocellulose as a carrier for cell delivery into skin defects****49 5. Nanocellulose in wound healing****50 5.1. Bacterial nanocellulose in wound healing****51 5.1.1. Bacterial nanocellulose without additives****52 5.1.2. Bacterial nanocellulose with additives****53 5.2. Plant- and animal-derived nanocellulose in wound healing****54 5.2.1. Plant-derived nanocellulose without additives****55 5.2.2. Plant-derived nanocellulose with additives****56 5.2.3. Animal-derived nanocellulose****57 6. Potential cytotoxicity and immunogenicity of nanocellulose****58 7. Conclusion****59 1. Introduction**

60 Cellulose is a linear polymer of glucose, and is the most abundant biopolymer on Earth. 61 Nanocellulose can be defined as cellulose in the form of nanostructures, which are features not 62 exceeding 100 nm at least in one dimension. In other dimensions, these structures can reach hundreds 63 of nm, micrometers or even more, particularly in the case of electrospun nanofibers. Cellulose 64 nanostructures include nanofibrils, nanofibers, nanowhiskers, nanocrystals and nanorods (**Table 1**). 65 Nanofibrils are typically present in bacterial cellulose, where they form a hydrogel [1–3], or they can 66 be obtained from plants, particularly from wood, by acid hydrolysis or by oxidation [4–7]. The term 67 “nanofibers” is usually used for fibrous structures thicker and longer than nanofibrils, particularly 68 structures created by electrospinning of cellulose without additives or in composites with other 69 natural and synthetic polymers. Electrospun nanofibers are often more than 100 nm in diameter (i.e. 70 several hundreds of nm). In fact, they are submicron-scale fibers, but the term “nanofibers” has 71 become widely used for them (for a review, see [8]). The distinction between the terms “nanofibrils” 72 and “nanofibers” is often unspecified. For example, some authors have referred to the nanofibrils 73 present in bacterial cellulose as “nanofibers” [9–11]. Similarly, very thin fibrous cellulosic structures 74 with characteristics of nanofibrils, isolated from pineapple, have been referred to as “nanofibers” [12]. 75 Cellulose nanowhiskers, nanocrystals and nanorods are also fibrous structures similar in diameter to 76 nanofibrils, but usually shorter. Nanocrystals have a needle-like or rod-like morphology [13–15]; 77 nanorods are in fact nanocrystals with a rod-like morphology [16] (**Figure 1**). Nanoplatelets are 78 assemblies of nanofibrils into plate-like structures of nanoscale thickness but with other dimensions 79 in micrometers [17].

82 **Table 1.** Types of nanocellulose.

83

Nanocellulose structures	Example	Dimensions	Reference
Nanofibrils	In bacterial cellulose	Diameter from 70 to 140 nm, length in μm	[2]
	In wood-derived cellulose	Diameter 3–5 nm, length several μm , form 20–50 nm thick aggregates	[18,19]
Nanofibers	Created by electrospinning	Cellulose acetate: average diameter about 400 nm	[20]
		Bacterial cellulose (33 wt. %) with chitosan: diameters from 80 to 170 nm	[21]
	Isolated from pineapple	Width 6.4 ± 4.6 nm, length in μm	[12]
Nanowhiskers	Kenaf bast	Diameter 10–15 nm, length hundreds nm	[22]
	Bacterial cellulose	Diameter 10–100 nm, length 100–1000 nm	[23]
Nanocrystals	Cotton-derived	Mean width 7.3 nm, mean length 135 nm	[24]
Nanorods	Grass-derived	Width 15 ± 3 nm, length 120 ± 15 nm	[16]
Nanoplatelets	Agave-derived	Thickness 80 nm, other dimensions in μm	[17]

84

85

86

87

88

89

90

91

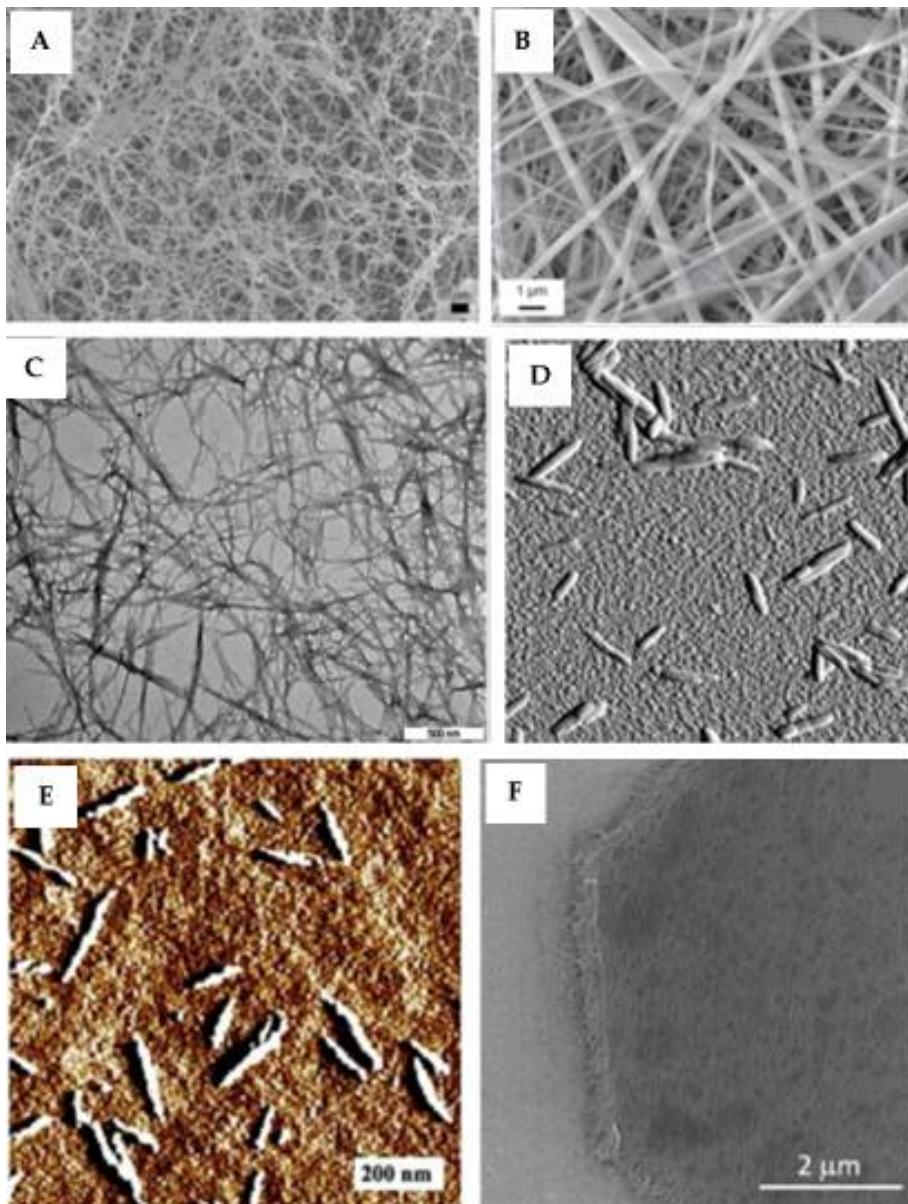
92

93

94

95

96


97

98

99

100

101

102

103

Figure 1. Examples of various forms of nanocellulose.

104

A: Bacterial cellulose nanofibrils synthesized by *Acetobacter xylinum* subsp. *Sucrofermentas* BPR2001 [1];

105

B: Nanofibers created by electrospinning of cellulose acetate [20];

106

C: Cellulose nanowhiskers obtained from kenaf bast, AFM image [22];

107

D: Cellulose nanocrystals obtained from cotton, AFM image 1x1 μm [24];

108

E: Cellulose nanorods in a monolayer generated from a colloidal suspension with a concentration of 0.1 wt.%, AFM image [16];

109

F: Detail of a nanoplatelet 80 nm in thickness and containing cellulose nanofibrils approx. 14 nm in diameter, SEM image [17].

112

Cellulose nanostructures, especially nanofibrils, can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) micro- and macro-structures. 2D structures include membranes and films in the self-supporting form [5,25] or in the form of material coatings [26,27]. 3D structures include microparticles, such as microneedles [28] and porous microbeads [29,30], and macroscopic matrices, such as porous aerogels and hydrogels, foams and sponges [31–34].

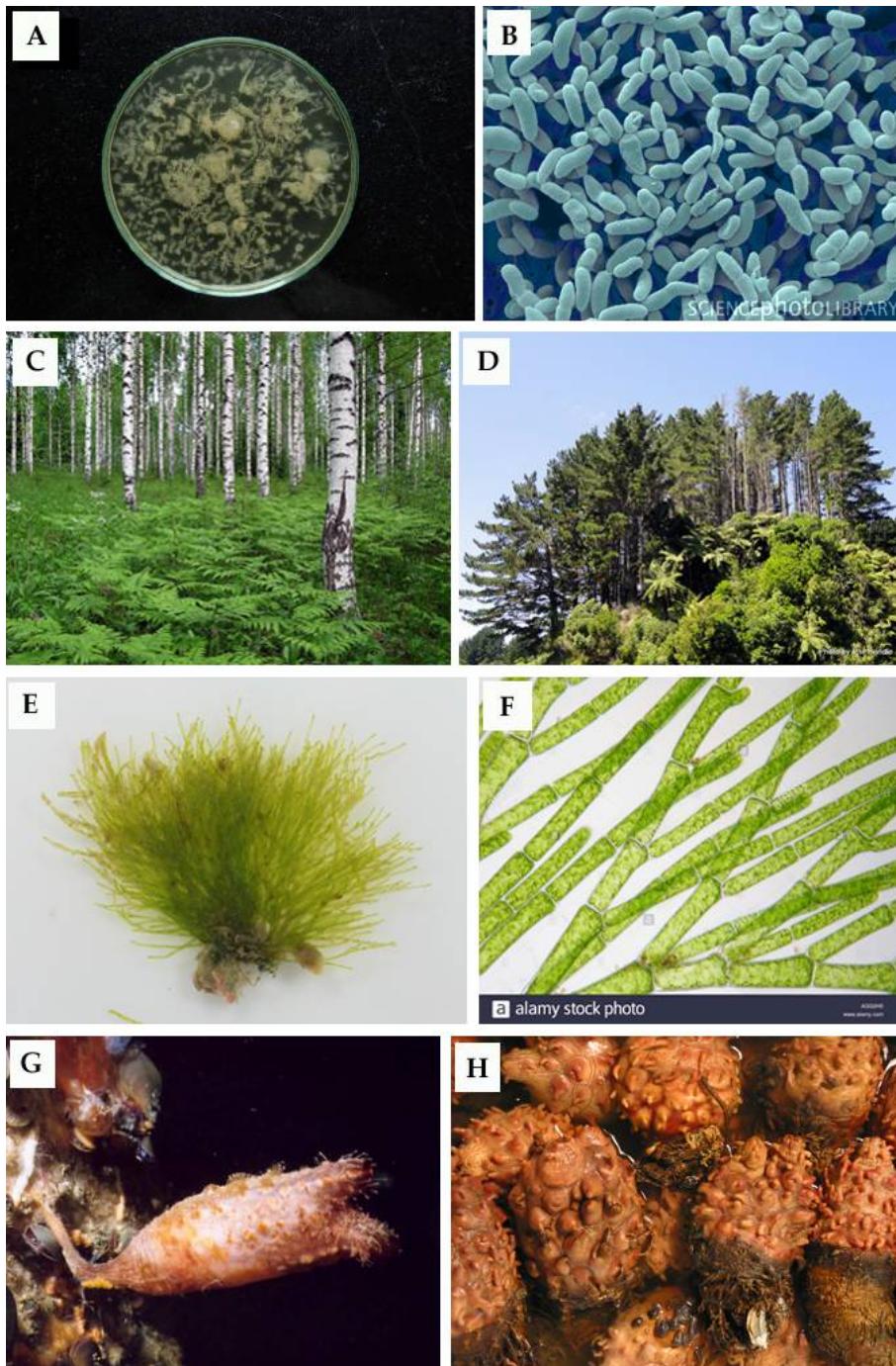
113

114

115

116

117 As a natural polymer, cellulose, including nanocellulose, is usually obtained from natural
118 sources, although industrial residues, e.g. from beer production [35] or from municipal solid wastes
119 (*Panax ginseng*, spent tea residue, waste cotton cloth, old cardboard) are considered as new important
120 precursors of "green" nanocellulose [36]. There are four natural sources of nanocellulose: bacteria,
121 plants, algae and animals (Figure 2). Bacterial cellulose, also known as microbial cellulose [37,38], is
122 produced extracellularly by gram-negative bacteria of various genera, e.g. *Acetobacter*, *Achromobacter*,
123 *Aerobacter*, *Agrobacterium*, *Alkaligenes*, *Azotobacter*, *Pseudomonas*, *Rhizobium*, *Rhodobacter*, *Salmonella*,
124 *Sarcina*, and particularly *Gluconacetobacter*, which is the most efficient producer (for a review, see
125 [39,40]). The most widely used species of *Gluconacetobacter* is *Gluconacetobacter xylinus* (synonyms
126 *Acetobacter xylinus*, *Komagataeibacter xylinus*) [1,41]. Other important species include *Gluconacetobacter*
127 *hansenii* [3,42,43], *Gluconacetobacter kombuchae* [44], *Komagataeibacter (Gluconacetobacter) europaeus* [45],
128 and low pH-resistant strain *Komagataeibacter (Gluconacetobacter) medellinensis* [34]. The bacterial
129 growth and production of nanocellulose can be further enhanced by the presence of yeasts or yeast
130 extract in the culture medium [44,46], or by symbiotic co-cultivation with *Medusomyces gisevii* [47].


131 Bacterial cellulose is chemically identical with plant cellulose, but is free of byproducts like
132 lignin, pectin and hemicelluloses, featuring a unique reticulate network of fine fibers [48].

133 Plant nanocellulose can be obtained from abundant sources derived from trees, shrubs, various
134 herbs, grasses, flowers, root vegetables, succulents, etc. The trees include leaved trees, e.g. birch
135 [25,49–53], and various coniferous trees [18,19,54–56], e.g. *Pinus radiata* [57]. Other trees are *Acacia*
136 *mangium* [58], balsa [59], *Syzygium cumini* [60], banana pseudostem [5], palm [7,61], *Khaya senegalensis*
137 [62] and citrus trees [63]. Nanocellulose from leaved trees is usually referred to as hardwood-derived,
138 while nanocellulose from coniferous trees is softwood-derived. Shrub sources of nanocellulose are
139 cotton [24] and hibiscus [22,64]. Other important plant sources include sugar cane [65,66], grass, e.g.
140 *Misanthus Giganteus* [67] or *Imperata brasiliensis* [68], bamboo [69], rice husk [70], corn leaf [26],
141 triticale straw [71], pineapple leaf [12], carrot [72], and agave [17], particularly *Agave sisalana*, i.e. sisal
142 [73].

143 Algae as sources of nanocellulose are *Cladophora* [29,30,74–78] and *Cystoseria myrica* [79].
144 Nanocellulose materials derived from *Cladophora* have been tested mainly for their potential
145 biomedical applications in terms of the presence of impurities, such as heavy metals, glucans and
146 endotoxins [76]. Their suitability as scaffolds for cell cultivation [75], their hemocompatibility [29],
147 and their adsorption capacity for Congo Red dye [30] have also been evaluated. Nanocellulose
148 derived from *Cystoseria myrica* combined with Fe_3O_4 has been tested for removal of mercury ion
149 pollution [79].

150 Animal sources of nanocellulose include tunicates, i.e. animals belonging to the phylum
151 *Chordata*, such as *Styela clava* [80–82] (for a review, see [83]) and *Halocynthia roretzi Drasche* [84].
152 Cellulose films derived from *Styela clava* tunics have been tested for wound dressings [81,82], and
153 they also have potential for other biomedical applications, such as stitching fibers, scaffolds for tissue
154 engineering, absorbable hemostats and hemodialysis membranes [80]. Animal-derived nanocellulose
155 also has potential applications in industry and in technology. A composite nanocellulose membrane
156 derived from *Halocynthia roretzi Drasche*, endowed with TiO_2 nanoparticles, has been used for
157 removing oils from wastewater [84].

158

159

160 **Figure 2.** Examples of various forms of nanocellulose. Examples of bacterial (A, B), plant (C, D), algal (E, F) and
161 animal (G, H) sources of nanocellulose. *Gluconacetobacter xylinus* in culture in a Petri dish (A) [85], cells in
162 microscopic detail (B) [86]. Birch trees as an example of hardwood (C) [87] and *Pinus radiata* as an example of
163 softwood (D) [88]. *Cladophora* in total (E) [89] and in microscopic detail (F) [90]. *Styela clava* (G) [91] and
164 *Halocynthia roretzi Drasche* (H) [92].

165 Nanocellulose possesses a wide spectrum of advantageous physical, chemical and biological
166 properties. Its large specific surface area enables the adsorption of various atoms, ions, molecules and
167 microbial cells, and porous nanocellulose materials are able to separate various molecules and to
168 retain microbial objects. Nanocellulose-based materials in general have high mechanical strength,
169 chemical inertness, and tailorable morphological, physical, chemical, electrical, thermal and optical
170 properties, barrier properties, antimicrobial effects and biocompatibility with no toxicity or low

171 toxicity and with low immunogenicity. At the same time, they are relatively low-cost materials with
 172 high availability and renewability. Nanocellulose materials have therefore emerged as promising
 173 materials for a wide range of industrial, technological and biomedical applications, namely
 174 purification of air and aqueous solutions, filtration and ultrafiltration, packaging of food and other
 175 sensitive products, conservation of historical artifacts, construction of thermal insulators and fire
 176 retardants, energy extraction and storage, acoustics, sensorics and controlled drug delivery. All these
 177 applications are summarized with some examples in **Table 2**. The following part of this review is
 178 focused more deeply on applications of nanocellulose in tissue engineering, tissue repair and wound
 179 healing.

180

181 **Table 2.** Industrial and (bio)technological applications of nanocellulose.

182

Application	Specification	Example	Reference
Adsorption	Air purification	Odor removal (in combination with zeolites)	[93]
	Removal of pollutants from aqueous solutions	Heavy metal ions (Cu^{2+} , Pb^{2+} , Hg^{2+})	[79,94]
		Toxic dyes (methylene blue, Congo Red)	[30,95]
		Mefenamic acid (a nonsteroidal anti-inflammatory drug, a potential endocrine disruptor)	[96]
		Oily substances	[31,84]
		Insecticides (neonicotinoids in milk)	[97]
	Immobilization of atoms and (bio) molecules	Metal catalysts (copper)	[98]
		Proteins (bovine serum albumin, lysozyme, γ -globulin, and human IgG)	[77]
		Enzymes (trypsin, laccase, lysozyme, lipase)	[61,99–101]
		Ingested lipids (obesity management)	[102]
		DNA oligomers	[103]
(Ultra)filtration	Removal of toxic dyes	Methylene blue, methylene orange, rhodamine	[104]
	Hemodialysis membranes	Nanofibrillated cellulose with polypyrrole	[105]
		Swine influenza virus	[74]
	Removal of viruses	Murine leukemia virus	[106]
Packaging	Food, sensitive devices	Bacteriophages	[78]
		Self-standing nanocellulose films from birch pulp	[25]

		Paper sheets modified with nanocellulose and chitosan	[107]
Conservation	Historical papers, cotton canvas	Cellulose nanofibrils, carboxymethylated cellulose nanofibrils, cellulose nanocrystals	[108]
Thermal applications	Thermal insulators	Wood-derived nanofibrils with extremely low thermal conductivity	[109]
	Fire retardants	Wood-derived cellulose nanofibrils with silica nanoparticles	[110]
		Wood-derived nanocellulose with montmorillonite clay	[59]
Energy extraction and storage	Lithium batteries	Nanocellulose/polypyrrole	[111]
		Nanocellulose/polyethylene	[112]
		Graphene/nanocellulose/silicon	[113]
	Solar cells/panels	Nanofibers from sisal with graphene oxide	[73]
	(Super)capacitors	Bacterial nanocellulose/carbon nanotubes/triblock-copolymer ion gels	[114]
		Nanocellulose with polyaniline	[115]
Acoustics	Membranes for loudspeakers	Cellulose nanofibers with Fe ₃ O ₄ nanoparticles	[71]
(Bio)sensors	Optical SERS-based	Detection of pesticides, dyes, bacteria	[116,117]
	Optical fluorescence-based	Detection of heavy metals	[118]
		Detection of thiols	[119]
		Detection of elastase	[120]
	Chemical	Detection of vapors (NH ₃ , H ₂ O, H ₂ O, HCl, acetic acid)	[16]
	Electrochemical	Detection of cations in biological fluids (Na ⁺ , K ⁺ , Ca ²⁺)	[38]
		Detection of cholesterol	[121]
		Detection of avian leukosis virus	[122]
	Piezoelectric	Based on bacterial cellulose	[123]
		Based on plant-derived cellulose nanofibrils	[124]
		Based on nanocellulose with chitosan	[125]

		Tactile sensor (simultaneous sensing of temperature and pressure)	[126]
		Strain-sensing protonated aerogels from cellulose nanofibrils	[127]
Drug delivery	Peroral	Paracetamol	[49]
		Ibuprofen (colonic release)	[70]
		Methotrexate (colonic release)	[128]
	Transdermal	Analgesics, antiphlogistics, corticoids, antihypertensives	[50,51]
		Diclophenac	[129]
		Propranolol	[130]
	Topical	Local anesthetics	[131]
		Antiseptics	[132,133]
		Antibiotics (gentamycin, ceftriaxone)	[33,43]
		Antibacterial peptides	[134]
		Other antimicrobial, anti-inflammatory and antitumor drugs	[135,136]

183

184 **2. History of nanocellulose research**

185 Cellulose in general has been investigated for tens of years (for a review, see [137]). However,
 186 nanocellulose has emerged as a promising material in the last 10 years. In the PubMed database, 671
 187 papers on nanocellulose can be found from December 2007 to December 2018 using the search term
 188 “nanocellulose” (Figure 3).

189

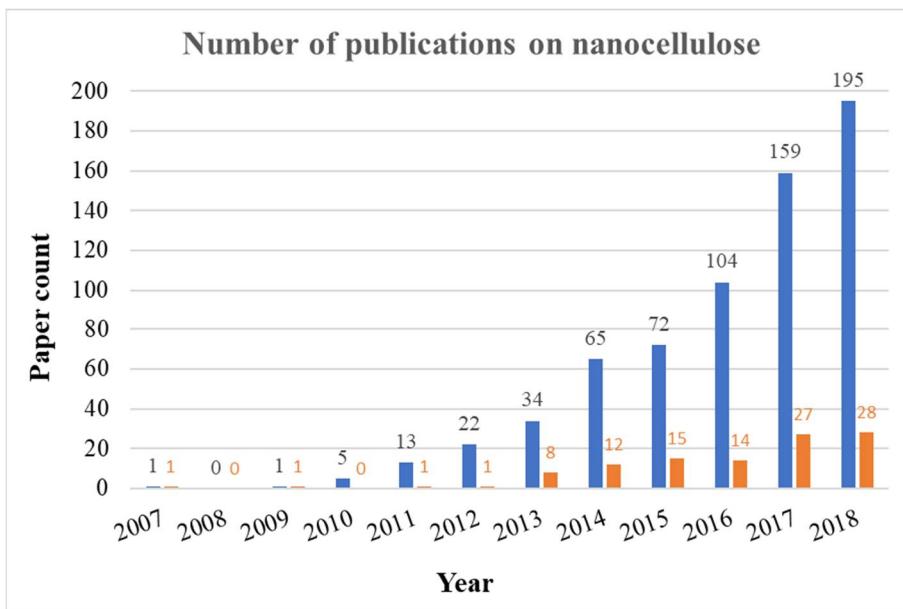


Figure 3. The number of publications on nanocellulose found in the PubMed database from 2007 to 2018 using the search term “nanocellulose”. Blue columns: total number of papers, orange columns: papers on cell-material interaction, tissue engineering and wound healing.

Interestingly, the first paper on nanocellulose to appear in the PubMed database in December 2007 was dedicated to the potential use of this material in tissue engineering, namely in creating bacterial cellulose nanofibrous scaffolds functionalized with cell adhesion-mediating GRGDS oligopeptides. These scaffolds enhanced the adhesion of human vascular endothelial cells *in vitro* and were promising for vascular tissue engineering [138]. The second paper, which was the only paper on nanocellulose to appear in the PubMed database in 2009, was focused on preparing and characterizing nanoscale cellulose films with different crystallinities [139]. The five studies in the PubMed database published in 2010 were focused on further development of cellulose films, namely on nanocellulose-reinforced methylcellulose-based biodegradable films [140] and on nanocellulose-reinforced chitosan composite films as edible films or coatings that enhance the shelf life of foods [141]. Other studies have dealt with safe, effective and well-controlled production of bacterial nanocellulose [1,142] and electrically-conductive nanocellulose-polypyrrole composites [143].

In 2011 and 2012, the number of studies focused on the use of cellulose in various technological applications, including biotechnology, increased rapidly. For example, nanocellulose aerogels were proposed as oil absorbents for water purification [31], and nanocellulose liners were designed as adsorbents for protecting personnel from chemical and biological hazards [144]. Hybrid materials consisting of bacterial nanocellulose and photocatalytically active TiO₂ nanoparticles were developed for drinking water purification and air cleaning [145], and nanocellulose-TiO₂ hybrid films were shown to be promising as transparent coatings, where high wear resistance and UV activity are required [146]. Nanofibrillated cellulose was also investigated as a carrier for titanium dioxide, zinc oxide and aluminum oxide nanotube aerogels for potential application in sensorics, e.g. as humidity sensors [32]. Supercapacitors consisting of bacterial nanocellulose papers, carbon nanotubes and triblock-copolymer ion gels were proposed for energy storage [114]. Nanocellulose was isolated from sources other than bacterial cellulose, namely from plant materials such as sugar cane bagasse [65], birch pulp [49–51] and kraft pulp [147]. In the field of biotechnological applications, nanocellulose

219 paper sheets were used for extracting DNA oligomers [103], and a cellulose-based hydrogel was used
220 for immobilizing trypsin [99]. Cellulose nanofibers were tested as a novel tableting material [49], and
221 were also proposed for the construction of films for sustained parenteral delivery of drugs, e.g.
222 analgesics, antiphlogistics, corticoids and antihypertensives [50,51]. In combination with silver
223 nanoclusters, nanofibrillated cellulose was designed as a novel composite with fluorescence and
224 antibacterial activity for potential wound dressings [148]. In combination with polypyrrole,
225 nanocellulose was proposed for constructing hemodialysis membranes [105].

226 In 2013, there was a great burst of studies dealing with the potential use of nanocellulose in
227 tissue engineering: eight out of 34 studies found in the PubMed database, i.e. 23.5%, were focused on
228 this topic, or at least on the interaction of cells with nanocellulose. The first study published in
229 January 2013 was concentrated on the potential use of nanocellulose in neural tissue engineering
230 [149]. In this study, composite membranes consisting of bacterial nanocellulose (BNC) and
231 polypyrrole (PPy) were used as a template for seeding PC12 rat neuronal cells. These cells adhered
232 and grew significantly better on BNC/PPy composites than on pure BNC. In addition, the presence
233 of electrically conductive PPy made electrical stimulation of cells possible, and this is considered to
234 be beneficial for various cell functions [149]. In another study, tubular structures made of bacterial
235 nanocellulose were successfully applied in rats *in vivo* as conduits for regeneration of the damaged
236 femoral nerve. These structures prevented excessive proliferation of connective tissue and
237 penetration of the damaged nerve with scar tissue, which is the main obstructive agent for the growth
238 of neurites during nerve regeneration. In addition, cellulosic “neurotubes” allowed the accumulation
239 of neurotrophic factors inside, which further facilitated nerve regeneration [150]. Nanocellulose was
240 also tested for reconstructing human auricle *in vitro* using bacterial nanocellulose scaffolds [151],
241 combined with primary human chondrocytes obtained during routine septorhinoplasties and
242 otoplasties [152]. Another *in vitro* model of articular cartilage was bovine knee cartilage with a punch
243 defect filled with bacterial nanocellulose [153]. Bacterial nanocellulose wound dressings were
244 successfully applied for healing large-area and full-thickness skin defects in mice *in vivo* [154].
245 Bacterial nanocellulose scaffolds, improved by conjugation with fibronectin and type I collagen,
246 proved to be excellent substrates for the adhesion of human umbilical vein endothelial cells and
247 mouse mesenchymal stem cells of the line C3H10T1/2 [155]. Not only cellulose nanofibrils present in
248 bacterial nanocellulose, but also other forms of nanocellulose, such as nanowhiskers or nanocrystals,
249 were shown to have great potential in tissue engineering and in other biomedical applications [156].

250 3. Recent use of nanocellulose in tissue engineering and tissue repair

251 In the last five years, i.e. from 2014 to 2018, the use of nanocellulose in tissue engineering and
252 related areas, such as wound healing and cell-material interaction, has been further developed,
253 although the proportion of these studies in the PubMed database did not exceed the value from 2013,
254 and ranged approx. between 13% and 21%. This was due to the rapid concurrent development of
255 applications of nanocellulose in industry and technology, including various biotechnologies, such as
256 biosensing and controlled drug delivery (Table 2; for a review, see [83,157–162]. Nevertheless,
257 research on the potential use of nanocellulose in neural tissue engineering, cartilage tissue
258 engineering and skin wound dressings, as mentioned above, continued with several promising
259 achievements.

260 In **neural tissue engineering**, it was demonstrated for the first time that SH-SY5Y neuroblastoma
261 cells, cultured on three-dimensional (3D) bacterial nanocellulose (BNC) scaffolds, not only adhered
262 and proliferated, but also differentiated toward mature neurons, as indicated by functional action
263 potentials detected by electrophysiological recordings [163]. The adhesion, proliferation and
264 formation of 3D neuronal networks on 3D BNC scaffolds can be further enhanced by cationic
265 modification of this material, i.e. on trimethyl ammonium betahydroxy propyl cellulose, as
266 demonstrated on PC12 cells, a widely-used model of neurons [164]. In addition to their potential use
267 in neural tissue replacements, nanocellulose-based neural tissue-engineered constructs were
268 designed as innovative tools for brain studies. For this purpose, an ink that contained wood-derived
269 cellulose nanofibrils and carbon nanotubes was used for 3D printing of electrically-conductive
270 scaffolds, which promoted the adhesion, growth and differentiation (manifested by elongation of
271 neurites) of human SHY5Y human neuroblastoma cells [165].

272 In **cartilage tissue engineering**, the high water-retention capacity and the high mechanical
273 strength of cellulose nanofibrils have led to the further development of applications of bacterial
274 nanocellulose for *auricular cartilage* reconstruction. It was found that BNC with an increased cellulose
275 content of 17% is a promising non-resorbable biomaterial for auricular cartilage tissue engineering,
276 due to its similarity with auricular cartilage in terms of mechanical strength and host tissue response
277 [2]. Other promising materials for this application were bilayered scaffolds composed of BNC and
278 alginate, which were non-cytotoxic, non-pyrogenic and promoted the growth of human nasoseptal
279 chondrocytes [166]. For *articular cartilage* engineering, BNC scaffolds modified by laser perforation
280 were used as substrates for the cultivation of human chondrocytes derived from the cartilage
281 covering femoral condyles. These novel scaffolds improved the diffusion of nutrients, the ingrowth
282 and differentiation of chondrocytes, and the deposition of their newly synthesized extracellular
283 matrix within the scaffolds [41]. A further novelty was the application of nanocellulose-based bioink
284 in 3D bioprinting with living cells. A bioink consisting of wood-derived nanofibrillated cellulose and
285 alginate, and containing human articular chondrocytes, was used for 3D printing of anatomically-
286 shaped cartilage structures, such as a human ear and sheep meniscus [167]. A similar bioink was used
287 for 3D printing together with irradiated human chondrocytes and induced pluripotent stem cells
288 (iPSC), both derived from articular cartilage [168]. An alginate sulfate/BNC bioink promoted
289 spreading, proliferation, and collagen II synthesis in bovine chondrocytes from femoral condyle
290 cartilage [169]. Another interesting composite material developed for cartilage tissue engineering was
291 a double cross-linked interpenetrating polymer network of sodium alginate and gelatin hydrogels,
292 reinforced with 50 wt% cellulose nanocrystals [170]. Nanocellulose is also promising for the treatment
293 of intervertebral disc degeneration. Gellan gum hydrogels reinforced with cellulose nanocrystals
294 were designed as substrates for regenerating the annulus fibrosus, i.e. the outer part of the discs [171].

295 From 2014 to 2018, nanocellulose has been increasingly applied in other interesting areas of
296 experimental tissue engineering, namely in liver tissue engineering, adipose tissue engineering,
297 vascular tissue engineering, bone tissue engineering and bone implant coating, and in reconstruction
298 of the urethra and the *dura mater*.

299 In **liver tissue engineering**, the first idea was to create a 3D culture of hepatic cells, which is
300 more physiologically relevant than the two-dimensional (2D) culture that is traditionally used to
301 predict and estimate the metabolism, excretion and toxicity of drugs and other chemicals in the
302 human liver. For this purpose, 3D scaffolds based on birchwood-derived nanofibrillar cellulose were

303 generated. These scaffolds promoted differentiation and proper functioning of human liver
304 progenitor cells of the line HepaRG, derived from a liver tumor of a female patient who was suffering
305 from a hepatitis C virus infection and hepatocarcinoma. Specifically, the HepaRG cells formed 3D
306 multicellular spheroids with apicobasal polarity and functional bile canaliculi-like structures. In
307 addition, hepatobiliary drug transporters, i.e. MRP2 and MDR1, were localized on the canalicular
308 membranes of the spheroids, and vectorial transport of fluorescent probes towards the biliary
309 compartment was demonstrated. Cell culture in a 3D hydrogel supported the mRNA expression of
310 hepatocyte markers (albumin and CYP3A4), and the metabolic activity of CYP3A4 in the HepaRG
311 cell cultures [172].

312 Similarly, in **adipose tissue engineering**, efforts were made to create a 3D *in vitro* model of
313 adipose tissue for studies on adipose biology and on metabolic diseases, such as obesity and diabetes.
314 For this purpose, 3D scaffolds were prepared by crosslinking homogenized bacterial nanocellulose
315 fibrils using alginate and by freeze-drying the mixture to obtain a porous structure. When seeded
316 with mesenchymal stem cells of the line C3H10T1/2, derived from mouse embryos and incubated in
317 an adipogenic medium, the 3D scaffolds contained more cells with markers of adipogenic cell
318 differentiation, i.e. growing in clusters and containing large lipid droplets, than 2D bacterial
319 nanocellulose scaffolds. 3D scaffolds therefore have great potential not only for *in vitro* studies, but
320 also for adipose tissue engineering, for reconstructive surgery after trauma, tumor removal or
321 congenital defects [173]. A similar system was created in a study by Henriksson *et al.* [174] by 3D
322 printing with the use of a bioink made of nanocellulose and hyaluronic acid, and containing
323 adipocytes. The adipocytes showed uniform distribution throughout the scaffolds, high viability and
324 more mature phenotype than the cells in conventional 2D culture systems.

325 For **vascular tissue engineering**, tubular structures were created from BNC using silicone tubes
326 as molds. These tubes were also considered to have great potential for substituting other hollow
327 organs, including the ureter and the esophagus [175]. In a study by Weber *et al.* [176], BNC tubes
328 were used to replace the right carotid artery in sheep *in vivo*. After explantation, a histologic analysis
329 revealed no acute signs of foreign body reaction, such as immigration of giant cells or some other
330 acute inflammatory reaction, and therefore provided evidence for good biocompatibility of the tubes.
331 However, the tubes were highly prone to thrombotic occlusion, and their implantation required
332 antiplatelet therapy [176]. Another interesting idea was to use bacterial nanocellulose coupled with
333 superparamagnetic iron oxide nanoparticles for coating endovascular stents, which will then attract
334 vascular smooth muscle cells (VSMCs) for *in situ* reconstruction of the *tunica media* in blood vessels.
335 In experiments *in vitro*, magnetic BNC coated with polyethylene glycol proved to form suitable
336 scaffolds for porcine VSMCs, showing minimum cytotoxicity and supportive effects on cell viability
337 and migration. This material also possessed suitable mechanical properties, and was considered to
338 be promising for the treatment of brain vascular aneurysms [177,178]. Nanocellulose scaffolds were
339 also applied for studies on vasculogenesis. BNC scaffolds functionalized with IKVAV peptide, i.e. a
340 laminin-derived ligand for integrin adhesion receptors on cells, were used for studies on
341 vasculogenic mimicry of human melanoma SK-MEL-28 cells, and appeared to provide a promising
342 3D platform for screening antitumor drugs [42].

343 BNC, even in its unmodified state, also showed a great promise for **bone tissue engineering**.
344 BNC without additives stimulated the adhesion, multilayered growth and osteogenic differentiation
345 of bone marrow mesenchymal stem cells (MSCs) derived from rat femur. As revealed by Second

346 Harmonic Generation (SHG) imaging, the MSCs on BNC scaffolds produced a mature type of
347 collagen I and showed activity of alkaline phosphatase [179]. Wood-derived nanofibrillated cellulose
348 is also promising for the construction of scaffolds for bone tissue engineering, as proved on human
349 MSCs grown on composite scaffolds containing this cellulose and chitin [180].

350 The performance of MSCs and other bone-forming cells, e.g. rat calvarial osteoblasts, on
351 nanocellulose-based scaffolds can be further improved by biomimetic mineralization with calcium
352 phosphates, such as hydroxyapatite and tricalcium phosphate [7,181,182]. In addition, these scaffolds
353 can be coupled with collagen I or with osteogenic growth peptide [44]. Nanocellulose is also
354 promising for **bone implant coating**. A hybrid coating, consisting of 45S5 bioactive glass individually
355 wrapped and interconnected with fibrous cellulose nanocrystals (CNCs), was deposited on 316L
356 stainless steel in order to strengthen bone-to-implant contact and to accelerate the bone healing
357 process. This coating substantially accelerated the attachment, spreading, proliferation and
358 differentiation of mouse MC3T3-E1 osteoblast progenitor cells *in vitro*, and also mineralization of the
359 extracellular matrix deposited by these cells [183]. Similarly, coating 3D-printed polycaprolactone
360 scaffolds with wood-derived hydrophilic cellulose nanofibrils enhanced the attachment, proliferation
361 and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells [27].

362 **Urethral reconstruction** was performed in a rabbit model using 3D porous bacterial cellulose
363 scaffolds seeded with rabbit lingual keratinocytes [184], and in a dog model using smart bilayer
364 scaffolds comprising a nanoporous network of bacterial cellulose and a microporous network of silk
365 fibroin [185]. The bilayer scaffolds were pre-seeded with keratinocytes and smooth muscle cells
366 isolated from dog lingual tissue obtained by biopsy. The nanoporous network provided good
367 support for epithelial cells, while the microporous scaffolds supported the growth and penetration
368 of smooth muscle cells [185].

369 For reconstruction of the *dura mater*, bacterial cellulose membranes were tested as potential
370 dural patches to prevent leakage of cerebrospinal fluid, which is a common complication after cranial
371 and spinal surgery. These membranes supported the attachment and the viability of human dural
372 fibroblasts [186].

373 Other interesting applications of nanocellulose have included connective tissue repair, repair of
374 congenital heart defects, ophthalmologic applications, creation of protective barriers and cell
375 transfection.

376 **For connective tissue repair**, softwood pulp-derived cellulose nanocrystals were injected into
377 skin and tendon specimens, isolated from pigs and stretch-injured using a mechanical testing
378 machine. This treatment mechanically reinforced these matrices, which was manifested by the
379 increased elastic moduli and yield strength of the matrices. At the same time, the cellulose
380 nanoparticles showed no cytotoxicity for rat primary patella tendon fibroblasts, as revealed by a
381 WST-1 assay of the activity of mitochondrial enzymes. Moreover, the activity of mitochondrial
382 enzymes in cells cultivated for 2-3 weeks in the presence of cellulose nanocrystals was significantly
383 higher than in the control untreated cells [54].

384 **For the repair of congenital heart defects**, bacterial nanocellulose was used as a new patch
385 material for closing ventricular septal defects in a pig model. This material could serve as an
386 alternative to materials currently used in clinical practice, namely polyester, expanded
387 polytetrafluoroethylene (ePTFE) and autologous or bovine pericardium, which are often associated
388 with compliance mismatch and with a chronic inflammatory response [187].

389 **Ophthalmologic applications** of nanocellulose include the construction of contact lenses. For
390 the construction of contact lenses, a highly transparent macroporous hydrogel was developed,
391 consisting of poly(vinyl alcohol) reinforced with cellulose nanofibrils and containing more than 90%
392 of water. The hydrogel exhibited high transparency with a refractive index close to that of water, very
393 good UV-blocking properties and elastic collagen-like mechanical behavior typical for soft tissues
394 [188].

395 **Creating protective barriers** involves designing materials that prevent intraperitoneal
396 adhesions or immune rejection of transplanted cells. For example, in experimental abdominal defects
397 in dogs, which were repaired using BNC membranes, negligible intraperitoneal adhesions were
398 detected between the BNC and the intestinal loops in comparison with conventionally-used
399 polypropylene meshes [47]. Modifying polypropylene meshes, and also metallic meshes, with BNC
400 enhanced their potential applicability in hernioplasty and cranioplasty [189]. For immunoprotection
401 of transplanted cells, a composite hydrogel consisting of 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-
402 oxidized bacterial cellulose and sodium alginate was developed for encapsulation of cells, e.g.
403 insulin-secreting β -cells of Langerhans islets [190]. A sophisticated nanocomposite membrane was
404 developed for encapsulation of PC12 cells. One of the surfaces of bacterial cellulose (BC) pellicles was
405 coated with collagen to enhance cell adhesion, and the opposite side of the BC pellicles was coated
406 with alginate to protect the transplanted cells from immune rejection. The nanocomposite membrane
407 was permeable to small molecules, i.e. dopamine secreted by the cells, but was impermeable to large
408 molecules, such as IgG antibodies [191].

409 An interesting finding was that nanocellulose can also modulate **the efficiency of cell**
410 **transfection** by its structure and electrical charge density. Nanofibrillated cellulose was prepared
411 from birch kraft pulp in the form of films or hydrogels with low or high charge density. The films
412 with low charge density showed a more pronounced increase in the efficiency of transfection of HeLa
413 cells with DNA constructs, encoding the Red Fluorescent Protein, than the films with high charge
414 density and hydrogels with both low and high charge densities [53].

415 The following part of this review is focused on the use of nanocellulose for skin tissue
416 engineering and wound healing.

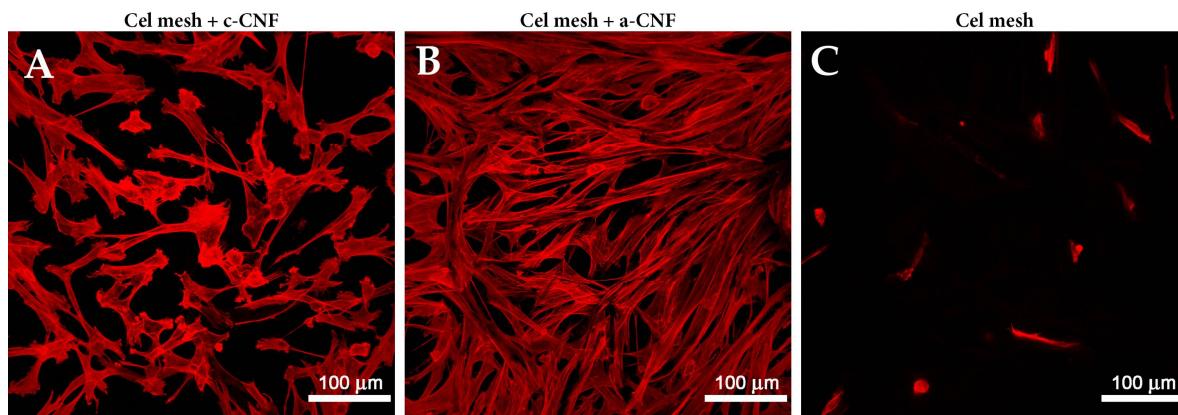
417 4. Nanocellulose in skin tissue engineering

418 4.1. Bacterial nanocellulose in skin tissue engineering

419 Skin tissue engineering involves reconstructing two main layers of the skin, namely the
420 epidermis, i.e. the superficial skin layer formed mainly by keratinocytes, and the dermis, i.e. the skin
421 inner layer formed mainly by fibroblasts. Due to its certain resemblance to natural soft tissues,
422 including skin, bacterial cellulose is the most widely used type of nanocellulose for reconstructing
423 these layers [192]. In fact, bacterial cellulose is a hydrogel containing nanofibrils, which mimics the
424 fibrillar component of natural extracellular matrix. Bacterial cellulose has a great capacity to retain
425 moisture, and it also has appropriate mechanical properties, such as strength, Young's modulus,
426 elasticity and conformability [11,21,193]. The use of bacterial cellulose in skin reconstruction started
427 long before the first appearance of the word "nanocellulose" in the PubMed database. It was simply
428 called "bacterial cellulose", though it is a hydrogel containing cellulose nanofibrils. The first report
429 of the use of bacterial cellulose in skin wound therapy came from 1990, when bacterial cellulose
430 pellicles were proposed as "temporary skin substitutes" for treating burns, ulcers, abrasions and

431 other skin injuries [194]. In 2006, thin films of bacterial cellulose were used as substrates for the
432 cultivation of human transformed skin keratinocyte and human normal skin fibroblast cell lines. The
433 films supported spreading, growth and migration in keratinocytes but not in fibroblasts, which
434 formed clusters and detached from the films. This phenomenon was explained by relatively weak
435 cell-material adhesion in comparison with the relatively strong cell-cell adhesion in fibroblasts, which
436 generates a contractile force [195]. However, in a study by Kingkaew *et al.* [196], bacterial cellulose
437 films proved to be good substrates for the adhesion, spreading and growth of both human skin
438 keratinocytes and fibroblasts. Similarly, a surface-structured 3D network of bacterial cellulose
439 nanofibers also provided good support for human keratinocytes and fibroblasts and stimulated the
440 healing of experimental skin wounds in mice [10].

441 The adhesion and growth of skin cells on bacterial cellulose can be further improved by
442 combining it with other biologically active molecules. For example, the adhesion of human
443 keratinocytes on bacterial cellulose films was improved by enriching these films with chitosan [196].
444 Incorporation of keratin, isolated from human hair, into bacterial cellulose improved the attachment,
445 proliferation and morphology of human skin keratinocytes of the HS2 cell line and human skin
446 fibroblasts of the Detroit 562 cell line [197]. Composite scaffolds made of microporous regenerated
447 bacterial cellulose and gelatin provided good support for the adhesion and proliferation of human
448 keratinocytes of the HaCaT line, and for their penetration into the scaffolds (to a depth of 300 μm). In
449 experiments *in vivo* performed in mice, scaffolds with gelatin showed greater wound closure efficacy
450 (93%) than pure bacterial cellulose (63%) [198]. Electroactive composites of bacterial cellulose and
451 conducting polymers, such as polypyrrole and polyaniline, also hold promise for skin tissue
452 engineering [199].


453 The potential use of bacterial cellulose in skin regeneration and in other areas of tissue
454 engineering has been reviewed by many authors, e.g. [9,37,40,158,193,200–202]. Novel microporous
455 3D scaffolds with controllable pore size were prepared from bacterial nanocellulose using paraffin
456 microspheres. These scaffolds supported the proliferation of mouse embryonic NIH 3T3 fibroblasts,
457 and were considered to be promising for soft tissue engineering [34].

458 4.2. Plant- and algae-derived nanocellulose in skin tissue engineering

459 Like bacterial nanocellulose, plant-derived nanocellulose has repeatedly been shown to be
460 promising for skin tissue engineering, especially after its physical and chemical properties have been
461 modified. For example, CNFs were modified either by introducing a negative electrical charge using
462 TEMPO-mediated oxidation, or by introducing a positive charge using glycidyltrimethylammonium
463 chloride (EPTMAC) [203–205]. In a study by Skogberg *et al.* [203], unmodified (u-), anionic (a-), and
464 cationic (c-) cellulose nanofibrils (CNFs), derived from hardwood kraft pulp (u-, c-CNF) or from
465 softwood kraft pulp (a-CNF) were fabricated using an evaporation-induced droplet-casting method
466 on glass. Atomic force microscopy showed a significantly higher degree of orientation of nanofibers
467 along a single line on c- and u-CNF surfaces than on a-CNF surfaces. Both a-CNF and c-CNF surfaces
468 supported the adhesion, spreading, viability and proliferation of mouse embryonic fibroblasts,
469 though the cell performance was better on a-CNF. However, the cells on aligned c-CNF surfaces
470 showed orientation in parallel, which could be utilized for guided cell growth. Recently, transferrable
471 free-standing nanocellulose films have also been produced with a similar alignment of CNFs in
472 parallel to an evaporating liquid boundary line during evaporation [206]. When an electrical charge

473 is introduced into nanocellulose, it can be functionalized with various biomolecules, e.g. cell adhesion
474 peptides [204] and silk fibroin [205], which improves the capacity of nanocellulose for colonization
475 with cells and for wound healing.

476 In our recent experiments in collaboration with Skogberg and her colleagues, human dermal
477 fibroblasts were cultured on cellulose meshes in a DMEM medium with 10% of fetal bovine serum
478 and 40 µg/ml of gentamycin. Two different types of nanocellulose solutions, i.e. c-CNF, a-CNF, were
479 applied on the surface of a cellulose mesh (obtained from Holzbecher Ltd., Czech Republic) in order
480 to cover its microfibrous structure. Both c-CNF and a-CNF were expected to improve the surface
481 properties of the cellulose mesh for cell adhesion and proliferation. A 0.15 wt% c-CNF solution
482 formed a thin film on the surface of the cellulose meshes, while the 0.15 wt% a-CNF solution covered
483 individual cellulose microfibers and filled the wide spaces between them. This may be due to a lower
484 degree of fibrillation of c-CNF in comparison with a-CNF, which results in a solution with larger
485 fibers in the case of c-CNF. Larger c-CNF fibers cannot penetrate into the pores of the cellulose mesh.
486 They cumulate on the top of the mesh and form a film-like structure there. However, the smaller a-
487 CNF fibers can leak in to the pores of the cellulose mesh. Our results have shown positive effects of
488 both types of CNF coverings on the adhesion and proliferation of dermal fibroblasts. However, we
489 observed that a-CNF was more suitable for adhesion and growth of dermal fibroblasts than c-CNF,
490 on which the cells were often round, less spread and proliferated relatively slowly. The morphology
491 of human dermal fibroblasts was more physiological on a-CNF than on c-CNF. The cells on a-CNF
492 adhered along the cellulose fibers, spread between them and formed a better-developed filamentous
493 actin (F-actin) cytoskeleton (**Figure 4**).

494
495 **Figure 4.** Morphology of human dermal fibroblasts on day 4 after seeding on a cellulose mesh modified with
496 cationic cellulose nanofibers (A), with anionic cellulose nanofibers (B), and on pristine cellulose mesh (C). The
497 cells were stained with phalloidin conjugated with TRITC (stains F-actin, red fluorescence). Leica TCS SPE
498 DM2500 confocal microscope, obj. 20x/1.15 NA oil.
499

500 Other chemical modifications of plant nanocellulose intended for skin tissue engineering include
501 converting it to cellulose acetate or to hydroxyethyl cellulose. Conversion to cellulose acetate is
502 known to enhance the electrospinnability of cellulose, as was demonstrated in cellulose extracted
503 from sugar cane bagasse, and the electrospun fibrous scaffolds then supported the adhesion and
504 growth of mouse subcutaneous fibroblasts of the line L929. The cell behavior was further improved
505 by blending the cellulose with poly (L-lactide) or with polydioxanone [66]. Three-dimensional
506 cellulose acetate scaffolds, produced by an electrohydrodynamic direct jet process called spin-

507 printing stimulated the adhesion and metabolic activity of human dermal fibroblasts to a greater
508 extent than polycaprolactone scaffolds with a similar fibrous morphology and pore geometry [207].
509 Blending cellulose acetate with gelatin can modulate its applicability for skin tissue engineering or
510 for wound dressing. The scaffolds with a lower content of cellulose acetate and a higher content of
511 gelatin (ratio 25:75) promoted high proliferation activity of human dermal fibroblasts and adhered to
512 a wound, showing that they were promising for skin tissue engineering. By contrast, the scaffolds
513 with a higher content of cellulose acetate and a lower content of gelatin (ratio 75:25) appeared to be
514 suitable for low-adherent wound dressings [208]. Other cellulose acetate-based scaffolds with
515 potential for skin tissue engineering include composite 3D electrospun cellulose acetate/pullulan
516 scaffolds, which promoted the adhesion and growth of mouse L929 fibroblasts [209], and composite
517 biomimetic nanofibrous gelatin/cellulose acetate/elastin scaffolds, which promoted the adhesion and
518 growth of human gingival fibroblasts [210]. Nanofibrous scaffolds prepared by rotary jet spinning
519 from cellulose acetate and soy protein hydrolysate are another promising material. *In vitro*, these
520 scaffolds promoted the migration and proliferation of dermal fibroblasts, their infiltration inside the
521 scaffolds and their expression of β_1 -integrin adhesion receptors. *In vivo*, these scaffolds accelerated
522 re-epithelialization and epidermal thinning, and also reduced scar formation and collagen anisotropy
523 [211].

524 Hydroxyethyl cellulose is another modification of cellulose that can be used for creating
525 nanostructures. This modification of cellulose is water-soluble and, like cellulose acetate, it can be
526 used for electrospinning of nanofibrous scaffolds. Nanofibrous scaffolds made of hydroxyethyl
527 cellulose blended with poly(vinyl alcohol) supported the adhesion and growth of human skin
528 fibroblasts [212]. The behaviour of the fibroblasts was further improved by adding collagen into the
529 blend, and the antimicrobial activity of the scaffolds was established by adding silver nanoparticles
530 without a considerable increase in the cytotoxicity of the scaffold for the fibroblasts [213].

531 Plant-derived nanocellulose in the form of nanocrystals can be used advantageously for
532 reinforcing materials typically used for tissue engineering, such as degradable natural and synthetic
533 polymers, which are relatively weak. Cellulose nanocrystals (CNCs) are produced by acid hydrolysis
534 of cellulose fibers, employing either sulfuric acid or hydrochloric acid. Due to their structural defects,
535 CNCs have a very large elasticity modulus (about 130 GPa), which is similar to that of Kevlar, and
536 they have high strength (about 7 GPa). In addition, CNCs have low extension to break, high aspect
537 ratios, high surface areas, high crystallinity, and apparent biocompatibility [13,70]. CNCs were used
538 to reinforce collagen films, and these composites, also supporting the viability of mouse embryonic
539 3T3 fibroblasts, were promising for skin tissue engineering [13]. In another study, cotton-derived
540 cellulose nanocrystals were electrospun together with poly(lactic-co-glycolic acid) (PLGA). The
541 resulting scaffolds improved the adhesion, spreading and proliferation of 3T3 fibroblasts in
542 comparison with neat PLGA nanofiber membranes [214].

543 Nanocellulose derived from *Cladophora* algae can also be improved for tissue engineering
544 purposes by physicochemical modifications. The adhesion and spreading of human dermal
545 fibroblasts were relatively poor on unmodified *Cladophora* nanocellulose films, but they increased on
546 nanocellulose carboxylated by electrochemical TEMPO-mediated oxidation. This increase was
547 proportional to the degree of oxidation of the material [75].

548
549

550 4.3. Limitations of the use of nanocellulose in skin tissue engineering

551 In spite of all the encouraging results mentioned above, the use of nanocellulose (and cellulose
552 in general) in skin tissue engineering is limited by its non-degradability in the human organism. The
553 retention of non-degradable material in skin could induce scar formation. Degradability of cellulose
554 can be induced by incorporating cellulase enzymes, as demonstrated in bacterial cellulose [215],
555 especially in conjunction of these enzymes with β -glucosidase [216]. Degradable cellulose can also be
556 created by introducing N-acetylglucosamine residues into the cellulose molecule during its synthesis
557 by metabolically-engineered *Gluconacetobacter xylinus*. These residues then render the cellulose
558 molecules susceptible to degradation by lysozyme, an enzyme that is widespread in the human body
559 [217,218]. Another approach for rendering cellulose-based scaffolds degradable, at least partially, is
560 oxidation. Oxidized acetyl cellulose sponges, implanted subcutaneously into rats *in vivo*, showed
561 degradation of 47% of their dry mass after 60 weeks, while in ethyl cellulose the proportion was only
562 18% [219]. Regenerated cellulose (methylolcellulose) and 2,3-dialdehydecellulose (DAC) have also
563 been considered as degradable, although only at a slow rate. In addition, DAC membranes supported
564 adhesion, growth and extracellular matrix formation in human neonatal skin fibroblasts cultured on
565 these materials [220]. Last but not least, cellulose derived from *Styela clava* tunics is also slowly
566 degradable. After subcutaneous implantation into rats for 90 days, the weight loss was greater in
567 cellulose films from *Styela clava* (almost 24% of their initial weight) than in films prepared from wood
568 pulp cellulose (less than 10%) [80].

569 4.4. Nanocellulose as a carrier for cell delivery into skin defects

570 Although there has been only limited direct use of cellulosic materials, including nanocellulose,
571 in skin tissue engineering, these materials, even in their non-degradable forms, can be used indirectly
572 for skin tissue engineering, i.e. as carriers for delivering cells into wounds. After the cells have
573 adhered to the wound bed, they can be released from the scaffolds, and the scaffolds can be removed.
574 Experiments *in vitro*, performed on a bacterial cellulose/acrylic acid (BC/AA) hydrogel colonized by
575 epidermal keratinocytes (EK) and dermal fibroblasts (DF), showed that from day 1 to day 3 after
576 seeding on BC/AA, about 63% of EK and 69% of DF were cumulatively transferred from BC/AA on
577 to an ovine collagen hydrogel [192]. Experiments *in vivo* performed in mice showed that BC/AA
578 hydrogels loaded with cells produced the greatest acceleration on burn wound healing, followed by
579 treatment with hydrogel alone, and by the untreated group. On day 13 after wound coverage, the
580 percentage of wound reduction for the hydrogel loaded with cells, for the pure hydrogel and for the
581 control untreated group of animals were about 77%, 72% and 65%, respectively. The transferred cells
582 are believed to assist in initiating the wound healing process, where the fibroblasts play a role in
583 forming the granulation tissue and the keratinocytes help in re-epithelialization [221]. Wound healing
584 can also be accelerated by transferring mesenchymal stem cells, seeded on nanocellulose-based
585 carriers, into the damaged skin. For example, membranes of bacterial cellulose with gellan gum,
586 incorporated with the antifungal drug fluconazole, were developed for delivery of human adipose-
587 derived mesenchymal stem cells (ASCs), obtained by liposuction. The membranes with ASCs were
588 applied for covering second-degree burn wounds produced in rats. Fluorescence staining with FITC
589 and DAPI proved that the ASCs were transferred into the wounds. The transferred ASCs can improve
590 wound healing not only directly, by proliferating and differentiating in the host tissue, but mainly
591 indirectly, by their paracrine secretion of a wide range of bioactive molecules, such as cell-adhesion

592 mediating molecules, immunomodulatory molecules, growth factors and angiogenic factors [222].
593 Carboxymethylcellulose (CMC) combined with rat ASCs, obtained from visceral fat, was tested for
594 treating skin lesions created by punch in a dorsal region of rats. In this model, commercially available
595 sodium CMC at a concentration of 10 mg per 1 ml of the culture medium associated with ASCs,
596 increased the rate of cell proliferation of the granulation tissue and the epithelium thickness in
597 comparison with untreated lesions, but did not increase the collagen fibers or alter the overall speed
598 of wound closure. In addition, the use of CMC was safe up to a concentration of 20 mg/ml. At a higher
599 concentration of 40 mg/ml, the sodium CMC showed a certain genotoxicity, although this was small
600 and transient, as revealed by an alkaline comet assay [223]. Other cellulose-based carriers for human
601 ASCs were threads prepared from nanofibrillated cellulose, extracted from plants and cross-linked
602 with glutaraldehyde. Cross-linked threads were not cytotoxic for ASCs and supported their
603 adhesion, migration and proliferation *in vitro*. After intradermal suturing with ASC-decorated
604 threads in an *ex vivo* experiment performed on porcine skin, the ASCs remained attached to the
605 multifilament sutures without displaying morphological changes or reducing their metabolic activity
606 [224]. In our recent study, novel cell carriers based on clinically used carboxymethylcellulose fabrics
607 (Hcel® NaT), modified with fibrin nanofibers, were designed for potential delivery of dermal
608 fibroblasts into skin wounds [225].

609 5. Nanocellulose in wound healing

610 5.1. Bacterial nanocellulose

611 5.1.1. Bacterial nanocellulose without additives

612 Similarly as in skin tissue engineering, bacterial nanocellulose (BNC) is considered to be one of
613 the most suitable materials for wound dressing. This is due to its favorable physical, chemical and
614 biological properties, as mentioned above, such as chemical purity, favorable mechanical properties
615 and water-absorbing capacity [11,21,48,193]. BNC itself, i.e. without any additives, showed a great
616 capacity to stimulate wound healing, i.e. regeneration of the epidermis and dermis. For example, as
617 mentioned above, BNC wound dressings improved the healing of full-thickness skin defects of a
618 relatively large area (2 x 2 cm), created surgically on the back in mice *in vivo*, in comparison with the
619 control untreated mice. At the same time, BNC-treated mice showed a lower inflammatory response,
620 evaluated by the amount of neutrophils, lymphocytes and macrophages in histological sections. In
621 addition, a cytotoxicity test, performed *in vitro* on NIH/3T3 fibroblasts, demonstrated that the growth
622 rate of the cells seeded on BNC films was more than 80% of the value obtained in cells grown in
623 standard culture wells, which indicated low cytotoxicity of BNC [37]. Similar results were obtained
624 when bacterial cellulose membranes were applied for 15 days on second-degree burn wounds (1 x 1
625 cm) produced by contact with a heated metal plate. Bacterial cellulose accelerated the process of
626 healing in comparison with a conventionally used gauze, as manifested by greater thickness of the
627 regenerated epidermis and dermis, a higher number of newly-created blood vessels, a higher level of
628 collagen expression and a lower number of mast cells infiltrating the damaged site. At the same time,
629 bacterial cellulose did not show toxic effects on the liver and kidney, as revealed by the levels of
630 alanine transaminase, aspartate transaminase, alkaline phosphatase, blood urea nitrogen, creatine
631 and lactate dehydrogenase in the blood serum [226]. A recent study by Kaminagakura *et al.* [46]
632 showed that bacterial cellulose membranes (Nanoskin®) promoted healing of full-thickness skin

wounds in guinea pigs, created by surgical removal of skin from their dorsal region (2 x 4 cm), to a similar extent as in the control autologous skin implants. A coating of Nanoskin® with gelatin did not further improve the healing effect. However, skin wound healing can be modulated by the architecture of bacterial cellulose films. The bottom side of these films was constructed with a larger pore size, and with a looser and rougher structure than that of the top side. A microfluidics-based *in vitro* wound healing model revealed that the bottom side of the films better promoted the migration of cells to facilitate wound healing. These scaffolds are therefore also promising for skin tissue engineering. Moreover, full-thickness skin wounds in Wistar rats, covered by the bottom side of the films, showed faster recovery and less inflammatory response than the top side of these films and the traditionally-used gauze [227]. Finally, an interesting application of bacterial nanocellulose was for creating transparent wound coverings, which allowed optical real-time monitoring of wound healing, and also diagnostics of the infection and inflammation in chronic wounds [228]. Another transparent wound dressing was developed by combining bacterial cellulose whiskers with a poly (2-hydroxyethyl methacrylate) hydrogel and silver nanoparticles, which endowed the dressing with antibacterial activity. At the same time, this material facilitated the growth of NIH 3T3 fibroblasts, which indicated its non-toxicity [23].

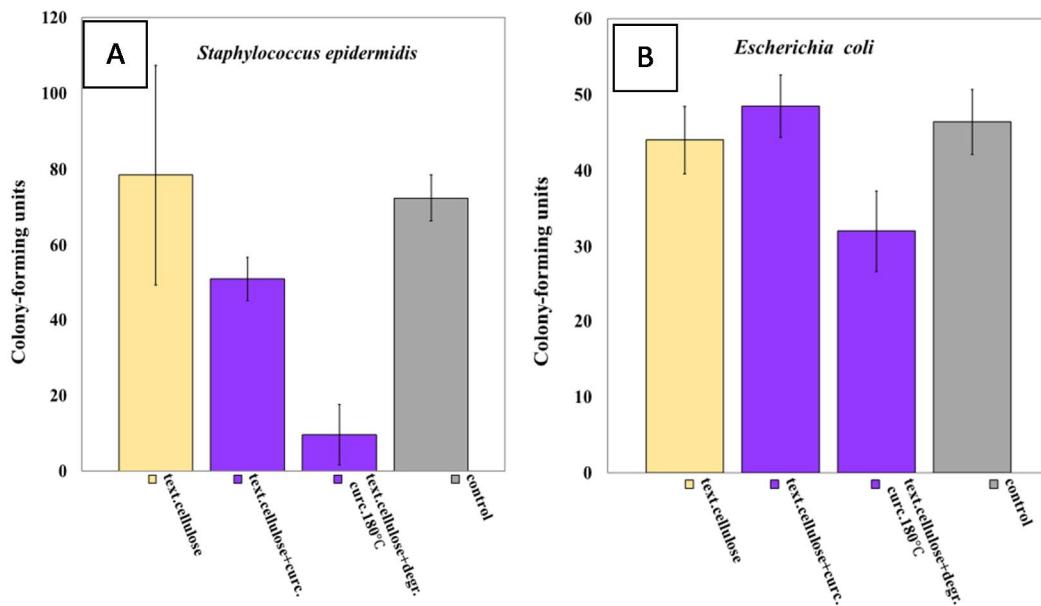
5.1.2. Bacterial nanocellulose with additives

In order to further improve the healing effect of bacterial (nano)cellulose, this material has been combined with other biologically-active molecules, such as other polysaccharides, proteins, glycosides, cytokines and growth factors, local anesthetics, and even nanoparticles. For example, combination with chitosan improved the mechanical properties and endowed bacterial cellulose-based wound dressings with antimicrobial properties [229]. The mechanical properties of composite electrospun nanofibrous mats containing bacterial nanocellulose and chitosan were further improved by adding medical grade diamond nanoparticles to the electrospinning solution. Introducing these nanoparticles facilitated the electrospinning process and reduced the diameter of the fibers. Moreover, the nanodiamond-modified mats were more hydrophilic and thus more attractive for the adhesion and growth of mouse skin L929 fibroblasts, which made them promising for skin tissue engineering [21].

An important protein for modifying bacterial cellulose is sericin, which is created by silkworms (*Bombyx mori*) as a component of silk. A silk sericin-releasing bacterial nanocellulose gel was developed to be applied as a bioactive mask for facial treatment [230]. Silk sericin diffusing from bacterial cellulose did not influence the growth of keratinocytes but enhanced the proliferation of fibroblasts, increased the cell viability and improved the production of extracellular matrix. Bacterial cellulose/silk sericin composites are therefore promising not only for wound dressing applications but also for tissue engineering [231]. A bacterial nanocellulose wound dressing with sericin and polyhexamethylene biguanide (PHMB), an antimicrobial agent, was clinically tested in volunteers [132].

An important cytokine used for bacterial cellulose modification was macrophage-stimulating protein (MSP), a cytokine highly expressed in ASCs and probably playing a critical role in wound healing. In an *in vivo* study, MSP was applied to a full-thickness skin wound with bacterial cellulose membranes, and this treatment accelerated the wound healing, probably by migration of dermal fibroblasts, which have receptors for MSP, and by enhanced synthesis and remodeling of collagen

675 [232]. Smart membranes made of oxidized bacterial cellulose incorporated with epidermal growth
676 factor (EGF) were developed in order to enhance the process of re-epithelialization. The release of
677 EGF was triggered by lysozyme, an enzyme commonly found at infected skin wounds [233]. Re-
678 epithelialization of skin wounds in rats was also enhanced by bacterial cellulose membranes
679 incorporated with vaccarin, a flavonoid glycoside known to promote neovascularisation [39]. In the
680 field of local anesthetics, lidocaine was incorporated into bacterial cellulose in order to reduce pain,
681 especially in burn wounds, and thus to improve the wound healing [131]. Another system developed
682 for lidocaine delivery was based on biodegradable microneedles manufactured from bacterial
683 cellulose and fish scale-derived collagen [28]. A further useful modification of bacterial cellulose is
684 the introduction of glycerin. Glycerin has a characteristic moisturizing effect, which could be
685 clinically relevant for the treatment for skin diseases accompanied by dryness, such as psoriasis and
686 atopic dermatitis [234]. Bacterial nanocellulose usually occurs in the form of nanofibrils, but
687 nanocrystals have also been prepared from this material. The bacterial cellulose nanocrystals were
688 then used to reinforce regenerated chitin fibers, and these composite fibers are applicable for suturing
689 skin wounds [235].

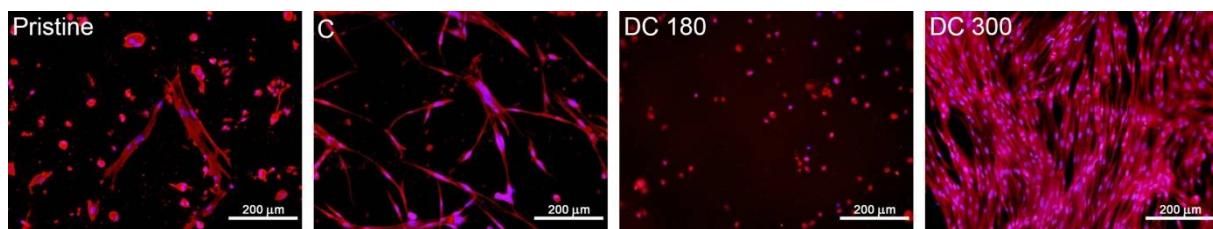

690 An important issue is that wound dressings should protect the wound from microbial infections,
691 which are caused mainly by bacteria. Although bacterial nanocellulose is considered to be an almost
692 ideal wound dressing, it exhibits no antibacterial properties when used by itself. Therefore, numerous
693 studies have dealt with incorporating bacterial cellulose with various antibacterial agents, such as
694 metal-based agents, antiseptics, antibiotics and various nature-derived antibacterial molecules.
695 Metal-based agents used for bacterial cellulose modification include various forms of silver, such as
696 silver sulfadiazine [236] and silver nanoparticles [237], both of which are active against *Pseudomonas*
697 *aeruginosa*, *Escherichia coli* and *Staphylococcus aureus*. Silver nanoparticles were further combined with
698 magnetic Fe_3O_4 nanoparticles in order to increase the wound healing efficiency of bacterial
699 nanocellulose [238]. Other metal-based nanoparticles with activity against Gram-negative bacteria,
700 combined with bacterial cellulose, were 4,6-diamino-2-pyrimidinethiol (DAPT)-modified gold
701 nanoparticles [239]. Antiseptics used in bacterial cellulose-based wound dressings included
702 povidone-iodine and polyhexamethylene biguanide (PHMB; [48,132]), and also octenidine [240].
703 Prolonged release of octenidine was achieved by incorporating it into Poloxamer micelles, which
704 were introduced into bacterial nanocellulose [133]. Other antimicrobial drugs incorporated into
705 bacterial cellulose were antimicrobial quaternary ammonium compounds based on fatty acids and
706 amino acids ([EDA][DLA-Tyr]), which were active against *Staphylococcus aureus* and *Staphylococcus*
707 *epidermidis* [241]. A representative of antibiotics is ceftriaxone, a third-generation cephalosporin [43].
708 Nature-derived antibacterial molecules used for modifying bacterial cellulose include chitosan,
709 which exhibited bacteriostatic properties against *Escherichia coli* and *Staphylococcus aureus* [229,242].
710 Other antimicrobial compounds are bromelain, a protease present in pineapple tissues, which also
711 has anti-inflammatory and anticancer properties [243], lignin and lignin-derived compounds [244],
712 and particularly curcumin, i.e. a naturally occurring polyphenolic compound isolated from *Curcuma*
713 *longa*. The application of curcumin is limited by its extremely low water solubility, which leads to its
714 poor bioavailability. For wound dressings, curcumin was applied mainly with plant-derived and
715 chemically-modified nanocellulose, and, in rare cases, in combination with bacterial cellulose. In a
716 recent study, curcumin was entrapped into a composite containing gelatin and ionically modified

717 self-assembled bacterial cellulose, and showed wound healing activity and antimicrobial activity
 718 [245].

719 In our experiments, we prepared bacterial cellulose loaded with pristine curcumin or with
 720 curcumin degradation products. As was mentioned above, pristine curcumin is almost insoluble in
 721 polar solvents. In addition, curcumin is unstable in neutral and alkaline pH, and it degrades mainly
 722 to ferulic acid, feruloylmethane and vanillin [246]. The degradation of curcumin can also be
 723 modulated by temperature. It is known that curcumin starts to degrade at a temperature of approx.
 724 180°C [247]. In our experiments, degradation products of curcumin were therefore prepared by
 725 thermal decomposition of curcumin molecules at temperatures of 180 °C and 300 °C. Fourier-
 726 transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC)
 727 detected vanillin and feruloylmethane as the major product at 180 °C, and feruloylmethane at 300 °C.

728 Our results showed that bacterial cellulose loaded with curcumin, and particularly with its
 729 degradation products obtained at 180°C, reduced the number of growing colonies of *Staphylococcus*
 730 *epidermidis*. Antibacterial activity against *Escherichia coli* was obtained only in samples loaded with the
 731 degradation products of curcumin obtained at 180 °C (Figure 5).

732


733

734 **Figure 5.** Antibacterial activity against *S. epidermidis* (A) and *E. coli* (B) in unmodified bacterial cellulose
 735 (text.cellulose), bacterial cellulose with curcumin (text.cellulose+curc.) and bacterial cellulose with curcumin
 736 degraded at 180 °C (text.cellulose +degr.curc. 180 °C) for 1 hour [248].

737

738 *In vitro* tests performed on human dermal fibroblasts revealed that curcumin degraded at 180 °C
 739 showed a significant cytotoxic effect on these cells, while curcumin degraded at 300 °C supported the
 740 adhesion, spreading and growth of these cells (Figure 6). It therefore appears that vanillin - as the
 741 major degradation product at 180 °C - is cytotoxic, and feruloylmethane - as the major degradation
 742 product at 300 °C - is non-cytotoxic. However, the antimicrobial and cytotoxic effect of curcumin-
 743 loaded bacterial cellulose is strongly dependent on the concentration of curcumin or its degradation
 744 products. We observed no cytotoxic effect on fibroblasts at very low doses of curcumin degraded at
 745 180 °C, incorporated into cellulose.

746

747

748 **Figure 6.** Human dermal fibroblasts on bacterial cellulose in a pristine state (**Pristine**), loaded with curcumin (**C**)
749 or with degraded curcumin at 180 °C (**DC 180**) or at 300°C (**DC 300**) after 7 days of cell seeding. The cells were
750 stained with Texas Red C2-Maleimide (red fluorescence, cell membrane and cytoplasm) and Hoechst #33258
751 (blue fluorescence, cell nuclei).

752

753 Other drugs that can be incorporated into bacterial cellulose are anticancer drugs, such as α -
754 mangostin, an antioxidant and antigenotoxic agent derived from the mangosteen tree, which
755 suppressed the growth of B16F10 melanoma cells and MCF-7 breast cancer cells [249]. Bacterial
756 cellulose can also be used for transdermal drug delivery, such as systemic delivery of propranolol, a
757 non-selective β -adrenergic receptor antagonist [130] or diclophenac, a non-steroidal anti-
758 inflammatory drug [129]. Another interesting application of bacterial nanocellulose is in epidermal
759 electronics, e.g. self-adhering bioelectronic decal monitoring of the concentration of cations (Na⁺, K⁺
760 and Ca²⁺) in sweat as a marker of the physiological status of the organism [38].

761 The use of bacterial cellulose in skin tissue engineering and wound healing, including its clinical
762 applications, has been reviewed by Fu *et al.* [37].

763 5.2. *Plant- and animal-derived nanocellulose in wound healing*

764 5.2.1. Plant-derived nanocellulose without additives

765 Like bacterial nanocellulose, plant cellulose can also appear in the form of a hydrogel containing
766 nanofibrils. Unlike bacterial nanocellulose, however, plant cellulose can induce wound healing by
767 itself, i.e. without any additives. Wood-derived nanofibrillar cellulose (NFC) has been tested for
768 wound dressing applications due to its high capability to absorb liquids and to form translucent films.
769 These properties are required for non-healing and chronic wounds, where exudates need to be
770 managed adequately. In addition, the translucency of NFC makes it possible to evaluate the
771 development of the wound without needing to remove the dressing [250]. The healing potential of
772 wood-derived NFC was tested in a clinical trial on burn patients. An NFC dressing was applied to
773 split thickness skin graft donor sites. The NFC dressing was compared with the Suprathel®
774 commercial lactocapromer dressing (PMI Polymedics, Germany). Epithelialization of the donor site
775 was faster when covered by the NFC dressing than when Suprathel® was used. The NFC dressing
776 seemed to be promising for skin graft donor site treatment, since it was biocompatible, it attached
777 easily to the wound bed, and it remained in place until the donor site had renewed. It also detaches
778 from the epithelialized skin by itself [52].

779 Wood-derived NFC (obtained from commercial never-dried bleached sulfite softwood
780 dissolving pulp), crosslinked with calcium ions, also had hemostatic potential, especially when
781 enriched with kaolin or collagen [55]. In addition, inflammatory response studies with blood-derived
782 mononuclear cells revealed the inert nature of NFC hydrogels in terms of cytokine secretion and

783 reactive oxygen species production. Water retention tests showed the potential of NFC hydrogels to
784 maintain a suitably moist environment for various types of wounds [18].

785 Hemostatic potential was also observed in oxidized cellulose (OC) modified in an inert argon
786 plasma [251]. The plasma-modified OC was more acidic, and had a larger surface area and greater
787 ability to absorb water. These factors are crucial for effective haemostasis. In addition, the acidity of
788 plasma-modified OC increased its antibacterial activity. Plasma-modification could therefore be
789 utilized for advantageous modification and also for sterilizing the OC haemostat in a single easy step
790 [251].

791 Similarly, nanofibrillated cellulose, prepared from *Pinus radiata* pulp fibers and pre-treated with
792 TEMPO-mediated oxidation, in the form of films, impaired the growth of *Pseudomonas aeruginosa*, a
793 frequent wound pathogen, and led to more death of bacterial cells than Aquacel®, a commercial
794 control wound dressing [57]. The same NFC in suspension and in the form of aerogels also showed
795 activity against *Pseudomonas aeruginosa* PAO1. In the case of aerogels, bacterial biofilm formation
796 decreased with decreasing porosity and surface roughness of the material [252]. Incorporating
797 cellulose nanocrystals (derived from *Hibiscus cannabinus*) into chitosan/poly(vinyl pyrrolidone)
798 composite membranes, developed for wound dressing applications, enhanced their antibacterial
799 activity, as revealed in *Staphylococcus aureus* and *Pseudomonas aeruginosa* [64]. The antibacterial
800 activity was further increased by coating these membranes with hydrophobic stearic acid, which
801 hampered the adhesion of bacterial cells [253].

802 5.2.2. Plant-derived nanocellulose with additives

803 Similarly as in bacterial nanocellulose, the antibacterial properties of plant-derived
804 nanocellulose can be further improved by various chemical modifications, and by adding various
805 ions, nanoparticles and synthetic or nature-derived molecules. An example of chemical modification
806 is carboxymethylation and periodate oxidation of nanocellulose, which was then used as bioink for
807 preparing porous antibacterial wound dressings [254]. As concerns the ions, the antibacterial
808 properties of softwood pulp-derived NFC were modulated by using divalent calcium or copper ions
809 as crosslinking agents. Calcium-crosslinked hydrogels were more active against *Pseudomonas*
810 *aeruginosa*, while copper-crosslinked hydrogels were more active against *Staphylococcus epidermidis*
811 [19]. In addition, Ca^{2+} -crosslinked NFC hydrogels could be used for topical drug delivery applications
812 in a chronic wound healing context [56]. Copper-containing nanocellulose materials also showed
813 angiogenic activity. Composites of wood-derived NFC and copper-containing mesoporous bioactive
814 glass showed not only antibacterial activity against *Escherichia coli*, but also angiogenic activity, as
815 revealed in a 3D spheroid culture system of human umbilical vein endothelial cells, and also in
816 cultures of mouse 3T3 fibroblasts, which upregulated the expression of pro-angiogenic genes in these
817 cells [255]. Nanocomposite hydrogels containing carboxylated cellulose nanofibers (prepared by
818 TEMPO-mediated oxidation), gelatin and aminated silver nanoparticles showed strong mechanical
819 and self-recovery properties, antibacterial activity against *Staphylococcus aureus* and *Pseudomonas*
820 *aeruginosa*, satisfactory hemostatic performance, and an appropriate balance of fluids on the bed of
821 skin wounds created in mice [6]. Micro- and nanofibrillated cellulose incorporated with bismuth
822 complexes was effective against *Escherichia coli*, *Staphylococcus aureus*, methicillin-resistant
823 *Staphylococcus aureus* and vancomycin-resistant *Enterococcus* [256].

824 Examples of synthetic and nature-derived molecules that have been incorporated into plant-
825 derived nanocellulose in order to enhance its antibacterial activity include antibiotics, antiseptics,
826 antimicrobial peptides, alkanin, shikonin, isoliquiritigenin, coumarin and curcumin. From this point
827 of view, nanocellulose-based materials can serve as carriers for topical and transdermal drug
828 delivery. For example, a gentamycin-grafted nanocellulose sponge, prepared by multi-crosslinking
829 of CNF (extracted from wood pulp), cellulose acetoacetate and 3-aminopropyl(triethoxy)silane,
830 showed excellent antibacterial performance against *Escherichia coli* and *Staphylococcus aureus*, with
831 bactericidal rates of over 99.9% [35]. Similarly, a hydrogel containing cellulose nanofibrils (produced
832 by TEMPO-mediated oxidation from bleached softwood kraft pulp), and polydopamine loaded with
833 tetracycline, was active against *Escherichia coli* and *Staphylococcus aureus*, and stimulated the healing
834 of skin defects created in rats *in vivo* [6]. Due to the increasing resistance to antibiotics, attention has
835 also been paid to other antimicrobial compounds. Composite films containing spherical cellulose
836 nanocrystals and titania nanoparticles complexed with triclosan, i.e. an antibacterial and antifungal
837 agent, showed activity against *Escherichia coli* and *Staphylococcus aureus* [257]. Another novel strategy
838 for fighting bacterial infections involves delivering antibacterial peptides, e.g. nisin, a polycyclic
839 antibacterial peptide produced by the bacterium *Lactococcus lactis*. This peptide was incorporated into
840 TEMPO-oxidized nanofibrillated cellulose (TONFC) *via* electrostatic attraction between the
841 negatively-charged TONFC surface and the positively-charged nisin molecules. The capacity of
842 TONFC to bind nisin was regulated by pH and ionic strength. The activity against *Bacillus subtilis* and
843 *Staphylococcus aureus* was higher in nisin-TONFC composites than in free nisin [134]. In another
844 nanocellulose-based material, i.e. nanocrystalline cellulose functionalized with aldehyde groups, also
845 known as sterically stabilized nanocrystalline cellulose, nisin was combined with lysozyme, another
846 antibacterial agent [101]. Other interesting molecules are alkannin, shikonin and their derivatives,
847 which are naturally occurring hydroxynaphthoquinones with wound healing potential and
848 antimicrobial, anti-inflammatory, antioxidant and antitumor activities. In a study by
849 Kontogiannopoulos *et al.* [135], these agents were for the first time incorporated in electrospun
850 cellulose acetate nanofibrous meshes for potential wound dressings. Isoliquiritigenin, a phenolic
851 compound found in licorice, was incorporated into pH-sensitive hydroxyethyl cellulose/hyaluronic
852 acid complex hydrogels. These composites showed antimicrobial activity against *Propionibacterium*
853 *acnes*, and they were therefore considered to be promising for treating acne [258].

854 Other important plant-derived molecules for incorporation into wound dressings are coumarin
855 and curcumin. These compounds have a wide spectrum of biological and pharmacological activities,
856 including antioxidant, anti-inflammatory, antimicrobial and anticancer activities. However, as was
857 mentioned above, their potential therapeutic applications are hindered by the low stability and the
858 poor water-solubility of these molecules. Attempts have been made to overcome these drawbacks
859 and to improve the bioavailability of these compounds, e.g. using a Pickering emulsion, i.e. a kind of
860 emulsion stabilized by solid particles located at the oil-water interface, in which aminated
861 nanocellulose particles were used [136]. Another approach was a nanocellulose-reinforced chitosan
862 hydrogel incorporated with Tween 20, i.e. a non-ionic surfactant, in order to improve the solubility
863 of curcumin [259]. Other relatively simple cellulosic materials for curcumin delivery include capsules
864 made of ethyl cellulose blended with methyl cellulose [260]. More complicated materials are
865 polyvinyl alcohol/polyethylene oxide/carboxymethyl cellulose matrix blended with nanosilver
866 nanohydrogels, Aloe vera and curcumin, deposited on a hydrolysed PET fabric [261], electrospun

867 nanofibers containing PLGA, cellulose nanocrystals, curcumin and polyethyleneimine-
868 carboxymethyl chitosan/pDNA-angiogenin nanoparticles [262], and composites made of complexes
869 of curcumin/gelatin microspheres and porous collagen-cellulose nanocrystals [263].

870 Another important material with antimicrobial activity is chitosan. Chitosan and pectin with
871 organic rectorite, i.e. a layered silicate, were used for deposition on electrospun cellulose acetate
872 nanofibers in order to inhibit bacterial growth, which was proven on *Escherichia coli* and
873 *Staphylococcus aureus*. At the same time, the material supported the growth of human epidermal cells.
874 This material was considered to be suitable not only for wound dressing, but also for food packaging
875 [8]. In a study by Vosmanská *et al.* [264], a three-step modification of the standard cellulose wound
876 dressing was prepared. This modification included argon plasma-treatment, chitosan impregnation
877 and AgCl precipitation. The plasma treatment oxidized the material surface, which increased the
878 hydrophilicity of the material surface and the amount of chitosan impregnated on to the surface. In
879 addition, plasma treatment almost doubled the amount of AgCl precipitated on the plasma-activated
880 surface. All these factors endowed the cellulose-based wound dressing with antibacterial activity
881 against *E. coli* and *S. epidermidis* [264].

882 Various antibacterial nanocellulose-based materials have been reviewed by Li *et al.* [265].

883 Nanocellulose in the form of nanocrystals has been widely used for delivering drugs for wound
884 healing and for treating various skin disorders. Cellulose nanocrystals conjugated with folic acid are
885 promising vectors for the targeted delivery of chemotherapeutic agents to folate receptor-positive
886 cancer cells [266]. Cellulose nanocrystals (CNCs) isolated from *Syzygium cumini* leaves or bamboo,
887 impregnated with silver nanoparticles, have been proposed for accelerated healing of acute and
888 diabetic wounds [62,71]. Other potential wound dressings for accelerated healing of diabetic wounds
889 are composite nanofibrous membranes containing PLGA fibres and cellulose nanocrystals loaded
890 with neurotensin, an inflammatory modulator [267]. Cellulose nanocrystals loaded with
891 hydroquinone, which inhibits the production of melanin, were designed for treating
892 hyperpigmentation, a disorder occurring during pregnancy and sun exposure [268]. The use of
893 various cellulose-based nanocarriers, such as bacterial cellulose, cellulose acetate, microcrystalline
894 cellulose, carboxymethyl cellulose, cellulose nanocrystals, cellulose nanofibrils, etc., in drug delivery
895 systems for cancer treatment has been reviewed in [269]. Advanced “intelligent” nanocellulose-based
896 wound dressings were combined with biosensors, e.g. for human neutrophil elastase present in
897 chronic wound fluid [120,270,271].

898 5.2.3. Animal-derived nanocellulose

899 Animal-derived nanocellulose also has potential for application in wound dressings. Cellulose
900 membranes manufactured from *Styela clava* tunics, by themselves and in combination with alginate
901 or selenium, stimulated healing of surgically-created wounds in normal rats and in rats with diabetes
902 induced by treatment with streptozotocin [75,83], probably through regulation of angiogenesis and
903 connective tissue formation.

904 6. Potential cytotoxicity and immunogenicity of nanocellulose

905 Nanocellulose materials are often considered as materials with no cytotoxicity and
906 immunogenicity, or with low cytotoxicity and immunogenicity. Cellulose nanofibers isolated from
907 Curauá leaf fibers (*Ananas erectifolius*) provide an example of non-cytotoxicity. They showed no signs

908 of cytotoxicity in direct or indirect assays for cell viability and cell morphology using Vero cells, i.e.
909 monkey-derived kidney epithelial cells. Moreover, during an adhesion test, the cells demonstrated a
910 relatively high affinity to the CNF surface [16]. Cotton-derived cellulose nanocrystals (mean width
911 7.3 nm, mean length 135 nm, concentrations from 30 to 300 $\mu\text{g}/\mu\text{l}$ per ml of cell culture medium) are
912 an example of non-immunogenic nanocellulose. These nanocrystals did not induce any release of
913 pro-inflammatory cytokines, namely tumor necrosis factor- α (TNF- α) and interleukin-1 β (IL-1 β),
914 from human macrophages derived from peripheral blood monocytes, while microcrystalline
915 cellulose (particle size \sim 50 μm) induced the release of these cytokines [26].

916 However, several studies documenting considerable cytotoxicity and pro-inflammatory activity
917 of nanocellulose *in vitro* and *in vivo* have also emerged. *In vitro*, five types of wood-derived
918 nanocellulose materials (doses up to 100 $\mu\text{g}/\text{ml}$ of cell culture medium) were practically non-cytotoxic
919 for human macrophage-like THP-1 cells, when compared with multi-walled carbon nanotubes and
920 nanomaterials based on ZnO, Ag and SiO₂, as revealed by an Alamar blue assay. However, multiplex
921 profiling of cytokine and chemokine secretion indicated that nanocellulose materials induced potent
922 inflammatory responses at sub-cytotoxic doses [272]. *In vivo*, wood-derived cellulose nanocrystals
923 were shown to induce an inflammatory response in mice after aspiration, manifested by an increase
924 in leukocytes and eosinophils in the lungs, recovered by bronchoalveolar lavage (BAL), and up-
925 regulation of pro-inflammatory cytokines and chemokines, such as TNF-a, G-CSF, GM-CSF, INF- γ ,
926 MCP-1, MIP-1 α , MIP-1 β , RANTES and various interleukins (including IL-1 β), in the BAL fluid. These
927 nanocrystals also induced oxidative stress and tissue damage, manifested by an accumulation of
928 oxidatively modified proteins and an increase in lactate dehydrogenase activity in BAL fluid [18].
929 Similar results were obtained in a study by Shvedova *et al.* [4]. The exposure of mice to respirable
930 wood-derived cellulose nanocrystals caused pulmonary inflammation and damage, induced
931 oxidative stress, increased levels of collagen and transforming growth factor- β (TGF- β) in the lung,
932 and impaired pulmonary functions. In addition, these effects were more pronounced in female mice
933 than in male mice [4]. Sulphonated nanocellulose obtained from *Khaya sengalensis* seed showed renal
934 toxicity in rats, manifested by hypernatremia, enhancement of the antioxidant status and
935 immunohistochemical expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2
936 (COX-2) in the kidneys [64].

937 The cytotoxicity and immunogenicity of nanocellulose can be modulated by its physicochemical
938 properties, e.g. by functionalizing it with specific chemical groups or by endowing it with an electrical
939 charge. Wood-derived nanofibrillated cellulose (NFC) modified with carboxymethyl and
940 hydroxypropyltrimethylammonium groups elicited a lower pro-inflammatory effect than
941 unmodified NFC in human dermal fibroblasts, in lung MRC-5 cells and in human macrophage-like
942 THP-1 cells [273]. Anionic NFC films significantly activated THP-1 cells towards a pro-inflammatory
943 phenotype, whereas cationic and unmodified cellulose induced only mild activation of these cells
944 [274].

945 The morphology of cellulose nanoparticles can also influence their cytotoxicity and
946 immunogenicity. Nanofibrillated cellulose (NCF) showed more pronounced cytotoxicity and
947 oxidative stress responses in human lung epithelial A549 cells than cellulose nanocrystals (CNC).
948 However, exposure to CNC caused an inflammatory response with significantly elevated pro-
949 inflammatory cytokines and chemokines compared to NCF. Interestingly, cellulose staining indicated
950 that CNC particles, but not NCF particles, were taken up by the cells [275]. *In vivo* experiments

951 performed in mice also confirmed different immune responses to NFC and to CNC. Pulmonary
952 exposure to NFC led to discrete local immune cell polarization patterns with TH1-like immune
953 reaction, while CNC caused non-classical or non-uniform responses. However, the response to both
954 types of nanocellulose was milder than the response to asbestos and carbon nanotubes [276]. In
955 addition, curcumin was able to suppress, at least in part, the immune response to cationic needle-like
956 cellulose nanocrystals, as observed by diminished IL-1 β secretion in mouse J774A.1 macrophages
957 primed with LPS [19]. The immunogenicity of bacterial, wood-based and algal nanocellulose may
958 also be because these types of nanocellulose can contain immunogenic contaminants, such as
959 endotoxin and (1,3)- β -d-glucan [76,277].

960 7. Conclusions

961 Nanocellulose is a promising material for a wide range of applications in industry, technology,
962 biotechnology and medicine, including tissue engineering and wound healing. However, the non-
963 degradability of nanocellulose in the human organism is a limiting factor for its direct use in skin
964 tissue engineering as a scaffold for skin cells, because scaffolds persisting in the skin could lead to
965 scar formation and other complications. A more promising approach is therefore to use nanocellulose
966 as a temporary carrier for delivering cells into wounds, which can be removed after the cells have
967 adhered to the wound bed. However, artificial skin constructed *in vitro* could be used for
968 experimental purposes, e.g. for studies on the biology, metabolism and vascularization of skin tissue,
969 and for studies on the effects of various drugs, similarly as was demonstrated in artificial liver,
970 adipose and tumor tissues. In skin applications, nanocellulose seems to hold the greatest promise as
971 an advanced dressing material for topical, transdermal and systemic applications of various drugs,
972 as a transparent dressing material enabling direct inspection of wounds, as a dressing material
973 coupled with sensors, and as a material for constructing epidermal electronics.

974 **Author Contributions:** Conceptualization, L.B.; Methodology, J.P.; M.B.; A.S. and K.K.;
975 Investigation, J.P.; M.B.; A.S. and K.K.; Writing-Original Draft Preparation, L.B.; Writing-Review,
976 A.S.; P.K.; V.S.; Visualization, J.P.; M.B.; K.K.; Supervision, L.B.; P.K.; V.S.; Project Administration,
977 L.B., V.S.; Funding Acquisition, V.S.; L.B.

978 **Funding:** This research was funded by the Czech Science Foundation (grant No. 17-00885S).

979 **Acknowledgments:** Mr. Robin Healey (Czech Technical University in Prague) is gratefully
980 acknowledged for his language revision of the manuscript. Mr. Panu Lahtinen from VTT (Technical
981 Research Center of Finland, Espoo, Finland) is also acknowledged for providing nanocelluloses (a-
982 CNF and c-CNF) for collaborative work between Tampere University of Technology and Institute of
983 Physiology of the Czech Academy of Sciences.

984 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the
985 design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in
986 the decision to publish the results".

987 References

- 988 1. Sano, M.B.; Rojas, A.D.; Gatenholm, P.; Dávalos, R.V. Electromagnetically Controlled
989 Biological Assembly of Aligned Bacterial Cellulose Nanofibers. *Annals of Biomedical
990 Engineering* **2010**, *38*, 2475–2484.
- 991 2. Martínez Ávila, H.; Schwarz, S.; Feldmann, E.-M.; Mantas, A.; von Bomhard, A.; Gatenholm,
992 P.; Rotter, N. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an

993 implant material for auricular cartilage regeneration. *Applied Microbiology and Biotechnology*
994 **2014**, *98*, 7423–7435.

995 3. Costa, A.F.S.; Almeida, F.C.G.; Vinhas, G.M.; Sarubbo, L.A. Production of Bacterial Cellulose
996 by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources. *Frontiers in*
997 *Microbiology* **2017**, *8*.

998 4. Shvedova, A.A.; Kisin, E.R.; Yanamala, N.; Farcas, M.T.; Menas, A.L.; Williams, A.; Fournier,
999 P.M.; Reynolds, J.S.; Gutkin, D.W.; Star, A.; et al. Gender differences in murine pulmonary
1000 responses elicited by cellulose nanocrystals. *Part Fibre Toxicol* **2016**, *13*, 28.

1001 5. Faradilla, R.H.F.; Lee, G.; Arns, J.-Y.; Roberts, J.; Martens, P.; Stenzel, M.H.; Arcot, J.
1002 Characteristics of a free-standing film from banana pseudostem nanocellulose generated from
1003 TEMPO-mediated oxidation. *Carbohydrate Polymers* **2017**, *174*, 1156–1163.

1004 6. Liu, Y.; Sui, Y.; Liu, C.; Liu, C.; Wu, M.; Li, B.; Li, Y. A physically crosslinked
1005 polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and
1006 wound healing. *Carbohydrate Polymers* **2018**, *188*, 27–36.

1007 7. Valentim, R.; Andrade, S.; dos Santos, M.; Santos, A.; Pereira, V.; dos Santos, I.; Dias, C.; dos
1008 Reis, M. Composite Based on Biphasic Calcium Phosphate (HA/β-TCP) and Nanocellulose
1009 from the Açaí Tegument. *Materials* **2018**, *11*, 2213.

1010 8. Novotna, K.; Zajdlova, M.; Suchy, T.; Hadraba, D.; Lopot, F.; Zaloudkova, M.; Douglas,
1011 T.E.L.; Munzarova, M.; Juklickova, M.; Stranska, D.; et al. Polylactide nanofibers with
1012 hydroxyapatite as growth substrates for osteoblast-like cells. *J. Biomed. Mater. Res.* **2014**, *102*,
1013 3918–3930.

1014 9. Torres, F.; Commeaux, S.; Troncoso, O. Biocompatibility of Bacterial Cellulose Based
1015 Biomaterials. *Journal of Functional Biomaterials* **2012**, *3*, 864–878.

1016 10. Bottan, S.; Robotti, F.; Jayathissa, P.; Hegglin, A.; Bahamonde, N.; Heredia-Guerrero, J.A.;
1017 Bayer, I.S.; Scarpellini, A.; Merker, H.; Lindenblatt, N.; et al. Surface-Structured Bacterial
1018 Cellulose with Guided Assembly-Based Biolithography (GAB). *ACS Nano* **2015**, *9*, 206–219.

1019 11. Khazeni, S.; Hatamian-Zarmi, A.; Yazdian, F.; Mokhtari-Hosseini, Z.B.; Ebrahimi-
1020 Hosseinzadeh, B.; Noorani, B.; Amoabedini, G.; Soudi, M.R. Production of nanocellulose in
1021 miniature-bioreactor: Optimization and characterization. *Preparative Biochemistry and*
1022 *Biotechnology* **2017**, *47*, 371–378.

1023 12. Souza, S.F.; Mariano, M.; Reis, D.; Lombello, C.B.; Ferreira, M.; Sain, M. Cell interactions
1024 and cytotoxic studies of cellulose nanofibers from Curauá natural fibers. *Carbohydrate*
1025 *Polymers* **2018**, *201*, 87–95.

1026 13. Li, W.; Guo, R.; Lan, Y.; Zhang, Y.; Xue, W.; Zhang, Y. Preparation and properties of
1027 cellulose nanocrystals reinforced collagen composite films. *Journal of Biomedical Materials*
1028 *Research Part A* **2014**, *102*, 1131–1139.

1029 14. Yanamala, N.; Farcas, M.T.; Hatfield, M.K.; Kisin, E.R.; Kagan, V.E.; Geraci, C.L.;
1030 Shvedova, A.A. In Vivo Evaluation of the Pulmonary Toxicity of Cellulose Nanocrystals: A
1031 Renewable and Sustainable Nanomaterial of the Future. *ACS Sustainable Chemistry &*
1032 *Engineering* **2014**, *2*, 1691–1698.

1033 15. Guglielmo, A.; Sabra, A.; Elbery, M.; Cerveira, M.M.; Ghenov, F.; Sunasee, R.; Ckless, K.
1034 A mechanistic insight into curcumin modulation of the IL-1 β secretion and NLRP3 S-

1035 glutathionylation induced by needle-like cationic cellulose nanocrystals in myeloid cells.
1036 *Chemico-Biological Interactions* 2017, 274, 1–12.

1037 16. Zhao, Y.; Gao, G.; Liu, D.; Tian, D.; Zhu, Y.; Chang, Y. Vapor sensing with color-tunable
1038 multilayered coatings of cellulose nanocrystals. *Carbohydrate Polymers* 2017, 174, 39–47.

1039 17. Chávez-Guerrero, L.; Sepúlveda-Guzmán, S.; Silva-Mendoza, J.; Aguilar-Flores, C.; Pérez-
1040 Camacho, O. Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild
1041 conditions. *Carbohydrate Polymers* 2018, 181, 642–649.

1042 18. Basu, A.; Lindh, J.; Ålander, E.; Strømme, M.; Ferraz, N. On the use of ion-crosslinked
1043 nanocellulose hydrogels for wound healing solutions: Physicochemical properties and
1044 application-oriented biocompatibility studies. *Carbohydrate Polymers* 2017, 174, 299–308.

1045 19. Basu, A.; Heitz, K.; Strømme, M.; Welch, K.; Ferraz, N. Ion-crosslinked wood-derived
1046 nanocellulose hydrogels with tunable antibacterial properties: Candidate materials for advanced
1047 wound care applications. *Carbohydrate Polymers* 2018, 181, 345–350.

1048 20. Xin, S.; Li, X.; Ma, Z.; Lei, Z.; Zhao, J.; Pan, S.; Zhou, X.; Deng, H. Cytotoxicity and
1049 antibacterial ability of scaffolds immobilized by polysaccharide/layered silicate composites.
1050 *Carbohydrate Polymers* 2013, 92, 1880–1886.

1051 21. Mahdavi, M.; Mahmoudi, N.; Rezaie Anaran, F.; Simchi, A. Electrospinning of
1052 Nanodiamond-Modified Polysaccharide Nanofibers with Physico-Mechanical Properties Close
1053 to Natural Skins. *Marine Drugs* 2016, 14, 128.

1054 22. H.P.S, A.K.; Saurabh, C.K.; A.S., A.; Nurul Fazita, M.R.; Syakir, M.I.; Davoudpour, Y.;
1055 Rafatullah, M.; Abdullah, C.K.; M. Haafiz, M.K.; Dungani, R. A review on chitosan-cellulose
1056 blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications.
1057 *Carbohydrate Polymers* 2016, 150, 216–226.

1058 23. Di, Z.; Shi, Z.; Ullah, M.W.; Li, S.; Yang, G. A transparent wound dressing based on
1059 bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate). *International Journal of
1060 Biological Macromolecules* 2017, 105, 638–644.

1061 24. Catalán, J.; Ilves, M.; Järventaus, H.; Hannukainen, K.-S.; Kontturi, E.; Vanhala, E.;
1062 Alenius, H.; Savolainen, K.M.; Norppa, H. Genotoxic and immunotoxic effects of cellulose
1063 nanocrystals in vitro. *Environmental and Molecular Mutagenesis* 2015, 56, 171–182.

1064 25. Sirviö, J.A.; Kolehmainen, A.; Visanko, M.; Liimatainen, H.; Niinimäki, J.; Hormi, O.E.O.
1065 Strong, Self-Standing Oxygen Barrier Films from Nanocelluloses Modified with
1066 Regioselective Oxidative Treatments. *ACS Applied Materials & Interfaces* 2014, 6, 14384–
1067 14390.

1068 26. Sharif Hossain, A.B.M.; Uddin, M.M.; Veettil, V.N.; Fawzi, M. Nano-cellulose based nano-
1069 coating biomaterial dataset using corn leaf biomass: An innovative biodegradable plant
1070 biomaterial. *Data in Brief* 2018, 17, 162–168.

1071 27. Rashad, A.; Mohamed-Ahmed, S.; Ojansivu, M.; Berstad, K.; Yassin, M.A.; Kivijärvi, T.;
1072 Heggset, E.B.; Syverud, K.; Mustafa, K. Coating 3D Printed Polycaprolactone Scaffolds with
1073 Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells.
1074 *Biomacromolecules* 2018, 19, 4307–4319.

1075 28. Medhi, P.; Olatunji, O.; Nayak, A.; Uppuluri, C.T.; Olsson, R.T.; Nalluri, B.N.; Das, D.B.
1076 Lidocaine-loaded fish scale-nanocellulose biopolymer composite microneedles. *AAPS*
1077 *PharmSciTech* **2017**, *18*, 1488–1494.

1078 29. Rocha, I.; Lindh, J.; Hong, J.; Strømme, M.; Mihranyan, A.; Ferraz, N. Blood Compatibility
1079 of Sulfonated Cladophora Nanocellulose Beads. *Molecules* **2018**, *23*, 601.

1080 30. Ruan, C.-Q.; Strømme, M.; Lindh, J. Preparation of porous 2,3-dialdehyde cellulose beads
1081 crosslinked with chitosan and their application in adsorption of Congo red dye. *Carbohydrate*
1082 *Polymers* **2018**, *181*, 200–207.

1083 31. Korhonen, J.T.; Kettunen, M.; Ras, R.H.A.; Ikkala, O. Hydrophobic Nanocellulose
1084 Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. *ACS Applied*
1085 *Materials & Interfaces* **2011**, *3*, 1813–1816.

1086 32. Korhonen, J.T.; Hiekkataipale, P.; Malm, J.; Karppinen, M.; Ikkala, O.; Ras, R.H.A.
1087 Inorganic Hollow Nanotube Aerogels by Atomic Layer Deposition onto Native Nanocellulose
1088 Templates. *ACS Nano* **2011**, *5*, 1967–1974.

1089 33. Xiao, Y.; Rong, L.; Wang, B.; Mao, Z.; Xu, H.; Zhong, Y.; Zhang, L.; Sui, X. A light-weight
1090 and high-efficacy antibacterial nanocellulose-based sponge via covalent immobilization of
1091 gentamicin. *Carbohydrate Polymers* **2018**, *200*, 595–601.

1092 34. Osorio, M.; Fernández-Morales, P.; Gañán, P.; Zuluaga, R.; Kerguelen, H.; Ortiz, I.; Castro,
1093 C. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for
1094 tissue engineering and regenerative medicine: Effect of processing methods, pore size, and
1095 surface area: Development of novel three-dimensional scaffolds. *Journal of Biomedical*
1096 *Materials Research Part A* **2018**.

1097 35. Shahabi-Ghahfarokhi, I.; Khodaiyan, F.; Mousavi, M.; Yousefi, H. Green
1098 bionanocomposite based on kefiran and cellulose nanocrystals produced from beer industrial
1099 residues. *International Journal of Biological Macromolecules* **2015**, *77*, 85–91.

1100 36. Chen, Y.W.; Lee, H.V. Revalorization of selected municipal solid wastes as new precursors
1101 of “green” nanocellulose via a novel one-pot isolation system: A source perspective.
1102 *International Journal of Biological Macromolecules* **2018**, *107*, 78–92.

1103 37. Fu, L.; Zhang, J.; Yang, G. Present status and applications of bacterial cellulose-based
1104 materials for skin tissue repair. *Carbohydrate Polymers* **2013**, *92*, 1432–1442.

1105 38. Yuen, J.D.; Walper, S.A.; Melde, B.J.; Daniele, M.A.; Stenger, D.A. Electrolyte-Sensing
1106 Transistor Decals Enabled by Ultrathin Microbial Nanocellulose. *Scientific Reports* **2017**, *7*.

1107 39. Qiu, Y.; Qiu, L.; Cui, J.; Wei, Q. Bacterial cellulose and bacterial cellulose-vaccarin
1108 membranes for wound healing. *Materials Science and Engineering: C* **2016**, *59*, 303–309.

1109 40. Picheth, G.F.; Pirich, C.L.; Sierakowski, M.R.; Woehl, M.A.; Sakakibara, C.N.; de Souza,
1110 C.F.; Martin, A.A.; da Silva, R.; de Freitas, R.A. Bacterial cellulose in biomedical applications:
1111 A review. *International Journal of Biological Macromolecules* **2017**, *104*, 97–106.

1112 41. Ahrem, H.; Pretzel, D.; Endres, M.; Conrad, D.; Courseau, J.; Müller, H.; Jaeger, R.; Kaps,
1113 C.; Klemm, D.O.; Kinne, R.W. Laser-structured bacterial nanocellulose hydrogels support
1114 ingrowth and differentiation of chondrocytes and show potential as cartilage implants. *Acta*
1115 *Biomaterialia* **2014**, *10*, 1341–1353.

1116 42. Reis, E.M. dos; Berti, F.V.; Colla, G.; Porto, L.M. Bacterial nanocellulose-IKVAV hydrogel
1117 matrix modulates melanoma tumor cell adhesion and proliferation and induces vasculogenic
1118 mimicry in vitro. *Journal of Biomedical Materials Research Part B: Applied Biomaterials*
1119 **2018**, *106*, 2741–2749.

1120 43. Lazarini, S.C.; Yamada, C.; Barud, H.S.; Trovatti, E.; Corbi, P.P.; Lustri, W.R. Influence of
1121 chemical and physical conditions in selection of *Gluconacetobacter hansenii* ATCC 23769
1122 strains with high capacity to produce bacterial cellulose for application as sustained
1123 antimicrobial drug-release supports. *Journal of Applied Microbiology* **2018**, *125*, 777–791.

1124 44. Saska, S.; Teixeira, L.N.; de Castro Raucci, L.M.S.; Scarel-Caminaga, R.M.; Franchi, L.P.;
1125 dos Santos, R.A.; Santagneli, S.H.; Capela, M.V.; de Oliveira, P.T.; Takahashi, C.S.; et al.
1126 Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone
1127 regeneration. *International Journal of Biological Macromolecules* **2017**, *103*, 467–476.

1128 45. Dubey, S.; Sharma, R.K.; Agarwal, P.; Singh, J.; Sinha, N.; Singh, R.P. From rotten grapes
1129 to industrial exploitation: *Komagataeibacter europaeus* SGP37, a micro-factory for macroscale
1130 production of bacterial nanocellulose. *International Journal of Biological Macromolecules*
1131 **2017**, *96*, 52–60.

1132 46. Kaminagakura, K.L.N.; Sue Sato, S.; Sugino, P.; Kataki de Oliveira Veloso, L.; dos Santos,
1133 D.C.; Padovani, C.R.; Basmaji, P.; Olyveira, G.; Schellini, S.A. Nanoskin® to treat full
1134 thickness skin wounds. *Journal of Biomedical Materials Research Part B: Applied
1135 Biomaterials* **2018**.

1136 47. Zharikov, A.N.; Lubyansky, V.G.; Gladysheva, E.K.; Skiba, E.A.; Budaeva, V.V.;
1137 Semyonova, E.N.; Zharikov, A.A.; Sakovich, G.V. Early morphological changes in tissues
1138 when replacing abdominal wall defects by bacterial nanocellulose in experimental trials.
1139 *Journal of Materials Science: Materials in Medicine* **2018**, *29*.

1140 48. Wiegand, C.; Moritz, S.; Hessler, N.; Kralisch, D.; Wesarg, F.; Müller, F.A.; Fischer, D.;
1141 Hipler, U.-C. Antimicrobial functionalization of bacterial nanocellulose by loading with
1142 polihexanide and povidone-iodine. *Journal of Materials Science: Materials in Medicine* **2015**,
1143 *26*.

1144 49. Kolakovic, R.; Peltonen, L.; Laaksonen, T.; Putkisto, K.; Laukkanen, A.; Hirvonen, J.
1145 Spray-Dried Cellulose Nanofibers as Novel Tablet Excipient. *AAPS PharmSciTech* **2011**, *12*,
1146 1366–1373.

1147 50. Kolakovic, R.; Laaksonen, T.; Peltonen, L.; Laukkanen, A.; Hirvonen, J. Spray-dried
1148 nanofibrillar cellulose microparticles for sustained drug release. *International Journal of
1149 Pharmaceutics* **2012**, *430*, 47–55.

1150 51. Kolakovic, R.; Peltonen, L.; Laukkanen, A.; Hirvonen, J.; Laaksonen, T. Nanofibrillar
1151 cellulose films for controlled drug delivery. *European Journal of Pharmaceutics and
1152 Biopharmaceutics* **2012**, *82*, 308–315.

1153 52. Hakkarainen, T.; Koivuniemi, R.; Kosonen, M.; Escobedo-Lucea, C.; Sanz-Garcia, A.;
1154 Vuola, J.; Valtonen, J.; Tammela, P.; Mäkitie, A.; Luukko, K.; et al. Nanofibrillar cellulose
1155 wound dressing in skin graft donor site treatment. *Journal of Controlled Release* **2016**, *244*,
1156 292–301.

1157 53. Liu, J.; Cheng, F.; Grénman, H.; Spoljaric, S.; Seppälä, J.; E. Eriksson, J.; Willför, S.; Xu, C. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. *Carbohydrate Polymers* **2016**, *148*, 259–271.

1158 54. Empson, Y.M.; Ekwueme, E.C.; Hong, J.K.; Paynter, D.M.; Kwansa, A.L.; Brown, C.; Pekkanen, A.M.; Roman, M.; Rylander, N.M.; Brolinson, G.P.; et al. High elastic modulus 1159 nanoparticles: a novel tool for subfailure connective tissue matrix damage. *Translational 1160 Research* **2014**, *164*, 244–257.

1161 55. Basu, A.; Hong, J.; Ferraz, N. Hemocompatibility of Ca²⁺ -Crosslinked Nanocellulose 1162 Hydrogels: Toward Efficient Management of Hemostasis. *Macromolecular Bioscience* **2017**, 1163 *17*, 1700236.

1164 56. Basu, A.; Strømme, M.; Ferraz, N. Towards Tunable Protein-Carrier Wound Dressings 1165 Based on Nanocellulose Hydrogels Crosslinked with Calcium Ions. *Nanomaterials* **2018**, *8*, 1166 550.

1167 57. Powell, L.C.; Khan, S.; Chinga-Carrasco, G.; Wright, C.J.; Hill, K.E.; Thomas, D.W. An 1168 investigation of *Pseudomonas aeruginosa* biofilm growth on novel nanocellulose fibre 1169 dressings. *Carbohydrate Polymers* **2016**, *137*, 191–197.

1170 58. Jasmani, L.; Adnan, S. Preparation and characterization of nanocrystalline cellulose from 1171 Acacia mangium and its reinforcement potential. *Carbohydrate Polymers* **2017**, *161*, 166–171.

1172 59. Fu, Q.; Medina, L.; Li, Y.; Carosio, F.; Hajian, A.; Berglund, L.A. Nanostructured Wood 1173 Hybrids for Fire-Retardancy Prepared by Clay Impregnation into the Cell Wall. *ACS Applied 1174 Materials & Interfaces* **2017**, *9*, 36154–36163.

1175 60. Singla, R.; Soni, S.; Patial, V.; Kulurkar, P.M.; Kumari, A.; S., M.; Padwad, Y.S.; Yadav, 1176 S.K. Cytocompatible Anti-microbial Dressings of *Syzygium cumini* Cellulose Nanocrystals 1177 Decorated with Silver Nanoparticles Accelerate Acute and Diabetic Wound Healing. *Scientific 1178 Reports* **2017**, *7*.

1179 61. Elias, N.; Chandren, S.; Razak, F.I.A.; Jamalis, J.; Widodo, N.; Wahab, R.A. 1180 Characterization, optimization and stability studies on *Candida rugosa* lipase supported on 1181 nanocellulose reinforced chitosan prepared from oil palm biomass. *International Journal of 1182 Biological Macromolecules* **2018**, *114*, 306–316.

1183 62. Adewuyi, A.; Otuechere, C.A.; Adebayo, O.L.; Anazodo, C.; Pereira, F.V. Renal 1184 toxicological evaluations of sulphonated nanocellulose from *Khaya sengalensis* seed in Wistar 1185 rats. *Chemico-Biological Interactions* **2018**, *284*, 56–68.

1186 63. Matharu, A.S.; de Melo, E.M.; Remón, J.; Wang, S.; Abdulina, A.; Kontturi, E. Processing 1187 of Citrus Nanostructured Cellulose: A Rigorous Design-of-Experiment Study of the 1188 Hydrothermal Microwave-Assisted Selective Scissoring Process. *ChemSusChem* **2018**, *11*, 1189 1344–1353.

1190 64. Poonguzhali, R.; Basha, S.K.; Kumari, V.S. Synthesis and characterization of chitosan- 1191 PVP-nanocellulose composites for in-vitro wound dressing application. *International Journal 1192 of Biological Macromolecules* **2017**, *105*, 111–120.

1193 65. Li, J.; Wei, X.; Wang, Q.; Chen, J.; Chang, G.; Kong, L.; Su, J.; Liu, Y. Homogeneous 1194 isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. 1195 *Carbohydrate Polymers* **2012**, *90*, 1609–1613.

1196 1197 1198

1199 66. Ramphul, H.; Bhaw-Luximon, A.; Jhurry, D. Sugar-cane bagasse derived cellulose
1200 enhances performance of polylactide and polydioxanone electrospun scaffold for tissue
1201 engineering. *Carbohydrate Polymers* **2017**, *178*, 238–250.

1202 67. Cudjoe, E.; Hunsen, M.; Xue, Z.; Way, A.E.; Barrios, E.; Olson, R.A.; Hore, M.J.A.;
1203 Rowan, S.J. Miscanthus Giganteus: A commercially viable sustainable source of cellulose
1204 nanocrystals. *Carbohydrate Polymers* **2017**, *155*, 230–241.

1205 68. Benini, K.C.C. de C.; Voorwald, H.J.C.; Cioffi, M.O.H.; Rezende, M.C.; Arantes, V.
1206 Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method.
1207 *Carbohydrate Polymers* **2018**, *192*, 337–346.

1208 69. Singla, R.; Soni, S.; Kulurkar, P.M.; Kumari, A.; S., M.; Patial, V.; Padwad, Y.S.; Yadav,
1209 S.K. In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and
1210 silver nanoparticles for accelerated wound healing. *Carbohydrate Polymers* **2017**, *155*, 152–
1211 162.

1212 70. Supramaniam, J.; Adnan, R.; Mohd Kaus, N.H.; Bushra, R. Magnetic nanocellulose alginate
1213 hydrogel beads as potential drug delivery system. *International Journal of Biological
1214 Macromolecules* **2018**, *118*, 640–648.

1215 71. Tarrés, Q.; Deltell, A.; Espinach, F.X.; Pèlach, M.À.; Delgado-Aguilar, M.; Mutjé, P.
1216 Magnetic bionanocomposites from cellulose nanofibers: Fast, simple and effective production
1217 method. *International Journal of Biological Macromolecules* **2017**, *99*, 29–36.

1218 72. Varanasi, S.; Henzel, L.; Sharman, S.; Batchelor, W.; Garnier, G. Producing nanofibres
1219 from carrots with a chemical-free process. *Carbohydrate Polymers* **2018**, *184*, 307–314.

1220 73. Song, L.; Li, Y.; Xiong, Z.; Pan, L.; luo, Q.; Xu, X.; Lu, S. Water-Induced shape memory
1221 effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide.
1222 *Carbohydrate Polymers* **2018**, *179*, 110–117.

1223 74. Metreveli, G.; Wågberg, L.; Emmoth, E.; Belák, S.; Strømme, M.; Mihranyan, A. A Size-
1224 Exclusion Nanocellulose Filter Paper for Virus Removal. *Advanced Healthcare Materials*
1225 **2014**, *3*, 1546–1550.

1226 75. Hua, K.; Rocha, I.; Zhang, P.; Gustafsson, S.; Ning, Y.; Strømme, M.; Mihranyan, A.;
1227 Ferraz, N. Transition from Bioinert to Bioactive Material by Tailoring the Biological Cell
1228 Response to Carboxylated Nanocellulose. *Biomacromolecules* **2016**, *17*, 1224–1233.

1229 76. Liu, J.; Willförl, S.; Mihranyan, A. On importance of impurities, potential leachables and
1230 extractables in algal nanocellulose for biomedical use. *Carbohydrate Polymers* **2017**, *172*, 11–
1231 19.

1232 77. Gustafsson, S.; Manukyan, L.; Mihranyan, A. Protein–Nanocellulose Interactions in Paper
1233 Filters for Advanced Separation Applications. *Langmuir* **2017**, *33*, 4729–4736.

1234 78. Gustafsson, O.; Gustafsson, S.; Manukyan, L.; Mihranyan, A. Significance of Brownian
1235 Motion for Nanoparticle and Virus Capture in Nanocellulose-Based Filter Paper. *Membranes*
1236 **2018**, *8*, 90.

1237 79. Zarei, S.; Niad, M.; Raanaei, H. The removal of mercury ion pollution by using Fe₃O₄-
1238 nanocellulose: Synthesis, characterizations and DFT studies. *Journal of Hazardous Materials*
1239 **2018**, *344*, 258–273.

1240 80. Song, S.H.; Kim, J.E.; Lee, Y.J.; Kwak, M.H.; Sung, G.Y.; Kwon, S.H.; Son, H.J.; Lee,
1241 H.S.; Jung, Y.J.; Hwang, D.Y. Cellulose film regenerated from *Styela clava* tunics have
1242 biodegradability, toxicity and biocompatibility in the skin of SD rats. *Journal of Materials*
1243 *Science: Materials in Medicine* **2014**, *25*, 1519–1530.

1244 81. Song, S.H.; Seong, K.Y.; Kim, J.E.; Go, J.; Koh, E.K.; Sung, J.E.; Son, H.J.; Jung, Y.J.;
1245 Kim, H.S.; Hong, J.T.; et al. Effects of different cellulose membranes regenerated from *Styela*
1246 *clava* tunics on wound healing. *International Journal of Molecular Medicine* **2017**, *39*, 1173–
1247 1187.

1248 82. Song, S.H.; Kim, J.E.; Koh, E.K.; Sung, J.E.; Lee, H.A.; Yun, W.B.; Hong, J.T.; Hwang,
1249 D.Y. Selenium-loaded cellulose film derived from *Styela clava* tunic accelerates the healing
1250 process of cutaneous wounds in streptozotocin-induced diabetic Sprague–Dawley rats. *Journal*
1251 *of Dermatological Treatment* **2018**, *29*, 606–616.

1252 83. Mondal, S. Preparation, properties and applications of nanocellulosic materials.
1253 *Carbohydrate Polymers* **2017**, *163*, 301–316.

1254 84. Zhan, H.; Peng, N.; Lei, X.; Huang, Y.; Li, D.; Tao, R.; Chang, C. UV-induced self-
1255 cleanable TiO₂/nanocellulose membrane for selective separation of oil/water emulsion.
1256 *Carbohydrate Polymers* **2018**, *201*, 464–470.

1257 85. Gluconacetobacter xylinus Available online:
1258 <https://www.omicsonline.org/ArchiveJMBT/2010/September/03/images/JMBT-02-127-g011.gif> (accessed on Dec 8, 2018).

1260 86. Cells in microscopic detail Available online:
1261 http://66.media.tumblr.com/tumblr_maqu0spvna1qc0noyo1_1280.jpg (accessed on Dec 9,
1262 2018).

1263 87. Header birch forest Available online: https://s3-eu-central-1.amazonaws.com/centaur-wp/theengineer/prod/content/uploads/2018/06/13112445/Header_birch_forest-e1528885546215.jpg (accessed on Dec 8, 2018).

1266 88. *Pinus radiata* Available online:
1267 http://ketenewplymouth.peoplesnetworknz.info/image_files/0000/0005/4269/Pinus_radiata_Radiata_Pine-005.JPG (accessed on Dec 8, 2018).

1269 89. Green seaweed Cladophora Available online:
1270 http://www.aphotomarine.com/images/seaweed/green_seaweed_cladophora_sp_23-04-15_3.jpg (accessed on Dec 8, 2018).

1272 90. Cladophora Glomerata in shining through light Available online:
1273 <https://c8.alamy.com/comp/AGG2H0/cladophora-gloemerata-cladophora-gloemerata-in-shining-through-light-AGG2H0.jpg> (accessed on Dec 8, 2018).

1275 91. *Styela Clava* Available online:
1276 https://wdfw.wa.gov/ais/graphics/species_images/styela_clava.jpg (accessed on Dec 8, 2018).

1277 92. *Halocynthia roretzi* Sea pineapples at Tsukiji Market Available online:
1278 https://upload.wikimedia.org/wikipedia/commons/7/7e/Halocynthia_roretzi-Sea_pineapples_at_Tsukiji_Market-01.jpg (accessed on Dec 8, 2018).

1280 93. Keshavarzi, N.; Mashayekhy Rad, F.; Mace, A.; Ansari, F.; Akhtar, F.; Nilsson, U.;
1281 Berglund, L.; Bergström, L. Nanocellulose-Zeolite Composite Films for Odor Elimination.
1282 *ACS Applied Materials & Interfaces* **2015**, *7*, 14254–14262.

1283 94. Li, J.; Zuo, K.; Wu, W.; Xu, Z.; Yi, Y.; Jing, Y.; Dai, H.; Fang, G. Shape memory aerogels
1284 from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and
1285 Pb(II). *Carbohydrate Polymers* **2018**, *196*, 376–384.

1286 95. Jodeh, S.; Hamed, O.; Melhem, A.; Salghi, R.; Jodeh, D.; Azzaoui, K.; Benmassaoud, Y.;
1287 Murtada, K. Magnetic nanocellulose from olive industry solid waste for the effective removal
1288 of methylene blue from wastewater. *Environmental Science and Pollution Research* **2018**, *25*,
1289 22060–22074.

1290 96. Rathod, M.; Moradeeya, P.G.; Haldar, S.; Basha, S. Nanocellulose/TiO₂ composites:
1291 preparation, characterization and application in the photocatalytic degradation of a potential
1292 endocrine disruptor, mefenamic acid, in aqueous media. *Photochemical & Photobiological
1293 Sciences* **2018**, *17*, 1301–1309.

1294 97. Adelantado, C.; Ríos, Á.; Zougagh, M. Magnetic nanocellulose hybrid nanoparticles and
1295 ionic liquid for extraction of neonicotinoid insecticides from milk samples prior to
1296 determination by liquid chromatography-mass spectrometry. *Food Additives & Contaminants:
1297 Part A* **2018**, *35*, 1755–1766.

1298 98. Zhang, C.; Zhou, M.; Liu, S.; Wang, B.; Mao, Z.; Xu, H.; Zhong, Y.; Zhang, L.; Xu, B.;
1299 Sui, X. Copper-loaded nanocellulose sponge as a sustainable catalyst for regioselective
1300 hydroboration of alkynes. *Carbohydrate Polymers* **2018**, *191*, 17–24.

1301 99. Anirudhan, T.S.; Rejeena, S.R. Adsorption and hydrolytic activity of trypsin on a
1302 carboxylate-functionalized cation exchanger prepared from nanocellulose. *Journal of Colloid
1303 and Interface Science* **2012**, *381*, 125–136.

1304 100. Yuan, H.; Chen, L.; Hong, F.F.; Zhu, M. Evaluation of nanocellulose carriers produced by
1305 four different bacterial strains for laccase immobilization. *Carbohydrate Polymers* **2018**, *196*,
1306 457–464.

1307 101. Tavakolian, M.; Okshevsky, M.; van de Ven, T.G.M.; Tufenkji, N. Developing
1308 Antibacterial Nanocrystalline Cellulose Using Natural Antibacterial Agents. *ACS Applied
1309 Materials & Interfaces* **2018**, *10*, 33827–33838.

1310 102. DeLoid, G.M.; Sohal, I.S.; Lorente, L.R.; Molina, R.M.; Pyrgiotakis, G.; Stevanovic, A.;
1311 Zhang, R.; McClements, D.J.; Geitner, N.K.; Bousfield, D.W.; et al. Reducing Intestinal
1312 Digestion and Absorption of Fat Using a Nature-Derived Biopolymer: Interference of
1313 Triglyceride Hydrolysis by Nanocellulose. *ACS Nano* **2018**, *12*, 6469–6479.

1314 103. Razaq, A.; Nyström, G.; Strømme, M.; Mihranyan, A.; Nyholm, L. High-Capacity
1315 Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA
1316 Oligomers. *PLoS ONE* **2011**, *6*, e29243.

1317 104. Xu, T.; Jiang, Q.; Ghim, D.; Liu, K.-K.; Sun, H.; Derami, H.G.; Wang, Z.; Tadepalli, S.;
1318 Jun, Y.-S.; Zhang, Q.; et al. Catalytically Active Bacterial Nanocellulose-Based Ultrafiltration
1319 Membrane. *Small* **2018**, *14*, 1704006.

1320 105. Ferraz, N.; Carlsson, D.O.; Hong, J.; Larsson, R.; Fellstrom, B.; Nyholm, L.; Stromme, M.;
1321 Mihranyan, A. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole

1322 membranes intended for blood purification. *Journal of The Royal Society Interface* **2012**, *9*,
1323 1943–1955.

1324 106. Asper, M.; Hanrieder, T.; Quellmalz, A.; Mihranyan, A. Removal of xenotropic murine
1325 leukemia virus by nanocellulose based filter paper. *Biologicals* **2015**, *43*, 452–456.

1326 107. El-Samahy, M.A.; Mohamed, S.A.A.; Abdel Rehim, M.H.; Mohram, M.E. Synthesis of
1327 hybrid paper sheets with enhanced air barrier and antimicrobial properties for food packaging.
1328 *Carbohydrate Polymers* **2017**, *168*, 212–219.

1329 108. Nechyporchuk, O.; Kolman, K.; Bridarolli, A.; Odlyha, M.; Bozec, L.; Oriola, M.; Campo-
1330 Francés, G.; Persson, M.; Holmberg, K.; Bordes, R. On the potential of using nanocellulose for
1331 consolidation of painting canvases. *Carbohydrate Polymers* **2018**, *194*, 161–169.

1332 109. Li, T.; Song, J.; Zhao, X.; Yang, Z.; Pastel, G.; Xu, S.; Jia, C.; Dai, J.; Chen, C.; Gong, A.;
1333 et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally
1334 aligned nanocellulose. *Science Advances* **2018**, *4*, eaar3724.

1335 110. Nechyporchuk, O.; Bordes, R.; Köhnke, T. Wet Spinning of Flame-Retardant Cellulosic
1336 Fibers Supported by Interfacial Complexation of Cellulose Nanofibrils with Silica
1337 Nanoparticles. *ACS Applied Materials & Interfaces* **2017**, *9*, 39069–39077.

1338 111. Wang, Z.; Pan, R.; Ruan, C.; Edström, K.; Strømme, M.; Nyholm, L. Redox-Active
1339 Separators for Lithium-Ion Batteries. *Advanced Science* **2018**, *5*, 1700663.

1340 112. Pan, R.; Xu, X.; Sun, R.; Wang, Z.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L.
1341 Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries. *Small* **2018**, *14*,
1342 1704371.

1343 113. Zhou, X.; Liu, Y.; Du, C.; Ren, Y.; Li, X.; Zuo, P.; Yin, G.; Ma, Y.; Cheng, X.; Gao, Y.
1344 Free-Standing Sandwich-Type Graphene/Nanocellulose/Silicon Laminar Anode for Flexible
1345 Rechargeable Lithium Ion Batteries. *ACS Applied Materials & Interfaces* **2018**, *10*, 29638–
1346 29646.

1347 114. Kang, Y.J.; Chun, S.-J.; Lee, S.-S.; Kim, B.-Y.; Kim, J.H.; Chung, H.; Lee, S.-Y.; Kim, W.
1348 All-Solid-State Flexible Supercapacitors Fabricated with Bacterial Nanocellulose Papers,
1349 Carbon Nanotubes, and Triblock-Copolymer Ion Gels. *ACS Nano* **2012**, *6*, 6400–6406.

1350 115. Gopakumar, D.A.; Pai, A.R.; Pottathara, Y.B.; Pasquini, D.; Carlos de Moraes, L.; Luke,
1351 M.; Kalarikkal, N.; Grohens, Y.; Thomas, S. Cellulose Nanofiber-Based Polyaniline Flexible
1352 Papers as Sustainable Microwave Absorbers in the X-Band. *ACS Applied Materials &*
1353 *Interfaces* **2018**, *10*, 20032–20043.

1354 116. Xiong, Z.; Lin, M.; Lin, H.; Huang, M. Facile synthesis of cellulose nanofiber
1355 nanocomposite as a SERS substrate for detection of thiram in juice. *Carbohydrate Polymers*
1356 **2018**, *189*, 79–86.

1357 117. Zhang, S.; Xiong, R.; Mahmoud, M.A.; Quigley, E.N.; Chang, H.; El-Sayed, M.; Tsukruk,
1358 V.V. Dual-Excitation Nanocellulose Plasmonic Membranes for Molecular and Cellular SERS
1359 Detection. *ACS Applied Materials & Interfaces* **2018**, *10*, 18380–18389.

1360 118. Abbasi-Moayed, S.; Golmohammadi, H.; Hormozi-Nezhad, M.R. A nanopaper-based
1361 artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical
1362 discrimination applications. *Nanoscale* **2018**, *10*, 2492–2502.

1363 119. Abbasi-Moayed, S.; Golmohammadi, H.; Bigdeli, A.; Hormozi-Nezhad, M.R. A rainbow
1364 ratiometric fluorescent sensor array on bacterial nanocellulose for visual discrimination of
1365 biothiols. *The Analyst* **2018**, *143*, 3415–3424.

1366 120. Fontenot, K.R.; Edwards, J.V.; Haldane, D.; Pircher, N.; Liebner, F.; Condon, B.D.;
1367 Qureshi, H.; Yager, D. Designing cellulosic and nanocellulosic sensors for interface with a
1368 protease sequestrant wound-dressing prototype: Implications of material selection for dressing
1369 and protease sensor design. *Journal of Biomaterials Applications* **2017**, *32*, 622–637.

1370 121. Anirudhan, T.S.; Deepa, J.R.; Binussreejayan Electrochemical sensing of cholesterol by
1371 molecularly imprinted polymer of silylated graphene oxide and chemically modified
1372 nanocellulose polymer. *Materials Science and Engineering: C* **2018**, *92*, 942–956.

1373 122. Liu, C.; Dong, J.; Waterhouse, G.I.N.; Cheng, Z.; Ai, S. Electrochemical immunosensor
1374 with nanocellulose-Au composite assisted multiple signal amplification for detection of avian
1375 leukosis virus subgroup J. *Biosensors and Bioelectronics* **2018**, *101*, 110–115.

1376 123. Mangayil, R.; Rajala, S.; Pammo, A.; Sarlin, E.; Luo, J.; Santala, V.; Karp, M.; Tuukkanen,
1377 S. Engineering and Characterization of Bacterial Nanocellulose Films as Low Cost and Flexible
1378 Sensor Material. *ACS Applied Materials & Interfaces* **2017**, *9*, 19048–19056.

1379 124. Rajala, S.; Siponkoski, T.; Sarlin, E.; Mettänen, M.; Vuoriluoto, M.; Pammo, A.; Juuti, J.;
1380 Rojas, O.J.; Franssila, S.; Tuukkanen, S. Cellulose Nanofibril Film as a Piezoelectric Sensor
1381 Material. *ACS Applied Materials & Interfaces* **2016**, *8*, 15607–15614.

1382 125. Hänninen, A.; Sarlin, E.; Lyyra, I.; Salpavaara, T.; Kellomäki, M.; Tuukkanen, S.
1383 Nanocellulose and chitosan based films as low cost, green piezoelectric materials.
1384 *Carbohydrate Polymers* **2018**, *202*, 418–424.

1385 126. Jung, M.; Kim, K.; Kim, B.; Lee, K.-J.; Kang, J.-W.; Jeon, S. Vertically stacked
1386 nanocellulose tactile sensor. *Nanoscale* **2017**, *9*, 17212–17219.

1387 127. Zhou, J.; Hsieh, Y.-L. Conductive Polymer Protonated Nanocellulose Aerogels for Tunable
1388 and Linearly Responsive Strain Sensors. *ACS Applied Materials & Interfaces* **2018**, *10*, 27902–
1389 27910.

1390 128. Meneguin, A.B.; Ferreira Cury, B.S.; dos Santos, A.M.; Franco, D.F.; Barud, H.S.; da Silva
1391 Filho, E.C. Resistant starch/pectin free-standing films reinforced with nanocellulose intended
1392 for colonic methotrexate release. *Carbohydrate Polymers* **2017**, *157*, 1013–1023.

1393 129. Silva, N.H.C.S.; Rodrigues, A.F.; Almeida, I.F.; Costa, P.C.; Rosado, C.; Neto, C.P.;
1394 Silvestre, A.J.D.; Freire, C.S.R. Bacterial cellulose membranes as transdermal delivery systems
1395 for diclofenac: In vitro dissolution and permeation studies. *Carbohydrate Polymers* **2014**, *106*,
1396 264–269.

1397 130. Bodhibukkana, C.; Srichana, T.; Kaewnopparat, S.; Tangthong, N.; Bouking, P.; Martin,
1398 G.P.; Suedee, R. Composite membrane of bacterially-derived cellulose and molecularly
1399 imprinted polymer for use as a transdermal enantioselective controlled-release system of
1400 racemic propranolol. *Journal of Controlled Release* **2006**, *113*, 43–56.

1401 131. Brassolatti, P.; Kido, H.W.; Bossini, P.S.; Gabbai-Armelin, P.R.; Otterço, A.N.; Almeida-
1402 Lopes, L.; Zanardi, L.M.; Napolitano, M.A.; de Avó, L.R. da S.; Forato, L.A.; et al. Bacterial
1403 cellulose membrane used as biological dressings on third-degree burns in rats. *Bio-Medical
1404 Materials and Engineering* **2018**, *29*, 29–42.

1405 132. Napavichayanun, S.; Yamdech, R.; Aramwit, P. The safety and efficacy of bacterial
1406 nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro,
1407 in vivo and clinical studies. *Archives of Dermatological Research* **2016**, *308*, 123–132.

1408 133. Alkhatib, Y.; Dewaldt, M.; Moritz, S.; Nitzsche, R.; Kralisch, D.; Fischer, D. Controlled
1409 extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system.
1410 *European Journal of Pharmaceutics and Biopharmaceutics* **2017**, *112*, 164–176.

1411 134. Weishaupt, R.; Heuberger, L.; Siqueira, G.; Gutt, B.; Zimmermann, T.; Maniura-Weber, K.;
1412 Salentinig, S.; Faccio, G. Enhanced Antimicrobial Activity and Structural Transitions of a
1413 Nanofibrillated Cellulose–Nisin Biocomposite Suspension. *ACS Applied Materials &*
1414 *Interfaces* **2018**, *10*, 20170–20181.

1415 135. Kontogiannopoulos, K.N.; Assimopoulou, A.N.; Tsivintzelis, I.; Panayiotou, C.;
1416 Papageorgiou, V.P. Electrospun fiber mats containing shikonin and derivatives with potential
1417 biomedical applications. *International Journal of Pharmaceutics* **2011**, *409*, 216–228.

1418 136. Asabuwa Ngwabebhoh, F.; Ilkar Erdagi, S.; Yildiz, U. Pickering emulsions stabilized
1419 nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro
1420 release, anticancer and antimicrobial activities. *Carbohydrate Polymers* **2018**, *201*, 317–328.

1421 137. Bacakova, L.; Novotna, K.; Sopuch, T.; Havelka, P. Cell Interaction with Cellulose-Based
1422 Scaffolds for Tissue Engineering – A Review. In *Cellulose and Cellulose Derivatives: Synthesis, Modification, Nanostructure and Applications*; Mondal, I.H., Ed.; Nova Science
1423 Publishers, Inc. Hauppauge: New York, USA, 2015; pp. 341–375 ISBN 978-1-63483-571-8.

1424 138. Bodin, A.; Ahrenstedt, L.; Fink, H.; Brumer, H.; Risberg, B.; Gatenholm, P. Modification
1425 of Nanocellulose with a Xyloglucan–RGD Conjugate Enhances Adhesion and Proliferation of
1426 Endothelial Cells: Implications for Tissue Engineering. *Biomacromolecules* **2007**, *8*, 3697–
1427 3704.

1428 139. Aulin, C.; Ahola, S.; Josefsson, P.; Nishino, T.; Hirose, Y.; Österberg, M.; Wågberg, L.
1429 Nanoscale Cellulose Films with Different Crystallinities and Mesostructures—Their Surface
1430 Properties and Interaction with Water. *Langmuir* **2009**, *25*, 7675–7685.

1431 140. Khan, R.A.; Salmieri, S.; Dussault, D.; Uribe-Calderon, J.; Kamal, M.R.; Safrany, A.;
1432 Lacroix, M. Production and Properties of Nanocellulose-Reinforced Methylcellulose-Based
1433 Biodegradable Films. *Journal of Agricultural and Food Chemistry* **2010**, *58*, 7878–7885.

1434 141. Azeredo, H.M.C.; Mattoso, L.H.C.; Avena-Bustillos, R.J.; Filho, G.C.; Munford, M.L.;
1435 Wood, D.; McHugh, T.H. Nanocellulose Reinforced Chitosan Composite Films as Affected by
1436 Nanofiller Loading and Plasticizer Content. *Journal of Food Science* **2010**, *75*, N1–N7.

1437 142. Kralisch, D.; Hessler, N.; Klemm, D.; Erdmann, R.; Schmidt, W. White biotechnology for
1438 cellulose manufacturing—the HoLiR concept. *Biotechnol. Bioeng.* **2010**, *105*, 740–747.

1439 143. Nyström, G.; Mihranyan, A.; Razaq, A.; Lindström, T.; Nyholm, L.; Strømme, M. A
1440 Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood. *The
1441 Journal of Physical Chemistry B* **2010**, *114*, 4178–4182.

1442 144. Iseli, A.M.; Kwen, H.-D.; Ul-Alam, M.; Balasubramanian, M.; Rajagopalan, S. Enhanced
1443 Contaminated Human Remains Pouch: initial development and preliminary performance
1444 assessments. *Am J Disaster Med* **2011**, *6*, 31–38.

1445

1446 145. Wesarg, F.; Schlott, F.; Grabow, J.; Kurland, H.-D.; Heßler, N.; Kralisch, D.; Müller, F.A.
1447 In Situ Synthesis of Photocatalytically Active Hybrids Consisting of Bacterial Nanocellulose
1448 and Anatase Nanoparticles. *Langmuir* **2012**, *28*, 13518–13525.

1449 146. Schütz, C.; Sort, J.; Bacsik, Z.; Oliynyk, V.; Pellicer, E.; Fall, A.; Wågberg, L.; Berglund,
1450 L.; Bergström, L.; Salazar-Alvarez, G. Hard and Transparent Films Formed by Nanocellulose–
1451 TiO₂ Nanoparticle Hybrids. *PLoS ONE* **2012**, *7*, e45828.

1452 147. Loranger, E.; Piché, A.-O.; Daneault, C. Influence of High Shear Dispersion on the
1453 Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp.
1454 *Nanomaterials* **2012**, *2*, 286–297.

1455 148. Díez, I.; Eronen, P.; Österberg, M.; Linder, M.B.; Ikkala, O.; Ras, R.H.A. Functionalization
1456 of Nanofibrillated Cellulose with Silver Nanoclusters: Fluorescence and Antibacterial Activity.
1457 *Macromolecular Bioscience* **2011**, *11*, 1185–1191.

1458 149. Muller, D.; Silva, J.P.; Rambo, C.R.; Barra, G.M.O.; Dourado, F.; Gama, F.M. Neuronal
1459 cells' behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds.
1460 *Journal of Biomaterials Science, Polymer Edition* **2013**, *24*, 1368–1377.

1461 150. Kowalska-Ludwicka, K.; Cala, J.; Grobelski, B.; Sygut, D.; Jesionek-Kupnicka, D.;
1462 Kolodziejczyk, M.; Bielecki, S.; Pasieka, Z. Modified bacterial cellulose tubes for regeneration
1463 of damaged peripheral nerves. *Archives of Medical Science* **2013**, *3*, 527–534.

1464 151. Nimeskern, L.; Martínez Ávila, H.; Sundberg, J.; Gatenholm, P.; Müller, R.; Stok, K.S.
1465 Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage
1466 replacement. *Journal of the Mechanical Behavior of Biomedical Materials* **2013**, *22*, 12–21.

1467 152. Feldmann, E.-M.; Sundberg, J.; Bobbili, B.; Schwarz, S.; Gatenholm, P.; Rotter, N.
1468 Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for
1469 reconstruction of a human auricle. *Journal of Biomaterials Applications* **2013**, *28*, 626–640.

1470 153. Pretzel, D.; Linss, S.; Ahrem, H.; Endres, M.; Kaps, C.; Klemm, D.; Kinne, R.W. A novel
1471 in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects
1472 with biocompatible bacterial nanocellulose. *Arthritis Research & Therapy* **2013**, *15*, R59.

1473 154. Fu, L.; Zhou, P.; Zhang, S.; Yang, G. Evaluation of bacterial nanocellulose-based uniform
1474 wound dressing for large area skin transplantation. *Materials Science and Engineering: C* **2013**,
1475 *33*, 2995–3000.

1476 155. Kuzmenko, V.; Sämfors, S.; Hägg, D.; Gatenholm, P. Universal method for protein
1477 bioconjugation with nanocellulose scaffolds for increased cell adhesion. *Materials Science and*
1478 *Engineering: C* **2013**, *33*, 4599–4607.

1479 156. Dugan, J.M.; Gough, J.E.; Eichhorn, S.J. Bacterial cellulose scaffolds and cellulose
1480 nanowhiskers for tissue engineering. *Nanomedicine* **2013**, *8*, 287–298.

1481 157. Abeer, M.M.; Mohd Amin, M.C.I.; Martin, C. A review of bacterial cellulose-based drug
1482 delivery systems: their biochemistry, current approaches and future prospects. *Journal of*
1483 *Pharmacy and Pharmacology* **2014**, n/a-n/a.

1484 158. Ullah, H.; Wahid, F.; Santos, H.A.; Khan, T. Advances in biomedical and pharmaceutical
1485 applications of functional bacterial cellulose-based nanocomposites. *Carbohydrate Polymers*
1486 **2016**, *150*, 330–352.

1487 159. Gumrah Dumanli, A. Nanocellulose and its Composites for Biomedical Applications.
1488 *Current Medicinal Chemistry* **2017**, *24*, 512–528.

1489 160. Halib, N.; Perrone, F.; Cemazar, M.; Dapas, B.; Farra, R.; Abrami, M.; Chiarappa, G.; Forte,
1490 G.; Zanconati, F.; Pozzato, G.; et al. Potential Applications of Nanocellulose-Containing
1491 Materials in the Biomedical Field. *Materials* **2017**, *10*, 977.

1492 161. Pötzinger, Y.; Kralisch, D.; Fischer, D. Bacterial nanocellulose: the future of controlled drug
1493 delivery? *Therapeutic Delivery* **2017**, *8*, 753–761.

1494 162. Xu, W.; Wang, X.; Sandler, N.; Willför, S.; Xu, C. Three-Dimensional Printing of Wood-
1495 Derived Biopolymers: A Review Focused on Biomedical Applications. *ACS Sustainable
1496 Chemistry & Engineering* **2018**, *6*, 5663–5680.

1497 163. Innala, M.; Riebe, I.; Kuzmenko, V.; Sundberg, J.; Gatenholm, P.; Hanse, E.; Johannesson,
1498 S. 3D Culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose
1499 scaffolds. *Artificial Cells, Nanomedicine, and Biotechnology* **2014**, *42*, 302–308.

1500 164. Jonsson, M.; Brackmann, C.; Puchades, M.; Brattås, K.; Ewing, A.; Gatenholm, P.; Enejder,
1501 A. Neuronal Networks on Nanocellulose Scaffolds. *Tissue Engineering Part C: Methods* **2015**,
1502 *21*, 1162–1170.

1503 165. Kuzmenko, V.; Karabulut, E.; Pernevik, E.; Enoksson, P.; Gatenholm, P. Tailor-made
1504 conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. *Carbohydrate
1505 Polymers* **2018**, *189*, 22–30.

1506 166. Martínez Ávila, H.; Feldmann, E.-M.; Pleumeekers, M.M.; Nimeskern, L.; Kuo, W.; de
1507 Jong, W.C.; Schwarz, S.; Müller, R.; Hendriks, J.; Rotter, N.; et al. Novel bilayer bacterial
1508 nanocellulose scaffold supports neocartilage formation in vitro and in vivo. *Biomaterials* **2015**,
1509 *44*, 122–133.

1510 167. Markstedt, K.; Mantas, A.; Tournier, I.; Martínez Ávila, H.; Hägg, D.; Gatenholm, P. 3D
1511 Bioprinting Human Chondrocytes with Nanocellulose–Alginate Bioink for Cartilage Tissue
1512 Engineering Applications. *Biomacromolecules* **2015**, *16*, 1489–1496.

1513 168. Nguyen, D.; Hägg, D.A.; Forsman, A.; Ekholm, J.; Nimkingratana, P.; Brantsing, C.;
1514 Kalogeropoulos, T.; Zaunz, S.; Concaro, S.; Brittberg, M.; et al. Cartilage Tissue Engineering
1515 by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink. *Scientific Reports* **2017**,
1516 7.

1517 169. Müller, M.; Öztürk, E.; Arlov, Ø.; Gatenholm, P.; Zenobi-Wong, M. Alginate Sulfate–
1518 Nanocellulose Bioinks for Cartilage Bioprinting Applications. *Annals of Biomedical
1519 Engineering* **2017**, *45*, 210–223.

1520 170. Naseri, N.; Deepa, B.; Mathew, A.P.; Oksman, K.; Girandon, L. Nanocellulose-Based
1521 Interpenetrating Polymer Network (IPN) Hydrogels for Cartilage Applications.
1522 *Biomacromolecules* **2016**, *17*, 3714–3723.

1523 171. Pereira, D.R.; Silva-Correia, J.; Oliveira, J.M.; Reis, R.L.; Pandit, A.; Biggs, M.J.
1524 Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus
1525 fibrosus tissue regeneration. *Nanomedicine: Nanotechnology, Biology and Medicine* **2018**, *14*,
1526 897–908.

1527 172. Malinen, M.M.; Kanninen, L.K.; Corlu, A.; Isoniemi, H.M.; Lou, Y.-R.; Yliperttula, M.L.;
1528 Urtti, A.O. Differentiation of liver progenitor cell line to functional organotypic cultures in 3D
1529 nanofibrillar cellulose and hyaluronan-gelatin hydrogels. *Biomaterials* **2014**, *35*, 5110–5121.

1530 173. Krontiras, P.; Gatenholm, P.; Hägg, D.A. Adipogenic differentiation of stem cells in three-
1531 dimensional porous bacterial nanocellulose scaffolds. *Journal of Biomedical Materials
1532 Research Part B: Applied Biomaterials* **2015**, *103*, 195–203.

1533 174. Henriksson, I.; Gatenholm, P.; Hägg, D.A. Increased lipid accumulation and adipogenic
1534 gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds. *Biofabrication* **2017**,
1535 *9*, 015022.

1536 175. Hong, F.; Wei, B.; Chen, L. Preliminary Study on Biosynthesis of Bacterial Nanocellulose
1537 Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis. *BioMed
1538 Research International* **2015**, *2015*, 1–9.

1539 176. Weber, C.; Reinhardt, S.; Eghbalzadeh, K.; Wacker, M.; Guschlbauer, M.; Maul, A.;
1540 Sterner-Kock, A.; Wahlers, T.; Wippermann, J.; Scherner, M. Patency and in vivo compatibility
1541 of bacterial nanocellulose grafts as small-diameter vascular substitute. *Journal of Vascular
1542 Surgery* **2018**, *68*, 177S–187S.e1.

1543 177. Echeverry-Rendon, M.; Reece, L.M.; Pastrana, F.; Arias, S.L.; Shetty, A.R.; Pavón, J.J.;
1544 Allain, J.P. Bacterial Nanocellulose Magnetically Functionalized for Neuro-Endovascular
1545 Treatment. *Macromolecular Bioscience* **2017**, *17*, 1600382.

1546 178. Pavón, J.J.; Allain, J.P.; Verma, D.; Echeverry-Rendón, M.; Cooper, C.L.; Reece, L.M.;
1547 Shetty, A.R.; Tomar, V. In situ Study Unravels Bio-Nanomechanical Behavior in a Magnetic
1548 Bacterial Nano-cellulose (MBNC) Hydrogel for Neuro-Endovascular Reconstruction.
1549 *Macromolecular Bioscience* **2018**, *18*, 1800225.

1550 179. Vielreicher, M.; Kralisch, D.; Völkl, S.; Sternal, F.; Arkudas, A.; Friedrich, O. Bacterial
1551 nanocellulose stimulates mesenchymal stem cell expansion and formation of stable collagen-I
1552 networks as a novel biomaterial in tissue engineering. *Scientific Reports* **2018**, *8*.

1553 180. Torres-Rendon, J.G.; Femmer, T.; De Laporte, L.; Tigges, T.; Rahimi, K.; Gremse, F.;
1554 Zafarnia, S.; Lederle, W.; Ifuku, S.; Wessling, M.; et al. Bioactive Gyroid Scaffolds Formed by
1555 Sacrificial Templating of Nanocellulose and Nanochitin Hydrogels as Instructive Platforms for
1556 Biomimetic Tissue Engineering. *Advanced Materials* **2015**, *27*, 2989–2995.

1557 181. Sundberg, J.; Götherström, C.; Gatenholm, P. Biosynthesis and in vitro evaluation of
1558 macroporous mineralized bacterial nanocellulose scaffolds for bone tissue engineering. *Biomed
1559 Mater Eng* **2015**, *25*, 39–52.

1560 182. Si, J.; Cui, Z.; Wang, Q.; Liu, Q.; Liu, C. Biomimetic composite scaffolds based on
1561 mineralization of hydroxyapatite on electrospun poly(ϵ -caprolactone)/nanocellulose fibers.
1562 *Carbohydrate Polymers* **2016**, *143*, 270–278.

1563 183. Chen, Q.; Garcia, R.P.; Munoz, J.; Pérez de Larraya, U.; Garmendia, N.; Yao, Q.;
1564 Boccaccini, A.R. Cellulose Nanocrystals—Bioactive Glass Hybrid Coating as Bone Substitutes
1565 by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and
1566 Enhancement of Osteoblastic Performance. *ACS Applied Materials & Interfaces* **2015**, *7*,
1567 24715–24725.

1568 184. Huang, J.-W.; Lv, X.-G.; Li, Z.; Song, L.-J.; Feng, C.; Xie, M.-K.; Li, C.; Li, H.-B.; Wang,
1569 J.-H.; Zhu, W.-D.; et al. Urethral reconstruction with a 3D porous bacterial cellulose scaffold
1570 seeded with lingual keratinocytes in a rabbit model. *Biomedical Materials* **2015**, *10*, 055005.

1571 185. Lv, X.; Feng, C.; Liu, Y.; Peng, X.; Chen, S.; Xiao, D.; Wang, H.; Li, Z.; Xu, Y.; Lu, M. A
1572 smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for
1573 urethral reconstruction. *Theranostics* **2018**, *8*, 3153–3163.

1574 186. Goldschmidt, E.; Cacicedo, M.; Kornfeld, S.; Valinoti, M.; Ielpi, M.; Ajler, P.M.;
1575 Yampolsky, C.; Rasmussen, J.; Castro, G.R.; Argibay, P. Construction and in vitro testing of a
1576 cellulose dura mater graft. *Neurological Research* **2016**, *38*, 25–31.

1577 187. Lang, N.; Merkel, E.; Fuchs, F.; Schumann, D.; Klemm, D.; Kramer, F.; Mayer-Wagner,
1578 S.; Schroeder, C.; Freudenthal, F.; Netz, H.; et al. Bacterial nanocellulose as a new patch
1579 material for closure of ventricular septal defects in a pig model. *European Journal of Cardio-
1580 Thoracic Surgery* **2015**, *47*, 1013–1021.

1581 188. Tummala, G.K.; Joffre, T.; Rojas, R.; Persson, C.; Mihranyan, A. Strain-induced stiffening
1582 of nanocellulose-reinforced poly(vinyl alcohol) hydrogels mimicking collagenous soft tissues.
1583 *Soft Matter* **2017**, *13*, 3936–3945.

1584 189. Ludwicka, K.; Kolodziejczyk, M.; Gendaszewska-Darmach, E.; Chrzanowski, M.;
1585 Jedrzejczak-Krzepkowska, M.; Rytczak, P.; Bielecki, S. Stable composite of bacterial
1586 nanocellulose and perforated polypropylene mesh for biomedical applications. *Journal of
1587 Biomedical Materials Research Part B: Applied Biomaterials* **2018**.

1588 190. Park, M.; Lee, D.; Hyun, J. Nanocellulose-alginate hydrogel for cell encapsulation.
1589 *Carbohydrate Polymers* **2015**, *116*, 223–228.

1590 191. Park, M.; Shin, S.; Cheng, J.; Hyun, J. Nanocellulose based asymmetric composite
1591 membrane for the multiple functions in cell encapsulation. *Carbohydrate Polymers* **2017**, *158*,
1592 133–140.

1593 192. Loh, E.Y.X.; Mohamad, N.; Fauzi, M.B.; Ng, M.H.; Ng, S.F.; Mohd Amin, M.C.I.
1594 Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and
1595 fibroblasts for full-thickness wound healing. *Scientific Reports* **2018**, *8*.

1596 193. Sulaeva, I.; Henniges, U.; Rosenau, T.; Potthast, A. Bacterial cellulose as a material for
1597 wound treatment: Properties and modifications. A review. *Biotechnology Advances* **2015**, *33*,
1598 1547–1571.

1599 194. Fontana, J.D.; De Souza, A.M.; Fontana, C.K.; Torriani, I.L.; Moreschi, J.C.; Gallotti, B.J.;
1600 De Souza, S.J.; Narcisco, G.P.; Bichara, J.A.; Farah, L.F.X. Acetobacter cellulose pellicle as a
1601 temporary skin substitute. *Applied Biochemistry and Biotechnology* **1990**, *24–25*, 253–264.

1602 195. Sanchavanakit, N.; Sangrungraungroj, W.; Kaomongkolgit, R.; Banaprasert, T.; Pavasant,
1603 P.; Phisalaphong, M. Growth of Human Keratinocytes and Fibroblasts on Bacterial Cellulose
1604 Film. *Biotechnology Progress* **2006**, *22*, 1194–1199.

1605 196. Kingkaew, J.; Jatupaiboon, N.; Sanchavanakit, N.; Pavasant, P.; Phisalaphong, M.
1606 Biocompatibility and Growth of Human Keratinocytes and Fibroblasts on Biosynthesized
1607 Cellulose–Chitosan Film. *Journal of Biomaterials Science, Polymer Edition* **2010**, *21*, 1009–
1608 1021.

1609 197. Keskin, Z.; Sendemir Urkmez, A.; Hames, E.E. Novel keratin modified bacterial cellulose
1610 nanocomposite production and characterization for skin tissue engineering. *Materials Science*
1611 and *Engineering: C* **2017**, *75*, 1144–1153.

1612 198. Khan, S.; Ul-Islam, M.; Ikram, M.; Islam, S.U.; Ullah, M.W.; Israr, M.; Jang, J.H.; Yoon,
1613 S.; Park, J.K. Preparation and structural characterization of surface modified microporous
1614 bacterial cellulose scaffolds: A potential material for skin regeneration applications in vitro and
1615 in vivo. *International Journal of Biological Macromolecules* **2018**, *117*, 1200–1210.

1616 199. Shi, Z.; Li, Y.; Chen, X.; Han, H.; Yang, G. Double network bacterial cellulose hydrogel to
1617 build a biology–device interface. *Nanoscale* **2014**, *6*, 970–977.

1618 200. Shah, N.; Ul-Islam, M.; Khattak, W.A.; Park, J.K. Overview of bacterial cellulose
1619 composites: A multipurpose advanced material. *Carbohydrate Polymers* **2013**, *98*, 1585–1598.

1620 201. de Oliveira Barud, H.G.; da Silva, R.R.; da Silva Barud, H.; Tercjak, A.; Gutierrez, J.;
1621 Lustri, W.R.; de Oliveira, O.B.; Ribeiro, S.J.L. A multipurpose natural and renewable polymer
1622 in medical applications: Bacterial cellulose. *Carbohydrate Polymers* **2016**, *153*, 406–420.

1623 202. Stumpf, T.R.; Yang, X.; Zhang, J.; Cao, X. In situ and ex situ modifications of bacterial
1624 cellulose for applications in tissue engineering. *Materials Science and Engineering: C* **2018**,
1625 *82*, 372–383.

1626 203. Skogberg, A.; Mäki, A.-J.; Mettänen, M.; Lahtinen, P.; Kallio, P. Cellulose Nanofiber
1627 Alignment Using Evaporation-Induced Droplet-Casting, and Cell Alignment on Aligned
1628 Nanocellulose Surfaces. *Biomacromolecules* **2017**, *18*, 3936–3953.

1629 204. Trovatti, E.; Tang, H.; Hajian, A.; Meng, Q.; Gandini, A.; Berglund, L.A.; Zhou, Q.
1630 Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive
1631 peptide. *Carbohydrate Polymers* **2018**, *181*, 256–263.

1632 205. Shefa, A.A.; Amirian, J.; Kang, H.J.; Bae, S.H.; Jung, H.-I.; Choi, H.; Lee, S.Y.; Lee, B.-T.
1633 In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose
1634 nanofiber-silk fibroin scaffold in wound healing. *Carbohydrate Polymers* **2017**, *177*, 284–296.

1635 206. Skogberg, A. unpublished data.

1636 207. Kim, M.; Kim, G. 3D multi-layered fibrous cellulose structure using an
1637 electrohydrodynamic process for tissue engineering. *Journal of Colloid and Interface Science*
1638 **2015**, *457*, 180–187.

1639 208. Vatankhah, E.; Prabhakaran, M.P.; Jin, G.; Mobarakeh, L.G.; Ramakrishna, S. Development
1640 of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment
1641 applications. *Journal of Biomaterials Applications* **2014**, *28*, 909–921.

1642 209. Atila, D.; Keskin, D.; Tezcaner, A. Cellulose acetate based 3-dimensional electrospun
1643 scaffolds for skin tissue engineering applications. *Carbohydrate Polymers* **2015**, *133*, 251–261.

1644 210. Khalili, S.; Nouri Khorasani, S.; Razavi, M.; Hashemi Beni, B.; Heydari, F.; Tamayol, A.
1645 Nanofibrous scaffolds with biomimetic structure. *Journal of Biomedical Materials Research*
1646 *Part A* **2018**, *106*, 370–376.

1647 211. Ahn, S.; Chantre, C.O.; Gannon, A.R.; Lind, J.U.; Campbell, P.H.; Grevesse, T.; O'Connor,
1648 B.B.; Parker, K.K. Soy Protein/Cellulose Nanofiber Scaffolds Mimicking Skin Extracellular
1649 Matrix for Enhanced Wound Healing. *Advanced Healthcare Materials* **2018**, *7*, 1701175.

1650 212. Zulkifli, F.H.; Jahir Hussain, F.S.; Abdull Rasad, M.S.B.; Mohd Yusoff, M. Improved
1651 cellular response of chemically crosslinked collagen incorporated hydroxyethyl
1652 cellulose/poly(vinyl) alcohol nanofibers scaffold. *Journal of Biomaterials Applications* **2015**,
1653 29, 1014–1027.

1654 213. Zulkifli, F.H.; Hussain, F.S.J.; Zeyohannes, S.S.; Rasad, M.S.B.A.; Yusuff, M.M. A facile
1655 synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue
1656 engineering applications. *Materials Science and Engineering: C* **2017**, 79, 151–160.

1657 214. Mo, Y.; Guo, R.; Liu, J.; Lan, Y.; Zhang, Y.; Xue, W.; Zhang, Y. Preparation and properties
1658 of PLGA nanofiber membranes reinforced with cellulose nanocrystals. *Colloids and Surfaces*
1659 *B: Biointerfaces* **2015**, 132, 177–184.

1660 215. Hu, Y.; Catchmark, J.M. In vitro biodegradability and mechanical properties of
1661 bioabsorbable bacterial cellulose incorporating cellulases. *Acta Biomaterialia* **2011**, 7, 2835–
1662 2845.

1663 216. Hu, Y.; Catchmark, J.M. Integration of cellulases into bacterial cellulose: Toward
1664 bioabsorbable cellulose composites. *Journal of Biomedical Materials Research Part B: Applied*
1665 *Biomaterials* **2011**, 97B, 114–123.

1666 217. Yadav, V.; Paniliatis, B.J.; Shi, H.; Lee, K.; Cebe, P.; Kaplan, D.L. Novel In Vivo-
1667 Degradable Cellulose-Chitin Copolymer from Metabolically Engineered *Gluconacetobacter*
1668 *xylinus*. *Applied and Environmental Microbiology* **2010**, 76, 6257–6265.

1669 218. Yadav, V.; Sun, L.; Panilaitis, B.; Kaplan, D.L. In vitro chondrogenesis with lysozyme
1670 susceptible bacterial cellulose as a scaffold. *Journal of Tissue Engineering and Regenerative*
1671 *Medicine* **2015**, 9, E276–E288.

1672 219. Elçin, A.E. In Vitro and In Vivo Degradation of Oxidized Acetyl- and Ethyl-Cellulose
1673 Sponges. *Artificial Cells, Blood Substitutes, and Biotechnology* **2006**, 34, 407–418.

1674 220. RoyChowdhury, P.; Kumar, V. Fabrication and evaluation of porous 2,3-
1675 dialdehydecellulose membrane as a potential biodegradable tissue-engineering scaffold.
1676 *Journal of Biomedical Materials Research Part A* **2006**, 76A, 300–309.

1677 221. Mohamad, N.; Loh, E.Y.X.; Fauzi, M.B.; Ng, M.H.; Mohd Amin, M.C.I. In vivo evaluation
1678 of bacterial cellulose/acrylic acid wound dressing hydrogel containing keratinocytes and
1679 fibroblasts for burn wounds. *Drug Delivery and Translational Research* **2018**.

1680 222. Souza, C.M.C.O.; Mesquita, L.A.F.; Souza, D.; Irioda, A.C.; Francisco, J.C.; Souza, C.F.;
1681 Guarita-Souza, L.C.; Sierakowski, M.-R.; Carvalho, K.A.T. Regeneration of Skin Tissue
1682 Promoted by Mesenchymal Stem Cells Seeded in Nanostructured Membrane. *Transplantation*
1683 *Proceedings* **2014**, 46, 1882–1886.

1684 223. Rodrigues, C.; de Assis, A.M.; Moura, D.J.; Halmenschlager, G.; Saffi, J.; Xavier, L.L.; da
1685 Cruz Fernandes, M.; Wink, M.R. New Therapy of Skin Repair Combining Adipose-Derived
1686 Mesenchymal Stem Cells with Sodium Carboxymethylcellulose Scaffold in a Pre-Clinical Rat
1687 Model. *PLoS ONE* **2014**, 9, e96241.

1688 224. Mertaniemi, H.; Escobedo-Lucea, C.; Sanz-Garcia, A.; Gandía, C.; Mäkitie, A.; Partanen,
1689 J.; Ikkala, O.; Yliperttula, M. Human stem cell decorated nanocellulose threads for biomedical
1690 applications. *Biomaterials* **2016**, 82, 208–220.

1691 225. Bacakova, M.; Pajorova, J.; Sopuch, T.; Bacakova, L. Fibrin-Modified Cellulose as a
1692 Promising Dressing for Accelerated Wound Healing. *Materials* **2018**, *11*, 2314.

1693 226. Kwak, M.H.; Kim, J.E.; Go, J.; Koh, E.K.; Song, S.H.; Son, H.J.; Kim, H.S.; Yun, Y.H.;
1694 Jung, Y.J.; Hwang, D.Y. Bacterial cellulose membrane produced by Acetobacter sp. A10 for
1695 burn wound dressing applications. *Carbohydrate Polymers* **2015**, *122*, 387–398.

1696 227. Li, Y.; Wang, S.; Huang, R.; Huang, Z.; Hu, B.; Zheng, W.; Yang, G.; Jiang, X. Evaluation
1697 of the Effect of the Structure of Bacterial Cellulose on Full Thickness Skin Wound Repair on
1698 a Microfluidic Chip. *Biomacromolecules* **2015**, *16*, 780–789.

1699 228. Springer, S.; Zieger, M.; Hippler, U.C.; Lademann, J.; Albrecht, V.; Bueckle, R.; Meß, C.;
1700 Kaatz, M.; Huck, V. Multiphotonic staging of chronic wounds and evaluation of sterile, optical
1701 transparent bacterial nanocellulose covering: A diagnostic window into human skin. *Skin
1702 Research and Technology* **2018**.

1703 229. Zhang, P.; Chen, L.; Zhang, Q.; Hong, F.F. Using In situ Dynamic Cultures to Rapidly
1704 Biofabricate Fabric-Reinforced Composites of Chitosan/Bacterial Nanocellulose for
1705 Antibacterial Wound Dressings. *Frontiers in Microbiology* **2016**, *7*.

1706 230. Aramwit, P.; Bang, N. The characteristics of bacterial nanocellulose gel releasing silk
1707 sericin for facial treatment. *BMC Biotechnology* **2014**, *14*.

1708 231. Lamboni, L.; Li, Y.; Liu, J.; Yang, G. Silk Sericin-Functionalized Bacterial Cellulose as a
1709 Potential Wound-Healing Biomaterial. *Biomacromolecules* **2016**, *17*, 3076–3084.

1710 232. Zhao, J.; Hu, L.; Gong, N.; Tang, Q.; Du, L.; Chen, L. The Effects of Macrophage-
1711 Stimulating Protein on the Migration, Proliferation, and Collagen Synthesis of Skin Fibroblasts
1712 In Vitro and In Vivo. *Tissue Engineering Part A* **2015**, *21*, 982–991.

1713 233. Picheth, G.F.; Sierakowski, M.R.; Woehl, M.A.; Ono, L.; Cofré, A.R.; Vanin, L.P.;
1714 Pontarolo, R.; De Freitas, R.A. Lysozyme-Triggered Epidermal Growth Factor Release from
1715 Bacterial Cellulose Membranes Controlled by Smart Nanostructured Films. *Journal of
1716 Pharmaceutical Sciences* **2014**, *103*, 3958–3965.

1717 234. Almeida, I.F.; Pereira, T.; Silva, N.H.C.S.; Gomes, F.P.; Silvestre, A.J.D.; Freire, C.S.R.;
1718 Sousa Lobo, J.M.; Costa, P.C. Bacterial cellulose membranes as drug delivery systems: An in
1719 vivo skin compatibility study. *European Journal of Pharmaceutics and Biopharmaceutics*
1720 **2014**, *86*, 332–336.

1721 235. Wu, H.; Williams, G.R.; Wu, J.; Wu, J.; Niu, S.; Li, H.; Wang, H.; Zhu, L. Regenerated
1722 chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials.
1723 *Carbohydrate Polymers* **2018**, *180*, 304–313.

1724 236. Luan, J.; Wu, J.; Zheng, Y.; Song, W.; Wang, G.; Guo, J.; Ding, X. Impregnation of silver
1725 sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing.
1726 *Biomedical Materials* **2012**, *7*, 065006.

1727 237. Wu, J.; Zheng, Y.; Wen, X.; Lin, Q.; Chen, X.; Wu, Z. Silver nanoparticle/bacterial cellulose
1728 gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. *Biomedical
1729 Materials* **2014**, *9*, 035005.

1730 238. Moniri, M.; Boroumand Moghaddam, A.; Azizi, S.; Abdul Rahim, R.; Zuhainis Saad, W.;
1731 Navaderi, M.; Arulselvan, P.; Mohamad, R. Molecular study of wound healing after using

1732 biosynthesized BNC/Fe₃O₄ nanocomposites assisted with a bioinformatics approach.
1733 *International Journal of Nanomedicine* **2018**, *Volume 13*, 2955–2971.

1734 239. Li, Y.; Tian, Y.; Zheng, W.; Feng, Y.; Huang, R.; Shao, J.; Tang, R.; Wang, P.; Jia, Y.;
1735 Zhang, J.; et al. Composites of Bacterial Cellulose and Small Molecule-Decorated Gold
1736 Nanoparticles for Treating Gram-Negative Bacteria-Infected Wounds. *Small* **2017**, *13*,
1737 1700130.

1738 240. Moritz, S.; Wiegand, C.; Wesarg, F.; Hessler, N.; Müller, F.A.; Kralisch, D.; Hippler, U.-C.;
1739 Fischer, D. Active wound dressings based on bacterial nanocellulose as drug delivery system
1740 for octenidine. *International Journal of Pharmaceutics* **2014**, *471*, 45–55.

1741 241. Żywicka, A.; Fijałkowski, K.; Junka, A.F.; Grzesiak, J.; El Fray, M. Modification of
1742 Bacterial Cellulose with Quaternary Ammonium Compounds Based on Fatty Acids and Amino
1743 Acids and the Effect on Antimicrobial Activity. *Biomacromolecules* **2018**, *19*, 1528–1538.

1744 242. Lin, W.-C.; Lien, C.-C.; Yeh, H.-J.; Yu, C.-M.; Hsu, S. Bacterial cellulose and bacterial
1745 cellulose–chitosan membranes for wound dressing applications. *Carbohydrate Polymers* **2013**,
1746 *94*, 603–611.

1747 243. Ataide, J.A.; de Carvalho, N.M.; Rebelo, M. de A.; Chaud, M.V.; Grotto, D.; Gerenutti, M.;
1748 Rai, M.; Mazzola, P.G.; Jozala, A.F. Bacterial Nanocellulose Loaded with Bromelain:
1749 Assessment of Antimicrobial, Antioxidant and Physical-Chemical Properties. *Scientific
1750 Reports* **2017**, *7*.

1751 244. Zmejkoski, D.; Spasojević, D.; Orlovska, I.; Kozyrovska, N.; Soković, M.; Glamočlija, J.;
1752 Dmitrović, S.; Matović, B.; Tasić, N.; Maksimović, V.; et al. Bacterial cellulose-lignin
1753 composite hydrogel as a promising agent in chronic wound healing. *International Journal of
1754 Biological Macromolecules* **2018**, *118*, 494–503.

1755 245. Khamrai, M.; Banerjee, S.L.; Paul, S.; Samanta, S.; Kundu, P.P. Curcumin entrapped
1756 gelatin/ionically modified bacterial cellulose based self-healable hydrogel film: An eco-
1757 friendly sustainable synthesis method of wound healing patch. *Int. J. Biol. Macromol.* **2018**,
1758 *122*, 940–953.

1759 246. Kumavat, S.D.; Chaudhari, Y.S.; Borole, P.; Mishra, P.; Shenghani, K.; Duvvuri, P.
1760 Degradation studies of curcumin. *International Journal of Pharmacy Review & Research* **2013**,
1761 *3*, 50–55.

1762 247. Esatbeyoglu, T.; Ulbrich, K.; Rehberg, C.; Rohn, S.; Rimbach, G. Thermal stability,
1763 antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl
1764 guaiacol. *Food & Function* **2015**, *6*, 887–893.

1765 248. Kolarova, K. unpublished data.

1766 249. Taokaew, S.; Nunkaew, N.; Siripong, P.; Phisalaphong, M. Characteristics and anticancer
1767 properties of bacterial cellulose films containing ethanolic extract of mangosteen peel. *Journal
1768 of Biomaterials Science, Polymer Edition* **2014**, *25*, 907–922.

1769 250. Sun, F.; Nordli, H.R.; Pukstad, B.; Kristofer Gamstedt, E.; Chinga-Carrasco, G. Mechanical
1770 characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions.
1771 *Journal of the Mechanical Behavior of Biomedical Materials* **2017**, *69*, 377–384.

1772 251. Vosmanska, V.; Kolarova, K.; Rimpelova, S.; Svorcik, V. Surface modification of oxidized
1773 cellulose haemostat by argon plasma treatment. *Cellulose* **2014**, *21*, 2445–2456.

1774 252. Jack, A.A.; Nordli, H.R.; Powell, L.C.; Powell, K.A.; Kishnani, H.; Johnsen, P.O.; Pukstad,
1775 B.; Thomas, D.W.; Chinga-Carrasco, G.; Hill, K.E. The interaction of wood nanocellulose
1776 dressings and the wound pathogen *P. aeruginosa*. *Carbohydrate Polymers* **2017**, *157*, 1955–
1777 1962.

1778 253. Poonguzhali, R.; Khaleel Basha, S.; Sugantha Kumari, V. Novel asymmetric
1779 chitosan/PVP/nanocellulose wound dressing: In vitro and in vivo evaluation. *International
1780 Journal of Biological Macromolecules* **2018**, *112*, 1300–1309.

1781 254. Rees, A.; Powell, L.C.; Chinga-Carrasco, G.; Gethin, D.T.; Syverud, K.; Hill, K.E.; Thomas,
1782 D.W. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for
1783 Wound Dressing Applications. *BioMed Research International* **2015**, *2015*, 1–7.

1784 255. Wang, X.; Cheng, F.; Liu, J.; Smått, J.-H.; Gepperth, D.; Lastusaari, M.; Xu, C.; Hupa, L.
1785 Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose:
1786 Biocompatibility and angiogenic promotion in chronic wound healing application. *Acta
1787 Biomaterialia* **2016**, *46*, 286–298.

1788 256. Werrett, M.V.; Herdman, M.E.; Brammananth, R.; Garusinghe, U.; Batchelor, W.; Crellin,
1789 P.K.; Coppel, R.L.; Andrews, P.C. Bismuth Phosphinates in Bi-Nanocellulose Composites and
1790 their Efficacy towards Multi-Drug Resistant Bacteria. *Chemistry - A European Journal* **2018**,
1791 *24*, 12938–12949.

1792 257. Evdokimova, O.; Svensson, F.; Agafonov, A.; Håkansson, S.; Seisenbaeva, G.; Kessler, V.
1793 Hybrid Drug Delivery Patches Based on Spherical Cellulose Nanocrystals and Colloid
1794 Titania—Synthesis and Antibacterial Properties. *Nanomaterials* **2018**, *8*, 228.

1795 258. Kwon, S.S.; Kong, B.J.; Park, S.N. Physicochemical properties of pH-sensitive hydrogels
1796 based on hydroxyethyl cellulose–hyaluronic acid and for applications as transdermal delivery
1797 systems for skin lesions. *European Journal of Pharmaceutics and Biopharmaceutics* **2015**, *92*,
1798 146–154.

1799 259. Sampath Udeni Gunathilake, T.M.; Ching, Y.C.; Chuah, C.H.; Illias, H.A.; Ching, K.Y.;
1800 Singh, R.; Nai-Shang, L. Influence of a nonionic surfactant on curcumin delivery of
1801 nanocellulose reinforced chitosan hydrogel. *International Journal of Biological
1802 Macromolecules* **2018**, *118*, 1055–1064.

1803 260. Suwannateep, N.; Wanichwecharungruang, S.; Fluhr, J.; Patzelt, A.; Lademann, J.; Meinke,
1804 M.C. Comparison of two encapsulated curcumin particular systems contained in different
1805 formulations with regard to in vitro skin penetration. *Skin Research and Technology* **2013**, *19*,
1806 1–9.

1807 261. Anjum, S.; Gupta, A.; Sharma, D.; Gautam, D.; Bhan, S.; Sharma, A.; Kapil, A.; Gupta, B.
1808 Development of novel wound care systems based on nanosilver nanohydrogels of
1809 polymethacrylic acid with Aloe vera and curcumin. *Materials Science and Engineering: C*
1810 **2016**, *64*, 157–166.

1811 262. Mo, Y.; Guo, R.; Zhang, Y.; Xue, W.; Cheng, B.; Zhang, Y. Controlled Dual Delivery of
1812 Angiogenin and Curcumin by Electrospun Nanofibers for Skin Regeneration. *Tissue
1813 Engineering Part A* **2017**, *23*, 597–608.

1814 263. Guo, R.; Lan, Y.; Xue, W.; Cheng, B.; Zhang, Y.; Wang, C.; Ramakrishna, S. Collagen-
1815 cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-

1816 thickness burns repair. *Journal of Tissue Engineering and Regenerative Medicine* **2017**, *11*,
1817 3544–3555.

1818 264. Vosmanská, V.; Kolářová, K.; Rimpelová, S.; Kolská, Z.; Švorčík, V. Antibacterial wound
1819 dressing: plasma treatment effect on chitosan impregnation and in situ synthesis of silver
1820 chloride on cellulose surface. *RSC Advances* **2015**, *5*, 17690–17699.

1821 265. Li, J.; Cha, R.; Mou, K.; Zhao, X.; Long, K.; Luo, H.; Zhou, F.; Jiang, X. Nanocellulose-
1822 Based Antibacterial Materials. *Advanced Healthcare Materials* **2018**, *7*, 1800334.

1823 266. Dong, S.; Cho, H.J.; Lee, Y.W.; Roman, M. Synthesis and Cellular Uptake of Folic Acid-
1824 Conjugated Cellulose Nanocrystals for Cancer Targeting. *Biomacromolecules* **2014**, *15*, 1560–
1825 1567.

1826 267. Zheng, Z.; Liu, Y.; Huang, W.; Mo, Y.; Lan, Y.; Guo, R.; Cheng, B. Neurotensin-loaded
1827 PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing. *Artificial
1828 Cells, Nanomedicine, and Biotechnology* **2018**, *1*–9.

1829 268. Taheri, A.; Mohammadi, M. The Use of Cellulose Nanocrystals for Potential Application
1830 in Topical Delivery of Hydroquinone. *Chemical Biology & Drug Design* **2015**, *86*, 102–106.

1831 269. Meng, L.-Y.; Wang, B.; Ma, M.-G.; Zhu, J.-F. Cellulose-based Nanocarriers as Platforms
1832 for Cancer Therapy. *Curr. Pharm. Des.* **2017**, *23*, 5292–5300.

1833 270. Edwards, J.; Fontenot, K.; Liebner, F.; Condon, B. Peptide-Cellulose Conjugates on Cotton-
1834 Based Materials Have Protease Sensor/Sequestrant Activity. *Sensors* **2018**, *18*, 2334.

1835 271. Edwards, J.; Fontenot, K.; Liebner, F.; Pircher, N.; French, A.; Condon, B. Structure/Function
1836 Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of
1837 Protease Aerogels Compared to Nanocrystalline and Paper Cellulose. *International Journal of Molecular Sciences* **2018**, *19*, 840.

1838 272. Bhattacharya, K.; Kılıç, G.; Costa, P.M.; Fadeel, B. Cytotoxicity screening and cytokine
1839 profiling of nineteen nanomaterials enables hazard ranking and grouping based on
1840 inflammogenic potential. *Nanotoxicology* **2017**, *11*, 809–826.

1841 273. Lopes, V.R.; Sanchez-Martinez, C.; Strømme, M.; Ferraz, N. In vitro biological responses
1842 to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect.
1843 *Particle and Fibre Toxicology* **2017**, *14*.

1844 274. Hua, K.; Ålander, E.; Lindström, T.; Mihranyan, A.; Strømme, M.; Ferraz, N. Surface
1845 Chemistry of Nanocellulose Fibers Directs Monocyte/Macrophage Response.
1846 *Biomacromolecules* **2015**, *16*, 2787–2795.

1847 275. Menas, A.L.; Yanamala, N.; Farcas, M.T.; Russo, M.; Friend, S.; Fournier, P.M.; Star, A.;
1848 Iavicoli, I.; Shurin, G.V.; Vogel, U.B.; et al. Fibrillar vs crystalline nanocellulose pulmonary
1849 epithelial cell responses: Cytotoxicity or inflammation? *Chemosphere* **2017**, *171*, 671–680.

1850 276. Park, E.-J.; Khaliullin, T.O.; Shurin, M.R.; Kisin, E.R.; Yanamala, N.; Fadeel, B.; Chang,
1851 J.; Shvedova, A.A. Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and
1852 crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice.
1853 *Journal of Immunotoxicology* **2018**, *15*, 12–23.

1854 277. Liu, J.; Bacher, M.; Rosenau, T.; Willför, S.; Mihranyan, A. Potentially Immunogenic
1855 Contaminants in Wood-Based and Bacterial Nanocellulose: Assessment of Endotoxin and
1856 (1,3)- β -d-Glucan Levels. *Biomacromolecules* **2018**, *19*, 150–157.

1857