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Absract: DGJ (Daftardar-Gejii-Jafaris) method is used to obtain nu-
merical solution of the third order fractional differential equation. Providing
the DGJ method converges, the approximate solution is a good and effective
numerical result which is close to the exact solution or the exact solution. For
this,the examples of the explaning the method are presented. The proposed
method is implemented for the approximation solution of the third order non-
linear fractional partial differential equations. The method was shown to be
unsuitable and inconsistent for an example of a nonlinear fractional partial dif-
ferential equation depend on initial-boundary value conditions. The fact that
these numerical results are not consistent can be explained by the fact that the
method is not convergent.
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1 Introduction

Fractional partial differential equations have gained considerable importance
recently in the literature. Fractional differential equations have various appli-
cations in the fields of finance, applied sciences, seismology engineering, physics
and biology.[1, 2, 3]. This fractional differential equations can be solved sepa-
rately depending on the time and space variables. There are some methods for
approximate solutions of fractional differential equations due to space and time
variables [4, 6, 7, 5]. These methods are the radial basis function, Chebyshew
Tau method, thin plate splines method, variational iteration method, finite dif-
ference schemes method and DGJ method [9, 10, 11, 12, 23]. DGJ method was
used for evolution and nonlinear functional equation and fractional order non-
linear systems [13, 14, 15]. Then, telegraph equation was solved by DGJ method
[8]. Finally, Daftardar-Gejji and Jafari method was applied to solve fractional
heat-like and wave-like models with variable coefficients [20]. Fractional deriva-
tive was studied by many authors for different methods [17, 18, 19].

In this study, we will study the initial-boundary value problems of the third-
order fractional differential equations defined by Caputo derivative
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0<.T<L, O<t<T, O<OL§1,
(1)
U(O,.’IJ) = gl(x)u Ut(07.’II) = 92(33)7 utt(07x) = 93(1'), 0 S t S T7

u(t,Xp) =ri1(t),u(t,Xgr) =ra(t), Xy <z < Xg.

Where A is known constant coefficient, g1, g2, g3, 71 and ro are known functions
and wu is the unknown function.

Unlike in the study [20], the DGJ method was applied to a third-order and
non-linear fractional partial differential equation. In this study, the advantages
and disadvantages of the DGJ method were clearly demonstrated by the exam-
ples given.

Now, we give some basic definitions and properties of fractional calculus
theory for DGJ method.

Definition 1. The definition of gamma function is given the following form
as:

[(2) =f e "t* 1 dt, for all z € C.

Definition 2. The Caputo fractional derivative Du(t,x) of order o with
respect to time is defined as:

0%u(t, x) o
o Diul(t, ) (2)

1 t 1 aau<p’ .T)
= -1
T(n—a),(t—pe—rtl  op> dp, (n <a<n)

and for &« = n € N defined as:

Dgu(t,x) = ot — 2,

Definition 3. By using gamma function and the formula (2), the following
formula can be written

F(B'i' 1) tB—a.

P = —ar D

2 DGJ Iteration Method

Using the method [15], we can write the general form as:

u(z) = N(u(z)) + f(z) 3)
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where N is an operator and f is a known function x = (21, z3,..., Z,,). A solution
of u the equation (3) is given the following series form

u(@) =70 uj(@). (4)
The operator N can be written as:
N(52ou;(x)) = N(uo) +521 {guy(x)) — N(Zgu;())}. ()
Written the formulas (4) and (5) into the formula (3), we have
5Zouj (@) = f(x) + N(uo) +521 {{_gus () = N({Zgu;(@))}- (6)
From the above formulas, we can obtain the following formula
U = fv
up = N(uo), (7)
U = N(ug+us + ... +up) — Nug+up + oo +up_q1), n=1,2,....
Thus,
(wo+up + .. +tUpg1) = N(ug +ur + ... +up),n=1,2, ... (8)
and
G2ou; = f+ N(GZouy). 9)

Now, we shall apply the DGJ method to third order fractional differential equa-
3

tion. For this, the initial conditions consider operator L;; = %. The inverse

operator of Ly ; Ly} =t §5(.)dtdtdt. Applying the inverse operator to both sides

of the equation (1), the following integral equation is obtained

Ou(t,0) n Put,0) 4y

u(t,z) = wu(t,0)+ ot 92 +4 o0 f (t, x)dtdtdt (10)
Ou(t,z) 0%t )
o6 (A gs g — ult x))dtdtdt.

DGJ algorithnm is applied the folowing as:

2
U = g1 +gzt+935 +b b f(t, x)dtdtdt,
O%u(t, x 0“ug(t, z
wr = N(ug)=bLh(N &?;2 ) _ 80; )—uo(t,x))dtdtdt, (11)
Umt1 = N(uo+ur + ..+ um) = N(uo +ur + . + up—1), m=1,2,....

Convergences of the method and convergeness conditions can be seen in the
reference [15].
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3 Numerical implementation

Now, the proposed method is implemented to solve some examples of variable
form of the third order fractional partial differential equation. The first example
have obtained the exact solutions. For the Example 2, the method has been
observed for some values are moving away from the exact solution while for
some values approaching the exact solution.

Example 1. Investigate the following third order fractional partial differ-
ential equation for initial boundary value problems

[N

d3u(t,z) B%u(t,m)

8%u(t,x
o8 T 5% = 2

+ult,r) = =55 + (6 + 6Ft(%))7

O<az, 0<t<1l,0<a<l, (12)

u(0,2) = u(0,2) = uy(0,2) =0, 0 < ¢.
Using the formula (11) and initial condition of the formula (12) for DGJ method,

we obtain
t? ttt x 53
U = G +92t+g3* +() 00€ (6+677)d8d8d8
2 I'(3)
8% t 52 3%
— 6 xtt d d — 6 xt 2 d
€50 (s—i—F(%))ss €0<2 +I‘(1—21)) s
B T
= 6e"(— + ),
6 (%)
0%ug(s, x 0% (s, x
up = N(ug) =§ 66( 809(02 ) _ (‘;)t(a ) — ug(t,x))dsdsds
3 5
— _genttt S 5" Ndsdsd
6000 (F(%) + (6)) sasas
1
tz t8
= _6ew( + ==,
) 1)
8 tT
uy = 6e’(== ),
roY) 1(%)
t3+5n t%+5n
u, = (—1)"6e"( ),
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When n — oo, the result converges to exact solution as follow:

£3+5n t3+5n
_ soon — BT i ™ _1\n,T
u(t,z) = nh—{%oj‘:(]uj Ge nlgr;ojzo( )% (F(4—|— 51) + (L + 5n)
43 t5+5n
= 6e"(—= — lim = et3 for every 0 < ¢ < 1.

6 n—>ooF(171 + 5n)

Finding u(t,z) = e*t> are the exact solution for the problem (12).
Example 2. Investigate the following nonlinear third order fractional par-
tial differential equation for initial boundary value problems

3Pu(t,x) 8%u(t,z) _ o 0%u(tx) 2\ /46 té
a5t pve! =357~ u(t,x) + 6(x — 2?)(t +W2?)

+1),
0<z, 0<t<l, O0<a<l,

u(0,2) = u(0,2) = up(0,2) =0, 0 <t <1,

u(t,0) =u(t,1) =0, 0 <z <1.

Using the formula (11) and initial condition of the formula (12) for DGJ method,
we have

12 s
u = g1+ g2t + 935 +hbb6(x — 2%)(s5 + FS(ZZ) + 1)dsdsds
2
STOT LN ovp, SO s3 52
= 0o = aoo(5 + gy eddads = 6w — 275 + iy + 5
£ tr 3
= 6(x—a? — 14
" =78 T iy T ) (14)
and
62U0(t,1‘) aauO(ta 17)
up = N(ug) =h 563 9 u(t, ) — e )dsdsds
2 18 12
(e a2NEEE 532 S s
= o= oo G7rmmy T o Ty
811 6F(7) 72 17
1216 + + )%
@ raee) TR
8% 83 6
+I‘(12—3) + 5 + 6t°)dsdsds.

From that, we get
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+

+ ot ).

r(2) "480 " 84

Using (14) and (15) formulas for the numerical results by DGJ method, we
obtain the following error analysis Table 1 with ¢ = max |uemct *fzo ul| for
i =0,1. Here Uepaet(t,r) = (z — 22)t is exact solution for the nonlinear prob-
lem (13) that can obtain by using Laplace transform method and wu; are the
approximation solutions by using DGJ method obtained the above procedure.

t =0.05,2 = 0.05
t=0.02,z = 0.02
t=0.01,z = 0.01

5.937559 x 106
1.568001 x 10~7
9.900002 x 10~*
9.990000 x 1013

5.937500 x 106
1.568000 x 10~7
9.900000 x 10~?
9.990000 x 1013

Table 1.
t , T uz(k = 1) Uezact E(k' = 1)
t=05,2=0.5 —4.142853 x 10® 0.0312500 4.142884 x 103
t=0.25,2 =0.25 0.186714 0.002929 0.189644
t=0.1,z=0.1 8.976138 x 10~°  9.000000 x 10~°  2.386131 x 107

5.975908 x 10~ 11
1.822421 x 10713
2.042696 x 1015
6.563302 x 10722

t = 0.001,z = 0.001

By helping the Matlab program, to obtain numerical solution of this problem
can be applied for further steps. Moving from the steps found, it is seen that
the approximate solution is very close to each other with exact solution in larger
steps. On the other hand, for ¢ = 0.25 and = = 1.9 obtained approximations
results are far from the exact solution.

Now, we explain the convergence or not convergence of the DGJ method.
Using the methods in [14],[15], we obtain

29
IN@o(t2)| = |~ — a2t 6=t + S 5
’ 0001 7T () T 2449 T 7
1 6.1(7) 72 1 e " R
216 T+ 6% dsdsd
B eI ERR 7R vE LS Ve
= ||z —2?) ® i S Lt
N 73133350(%2) ' 19.20.21.24.49 © 7.13.14.15
216 14 6.I'(7) 576 23
4 + t2
2.13.14.(T(5}))? (F(25/2) 19.21.23.F(L;))
t% t6 t9
RICIRETRETY
1
— 00286 < -,
e
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24 t% N t20 N t14
7.31.33.1() 19.20.24.49 © 7.13.14

R 6.0(7) 288

L

216
12.13.(T'(42))?
15 t5 t8

t2
- R 9—
+F(12l) T " 84)

+ +

[(23/2)  19.21.7(%)

I

~ 02410< L,
e

Nu 2.386494384604877 x 10'° > é
This last formula shows that Example 2. is not convergence for n > 1 derivatives
as t. Because DJM is equivalent to Taylor series expansion around uy and Taylor
series condititions aren’t satisfied as in reference [16].

The vast majority of articles so far have just written the advantages of
numerical methods. In this study, both advantages and disadvantages of the
method were examined.

4 Conclusion

In this paper, The DGJ method is constructed. for the third order linear and
nonlinear fractional differential equation with Caputo fractional definition. This
method gives the exact solution that is obtained by Laplace transform method
depend on initial-boundary value problems for the first example. The second
example is a nonlinear third order fractional partial differential equation. for
solving telegraph partial differential equations. Approximate solutions for nu-
merical experiments are found by these-method. These results are compared
with the exact solutions. MATLAB is used for numerical calculations for the
Example 2.
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