
 1

CuFusion2: Accurate and Denoised Volumetric
3D Object Reconstruction Using Depth Cam-
eras

Chen Zhang
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China;

Corresponding author: Chen Zhang (e-mail: zhangxaochen@163.com).

ABSTRACT 3D object reconstruction from depth image streams using Kinect-style depth cameras have

been extensively studied. We propose an approach for accurate camera tracking and volumetric dense surface

reconstruction, assuming a known cuboid reference object is present in the scene. Our contribution is three-

fold: (a) we keep drift-free camera pose tracking by incorporating the 3D geometric constraints of the cuboid

reference object into the image registration process; (b) on the problem of depth stream fusion, we reformulate

it as a binary classification problem, enabling high fidelity of surface reconstruction, especially in concave

zones of the objects; (c) we further present a surface denoising strategy, facilitating the generation of noise-

free triangle mesh, making the models more suitable for 3D printing and other applications. We extend our

public dataset CU3D with several fresh image sequences, test our algorithm on these sequences and compare

them with other state-of-the-art algorithms. Both our dataset and algorithm are available as open-source at

https://github.com/zhangxaochen/CuFusion, for other researchers to reproduce and verify our results.

INDEX TERMS 3D object reconstruction, depth cameras, Kinect sensors; open source, signal denoising,

SLAM

I. INTRODUCTION

Reconstructing the 3D surface model from a sequence of

provided range images has been an active research topic dur-

ing the last decade. In recent years, the emergence of depth

cameras based either on structured light (e.g. Asus Xtion,

Kinect 1.0) or time-of-flight (ToF) (e.g. Kinect 2.0) sensing

offers dense depth measurements directly at a high frame rate

as video streams. The KinectFusion algorithm [1] introduced

by Newcombe et al. is one of the most seminal works for real-

time camera tracking and dense environment reconstruction,

turning the depth sensors into consumer-grade 3D scanners. It

uses fast iterative closest point (ICP) [2], [3] for camera pose

estimation, and a volume known as the truncated signed

distance function (TSDF) for scene representation. The

connected mesh surfaces are latterly extracted using the

marching cubes algorithm [4].

On reconstruction accuracy, however, the KinectFusion

algorithm suffers from a number of limitations, including the

ICP image registration algorithm that prone to accumulate

drift in the presence structure-less surfaces, the inability to

recover from drift, and the problem of surface deformation for

highly curved and concave zones of the scanned objects [5].

Many researchers have been working on solving these

problems. ICP variants such as point-to-plane ICP [6] and

generalized ICP (GICP) [7] are proposed for better image

alignment. Loop closures are detected and pose graphs are

built and optimized online [8]–[12] or offline [13], [14] to

produce robust and globally consistent maps. To address the

surface deformation problem, Whelan et al. propose the

ElasticFusion framework [10], [15] to activate non-rigid

model-to-model refinement which also relies on local loop

closure detection. Slavcheva et al. propose the SDF-2-SDF

algorithm [16], [17] which focus on the small-scale object

reconstruction. Similarly, we have also proposed a CuFusion

framework [18] for accurate camera localization and object

modelling, under the assumption that a known cuboid refer-

ence object present in the scene. A prediction-corrected TSDF

fusion strategy is applied instead of simple moving average

fusion, to resolve the surface deformation problem.

However, the reconstruction quality of [18] relies heavily

on the quality of the raw depth measurements. To keep recon-

struction fidelity in particularly highly curved zones of the

objects, the input depth images should contain as less motion

blur as possible, which requires the camera orbiting steadily.

Even mild blur in depth measurement caused by slightly faster

camera motion may lead to reconstruction failure on sharp

edges of the objects. To address these problems, in this paper

we introduce a novel approach which is an extension of our

previous work [18]. The major contributions are as follows:

⚫ we propose an ICP variant which takes the constraints of

the known reference object into account for robust and

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.20944/preprints201812.0165.v1
http://creativecommons.org/licenses/by/4.0/

 1

accurate camera pose estimation. With the supplemen-

tary information of the reference object, we keep near-

optimal camera tracking for each frame, making it

possible for accurate object reconstruction. We build

pose graphs and solve for optimized camera poses, and

compare them with those without graph optimization,

demonstrating that our method is accurate enough;

⚫ we reformulate the data fusion task as a per voxel binary

classification task, to keep reconstruction fidelity and

resistant to motion blur result from camera jitters;

⚫ we present a denoising strategy, which performs noise

reduction directly on the generated volume during scan-

ning, resulting in cleaner mesh surface outputs, taking it

one step further for the industrial applicability of the

output surface models such as in 3D printing.

We focus on the geometric fidelity, taking depth streams

only as input. We perform a qualitative and quantitative

evaluation on reconstructions from both synthetic and real-

world sequences of the CU3D dataset. Both the camera

trajectory and reconstruction accuracy are compared with the

state-of-the-art approaches. We show the fidelity of the

reconstruction of our method and release our code and dataset

to the community for future work.

II. RELATED WORK

Simultaneous localization and mapping (SLAM) has been

extensively studied. Monocular RGB camera tracking systems

such as MonoSLAM [19] and PTAM [20] allow users to get

the camera trajectories and sparse point cloud models. Dense

reconstruction systems [21]–[23] have also been proposed to

replace point cloud based systems. With the advent of Kinect-

style active depth sensors, the KinectFusion [1] algorithm

permits dense volumetric reconstruction of the scene in real-

time, enabling mesh models output for physics-based augm-

ented reality (AR) [24] and 3D printing [25]. Improved

frameworks have then been proposed in the aspects of

memory efficiency [26]–[28], large space representation [8],

[11], [27], [29], camera trajectory accuracy with loop closure

detection and optimization [12], [27], [30], and scene

representation such as surfels [31] or hybrid data structure

[32].

Some researchers use the structural priors for accurate

camera localization. Zhou et al. [33] introduce an approach for

robust contour cues extraction and integrate the contour

constraints into the registration objective, stabilizing camera

tracking in challenging scenarios. High-level features such as

planes [34]–[38] and objects [39], [40] are also used as

primitives to provide more constraints to camera pose

estimation. In this paper, we make full use of the information

of a precisely man-made cuboid reference object, namely, the

orthogonal and parallel planar facets, the contour cues of

certainly known length as constraints for camera localization

stabilization. The accurate and robust camera trajectories are

latterly used in the model generation process, to integrate

single images into consistent models in the global coordinate.

Different dense scene representations have also been

explored in the literature. Occupancy mapping using a grid of

cells to represent the space has been popular in robotics. A

probability of occupancy in each cell is accumulated via

Bayesian updates every time a new informative observation is

provided [41]. Similarly, the signed distance function (SDF)

volumetric representation introduced in [42] is often used in

graphics to fuse partial depth scans into one global model. The

SDF represents the surface interfaces implicitly as zeros, and

the mesh models can be extracted using the marching cubes

type algorithm [4]. Instead of volumes, surfels [10], [31], [43],

[44] are also exploited to represent the scene. It renders the

scene with the surface-splatting technique [45] and reduces the

computational complexity and memory overhead compared

with the volumetric approaches. The volumetric represe-

ntation has been reported as difficult to resolve the highly

curved and concave details such as the folds in the garment [5]

or thin geometries [18] although the voxels are small enough.

[18] introduced a prediction-corrected data fusion strategy for

geometry details preservation. By storing surface normal and

view ray vectors per voxel as additional information, it enables

fast correction of the surface where deformation previously

accumulated. The main issue of [18] resides in the resistless of

motion blur in raw depth measurements, as well as the high

memory consumption. In this paper, we introduce a novel

method for data fusion, converting the typical moving average

to a scheme of per voxel probabilistic binary classification,

and resulting in high fidelity of reconstruction in especially

sharp geometries.

There have been many popular RGB-D datasets created for

the evaluation of indoor 3D reconstruction. The TUM RGB-

D dataset [46] offers a set of RGB-D images with accurate and

time-synchronized ground-truth (GT) camera poses from a

motion capture system. It mainly aims at trajectory estimation

and lacked the GT scene models. To assess the scene

reconstruction, the ICL-NUIM dataset [47] generates both GT

poses and models for quantitatively evaluation of the final

reconstruction with the synthetic model of one scene.

Slavcheva et al. provide the first object dataset with GT CAD

models and camera trajectories. It 3D-printed a selection of

small objects and scanned them with a markerboard placed

below them.

Similarly, we provide a dataset CU3D in [18], with both

synthetic and real-world sequences. Our synthetic sequences

provide both GT object models and camera poses, whereas the

real-world data are generated by scanning six 3D-printed

objects and have GT models only. In this work, we extend this

dataset with several supplementary sequences. Although we

have no per vertex GT for these newly added scans, we verify

the reconstruction accuracy by evaluating the total length of

the reconstructed model, compared with the Vernier caliper

measurements as GT.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

http://dx.doi.org/10.20944/preprints201812.0165.v1

 1

Figure 1. An overview of our system pipeline.

III. METHOD

We base our work on the open-sourced implementation of the

KinectFusion algorithm from the PCL library [48]. Our

reconstruction pipeline is illustrated in Fig. 1, which is

described in detail in the following sub-sections.

A. MATHEMATICAL NOTATION

We define the image domain as Ω ⊂ ℕ2, and a depth image at

time 𝑘 is defined as 𝐷𝑘 : Ω → ℝ, where each single pixel 𝑝 ∈
Ω in the image stores the distance from the camera to the

surface. Assuming the camera intrinsic matrix is known, we

define the projection and de-homogenization function 𝜋 ∶
𝑝 = 𝜋(𝑃) to map a 3D point 𝑃 = (𝑥, 𝑦, 𝑧)𝑇 ∈ ℝ3 in the

camera coordinate onto the image location𝑝 = (𝑢, 𝑣)𝑇 ∈ ℕ2.
We present the 6 degrees-of-freedom (6DOF) camera pose at

time 𝑘 in the global coordinate frame by a rigid transformation

matrix:

Tg, k = [
Rg, k tg, k

0T 1
] ∈ 𝕊𝔼(3) (1)

with a 3 × 3 rotation matrix Rg, k ∈ 𝕊𝕆(3) and a 3 × 1

translation vector tg, k ∈ ℝ
3 , which transforms a point 𝑃𝑘 ∈

ℝ3 in the camera coordinate frame to a global point 𝑃g =
Rg, k𝑃𝑘 + tg, k ∈ ℝ

3 . For simplicity, we omit the conversion

between the 3-vectors and their corresponding homogeneous

4-vectors. A depth pixel p can be back-projected to the global

coordinate frame: 𝑃g = Tg, k𝜋
−1(𝑝, 𝐷𝑘(𝑝)) . An organized

vertex map 𝑉𝑘 is computed by bilateral-filtering and back-

projecting the raw depth image 𝐷𝑘 , and its corresponding

normal map 𝑁𝑘 is computed using the Principal Component

Analysis (PCA) method.

B. CUBOID LOCALIZATION AS INITIALIZATION

Given a depth image 𝐷𝑘 and the reference cuboid with edge

lengths 𝐿𝑐𝑢 = (𝑎, 𝑏, 𝑐) present in the image, we localize the

cuboid and calculate its pose in the global coordinate frame.

Live depth frames will be latterly aligned against it when

scanning around it to mitigate the accumulating camera drift.

We first perform plane segmentation using the Agglome-

rative Hierarchical Clustering (AHC) algorithm [49]. Then we

check the orthogonality of the segmented planes. Two planes

are considered to be orthogonal if the angle 𝛩𝑝 between their

normal vectors is approximately 90° (i.e. |𝛩𝑝 − 90°| <
𝜀𝛩; 𝜀𝛩 = 5°). Once we find three planes that are orthogonal

to each other, we check the length of the intersecting line

segments between the planes. If the three line segments’

lengths match the cuboid edge length parameter 𝒫𝑐𝑢 approx-

imately differences below a threshold (𝜀𝒫 = 10 𝑚𝑚), we

claim to find the cuboid and mark the three planes as its

adjacent planes.

We consequently define the cuboid coordinate frame of

reference. We set frame origin 𝑂𝑐𝑢 to the intersection point of

the three orthogonal planes, and draw the system axes from

the normal vectors. Due to the inaccuracy of the depth

measurement and camera intrinsic calibration, orthogonality

between the normal vectors of the segmented adjacent planes

are not guaranteed strictly. We obtain the nearest orthogonal

axes [𝑋𝑐𝑢 , 𝑌𝑐𝑢 , 𝑍𝑐𝑢] of the frame by solving the Orthogonal

Procrustes Problem, where 𝑋𝑐𝑢 et al. are 3 × 1 column

vectors. The cuboid pose in the camera frame at time k is:

Tk, cu = [
Rk, cu tk, cu

0T 1
] ∈ 𝕊𝔼(3) (2)

Rk, cu = [𝑋𝑐𝑢 , 𝑌𝑐𝑢 , 𝑍𝑐𝑢] (3)

tk, cu = 𝑂𝑐𝑢
𝑇 (4)

Depth Images

Cuboid Localization

Determine the pose of the

cuboid reference object in

the global coordinate frame.

Surface Measurement

Compute the surface

vertex and normal map,

and the pixel ray map.

Camera Pose Estimation

Refined with the cuboid:

 =𝑎 𝑚
𝑇

(2 +

 2𝑐 2𝑐 + 2𝑐 2𝑐)

 −

 −

Reconstruction Update

Probabilistic binary

classification as data

fusion.

 , ,

Surface Prediction

Raycast TSDF to compute

synthesized vertex and

normal maps.

 , −

 , −

 −

 −
 Thin Geometry Detection

Each pixel ray is cast

through the front and back

surface to find thin walls.

 −

 ,

 ,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

http://dx.doi.org/10.20944/preprints201812.0165.v1

 1

Assuming the camera pose Tg, k at time k is known, the

cuboid pose Tg, cu in the global frame of coordinate could then

be derived: Tg, cu = Tg, k Tk, cu. Fig. 2 illustrates the notations

used in the paper.

Figure 2. Illustration of the notations used in this paper.

Note that the cuboid pose in the global frame is only

evaluated once when we find a triplet of orthogonal planes and

left unchanged afterwards. Each incoming depth image is

aligned against it to reduce camera drift, as described in the

following sections.

C. CAMERA POSE ESTIMATION

Since we use depth maps as input sequences, only geometric

alignment is performed. For each input frame 𝐷𝑘 at time 𝑘, we

estimate the current camera pose Tg, k by registering the live

depth map to both the globally reconstructed surface model

and the reference cuboid.

1) FRAME TO MODEL REGISTRATION

Given the implicit TSDF surface model 𝑆 and the previously

estimated camera pose Tg, k-1 at time 𝑘 − 1 , an organized

vertex and normal map (𝑉̂𝑘−1, 𝑁 𝑘−1) could be obtained via

per-pixel raycast, and then transformed into the global frame

as (𝑉̂𝑘−1
g
, 𝑁 𝑘−1
g
). For frame-to-model registration, a transform-

ation Tg, k is pursued to minimize the point-to-plane error

between Tg, k𝑉𝑘 and 𝑉̂𝑘−1
g

:

 2 (Tg, k) = ∑ ((Tg, k𝑉𝑘(𝑝) −(𝑝,𝑝)∈𝕂1

𝑉̂𝑘−1
g (𝑝̂))𝑁 𝑘−1

g (𝑝̂))
2

 (5)

where 𝕂1 = {(𝑝, 𝑝̂)} is the set of correspondences associated

by projective data association [1]:

𝑝̂ = 𝜋 (̃𝑘−1,𝑘𝑉𝑘(𝑝)) (6)

where ̃𝑘−1,𝑘 denotes the transformation from current time 𝑘

to time (𝑘 − 1) during each ICP iteration.

2) FRAME TO CUBOID REGISTRATION

Assuming the cuboid pose has previously been initialized, for

each camera pose Tg, k-1, per-pixel ray casting is performed on

the reference cuboid to synthesize a proxy depth map 𝐷 𝑘−1
𝑐𝑢 .

An organized vertex and normal map in the global frame as

(𝑉𝑐𝑢 𝑘−1

g
, 𝑁𝑐𝑢 𝑘−1

g
) is then derived by back-projecting the proxy

depth map and transforming local maps to global space.

Similar to the frame-to-model registration, the distance

between the current depth measurement and the cuboid

surface (frame-to-cuboid) is minimized:

 2𝑐(Tg, k) = ∑ ((Tg, k𝑉𝑘(𝑝) −(𝑝,𝑝)∈𝕂2

𝑉𝑐𝑢 𝑘−1

g
(𝑝̂))𝑁𝑐𝑢 𝑘−1

g
(𝑝̂))

2

 (7)

In addition, we exploit the edge-to-contour distance as a

constraint term to mitigate the potential camera drift. Contours

of the reference cuboid could be discretized into a 3D point set

𝑉𝑒𝑔
𝑐𝑢 in the global frame with an interval of 1 mm, once the

cuboid is successfully localized. Given the inpainted depth

map 𝐷𝑘
′ , we find the edge pixel set 𝐶𝑘 at depth discontinuities

in the live depth map, as proposed in [33]. The 3D edge point

set 𝑉𝑒𝑘 could then be derived by back-projection of 𝐶𝑘. The

edge-to-contour error to minimize is:

 2𝑐(Tg, k) = ∑ ((Tg, k𝑉𝑒𝑘(𝑠) −(𝑠,𝑡)∈𝕂3

𝑉𝑒g
𝑐𝑢(𝑡))𝑁𝑐𝑢 𝑘−1

g
(𝑡))

2

 (8)

where 𝕂3 = {(𝑠, 𝑡)} is the correspondence set obtained by

nearest neighbor search with KD-tree.

3) JOINT OPTIMIZATION

We combine (5), (7), and (8) to form a joint cost function:

 𝑡𝑟𝑎𝑐𝑘 = 2 + 2𝑐 2𝑐 + 2𝑐 2𝑐 (9)

where 2𝑐 and 2𝑐 are the weights that determine the

influence of correspondences on the cuboid surfaces and

contours. When setting 2𝑐 = 2 = 0, our optimization

objective is equivalent to KinectFusion. We set 2𝑐 = 1 and

 2 = 4 in our experiments empirically, enforcing the

constraint of the contour correspondences. We compute the

camera pose Tg, k by minimizing the linear approximation [6]

of the overall cost function E𝑡𝑟𝑎𝑐𝑘 iteratively.

D. POSE GRAPH OPTIMIZATION

We build pose graphs for optimization based on the geometric

characteristics. Each time a triplet of mutually orthogonal

planes of the cuboid is observed in the global frame, the

orthogonal normal vectors span the space ℝ3, during which

strong the geometric constraints ensure accurate camera pose

estimation. We select a keyframe as a vertex of the pose graph

each time a new trihedron enters the camera’s field of view

and the relative transformation from the inter-frame alignment

as the edges of the graph. We optimize the pose graph using

the open-source framework “g2o” [50], and compare our

camera trajectories with the optimized ones, showing that our

camera poses are accurate enough even without graph

optimization.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

http://dx.doi.org/10.20944/preprints201812.0165.v1

 1

E. SURFACE RECONSTRUCTION

GT In this paper we introduce a method which is an

improvement to [18]. We detect the sharp or thin geometric

zones by raycasting through the negative TSDF area. Similar

to [18], we substitute the simple moving average data fusion

strategy with a non-uniform one. We turn the problem of data

fusion into a probabilistic binary classification problem, and

adopt a denoising scheme, leading to more accurate and

cleaner mesh models than other methods.

1) TRUNCATED SIGNED DISTANCE FUNCTION

The signed distance function (SDF) 𝐹:ℝ3 → ℝ introduced in

[42] represents the scene in a non-parametric way. Two

components are stored at each location of the volume 𝑆: the

SDF value 𝐹 and a weight 𝑊:

𝑆 ↦ [𝐹,𝑊] (10)

Each SDF value in the voxel corresponds to the signed

distance from the cell to the closest surface. In most

volumetric reconstruction systems the projective SDF is

computed along the view ray, which is view dependent.

Instead, we multiply the projective SDF by the cosine value of

the incidence angle of each view ray for an approximation of

the real SDF value.

The truncated SDF (TSDF) is obtained by normalizing and

truncating the SDF value with a constant truncation distance

𝛿. The value of 𝛿 is usually set empirically. When we set it

large, the reconstruction is more noise-resistant, whereas the

surface details are lost, and when it is set small, the case is just

the opposite. Based on the observation that depth

measurements near image edges is highly uncertain, we

choose an adaptive truncation distance 𝛿𝑎 to ensure fineness

of the details of surface reconstruction. Given a 3D point 𝑃 in

the global frame, its TSDF is computed as follows:

𝐹𝑝𝑟𝑜𝑗(𝑃) = 𝐷(𝑝) − 𝑃𝑧 (11)

𝑝 = 𝜋(𝑔,𝑘
−1𝑃) (12)

𝜂 = 𝐹𝑝𝑟𝑜𝑗(𝑃) 𝑐𝑜𝑠(𝜃𝑖𝑛) (13)

𝐹(𝑃) = {
𝑚 (1, 𝜂/𝛿) 𝑓𝑓 𝜂 ≥ −𝛿𝑎
 𝑢𝑙𝑙 𝑜𝑡ℎ𝑒 𝑤 𝑠𝑒

 (14)

𝛿𝑎 = 𝑚𝑎𝑥(𝜎,𝑚 (1, 𝜆/𝛬)) 𝛿 (15)

𝜆 = 𝑑 𝑠𝑡(𝑝) 𝑃𝑧/𝑓 (16)

where 𝑃𝑧 is the depth of point 𝑃 in the camera frame, 𝜂 the

approximation of the real SDF value, 𝜃𝑖𝑛 the incidence angle

of the view ray, and 𝑓 the camera focal length. The 𝑑 𝑠𝑡
function performs edge detection and distance transformation,

to determine the distance from a pixel to its nearest edge. The

pixel distance is converted to physical distance 𝜆 and

normalized by a constant physical length 𝛬. When 𝜆 < 𝛬, we

say the pixel is near the depth edge, and the truncation distance

δa is adapted to a smaller value. We empirically set σ = 0.3,
𝛬 = 30mm.

2) RAYCAST FOR THIN GEOMETRIES DETECTION

Data fusion around the thin geometric zones may be proble-

matic. To detect the thin areas efficiently, we check whether

zero crossing is found twice when performing per pixel raycast.

Different from the raycast procedure in KinectFusion, the ray

marching does not stop when a +𝜀 to – 𝜀 zero crossing for a

visible surface is found. It stops when a – 𝜀 to +𝜀 back face is

found, or when a – 𝑣𝑒 to a void cell of zero weight, or when

finally exists the working volume. Both the latter two cases

indicate no thin geometry is met temporarily along the current

ray.

Our raycast process outputs a “fake” depth map 𝐷

consisting of both positive and negative values. The sign of a

value indicates whether a ray finally intersects the front or

back surface, and the absolute depth value shows the distance

between the camera and the intersection point along the

principal optical axis.

Moreover, our modified raycast for thin geometry detection

does not march along straight lines all the time. When a pixel

ray interfaces the surface at a grazing angle (above a threshold,

empirically 60°), ray refraction is performed. This is because

when a surface is observed at a grazing angle, the ray goes

nearly parallel to the surface, resulting in erroneous zero

crossing detection. The ray refraction is performed by simply

weighted averaging the original pixel ray and the surface

normal vector at the incident point. Let 𝐿g(𝑝) denote the view

ray along pixel 𝑝, and 𝑁g(𝑝) the surface normal at pixel 𝑝 in

the global frame, the refracted view ray 𝐿g
′ (𝑝) is updated by:

𝐿g
′ (𝑝) = (1 − 𝜌𝑟)𝐿g(𝑝) − 𝜌𝑟𝑁g(𝑝) (17)

where we set 𝜌𝑟 = 1/3 empirically. Fig. 3 illustrates our

modified raycast strategy at different incidence angles.

Figure 3. Our modified raycast for thin geometry detection. Note that the
ray along pixel 𝒑 is refracted closer to the surface normal at the inci-
dent point on the surface, due to the large incidence angle, which
makes it more quickly to get through the object. The ray along pixel 𝒑𝟐
marches straight forward without refraction.

3) DATA FUSION AS CLASSIFICATION

A voxel grid locates around the thin geometric zones may be

seen from opposite perspectives, resulting in quite different

TSDF measurements. For example in Fig. 4, voxel 𝑃 is found

in the back of and far away from the surface when viewed

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

http://dx.doi.org/10.20944/preprints201812.0165.v1

 1

from the left, with a negative TSDF value 𝐹1 of large

magnitude. When the camera orbits to the right side, on the

contrary, 𝑃 is measured in front of the surface with a small

positive TSDF value 𝐹2. Since a TSDF represents the distance

from a voxel to its nearest surface, 𝐹2 is closer to the truth-

value of 𝑃. However, averaging 𝐹1 and 𝐹2 carelessly produces

a negative TSDF value, which is not correct. This is the

common reason why high-frequency geometries are often

smoothed or deformed.

Figure 4. Illustration of the cause of deformation around thin geome-
tries. The voxel 𝑷 is considered in the back of the surface when firstly
viewed from the left, whereas it is found in front of another surface
when the camera orbits to the opposite side. Averaging these observa-
tions lead to erroneous TSDF results. To address this problem, we pro-
pose a probabilistic binary classification strategy for anisotropic data
fusion.

Since we have recognized the thin geometries with our

raycast procedure in advance, we could address this problem

by fusing data around sharp zones efficiently in an anisotropic

manner. Apart from the original volume 𝑆 , we maintain a

“ghost” volume 𝑆′ as extra storage, so the TSDF of each voxel

is determined by both the two volumes. At time 𝑘, for each

voxel 𝑃 in the global frame, we first transform and project it

to an image pixel 𝑝 , then check the value of 𝐷𝑘

(𝑝) and

compare it with 𝐷𝑘(𝑝) to decide in which volume the current

measurement should be fused. Algorithm 1 describes this

process in detail as follows:

Algorithm 1: Integrate TSDF Volumes

Input: {𝐷𝑘 , 𝑔,𝑘, 𝐷𝑘

 |𝑘 = 1,2, … , 𝑁}

Output: 𝑆, 𝑆′
1: For each: 𝑃 ∈ 𝑆

2: 𝑝 ← 𝜋(𝑔,𝑘
−1𝑃)

3: 𝑆𝐷𝑘(𝑃) ← [𝐹𝐷𝑘(𝑃),𝑊𝐷𝑘(𝑃)]

4: If η < −δa then

5: If 𝜆 ≥ 𝛬 and 𝑊𝑘−1(𝑃) < 𝜙 then

6: 𝑊𝑘(𝑃) ← 𝑊𝑘−1(𝑃) − 1

7: End If

8: If 𝑊𝑘−1
′ (𝑃) > 0 then

9: 𝑊𝑘
′(𝑃) ← 𝑊𝑘−1

′ (𝑃) − 1

10: End If

11: continue

12: End If

13: If 𝐷𝑘
 (𝑝) > 0 then

14: 𝑆𝑘(𝑃) ← 𝑓𝑢𝑠𝑒 (𝑆𝑘−1(𝑃), 𝑆𝐷𝑘(𝑃))

15: Else

16: 𝐷𝑑𝑖 (𝑝) ← 𝐷𝑘(𝑝) + 𝐷𝑘
 (𝑝)

17: If 𝐷𝑑𝑖 (𝑝) > 0 then

18: continue

19: Else If 𝐷𝑑𝑖 (𝑝) < −𝜉 then

20: 𝑆𝑘(𝑃) ← 𝑓𝑢𝑠𝑒 (𝑆𝑘−1(𝑃), 𝑆𝐷𝑘(𝑃))

21: Else

22: If 𝑊𝑘−1
′ < 𝜙 then

23: 𝑆𝑘
′ (𝑃) ← 𝑓𝑢𝑠𝑒 (𝑆𝑘−1

′ (𝑃), 𝑆𝐷𝑘(𝑃))

24: Else

25: 𝑠𝑑𝑓 𝑟𝑜𝑛𝑡 ← 𝐷𝑘(𝑝) − 𝑃𝑧

26: 𝑠𝑑𝑓𝑏𝑎𝑐𝑘 ← 𝑃𝑧 + 𝐷𝑘
 (𝑝)

27: 𝜌 ←
min(0,𝑠𝑑 𝑏𝑎𝑐𝑘)

min(0,𝑠𝑑 𝑏𝑎𝑐𝑘)+min(0,𝑠𝑑 𝑓𝑟𝑜𝑛𝑡)

28: 𝜌′ ← 1 − 𝜌

29: 𝐹𝑘(𝑃) ←

𝜌𝑊𝑘−1(𝑃)𝐹𝑘−1(𝑃)+𝜌

′𝑊𝑘−1
′ (𝑃)𝐹𝑘−1

′ (𝑃)

𝜌𝑊𝑘−1(𝑃)+𝜌
′𝑊𝑘−1
′ (𝑃)

30: 𝑊𝑘(𝑃) ← 𝜌𝑊𝑘−1(𝑃) + 𝜌
′𝑊𝑘−1
′ (𝑃)

31: 𝑊𝑘
′(𝑃) ← 0

32: End If

33: End If

34: End If

35: End for

where the 𝑓𝑢𝑠𝑒 function performs a weighted moving average.

The threshold 𝜉 denotes the width of a narrow band near the

surface, within which the classification strategy is employed.

When the difference of the front and back surface 𝐷𝑑𝑖 (𝑝)
along pixel ray 𝐿g(𝑝) lies in the range [−ξ, 0], we try to fuse

the incoming data to the “ghost” volume 𝑆′ . And when its

weight is above a confidence threshold 𝜙, we merge volume

𝑆′ to the main volume 𝑆, based on the SDF of each voxel 𝑃 to

both the front and back surface. Note that 𝑠𝑑𝑓𝑏𝑎𝑐𝑘 is

calculated the way opposite to 𝑠𝑑𝑓 𝑟𝑜𝑛𝑡, resulting in negative

SDF for voxels before (seen from the current camera’s

viewpoint) the back surface, and positive values behind it.

We finally employ a simple volume denoising scheme for

cleaner mesh outputs (Algorithm 1, line 4~12). For each voxel

𝑃 at time 𝑘, when 𝜂 < −𝛿𝑎, we check both the value of 𝑊𝑘

and 𝑊𝑘
′. If 𝑊𝑘 is below 𝜙 and the corresponding pixel is away

from image edges (𝜆 ≥ 𝛬), or if 𝑊𝑘
′ is not zero, we gradually

decrease their values by one. This strategy is simple but

effective in the presence of highly uncertain depth measure-

ments, e.g. at depth discontinuities or grazing viewing regions.

IV. EVALUATION

A. DATASET

In our previous work [18], we have released a dataset CU3D,

consists of three synthetic depth image sequences with GT

camera trajectories and GT mesh models, and six real-world

noisy data sequences with 3D-printed GT models but no GT

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

http://dx.doi.org/10.20944/preprints201812.0165.v1

 1

camera trajectories. We extend the dataset with several new

depth sequences by scanning some models obtained from

daily life, including four dinosaur toys (a Stegosaurus, a

Spinosaurus, a Pterosaur, and a Diplodocus. The former three

are soft rubber products, but the last one is a rigid body) and a

small cardboard box, as shown in Fig. 5. We choose these

objects because of their challenging structural details, e.g., the

sharp claws, tail tips, and thin spines of the toy dinosaurs, and

the thin cardboard walls. Since we have no per-vertex GT for

these objects, we measure the distances between manually

picked points, or the thickness of thin structures with a Vernier

caliper (to 0.02mm) for quantitative evaluation of the

compared algorithms. These measurements include the

distance from nose to tail tip of the Stegosaurus (abbreviated

as “stego-n2t”), the Spinosaurus (abbrev. “spino-n2t”), and

the Diplodocus (abbrev. “diplo-n2t”), the distance from the

cranial crest tip to tail tip of the Pterosaur (abbrev. “ptero-c2t”),

the thickness of the right forelimb of the Diplodocus (abbrev.

“diplo-r-forelimb”), and the thickness of the wall of the

cardboard box (abbrev. “box-wall”). The measured results as

GT are listed in Table I. Note the scale of our measured

objectives varies from hundreds of millimeters to only a few

millimeters, which challenges the performance of the

compared algorithms.

Figure 5. The new scanned objectives added to our CU3D dataset, in-
cluding (a) a Stegosaurus, (b) a Spinosaurus, (c) a Pterosaur, (d) a Dip-
lodocus, and (e) a small thin cardboard box. The yellow arrowed dashed
lines in each subfigure indicate the manually chosen distance to meas-
ure with a Vernier caliper.

TABLE I

PHYSICAL DISTANCES BETWEEN THE MANUALLY CHOSEN POINTS MEAS-

URED WITH A VERNIER CALIPER.

Measurement item Ground-truth distance (mm)

stego-n2t 491.78

spino-n2t 589.38

ptero-c2t 276.80
diplo-n2t 321.26

diplo-r-forelimb 12.22

box-wall 6.24

B. CAMERA TRAJECTORY ACCURACY

Our reference based odometry algorithm is compared with the

following: KinectFusion [1] (PCL’s Kinfu implementation

[48]), the boundary odometry of Zhou et al. [33], the SDF-2-

SDF algorithm of Slavcheva et al. [17] (our implementation),

and our previous work CuFusion [18]. We compute the

absolute trajectory error (ATE) of the 6DOF camera poses on

the synthetic depth image sequences – the armadillo, dragon,

and bunny sequences from the CU3D dataset. Although planar

surfaces of the cuboid occupy the majority of the depth images,

all the compared algorithms achieve decent camera trajecto-

ries without prominently accumulating drift, as listed in Table

II. The ATE of the proposed algorithm in this work is a bit

larger (less than 0.5mm) than our previous version of

CuFusion, which has little impact on the accuracy of

reconstruction. Note that the truncation distance is set to a

small value (5 mm) for most of the cases, whereas when

testing Kinfu on sequence “armadillo” it is set up to 25 mm

because small truncation distance in this test case results in

severe camera drift and thus failure of the reconstruction. We

discuss this phenomenon in the following section V.

TABLE II

COMPARISON OF ATE ON THE SYNTHETIC SEQUENCES OF CU3D.

Algorithm Armadillo Dragon Bunny

KinFu 3.6 3.0 4.2

Zhou et al. 5.6 2.9 4.3
SDF-2-SDF 5.7 4.4 6.6

CuFusion 1.7 1.7 1.3

Our approach 1.7 1.8 1.7

C. COMPARISON WITH POSE GRAPH OPTIMIZATION

We further compare our online results with those optimized

with pose graph optimization. The camera poses where a

triplet of mutually orthogonal planes of the reference cuboid

is observed, are selected as keyframes and added as fixed

vertices into the pose graph. Between which the poses are

added as floating vertices and optimized with the “g2o”

framework. We test the optimization results on real-world

noisy sequences, finding that it has little accuracy gain

compared with our online results. Fig. 6 shows the per frame

trajectory difference on the sequence “lambunny” of CU3D.

The maximum difference is less than 0.1mm, demonstrating

our algorithm outputs comparable camera trajectories to the

graph optimized one.

Figure 6. Comparison of per-frame ATE between our algorithm and the
graph optimized result on sequence “lambunny”.

(a) (b) (c) (d) (e)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

http://dx.doi.org/10.20944/preprints201812.0165.v1

 1

D. SURFACE RECONSTRUCTION ACCURACY

We quantitatively evaluate the algorithms in the following

three ways – the per-vertex error, the physical scale fidelity,

and finally the mesh noise of the reconstructions.

1) CLOUD-TO-MESH DISTANCE

We first test the cloud-to-mesh (C2M) distance from the

reconstructtions to the GT models on the three synthetic depth

streams and six scanning sequences of the 3D-printed models.

Surface reconstructions are first aligned against the GT

models, and the C2M distances in millimeters between the

reconstructed and GT models are computed using the

CloudCompare software [51]. The C2M distance is quantified

by two standard statistics: Mean and Standard deviation (Std.).

Fig. 7 plots the reconstructions of the “buddhahead” sequence

and their corresponding heat maps of the C2M distance. Table

III provides the error evaluation details of the five compared

algorithms on the nine data sequences.

Figure 7. Qualitative comparison of the algorithms (a) Kinfu, (b) Zhou et
al., (c) SDF-2-SDF, (d) CuFusion, and (e) our proposed method on
sequence “buddhahead”. Top row: the reconstructed mesh models,
bottom row: the heat maps corresponding to the C2M errors.

TABLE III

SURFACE RECONSTRUCTION ACCURACY ON OUR SYNTHETIC AND REAL-
WORLD DATA, WITH C2M ERROR METRIC (MEAN±STD.) IN MILLIMETERS.

Se-

quence
KinFu

Zhou et

al.

SDF-2-

SDF

CuFu-

sion

Our ap-

proach

arma-
dillo

1.0±1.1 0.2±0.2 0.4±0.3 0.2±0.1 0.2±0.2

dragon 0.2±0.2 0.1±0.1 0.4±0.3 0.1±0.1 0.1±0.1

bunny 0.2±0.4 0.2±0.4 0.4±0.4 0.1±0.1 0.2±0.3

mug 1.4±1.1 1.4±0.9 0.8±0.9 0.9±0.8 0.7±0.8

lam-

bunny
0.9±1.2 1.1±1.2 1.4±1.1 1.3±1.2 1.1±1.1

owl 2.4±1.1 1.0±1.0 2.2±1.2 1.2±1.1 0.9±1.2

tooth 2.7±1.4 1.3±1.3 1.3±1.3 1.5±1.5 1.3±1.3

wingedc
at

1.5±2.0 1.5±2.0 2.7±2.6 1.4±2.2 1.3±1.9

buddahe

ad
1.6±2.1 3.0±2.0 2.7±2.0 1.3±2.0 1.5±2.1

2) PHYSICAL SCALE OF THE RECONSTRUCTION

As can be seen from Table III, on the reconstruction of small-

sized objects, it is hard to tell which method has a significant

advantage over the others as long as no noticeable camera drift

happens. To test the reconstruction fidelity, we also measure

the physical scale of the reconstructions (total length or body

part thickness) of the five newly added scanning sequences.

Distance in millimeters is measured using the point-picking

tool of the CloudCompare software. We compare the

measuring results with the corresponding GT values listed in

Table I, and use the absolute distance (listed in the parentheses)

between the measurements and the GT values as an indicator

of the accuracy of the tested algorithms, as illustrated in Table

IV. Fig. 8 qualitatively demonstrates the reconstruction of the

“Diplodocus” and “cardboard box” sequence. Note that the

SDF-2-SDF method fails to create the Diplodocus model due

to drift in camera trajectory estimation, and neither the Kinfu

and Zhou et al.’s method reconstructs the Diplodocus’s right

forelimb successfully.

TABLE IV

MEASUREMENT RESULTS OF THE MANUALLY CHOSEN OBJECTS’ PARTS IN MILLIMETERS. THE ABSOLUTE DISTANCE BETWEEN THE MEASUREMENTS OF MESH

MODELS AND THE REAL OBJECTS ARE SHOWN IN THE PARENTHESES BEHIND (SMALLER IS BETTER).

Measurement item GT (mm) KinFu Zhou et al. SDF-2-SDF CuFusion Our approach

stego-n2t 491.78 479.07 (12.71) 479.18 (12.6) 485.62 (6.16) 475.6 (16.18) 483.4 (8.38)

spino-n2t 589.38 595.48 (6.1) 601.41 (12.03) 595.66 (6.28) 596.76 (7.38) 592.98 (3.60)

ptero-c2t 276.80 269.11 (7.69) 271.99 (4.81) 272.11 (4.69) 270.28 (6.52) 276.77 (0.03)

diplo-n2t 321.26 293.91 (27.35) 306.66 (14.6) -- 300.29 (20.97) 316.63 (4.63)

diplo-r-forelimb 12.22 -- -- -- 6.7 (5.52) 12.1 (0.12)

box-wall 6.24 6.66 (0.42) 7.32 (1.08) 5.92 (0.32) 11.63 (5.39) 6.76 (0.52)

(a) (b) (c) (d) (e)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

http://dx.doi.org/10.20944/preprints201812.0165.v1

 1

Figure 8. Qualitative comparison of the algorithms (a) Kinfu, (b) Zhou et al., (c) SDF-2-SDF, (d) CuFusion, and (e) our proposed method on sequence

“Diplodocus” (top row) and sequence “cardboard box” (bottom row).

3) MESH NOISE

We finally compare the mesh and point cloud generated by the

evaluated algorithms. For applications such as 3D printing,

clean and topologically consistent mesh output would be of

vital importance. Thanks to the accurate camera pose

estimation and the denoising strategy during the data fusion

process, our method is able to generate globally consistent

mesh models superior to others. Fig. 9 demonstrates the

reconstruction of the compared methods on sequence

“Spinosaurus”, where sectional views are provided for

visualizing both sides of the surface. As can be seen from the

sectional views, our mesh model contains the least noise and

outliers among the compared algorithms.

Figure 9. Sectional views of the algorithms (a) Kinfu, (b) Zhou et al., (c) SDF-2-SDF, (d) CuFusion, and (e) our proposed method on reconstruction of
sequence “Spinosaurus”.

TABLE V

FACE AND VERTEX (LISTED IN THE PARENTHESES) COUNT OF THE SURFACE MODELS GENERATED BY THE COMPARED ALGORITHMS. SMALLER VALUE IS BET-

TER IF NO DRASTIC FAILURE OF THE RECONSTRUCTION HAPPENS, INDICATING CLEANER MODEL OUTPUT AS DEMONSTRATED IN FIG. 9.

Sequence KinFu Zhou et al. SDF-2-SDF CuFusion Our approach

armadillo 387601 (194909) 380642 (191541) 382897 (192600) 382161 (192372) 380234 (191255)

dragon 427022 (216153) 425901 (215487) 432404 (217893) 421269 (213688) 422416 (213238)

bunny 381912 (192908) 382453 (193282) 385194 (193916) 381273 (192264) 381602 (192551)

mug 371373 (194913) 395920 (213064) 378467 (198830) 349920 (181024) 328169 (166157)

lambunny 390045 (210086) 399374 (215993) 374001 (196184) 347144 (179696) 324172 (165600)

owl 373064 (200120) 381390 (204482) 362957 (186951) 364773 (188779) 333662 (171376)

tooth 374547 (202142) 399135 (216662) 368753 (192225) 365439 (188833) 327058 (166900)

wingedcat 404647 (220129) 404900 (220328) 497058 (257532) 371897 (193442) 336911 (171508)

buddhahead 411831 (222773) 445290 (241586) 417893 (219216) 389424 (200526) 364055 (184930)

Stegosaurus 495461 (264761) 482179 (259652) 827302 (421941) 467333 (240470) 400986 (204506)

Spinosaurus 395476 (209303) 417042 (221981) 389946 (198736) 391549 (201743) 345417 (175003)

Pterosaur 462870 (245659) 477072 (254872) 623249 (321049) 445836 (227873) 415591 (209501)

Diplodocus 517564 (274194) 421678 (223022) -- 407979 (211236) 364548 (184535)

Cardboard box 515780 (273150) 532378 (282620) 600319 (320499) 501039 (259089) 449509 (228410)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

http://dx.doi.org/10.20944/preprints201812.0165.v1

 1

Table V illustrates the number of triangle faces and vertices

(listed in the parentheses) of each model generated by the

algorithms for each depth stream of our CU3D dataset

(currently 14 sequences in total). On the first three synthetic

sequences, the statistical differences are around 1% since there

is no noise in the input depth images. On the real-world

sequences however, the differences reach up to 10%~30%.

Our algorithm generates the least outliers in the point clouds

as well as the triangle meshes on all of the noisy sequences,

proving the effectiveness of our denoising scheme.

V. DISCUSSION AND CONCLUSION

In this paper we propose an approach for accurate and clean

object reconstruction. Given a stream of depth images and a

known cuboid reference object present in the scene, we keep

drift free camera pose estimation with the constraints added by

the reference object, without the need of pose graph

optimization. We then fuse the living data into one globally

consistent model in real-time by transforming the problem of

data fusion into a probabilistic binary classification problem,

and keep the reconstruction fidelity in particular highly curved

and concave zones of the scanned objectives, preserving the

surface smoothness and cleanliness utilizing a simple

denoising strategy – especially in areas invisible near the

surface. Our method takes one step further for the applications

which demand fine-grained reconstruction details such 3D

printing.

One limitation of our method is that it assumes the scene or

object is static during scanning. Any deformation or motion of

the objects may lead to failure of the reconstruction, especially

in the presence of thin geometries. Currently the

reconstruction of sharp zones in motion remains a challenge to

us. About the memory consumption, our method costs 8 bytes

per voxel – half the memory cost of our previous work,

CuFusion, still twice as much as KinectFusion at the same

resolution. Our future work will focus on the memory

efficiency of the volumetric representation, enabling higher

volume resolution and a larger scale of reconstruction. Also,

we will explore the fidelity preservation of thin geometry in

motion, to make the system work with challenging scenes.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

http://dx.doi.org/10.20944/preprints201812.0165.v1

 9

REFERENCES
[1] R. A. Newcombe et al., “KinectFusion: Real-time Dense Surface

Mapping and Tracking,” in Proceedings of the 2011 10th IEEE In-

ternational Symposium on Mixed and Augmented Reality, Washing-

ton, DC, USA, 2011, pp. 127–136.
[2] P. J. Besl and N. D. McKay, “A method for registration of 3-D

shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp.

239–256, Feb. 1992.
[3] Y. Chen and G. Medioni, “Object Modelling by Registration of Mul-

tiple Range Images,” Image Vis. Comput, vol. 10, no. 3, pp. 145–

155, Apr. 1992.
[4] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolu-

tion 3D Surface Construction Algorithm,” SIGGRAPH Comput
Graph, vol. 21, no. 4, pp. 163–169, Aug. 1987.

[5] S. Meister, S. Izadi, P. Kohli, M. Hämmerle, C. Rother, and D. Kon-

dermann, “When can we use kinectfusion for ground truth acquisi-
tion,” in Proc. Workshop on Color-Depth Camera Fusion in Robot-

ics, 2012, vol. 2.

[6] K.-L. Low, “Linear least-squares optimization for point-to-plane icp

surface registration,” Chap. Hill Univ. N. C., vol. 4, 2004.

[7] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP.,” in Robot-

ics: science and systems, 2009, vol. 2, p. 435.
[8] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J.

McDonald, “Kintinuous: Spatially extended kinectfusion,” 2012.

[9] T. Weise, T. Wismer, B. Leibe, and L. Van Gool, “In-hand scanning
with online loop closure,” in Computer Vision Workshops (ICCV

Workshops), 2009 IEEE 12th International Conference on, 2009, pp.

1630–1637.
[10] T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker, and A. Da-

vison, “ElasticFusion: Dense SLAM Without A Pose Graph,” in

Proceedings of Robotics: Science and Systems, Rome, Italy, 2015.
[11] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J.

McDonald, “Real-time large-scale dense RGB-D SLAM with volu-

metric fusion,” Int. J. Robot. Res., vol. 34, no. 4–5, pp. 598–626,
2015.

[12] O. Kähler, V. A. Prisacariu, and D. W. Murray, “Real-time large-

scale dense 3d reconstruction with loop closure,” in European Con-
ference on Computer Vision, 2016, pp. 500–516.

[13] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust reconstruction of in-

door scenes,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 5556–5565.

[14] Q.-Y. Zhou and V. Koltun, “Dense scene reconstruction with points

of interest,” ACM Trans. Graph. ToG, vol. 32, no. 4, p. 112, 2013.
[15] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and S.

Leutenegger, “ElasticFusion: Real-time dense SLAM and light

source estimation,” Int. J. Robot. Res., vol. 35, no. 14, pp. 1697–
1716, 2016.

[16] M. Slavcheva, W. Kehl, N. Navab, and S. Ilic, “SDF-2-SDF: highly

accurate 3D object reconstruction,” in European Conference on
Computer Vision, 2016, pp. 680–696.

[17] M. Slavcheva, W. Kehl, N. Navab, and S. Ilic, “SDF-2-SDF Regis-

tration for Real-Time 3D Reconstruction from RGB-D Data,” Int. J.
Comput. Vis., pp. 1–22, 2018.

[18] C. Zhang and Y. Hu, “CuFusion: Accurate real-time camera tracking

and volumetric scene reconstruction with a cuboid,” Sensors, vol.
17, no. 10, p. 2260, 2017.

[19] A. J. Davison, “Real-time simultaneous localisation and mapping

with a single camera,” in null, 2003, p. 1403.
[20] G. Klein and D. Murray, “Parallel tracking and mapping for small

AR workspaces,” in Mixed and Augmented Reality, 2007. ISMAR

2007. 6th IEEE and ACM International Symposium on, 2007, pp.
225–234.

[21] R. A. Newcombe and A. J. Davison, “Live dense reconstruction with
a single moving camera,” in Computer Vision and Pattern Recogni-

tion (CVPR), 2010 IEEE Conference on, 2010, pp. 1498–1505.

[22] J. Stühmer, S. Gumhold, and D. Cremers, “Real-time dense geome-
try from a handheld camera,” in Joint Pattern Recognition Sympo-

sium, 2010, pp. 11–20.

[23] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM:
Dense tracking and mapping in real-time,” in Computer Vision

(ICCV), 2011 IEEE International Conference on, 2011, pp. 2320–

2327.

[24] S. Izadi et al., “KinectFusion: Real-time 3D Reconstruction and In-

teraction Using a Moving Depth Camera,” in Proceedings of the

24th Annual ACM Symposium on User Interface Software and Tech-
nology, New York, NY, USA, 2011, pp. 559–568.

[25] J. Sturm, E. Bylow, F. Kahl, and D. Cremers, “CopyMe3D: Scan-

ning and Printing Persons in 3D,” in Pattern Recognition - 35th Ger-
man Conference, GCPR 2013, Saarbrücken, Germany, September 3-

6, 2013. Proceedings, 2013, pp. 405–414.

[26] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3D Reconstruction at Scale Using Voxel Hashing,” ACM Trans

Graph, vol. 32, no. 6, pp. 169:1–169:11, Nov. 2013.

[27] V. A. Prisacariu et al., “InfiniTAM v3: A Framework for Large-
Scale 3D Reconstruction with Loop Closure,” ArXiv Prepr.

ArXiv170800783, 2017.

[28] A. Dai, M. Nie\s sner, M. Zollhöfer, S. Izadi, and C. Theobalt, “Bun-
dlefusion: Real-time globally consistent 3d reconstruction using on-

the-fly surface reintegration,” ACM Trans. Graph. TOG, vol. 36, no.

4, p. 76a, 2017.
[29] H. Roth and M. Vona, “Moving Volume KinectFusion.,” in BMVC,

2012, vol. 20, pp. 1–11.

[30] T. Whelan, M. Kaess, J. J. Leonard, and J. McDonald, “Defor-
mation-based loop closure for large scale dense RGB-D SLAM,” in

Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International

Conference on, 2013, pp. 548–555.
[31] D. Lefloch, M. Kluge, H. Sarbolandi, T. Weyrich, and A. Kolb,

“Comprehensive Use of Curvature For Robust And Accurate Online
Surface Reconstruction,” IEEE Trans. Pattern Anal. Mach. Intell.

PAMI, p. 10.1109/TPAMI.2017.2648803, 2017.

[32] W. Dong, Q. Wang, X. Wang, and H. Zha, “PSDF Fusion: Probabil-
istic Signed Distance Function for On-the-fly 3D Data Fusion and

Scene Reconstruction,” ArXiv Prepr. ArXiv180711034, 2018.

[33] Q.-Y. Zhou and V. Koltun, “Depth camera tracking with contour
cues,” in 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015, pp. 632–638.

[34] E. Ataer-Cansizoglu, Y. Taguchi, S. Ramalingam, and T. Garaas,
“Tracking an RGB-D camera using points and planes,” in Proceed-

ings of the IEEE International Conference on Computer Vision

Workshops, 2013, pp. 51–58.

[35] Y. Taguchi, Y.-D. Jian, S. Ramalingam, and C. Feng, “Point-plane

SLAM for hand-held 3D sensors,” in Robotics and Automation

(ICRA), 2013 IEEE International Conference on, 2013, pp. 5182–
5189.

[36] M. Kaess, “Simultaneous localization and mapping with infinite

planes.,” in ICRA, 2015, vol. 1, p. 2.
[37] R. F. Salas-Moreno, B. Glocken, P. H. Kelly, and A. J. Davison,

“Dense planar SLAM,” in Mixed and Augmented Reality (ISMAR),

2014 IEEE International Symposium on, 2014, pp. 157–164.
[38] L. Ma, C. Kerl, J. Stückler, and D. Cremers, “Cpa-slam: Consistent

plane-model alignment for direct rgb-d slam,” in Robotics and Auto-

mation (ICRA), 2016 IEEE International Conference on, 2016, pp.
1285–1291.

[39] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and

A. J. Davison, “Slam++: Simultaneous localisation and mapping at
the level of objects,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2013, pp. 1352–1359.

[40] N. Fioraio and L. Di Stefano, “Joint detection, tracking and mapping

by semantic bundle adjustment,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2013, pp. 1538–

1545.
[41] A. Elfes and L. Matthies, “Sensor integration for robot navigation:

Combining sonar and stereo range data in a grid-based representa-

taion,” in 26th IEEE Conference on Decision and Control, 1987, vol.
26, pp. 1802–1807.

[42] B. Curless and M. Levoy, “A Volumetric Method for Building Com-

plex Models from Range Images,” in Proceedings of the 23rd An-
nual Conference on Computer Graphics and Interactive Techniques,

New York, NY, USA, 1996, pp. 303–312.

[43] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A.
Kolb, “Real-time 3d reconstruction in dynamic scenes using point-

based fusion,” in 3DTV-Conference, 2013 International Conference

on, 2013, pp. 1–8.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

http://dx.doi.org/10.20944/preprints201812.0165.v1

 9

[44] J. Serafin and G. Grisetti, “NICP: Dense normal based point cloud

registration,” in Intelligent Robots and Systems (IROS), 2015

IEEE/RSJ International Conference on, 2015, pp. 742–749.
[45] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Surfels: Surface

Elements As Rendering Primitives,” in Proceedings of the 27th An-

nual Conference on Computer Graphics and Interactive Techniques,
New York, NY, USA, 2000, pp. 335–342.

[46] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A

benchmark for the evaluation of RGB-D SLAM systems,” in Intelli-
gent Robots and Systems (IROS), 2012 IEEE/RSJ International Con-

ference on, 2012, pp. 573–580.

[47] A. Handa, T. Whelan, J. B. McDonald, and A. J. Davison, “A
Benchmark for RGB-D Visual Odometry, 3D Reconstruction and

SLAM,” in IEEE Intl. Conf. on Robotics and Automation, ICRA,

Hong Kong, China, 2014.
[48] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”

in 2011 IEEE International Conference on Robotics and Automa-

tion, 2011, pp. 1–4.
[49] C. Feng, Y. Taguchi, and V. R. Kamat, “Fast plane extraction in or-

ganized point clouds using agglomerative hierarchical clustering,” in

2014 IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 6218–6225.

[50] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,

“g 2 o: A general framework for graph optimization,” in Robotics
and Automation (ICRA), 2011 IEEE International Conference on,

2011, pp. 3607–3613.
[51] “CloudCompare - Open Source project.” [Online]. Available:

http://www.danielgm.net/cc/. [Accessed: 19-Jul-2017].

CHEN ZHANG received the B.S. degree in Com-

puter Science from Zhejiang University, China, in
2013. From September 2013, he is studying as a

Ph.D. student in College of Computer Science and

Technology, Zhejiang University, China. He is
currently working with the Computer Animation

& Perception Group under the State Key Lab of

CAD & CG, Zhejiang University. His primary re-
search interests include simultaneous localization

and mapping (SLAM) and 3D reconstruction.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 December 2018 doi:10.20944/preprints201812.0165.v1

http://dx.doi.org/10.20944/preprints201812.0165.v1

