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ABSTRACT 3D object reconstruction from depth image streams using Kinect-style depth cameras have 

been extensively studied. We propose an approach for accurate camera tracking and volumetric dense surface 

reconstruction, assuming a known cuboid reference object is present in the scene. Our contribution is three-

fold: (a) we keep drift-free camera pose tracking by incorporating the 3D geometric constraints of the cuboid 

reference object into the image registration process; (b) on the problem of depth stream fusion, we reformulate 

it as a binary classification problem, enabling high fidelity of surface reconstruction, especially in concave 

zones of the objects; (c) we further present a surface denoising strategy, facilitating the generation of  noise-

free triangle mesh, making the models more suitable for 3D printing and other applications. We extend our 

public dataset CU3D with several fresh image sequences, test our algorithm on these sequences and compare 

them with other state-of-the-art algorithms. Both our dataset and algorithm are available as open-source at 

https://github.com/zhangxaochen/CuFusion, for other researchers to reproduce and verify our results. 

INDEX TERMS 3D object reconstruction, depth cameras, Kinect sensors; open source, signal denoising, 

SLAM 

I. INTRODUCTION 

Reconstructing the 3D surface model from a sequence of 

provided range images has been an active research topic dur-

ing the last decade. In recent years, the emergence of depth 

cameras based either on structured light (e.g. Asus Xtion, 

Kinect 1.0) or time-of-flight (ToF) (e.g. Kinect 2.0) sensing 

offers dense depth measurements directly at a high frame rate 

as video streams. The KinectFusion algorithm [1] introduced 

by Newcombe et al. is one of the most seminal works for real-

time camera tracking and dense environment reconstruction, 

turning the depth sensors into consumer-grade 3D scanners. It 

uses fast iterative closest point (ICP) [2], [3] for camera pose 

estimation, and a volume known as the truncated signed 

distance function (TSDF) for scene representation. The 

connected mesh surfaces are latterly extracted using the 

marching cubes algorithm [4]. 

On reconstruction accuracy, however, the KinectFusion 

algorithm suffers from a number of limitations, including the 

ICP image registration algorithm that prone to accumulate 

drift in the presence structure-less surfaces, the inability to 

recover from drift, and the problem of surface deformation for 

highly curved and concave zones of the scanned objects [5]. 

Many researchers have been working on solving these 

problems. ICP variants such as point-to-plane ICP [6] and 

generalized ICP (GICP) [7] are proposed for better image 

alignment. Loop closures are detected and pose graphs are 

built and optimized online [8]–[12] or offline [13], [14] to 

produce robust and globally consistent maps. To address the 

surface deformation problem, Whelan et al. propose the 

ElasticFusion framework [10], [15] to activate non-rigid 

model-to-model refinement which also relies on local loop 

closure detection. Slavcheva et al. propose the SDF-2-SDF 

algorithm [16], [17] which focus on the small-scale object 

reconstruction. Similarly, we have also proposed a CuFusion 

framework [18] for accurate camera localization and object 

modelling, under the assumption that a known cuboid refer-

ence object present in the scene. A prediction-corrected TSDF 

fusion strategy is applied instead of simple moving average 

fusion, to resolve the surface deformation problem. 

However, the reconstruction quality of [18] relies heavily 

on the quality of the raw depth measurements. To keep recon-

struction fidelity in particularly highly curved zones of the 

objects, the input depth images should contain as less motion 

blur as possible, which requires the camera orbiting steadily. 

Even mild blur in depth measurement caused by slightly faster 

camera motion may lead to reconstruction failure on sharp 

edges of the objects. To address these problems, in this paper 

we introduce a novel approach which is an extension of our 

previous work [18]. The major contributions are as follows: 

⚫ we propose an ICP variant which takes the constraints of 

the known reference object into account for robust and 
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accurate camera pose estimation. With the supplemen-

tary information of the reference object, we keep near-

optimal camera tracking for each frame, making it 

possible for accurate object reconstruction. We build 

pose graphs and solve for optimized camera poses, and 

compare them with those without graph optimization, 

demonstrating that our method is accurate enough; 

⚫ we reformulate the data fusion task as a per voxel binary 

classification task, to keep reconstruction fidelity and 

resistant to motion blur result from camera jitters; 

⚫ we present a denoising strategy, which performs noise 

reduction directly on the generated volume during scan-

ning, resulting in cleaner mesh surface outputs, taking it 

one step further for the industrial applicability of the 

output surface models such as in 3D printing. 

We focus on the geometric fidelity, taking depth streams 

only as input. We perform a qualitative and quantitative 

evaluation on reconstructions from both synthetic and real-

world sequences of the CU3D dataset. Both the camera 

trajectory and reconstruction accuracy are compared with the 

state-of-the-art approaches. We show the fidelity of the 

reconstruction of our method and release our code and dataset 

to the community for future work. 

II. RELATED WORK 

Simultaneous localization and mapping (SLAM) has been 

extensively studied. Monocular RGB camera tracking systems 

such as MonoSLAM [19] and PTAM [20] allow users to get 

the camera trajectories and sparse point cloud models. Dense 

reconstruction systems [21]–[23] have also been proposed to 

replace point cloud based systems. With the advent of Kinect-

style active depth sensors, the KinectFusion [1] algorithm 

permits dense volumetric reconstruction of the scene in real-

time, enabling mesh models output for physics-based augm-

ented reality (AR) [24] and 3D printing [25]. Improved 

frameworks have then been proposed in the aspects of 

memory efficiency [26]–[28], large space representation [8], 

[11], [27], [29], camera trajectory accuracy with loop closure 

detection and optimization [12], [27], [30], and scene 

representation such as surfels [31] or hybrid data structure 

[32]. 

Some researchers use the structural priors for accurate 

camera localization. Zhou et al. [33] introduce an approach for 

robust contour cues extraction and integrate the contour 

constraints into the registration objective, stabilizing camera 

tracking in challenging scenarios. High-level features such as 

planes [34]–[38] and objects [39], [40] are also used as 

primitives to provide more constraints to camera pose 

estimation. In this paper, we make full use of the information 

of a precisely man-made cuboid reference object, namely, the 

orthogonal and parallel planar facets, the contour cues of 

certainly known length as constraints for camera localization 

stabilization. The accurate and robust camera trajectories are 

latterly used in the model generation process, to integrate 

single images into consistent models in the global coordinate. 

Different dense scene representations have also been 

explored in the literature. Occupancy mapping using a grid of 

cells to represent the space has been popular in robotics. A 

probability of occupancy in each cell is accumulated via 

Bayesian updates every time a new informative observation is 

provided [41]. Similarly, the signed distance function (SDF) 

volumetric representation introduced in [42] is often used in 

graphics to fuse partial depth scans into one global model. The 

SDF represents the surface interfaces implicitly as zeros, and 

the mesh models can be extracted using the marching cubes 

type algorithm [4]. Instead of volumes, surfels [10], [31], [43], 

[44] are also exploited to represent the scene. It renders the 

scene with the surface-splatting technique [45] and reduces the 

computational complexity and memory overhead compared 

with the volumetric approaches. The volumetric represe-

ntation has been reported as difficult to resolve the highly 

curved and concave details such as the folds in the garment [5] 

or thin geometries [18] although the voxels are small enough. 

[18] introduced a prediction-corrected data fusion strategy for 

geometry details preservation. By storing surface normal and 

view ray vectors per voxel as additional information, it enables 

fast correction of the surface where deformation previously 

accumulated. The main issue of [18] resides in the resistless of 

motion blur in raw depth measurements, as well as the high 

memory consumption. In this paper, we introduce a novel 

method for data fusion, converting the typical moving average 

to a scheme of per voxel probabilistic binary classification, 

and resulting in high fidelity of reconstruction in especially 

sharp geometries. 

There have been many popular RGB-D datasets created for 

the evaluation of indoor 3D reconstruction. The TUM RGB-

D dataset [46] offers a set of RGB-D images with accurate and 

time-synchronized ground-truth (GT) camera poses from a 

motion capture system. It mainly aims at trajectory estimation 

and lacked the GT scene models. To assess the scene 

reconstruction, the ICL-NUIM dataset [47] generates both GT 

poses and models for quantitatively evaluation of the final 

reconstruction with the synthetic model of  one scene. 

Slavcheva et al. provide the first object dataset with GT CAD 

models and camera trajectories. It 3D-printed a selection of 

small objects and scanned them with a markerboard placed 

below them. 

Similarly, we provide a dataset CU3D in [18], with both 

synthetic and real-world sequences. Our synthetic sequences 

provide both GT object models and camera poses, whereas the 

real-world data are generated by scanning six 3D-printed 

objects and have GT models only. In this work, we extend this 

dataset with several supplementary sequences. Although we 

have no per vertex GT for these newly added scans, we verify 

the reconstruction accuracy by evaluating the total length of 

the reconstructed model, compared with the Vernier caliper 

measurements as GT. 
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Figure 1.  An overview of our system pipeline.

 

III. METHOD 

We base our work on the open-sourced implementation of the 

KinectFusion algorithm from the PCL library [48]. Our 

reconstruction pipeline is illustrated in Fig. 1, which is 

described in detail in the following sub-sections. 

A. MATHEMATICAL NOTATION 

We define the image domain as Ω ⊂ ℕ2, and a depth image at 

time 𝑘 is defined as 𝐷𝑘 : Ω → ℝ, where each single pixel 𝑝 ∈
Ω  in the image stores the distance from the camera to the 

surface. Assuming the camera intrinsic matrix is known, we 

define the projection and de-homogenization function  𝜋 ∶
𝑝 = 𝜋(𝑃)  to map a 3D point 𝑃 = (𝑥, 𝑦, 𝑧)𝑇 ∈ ℝ3  in the 

camera coordinate onto the image location𝑝 = (𝑢, 𝑣)𝑇 ∈ ℕ2. 
We present the 6 degrees-of-freedom (6DOF) camera pose at 

time 𝑘 in the global coordinate frame by a rigid transformation 

matrix: 

Tg, k = [
Rg, k tg, k

0T 1
] ∈ 𝕊𝔼(3) (1) 

with a 3 × 3  rotation matrix Rg, k ∈ 𝕊𝕆(3)  and a 3 × 1 

translation vector tg, k ∈ ℝ
3 , which transforms a point 𝑃𝑘 ∈

ℝ3  in the camera coordinate frame to a global point 𝑃g =
Rg, k𝑃𝑘 + tg, k ∈ ℝ

3 . For simplicity, we omit the conversion 

between the 3-vectors and their corresponding homogeneous 

4-vectors. A depth pixel p can be back-projected to the global 

coordinate frame: 𝑃g = Tg, k𝜋
−1(𝑝, 𝐷𝑘(𝑝)) . An organized 

vertex map 𝑉𝑘  is computed by bilateral-filtering and back-

projecting the raw depth image  𝐷𝑘 , and its corresponding 

normal map 𝑁𝑘 is computed using the Principal Component 

Analysis (PCA) method. 

B. CUBOID LOCALIZATION AS INITIALIZATION 

Given a depth image 𝐷𝑘 and the reference cuboid with edge 

lengths 𝐿𝑐𝑢 = (𝑎, 𝑏, 𝑐) present in the image, we localize the 

cuboid and calculate its pose in the global coordinate frame. 

Live depth frames will be latterly aligned against it when 

scanning around it to mitigate the accumulating camera drift. 

We first perform plane segmentation using the Agglome-

rative Hierarchical Clustering (AHC) algorithm [49]. Then we 

check the orthogonality of the segmented planes. Two planes 

are considered to be orthogonal if the angle 𝛩𝑝 between their 

normal vectors is approximately 90° (i.e. |𝛩𝑝 − 90°| <
𝜀𝛩;  𝜀𝛩 = 5°). Once we find three planes that are orthogonal 

to each other, we check the length of the intersecting line 

segments between the planes. If the three line segments’ 

lengths match the cuboid edge length parameter 𝒫𝑐𝑢 approx-

imately differences below a threshold (𝜀𝒫 = 10 𝑚𝑚 ), we 

claim to find the cuboid and mark the three planes as its 

adjacent planes. 

We consequently define the cuboid coordinate frame of 

reference. We set frame origin 𝑂𝑐𝑢 to the intersection point of 

the three orthogonal planes, and draw the system axes from 

the normal vectors. Due to the inaccuracy of the depth 

measurement and camera intrinsic calibration, orthogonality 

between the normal vectors of the segmented adjacent planes 

are not guaranteed strictly. We obtain the nearest orthogonal 

axes [𝑋𝑐𝑢 , 𝑌𝑐𝑢 , 𝑍𝑐𝑢] of the frame by solving the Orthogonal 

Procrustes Problem, where 𝑋𝑐𝑢  et al. are 3 × 1  column 

vectors. The cuboid pose in the camera frame at time k is: 

Tk, cu = [
Rk, cu tk, cu

0T 1
] ∈ 𝕊𝔼(3) (2) 

Rk, cu = [𝑋𝑐𝑢 , 𝑌𝑐𝑢 , 𝑍𝑐𝑢] (3) 

tk, cu = 𝑂𝑐𝑢
𝑇  (4) 

Depth Images

Cuboid Localization

Determine the pose of the 

cuboid reference object in 

the global coordinate frame.

  

Surface Measurement

Compute the surface 

vertex and normal map, 

and the pixel ray map.

  

Camera Pose Estimation

Refined with the cuboid:

  =𝑎  𝑚  
𝑇

(  2 +

  2𝑐  2𝑐 +  2𝑐  2𝑐) 

     − 

 

     − 

 

   

Reconstruction Update

Probabilistic binary 

classification as data 

fusion.

  ,   ,    

Surface Prediction

Raycast TSDF to compute 

synthesized  vertex and 

normal maps.

  
  , − 

  , − 

   − 
 

    − 
 Thin Geometry Detection

Each pixel ray is cast 

through the front and back 

surface to find thin walls.

  − 

  ,   

  
 

  , 
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Assuming the camera pose Tg, k  at time k is known, the 

cuboid pose Tg, cu in the global frame of coordinate could then 

be derived: Tg, cu = Tg, k Tk, cu. Fig. 2 illustrates the notations 

used in the paper. 

 

Figure 2.  Illustration of the notations used in this paper. 

 

Note that the cuboid pose in the global frame is only 

evaluated once when we find a triplet of orthogonal planes and 

left unchanged afterwards. Each incoming depth image is 

aligned against it to reduce camera drift, as described in the 

following sections. 

C. CAMERA POSE ESTIMATION 

Since we use depth maps as input sequences, only geometric 

alignment is performed. For each input frame 𝐷𝑘 at time 𝑘, we 

estimate the current camera pose Tg, k by registering the live 

depth map to both the globally reconstructed surface model 

and the reference cuboid. 

1)  FRAME TO MODEL REGISTRATION 

Given the implicit TSDF surface model 𝑆 and the previously 

estimated camera pose Tg, k-1  at time  𝑘 − 1 , an organized 

vertex and normal map (𝑉̂𝑘−1, 𝑁 𝑘−1) could be obtained via 

per-pixel raycast, and then transformed into the global frame 

as (𝑉̂𝑘−1
g
, 𝑁 𝑘−1
g
). For frame-to-model registration, a transform-

ation Tg, k  is pursued to minimize the point-to-plane error 

between Tg, k𝑉𝑘 and 𝑉̂𝑘−1
g

: 

  2 (Tg, k) = ∑ ((Tg, k𝑉𝑘(𝑝) −(𝑝,𝑝)∈𝕂1

𝑉̂𝑘−1
g (𝑝̂))𝑁 𝑘−1

g (𝑝̂))
2

 (5) 

where 𝕂1 = {(𝑝, 𝑝̂)} is the set of correspondences associated 

by projective data association [1]: 

𝑝̂ = 𝜋 ( ̃𝑘−1,𝑘𝑉𝑘(𝑝)) (6) 

where  ̃𝑘−1,𝑘  denotes the transformation from current time 𝑘 

to time (𝑘 − 1) during each ICP iteration. 

2)  FRAME TO CUBOID REGISTRATION 

Assuming the cuboid pose has previously been initialized, for 

each camera pose Tg, k-1, per-pixel ray casting is performed on 

the reference cuboid to synthesize a proxy depth map 𝐷 𝑘−1
𝑐𝑢 . 

An organized vertex and normal map in the global frame as 

(𝑉𝑐𝑢 𝑘−1

g
, 𝑁𝑐𝑢 𝑘−1

g
) is then derived by back-projecting the proxy 

depth map and transforming local maps to global space. 

Similar to the frame-to-model registration, the distance 

between the current depth measurement and the cuboid 

surface (frame-to-cuboid) is minimized: 

  2𝑐(Tg, k) = ∑ ((Tg, k𝑉𝑘(𝑝) −(𝑝,𝑝)∈𝕂2

𝑉𝑐𝑢 𝑘−1

g
(𝑝̂))𝑁𝑐𝑢 𝑘−1

g
(𝑝̂))

2

 (7) 

In addition, we exploit the edge-to-contour distance as a 

constraint term to mitigate the potential camera drift. Contours 

of the reference cuboid could be discretized into a 3D point set 

𝑉𝑒𝑔
𝑐𝑢 in the global frame with an interval of 1 mm, once the 

cuboid is successfully localized. Given the inpainted depth 

map 𝐷𝑘
′ , we find the edge pixel set 𝐶𝑘 at depth discontinuities 

in the live depth map, as proposed in [33]. The 3D edge point 

set 𝑉𝑒𝑘 could then be derived by back-projection of 𝐶𝑘. The 

edge-to-contour error to minimize is: 

  2𝑐(Tg, k) = ∑ ((Tg, k𝑉𝑒𝑘(𝑠) −(𝑠,𝑡)∈𝕂3

𝑉𝑒g
𝑐𝑢(𝑡))𝑁𝑐𝑢 𝑘−1

g
(𝑡))

2

 (8) 

where  𝕂3 = {(𝑠, 𝑡)}  is the correspondence set obtained by 

nearest neighbor search with KD-tree. 

3)  JOINT OPTIMIZATION 

We combine (5), (7), and (8) to form a joint cost function: 

 𝑡𝑟𝑎𝑐𝑘 =   2 +  2𝑐  2𝑐 +  2𝑐  2𝑐 (9) 

where   2𝑐  and   2𝑐  are the weights that determine the 

influence of correspondences on the cuboid surfaces and 

contours. When setting   2𝑐 =   2 = 0, our optimization 

objective is equivalent to KinectFusion. We set   2𝑐 = 1 and 

  2 = 4  in our experiments empirically, enforcing the 

constraint of the contour correspondences. We compute the 

camera pose Tg, k by minimizing the linear approximation [6] 

of the overall cost function E𝑡𝑟𝑎𝑐𝑘 iteratively. 

D. POSE GRAPH OPTIMIZATION 

We build pose graphs for optimization based on the geometric 

characteristics. Each time a triplet of mutually orthogonal 

planes of the cuboid is observed in the global frame, the 

orthogonal normal vectors span the space ℝ3, during which 

strong the geometric constraints ensure accurate camera pose 

estimation. We select a keyframe as a vertex of the pose graph 

each time a new trihedron enters the camera’s field of view 

and the relative transformation from the inter-frame alignment 

as the edges of the graph. We optimize the pose graph using 

the open-source framework “g2o” [50], and compare our 

camera trajectories with the optimized ones, showing that our 

camera poses are accurate enough even without graph 

optimization. 
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E. SURFACE RECONSTRUCTION 

GT In this paper we introduce a method which is an 

improvement to [18]. We detect the sharp or thin geometric 

zones by raycasting through the negative TSDF area. Similar 

to [18], we substitute the simple moving average data fusion 

strategy with a non-uniform one. We turn the problem of data 

fusion into a probabilistic binary classification problem, and 

adopt a denoising scheme, leading to more accurate and 

cleaner mesh models than other methods.  

1)  TRUNCATED SIGNED DISTANCE FUNCTION 

The signed distance function (SDF) 𝐹:ℝ3 → ℝ introduced in 

[42] represents the scene in a non-parametric way. Two 

components are stored at each location of the volume 𝑆: the 

SDF value 𝐹 and a weight 𝑊: 

𝑆 ↦ [𝐹,𝑊] (10) 

Each SDF value in the voxel corresponds to the signed 

distance from the cell to the closest surface. In most 

volumetric reconstruction systems the projective SDF is 

computed along the view ray, which is view dependent. 

Instead, we multiply the projective SDF by the cosine value of 

the incidence angle of each view ray for an approximation of 

the real SDF value. 

The truncated SDF (TSDF) is obtained by normalizing and 

truncating the SDF value with a constant truncation distance 

𝛿. The value of 𝛿 is usually set empirically. When we set it 

large, the reconstruction is more noise-resistant, whereas the 

surface details are lost, and when it is set small, the case is just 

the opposite. Based on the observation that depth 

measurements near image edges is highly uncertain, we 

choose an adaptive truncation distance 𝛿𝑎 to ensure fineness 

of the details of surface reconstruction. Given a 3D point 𝑃 in 

the global frame, its TSDF is computed as follows: 

𝐹𝑝𝑟𝑜𝑗(𝑃) = 𝐷(𝑝) − 𝑃𝑧 (11) 

𝑝 = 𝜋( 𝑔,𝑘
−1𝑃) (12) 

𝜂 = 𝐹𝑝𝑟𝑜𝑗(𝑃)  𝑐𝑜𝑠(𝜃𝑖𝑛) (13) 

𝐹(𝑃) = {
𝑚  (1, 𝜂/𝛿)   𝑓𝑓 𝜂 ≥ −𝛿𝑎
 𝑢𝑙𝑙             𝑜𝑡ℎ𝑒 𝑤 𝑠𝑒

 (14) 

𝛿𝑎 = 𝑚𝑎𝑥(𝜎,𝑚  (1, 𝜆/𝛬))  𝛿 (15) 

𝜆 = 𝑑 𝑠𝑡(𝑝)  𝑃𝑧/𝑓 (16) 

where 𝑃𝑧  is the depth of point 𝑃 in the camera frame, 𝜂 the 

approximation of the real SDF value,  𝜃𝑖𝑛 the incidence angle 

of the view ray, and 𝑓  the camera focal length. The 𝑑 𝑠𝑡 
function performs edge detection and distance transformation, 

to determine the distance from a pixel to its nearest edge. The 

pixel distance is converted to physical distance 𝜆  and 

normalized by a constant physical length 𝛬. When 𝜆 < 𝛬, we 

say the pixel is near the depth edge, and the truncation distance 

δa is adapted to a smaller value. We empirically set σ = 0.3,
𝛬 = 30mm. 

2)  RAYCAST FOR THIN GEOMETRIES DETECTION 

Data fusion around the thin geometric zones may be proble-

matic. To detect the thin areas efficiently, we check whether 

zero crossing is found twice when performing per pixel raycast. 

Different from the raycast procedure in KinectFusion, the ray 

marching does not stop when a +𝜀 to – 𝜀 zero crossing for a 

visible surface is found. It stops when a – 𝜀 to +𝜀 back face is 

found, or when a – 𝑣𝑒 to a void cell of zero weight, or when 

finally exists the working volume. Both the latter two cases 

indicate no thin geometry is met temporarily along the current 

ray. 

Our raycast process outputs a “fake” depth map 𝐷  

consisting of both positive and negative values. The sign of a 

value indicates whether a ray finally intersects the front or 

back surface, and the absolute depth value shows the distance 

between the camera and the intersection point along the 

principal optical axis.  

Moreover, our modified raycast for thin geometry detection 

does not march along straight lines all the time. When a pixel 

ray interfaces the surface at a grazing angle (above a threshold, 

empirically 60°), ray refraction is performed. This is because 

when a surface is observed at a grazing angle, the ray goes 

nearly parallel to the surface, resulting in erroneous zero 

crossing detection. The ray refraction is performed by simply 

weighted averaging the original pixel ray and the surface 

normal vector at the incident point. Let 𝐿g(𝑝) denote the view 

ray along pixel 𝑝, and 𝑁g(𝑝) the surface normal at pixel 𝑝 in 

the global frame, the refracted view ray 𝐿g
′ (𝑝) is updated by: 

𝐿g
′ (𝑝) = (1 − 𝜌𝑟)𝐿g(𝑝) − 𝜌𝑟𝑁g(𝑝) (17) 

where we set 𝜌𝑟 = 1/3  empirically. Fig. 3 illustrates our 

modified raycast strategy at different incidence angles. 

 

Figure 3. Our modified raycast for thin geometry detection. Note that the 
ray along pixel 𝒑  is refracted closer to the surface normal at the inci-
dent point on the surface, due to the large incidence angle, which 
makes it more quickly to get through the object. The ray along pixel 𝒑𝟐 
marches straight forward without refraction. 

3)  DATA FUSION AS CLASSIFICATION 

A voxel grid locates around the thin geometric zones may be 

seen from opposite perspectives, resulting in quite different 

TSDF measurements. For example in Fig. 4, voxel 𝑃 is found 

in the back of and far away from the surface when viewed 
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from the left, with a negative TSDF value 𝐹1  of large 

magnitude. When the camera orbits to the right side, on the 

contrary, 𝑃 is measured in front of the surface with a small 

positive TSDF value 𝐹2. Since a TSDF represents the distance 

from a voxel to its nearest surface, 𝐹2 is closer to the truth-

value of 𝑃. However, averaging 𝐹1 and 𝐹2 carelessly produces 

a negative TSDF value, which is not correct. This is the 

common reason why high-frequency geometries are often 

smoothed or deformed. 

 

Figure 4.  Illustration of the cause of deformation around thin geome-
tries. The voxel 𝑷 is considered in the back of the surface when firstly 
viewed from the left, whereas it is found in front of another surface 
when the camera orbits to the opposite side. Averaging these observa-
tions lead to erroneous TSDF results. To address this problem, we pro-
pose a probabilistic binary classification strategy for anisotropic data 
fusion. 

 

Since we have recognized the thin geometries with our 

raycast procedure in advance, we could address this problem 

by fusing data around sharp zones efficiently in an anisotropic 

manner. Apart from the original volume 𝑆 , we maintain a 

“ghost” volume 𝑆′ as extra storage, so the TSDF of each voxel 

is determined by both the two volumes. At time 𝑘, for each 

voxel 𝑃 in the global frame, we first transform and project it 

to an image pixel 𝑝 , then check the value of 𝐷𝑘
 
(𝑝)  and 

compare it with 𝐷𝑘(𝑝) to decide in which volume the current 

measurement should be fused. Algorithm 1 describes this 

process in detail as follows: 

Algorithm 1: Integrate TSDF Volumes 

Input: {𝐷𝑘 ,  𝑔,𝑘, 𝐷𝑘
 
 |𝑘 = 1,2, … , 𝑁} 

Output: 𝑆, 𝑆′ 
1: For each: 𝑃 ∈ 𝑆 

2:   𝑝 ← 𝜋( 𝑔,𝑘
−1𝑃) 

3:  𝑆𝐷𝑘(𝑃) ← [𝐹𝐷𝑘(𝑃),𝑊𝐷𝑘(𝑃)] 

4:  If η < −δa then 

5:   If 𝜆 ≥ 𝛬 and 𝑊𝑘−1(𝑃) < 𝜙 then 

6:    𝑊𝑘(𝑃) ← 𝑊𝑘−1(𝑃) − 1 

7:   End If 

8:   If 𝑊𝑘−1
′ (𝑃) > 0 then 

9:    𝑊𝑘
′(𝑃) ← 𝑊𝑘−1

′ (𝑃) − 1 

10:   End If 

11:   continue 

12:  End If 

13:  If 𝐷𝑘
 (𝑝) > 0 then 

14:   𝑆𝑘(𝑃) ← 𝑓𝑢𝑠𝑒 (𝑆𝑘−1(𝑃), 𝑆𝐷𝑘(𝑃)) 

15:  Else 

16:   𝐷𝑑𝑖  (𝑝) ← 𝐷𝑘(𝑝) + 𝐷𝑘
 (𝑝) 

17:   If 𝐷𝑑𝑖  (𝑝) > 0 then 

18:    continue 

19:   Else If 𝐷𝑑𝑖  (𝑝) < −𝜉 then 

20:    𝑆𝑘(𝑃) ← 𝑓𝑢𝑠𝑒 (𝑆𝑘−1(𝑃), 𝑆𝐷𝑘(𝑃)) 

21:   Else 

22:    If 𝑊𝑘−1
′ < 𝜙 then 

23:     𝑆𝑘
′ (𝑃) ← 𝑓𝑢𝑠𝑒 (𝑆𝑘−1

′ (𝑃), 𝑆𝐷𝑘(𝑃)) 

24:    Else 

25:     𝑠𝑑𝑓 𝑟𝑜𝑛𝑡 ← 𝐷𝑘(𝑝) − 𝑃𝑧  

26:     𝑠𝑑𝑓𝑏𝑎𝑐𝑘 ← 𝑃𝑧 + 𝐷𝑘
 (𝑝)  

27:     𝜌 ←
min(0,𝑠𝑑 𝑏𝑎𝑐𝑘)

min(0,𝑠𝑑 𝑏𝑎𝑐𝑘)+min(0,𝑠𝑑 𝑓𝑟𝑜𝑛𝑡)
 

28:     𝜌′ ← 1 − 𝜌 

29:     𝐹𝑘(𝑃) ← 

     
𝜌𝑊𝑘−1(𝑃)𝐹𝑘−1(𝑃)+𝜌

′𝑊𝑘−1
′ (𝑃)𝐹𝑘−1

′ (𝑃)

𝜌𝑊𝑘−1(𝑃)+𝜌
′𝑊𝑘−1
′ (𝑃)

 

30:     𝑊𝑘(𝑃) ← 𝜌𝑊𝑘−1(𝑃) + 𝜌
′𝑊𝑘−1
′ (𝑃) 

31:     𝑊𝑘
′(𝑃) ← 0 

32:    End If 

33:   End If 

34:  End If 

35: End for 

 

where the 𝑓𝑢𝑠𝑒 function performs a weighted moving average. 

The threshold 𝜉 denotes the width of a narrow band near the 

surface, within which the classification strategy is employed. 

When the difference of the front and back surface 𝐷𝑑𝑖  (𝑝) 
along pixel ray 𝐿g(𝑝) lies in the range [−ξ, 0], we try to fuse 

the incoming data to the “ghost” volume 𝑆′ . And when its 

weight is above a confidence threshold 𝜙, we merge volume 

𝑆′ to the main volume 𝑆, based on the SDF of each voxel 𝑃 to 

both the front and back surface. Note that 𝑠𝑑𝑓𝑏𝑎𝑐𝑘  is 

calculated the way opposite to 𝑠𝑑𝑓 𝑟𝑜𝑛𝑡, resulting in negative 

SDF for voxels before (seen from the current camera’s 

viewpoint) the back surface, and positive values behind it. 

We finally employ a simple volume denoising scheme for 

cleaner mesh outputs (Algorithm 1, line 4~12). For each voxel 

𝑃 at time 𝑘, when 𝜂 < −𝛿𝑎, we check both the value of 𝑊𝑘 

and 𝑊𝑘
′. If 𝑊𝑘 is below 𝜙 and the corresponding pixel is away 

from image edges (𝜆 ≥ 𝛬), or if  𝑊𝑘
′ is not zero, we gradually 

decrease their values by one. This strategy is simple but 

effective in the presence of highly uncertain depth measure-

ments, e.g. at depth discontinuities or grazing viewing regions. 

IV. EVALUATION 

A. DATASET 

In our previous work [18], we have released a dataset CU3D, 

consists of three synthetic depth image sequences with GT 

camera trajectories and GT mesh models, and six real-world 

noisy data sequences with 3D-printed GT models but no GT 
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camera trajectories. We extend the dataset with several new 

depth sequences by scanning some models obtained from 

daily life, including four dinosaur toys (a Stegosaurus, a 

Spinosaurus, a Pterosaur, and a Diplodocus. The former three 

are soft rubber products, but the last one is a rigid body) and a 

small cardboard box, as shown in Fig. 5. We choose these 

objects because of their challenging structural details, e.g., the 

sharp claws, tail tips, and thin spines of the toy dinosaurs, and 

the thin cardboard walls. Since we have no per-vertex GT for 

these objects, we measure the distances between manually 

picked points, or the thickness of thin structures with a Vernier 

caliper (to 0.02mm) for quantitative evaluation of the 

compared algorithms. These measurements include the 

distance from nose to tail tip of the Stegosaurus (abbreviated 

as “stego-n2t”), the Spinosaurus (abbrev. “spino-n2t”), and 

the Diplodocus (abbrev. “diplo-n2t”), the distance from the 

cranial crest tip to tail tip of the Pterosaur (abbrev. “ptero-c2t”), 

the thickness of the right forelimb of the Diplodocus (abbrev. 

“diplo-r-forelimb”), and the thickness of the wall of the 

cardboard box (abbrev. “box-wall”). The measured results as 

GT are listed in Table I. Note the scale of our measured 

objectives varies from hundreds of millimeters to only a few 

millimeters, which challenges the performance of the 

compared algorithms. 

 

Figure 5.  The new scanned objectives added to our CU3D dataset, in-
cluding (a) a Stegosaurus, (b) a Spinosaurus, (c) a Pterosaur, (d) a Dip-
lodocus, and (e) a small thin cardboard box. The yellow arrowed dashed 
lines in each subfigure indicate the manually chosen distance to meas-
ure with a Vernier caliper. 

 
TABLE I 

PHYSICAL DISTANCES BETWEEN THE MANUALLY CHOSEN POINTS MEAS-

URED WITH A VERNIER CALIPER. 

Measurement item Ground-truth distance (mm) 

stego-n2t 491.78 

spino-n2t 589.38 

ptero-c2t 276.80 
diplo-n2t 321.26 

diplo-r-forelimb 12.22 

box-wall 6.24 

 

B. CAMERA TRAJECTORY ACCURACY 

Our reference based odometry algorithm is compared with the 

following: KinectFusion [1] (PCL’s Kinfu implementation 

[48]), the boundary odometry of Zhou et al. [33], the SDF-2-

SDF algorithm of Slavcheva et al. [17] (our implementation), 

and our previous work CuFusion [18]. We compute the 

absolute trajectory error (ATE) of the 6DOF camera poses on 

the synthetic depth image sequences – the armadillo, dragon, 

and bunny sequences from the CU3D dataset. Although planar 

surfaces of the cuboid occupy the majority of the depth images, 

all the compared algorithms achieve decent camera trajecto-

ries without prominently accumulating drift, as listed in Table 

II. The ATE of the proposed algorithm in this work is a bit 

larger (less than 0.5mm) than our previous version of 

CuFusion, which has little impact on the accuracy of 

reconstruction. Note that the truncation distance is set to a 

small value (5 mm) for most of the cases, whereas when 

testing Kinfu on sequence “armadillo” it is set up to 25 mm 

because small truncation distance in this test case results in 

severe camera drift and thus failure of the reconstruction. We 

discuss this phenomenon in the following section V. 

 
TABLE II 

COMPARISON OF ATE ON THE SYNTHETIC SEQUENCES OF CU3D. 

Algorithm Armadillo Dragon Bunny 

KinFu 3.6 3.0 4.2 

Zhou et al. 5.6 2.9 4.3 
SDF-2-SDF 5.7 4.4 6.6 

CuFusion 1.7 1.7 1.3 

Our approach 1.7 1.8 1.7 

 

C. COMPARISON WITH POSE GRAPH OPTIMIZATION 

We further compare our online results with those optimized 

with pose graph optimization. The camera poses where a 

triplet of mutually orthogonal planes of the reference cuboid 

is observed, are selected as keyframes and added as fixed 

vertices into the pose graph. Between which the poses are 

added as floating vertices and optimized with the “g2o” 

framework. We test the optimization results on real-world 

noisy sequences, finding that it has little accuracy gain 

compared with our online results. Fig. 6 shows the per frame 

trajectory difference on the sequence “lambunny” of CU3D. 

The maximum difference is less than 0.1mm, demonstrating 

our algorithm outputs comparable camera trajectories to the 

graph optimized one. 

 

 

Figure 6.  Comparison of per-frame ATE between our algorithm and the 
graph optimized result on sequence “lambunny”. 

 

(a) (b) (c) (d) (e)
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D. SURFACE RECONSTRUCTION ACCURACY 

We quantitatively evaluate the algorithms in the following 

three ways – the per-vertex error, the physical scale fidelity, 

and finally the mesh noise of the reconstructions. 

1)  CLOUD-TO-MESH DISTANCE 

We first test the cloud-to-mesh (C2M) distance from the 

reconstructtions to the GT models on the three synthetic depth 

streams and six scanning sequences of the 3D-printed models. 

Surface reconstructions are first aligned against the GT 

models, and the C2M distances in millimeters between the 

reconstructed and GT models are computed using the 

CloudCompare software [51]. The C2M distance is quantified 

by two standard statistics: Mean and Standard deviation (Std.). 

Fig. 7 plots the reconstructions of the “buddhahead” sequence 

and their corresponding heat maps of the C2M distance. Table 

III provides the error evaluation details of the five compared 

algorithms on the nine data sequences. 

 

 

Figure 7.  Qualitative comparison of the algorithms (a) Kinfu, (b) Zhou et 
al., (c) SDF-2-SDF, (d) CuFusion, and (e) our proposed method on 
sequence “buddhahead”. Top row: the reconstructed mesh models, 
bottom row: the heat maps corresponding to the C2M errors. 

 
TABLE III 

SURFACE RECONSTRUCTION ACCURACY ON OUR SYNTHETIC AND REAL-
WORLD DATA, WITH C2M ERROR METRIC (MEAN±STD.) IN MILLIMETERS. 

Se-

quence 
KinFu 

Zhou et 

al. 

SDF-2-

SDF 

CuFu-

sion 

Our ap-

proach 

arma-
dillo 

1.0±1.1 0.2±0.2 0.4±0.3 0.2±0.1 0.2±0.2 

dragon 0.2±0.2 0.1±0.1 0.4±0.3 0.1±0.1 0.1±0.1 

bunny 0.2±0.4 0.2±0.4 0.4±0.4 0.1±0.1 0.2±0.3 

mug 1.4±1.1 1.4±0.9 0.8±0.9 0.9±0.8 0.7±0.8 

lam-

bunny 
0.9±1.2 1.1±1.2 1.4±1.1 1.3±1.2 1.1±1.1 

owl 2.4±1.1 1.0±1.0 2.2±1.2 1.2±1.1 0.9±1.2 

tooth 2.7±1.4 1.3±1.3 1.3±1.3 1.5±1.5 1.3±1.3 

wingedc
at 

1.5±2.0 1.5±2.0 2.7±2.6 1.4±2.2 1.3±1.9 

buddahe

ad 
1.6±2.1 3.0±2.0 2.7±2.0 1.3±2.0 1.5±2.1 

 

2)  PHYSICAL SCALE OF THE RECONSTRUCTION 

As can be seen from Table III, on the reconstruction of small-

sized objects, it is hard to tell which method has a significant 

advantage over the others as long as no noticeable camera drift 

happens. To test the reconstruction fidelity, we also measure 

the physical scale of the reconstructions (total length or body 

part thickness) of the five newly added scanning sequences. 

Distance in millimeters is measured using the point-picking 

tool of the CloudCompare software. We compare the 

measuring results with the corresponding GT values listed in 

Table I, and use the absolute distance (listed in the parentheses) 

between the measurements and the GT values as an indicator 

of the accuracy of the tested algorithms, as illustrated in Table 

IV. Fig. 8 qualitatively demonstrates the reconstruction of the 

“Diplodocus” and “cardboard box” sequence. Note that the 

SDF-2-SDF method fails to create the Diplodocus model due 

to drift in camera trajectory estimation, and neither the Kinfu 

and Zhou et al.’s method reconstructs the Diplodocus’s right 

forelimb successfully. 

 

TABLE IV 

MEASUREMENT RESULTS OF THE MANUALLY CHOSEN OBJECTS’ PARTS IN MILLIMETERS. THE ABSOLUTE DISTANCE BETWEEN THE MEASUREMENTS OF MESH 

MODELS AND THE REAL OBJECTS ARE SHOWN IN THE PARENTHESES BEHIND (SMALLER IS BETTER). 

Measurement item GT (mm) KinFu Zhou et al. SDF-2-SDF CuFusion Our approach 

stego-n2t 491.78 479.07 (12.71) 479.18 (12.6) 485.62 (6.16) 475.6 (16.18) 483.4 (8.38) 

spino-n2t 589.38 595.48 (6.1) 601.41 (12.03) 595.66 (6.28) 596.76 (7.38) 592.98 (3.60) 

ptero-c2t 276.80 269.11 (7.69) 271.99 (4.81) 272.11 (4.69) 270.28 (6.52) 276.77 (0.03) 

diplo-n2t 321.26 293.91 (27.35) 306.66 (14.6) -- 300.29 (20.97) 316.63 (4.63) 

diplo-r-forelimb 12.22 -- -- -- 6.7 (5.52) 12.1 (0.12) 

box-wall 6.24 6.66 (0.42) 7.32 (1.08) 5.92 (0.32) 11.63 (5.39) 6.76 (0.52) 

 

(a) (b) (c) (d) (e)
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Figure 8.  Qualitative comparison of the algorithms (a) Kinfu, (b) Zhou et al., (c) SDF-2-SDF, (d) CuFusion, and (e) our proposed method on sequence 

“Diplodocus” (top row) and sequence “cardboard box” (bottom row).

 

3)  MESH NOISE 

We finally compare the mesh and point cloud generated by the 

evaluated algorithms. For applications such as 3D printing, 

clean and topologically consistent mesh output would be of 

vital importance. Thanks to the accurate camera pose 

estimation and the denoising strategy during the data fusion 

process, our method is able to generate globally consistent 

mesh models superior to others. Fig. 9 demonstrates the 

reconstruction of the compared methods on sequence 

“Spinosaurus”, where sectional views are provided for 

visualizing both sides of the surface. As can be seen from the 

sectional views, our mesh model contains the least noise and 

outliers among the compared algorithms. 

 

 

Figure 9.  Sectional views of the algorithms (a) Kinfu, (b) Zhou et al., (c) SDF-2-SDF, (d) CuFusion, and (e) our proposed method on reconstruction of 
sequence “Spinosaurus”. 

 
TABLE V 

FACE AND VERTEX (LISTED IN THE PARENTHESES) COUNT OF THE SURFACE MODELS GENERATED BY THE COMPARED ALGORITHMS. SMALLER VALUE IS BET-

TER IF NO DRASTIC FAILURE OF THE RECONSTRUCTION HAPPENS, INDICATING CLEANER MODEL OUTPUT AS DEMONSTRATED IN FIG. 9. 

Sequence KinFu Zhou et al. SDF-2-SDF CuFusion Our approach 

armadillo 387601 (194909) 380642 (191541) 382897 (192600) 382161 (192372) 380234 (191255) 

dragon 427022 (216153) 425901 (215487) 432404 (217893) 421269 (213688) 422416 (213238) 

bunny 381912 (192908) 382453 (193282) 385194 (193916) 381273 (192264) 381602 (192551) 

mug 371373 (194913) 395920 (213064) 378467 (198830) 349920 (181024) 328169 (166157) 

lambunny 390045 (210086) 399374 (215993) 374001 (196184) 347144 (179696) 324172 (165600) 

owl 373064 (200120) 381390 (204482) 362957 (186951) 364773 (188779) 333662 (171376) 

tooth 374547 (202142) 399135 (216662) 368753 (192225) 365439 (188833) 327058 (166900) 

wingedcat 404647 (220129) 404900 (220328) 497058 (257532) 371897 (193442) 336911 (171508) 

buddhahead 411831 (222773) 445290 (241586) 417893 (219216) 389424 (200526) 364055 (184930) 

Stegosaurus 495461 (264761) 482179 (259652) 827302 (421941) 467333 (240470) 400986 (204506) 

Spinosaurus 395476 (209303) 417042 (221981) 389946 (198736) 391549 (201743) 345417 (175003) 

Pterosaur 462870 (245659) 477072 (254872) 623249 (321049) 445836 (227873) 415591 (209501) 

Diplodocus 517564 (274194) 421678 (223022) -- 407979 (211236) 364548 (184535) 

Cardboard box 515780 (273150) 532378 (282620) 600319 (320499) 501039 (259089) 449509 (228410) 

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
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Table V illustrates the number of triangle faces and vertices 

(listed in the parentheses) of each model generated by the 

algorithms for each depth stream of our CU3D dataset 

(currently 14 sequences in total). On the first three synthetic 

sequences, the statistical differences are around 1% since there 

is no noise in the input depth images. On the real-world 

sequences however, the differences reach up to 10%~30%. 

Our algorithm generates the least outliers in the point clouds 

as well as the triangle meshes on all of the noisy sequences, 

proving the effectiveness of our denoising scheme. 

V. DISCUSSION AND CONCLUSION 

In this paper we propose an approach for accurate and clean 

object reconstruction. Given a stream of depth images and a 

known cuboid reference object present in the scene, we keep 

drift free camera pose estimation with the constraints added by 

the reference object, without the need of pose graph 

optimization. We then fuse the living data into one globally 

consistent model in real-time by transforming the problem of 

data fusion into a probabilistic binary classification problem, 

and keep the reconstruction fidelity in particular highly curved 

and concave zones of the scanned objectives, preserving the 

surface smoothness and cleanliness utilizing a simple 

denoising strategy – especially in areas invisible near the 

surface. Our method takes one step further for the applications 

which demand fine-grained reconstruction details such 3D 

printing. 

One limitation of our method is that it assumes the scene or 

object is static during scanning. Any deformation or motion of 

the objects may lead to failure of the reconstruction, especially 

in the presence of thin geometries. Currently the 

reconstruction of sharp zones in motion remains a challenge to 

us. About the memory consumption, our method costs 8 bytes 

per voxel – half the memory cost of our previous work, 

CuFusion, still twice as much as KinectFusion at the same 

resolution. Our future work will focus on the memory 

efficiency of the volumetric representation, enabling higher 

volume resolution and a larger scale of reconstruction. Also, 

we will explore the fidelity preservation of thin geometry in 

motion, to make the system work with challenging scenes.
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