

1 Article

2 **Novel role of MCP-induced protein 1 in ischemic
3 brain damage in animals of transient focal ischemia**4 Zhuqing Jin^{1,2,*}, Jian Liang², Jiaqi Li³, Pappachan E. Kolattukudy²5 ¹ School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China;6 ² Burnett School of Biomedical Sciences, University of Central Florida College of Medicine 4000 Central7 Florida Blvd. Orlando, FL 32816, USA; jinzq@zcmu.edu.cn (Z.J.); Jliang41@jhu.edu (J.L.); pkolattu@gmail.com
(P.E.K)8 ³ School of Pharmacy, Macau University of Science and Technology, Taipa,
10 11609853jpa11001@student.must.edu.mo (J.Q.L.)11 * Correspondence: jinzq@zcmu.edu.cn

12 Received: date; Accepted: date; Published: date

Abstract: Focal cerebral ischemia can lead to blood-brain barrier (BBB) breakdown, which is implicated in neuroinflammation and elevation of matrix metalloproteinases (MMPs). The role of the anti-inflammatory protein, monocyte chemotactic protein-induced protein 1 (MCPIP1) plays in the injury of BBB in stroke has not yet been reported. This study was conducted to identify and characterize the role MCPIP1 plays in BBB breakdown. Transient middle cerebral artery occlusion (MCAO) is induced in both wild-type and *Mcpip1*^{-/-} mice for 2 hours of occlusion periods followed by reperfusion for 24 or 48 hours. BBB permeability was measured by FITC-dextran extravasation, MMP-9/3 expression was analyzed by western blot, and claudin-5 and zonula occludens-1 (ZO-1) were analyzed by immunohistochemistry and western blot. After MCAO in wild type mouse is induced, there is significantly increase in MCPIP1 mRNA and protein levels. Absence of MCPIP1 lead to significant increase in FITC-dextran leakage in peri-infarct brain, significant upregulation of MMP-9, MMP-3 and reduced levels of tight junction components, claudin-5 and ZO-1 in the brain after MCAO. Our data demonstrate that absence of MCPIP1 exacerbates ischemia-induced blood-brain barrier disruption by enhancing the expression of matrix metalloproteinases and degradation of tight junction proteins. Overall data indicate that MCPIP1 is important protective role against BBB disruption in cerebral ischemia.

Keywords: Middle cerebral artery occlusion (MCAO); MCPIP1; blood-brain barrier; inflammatory response; ischemia; metalloproteinases.

32 **1. Introduction**

33 Stroke is a devastating neurological disease with high mortality and limited functional recovery.
34 The inflammatory responses accompanying stroke contribute to secondary ischemic injury [1-5].
35 BBB breakdown is often a consequence of many neurological disorders such as multiple sclerosis,
36 meningitis, encephalitis, amyloid angiopathy, traumatic brain injury and cerebral ischemia [6-7].
37 Blood-brain barrier (BBB) breakdown has been linked to post-stroke inflammatory responses and
38 increased levels of various cytokines and chemokines [8]. These inflammatory factors induce the
39 release of matrix metalloproteinases (MMPs), a family of extracellular enzymes which involve in
40 degradation of tight junction proteins and increase in the permeability of the BBB[9].Upregulation
41 and activation of MMP-9, MMP-3 and MMP-2 after cerebral ischemia leads to increased infarct size,
42 BBB leakage and hemorrhagic activity [7, 10].

43 Monocyte chemotactic protein-induced protein 1 (MCPIP1) was originally found in human
44 peripheral blood monocytes after treatment with monocyte chemotactic protein1 (MCP-1) [11]. Our

45 previous results demonstrate that MCPIP1 can suppress macrophage activation and decrease the
46 formation of proinflammatory cytokines, such as TNF α , IL-1 β , IL-6 and MCP-1 through inhibition of
47 JNK and NF- κ B proinflammatory signal pathway[7,15]. Our further studies indicated that upon LPS
48 stimulation, MCPIP1 is upregulated in macrophages, endothelial cells and microglia [7,10] which is
49 one of the mechanisms of LPS preconditioning/electroacupuncture pretreatment-induced ischemic
50 brain tolerance [14,16]. The role of MCPIP1 in regulating ischemia/reperfusion-induced BBB
51 breakdown after ischemic stroke has not been elucidated yet. Therefore, we examined the effect of
52 ischemia in *Mcpip1*^{-/-} mice. Our results demonstrate that the absence of MCPIP1 exacerbates
53 ischemia-induced blood-brain barrier disruption by enhancing the expression of matrix
54 metalloproteinases and degrading of tight junction proteins after an ischemic stroke.

55 2. Materials and Methods

56 1.1 Animals

57 MCPIP1 deficient mice were produced as previously described [15]. Briefly, *Mcpip1*^{-/-} mice were
58 generated by homologous recombination in embryonic stem cells with C57/BL6 genetic background.
59 Exons 3, 4, 5 and most part of 6 of mouse *Mcpip1* were targeted with a LacZ-neomycin cassette in
60 embryonic stem cells established from C57/BL6 mice and established *Mcpip1*^{-/-} mice in pure C57/BL6
61 background. Results from immunoblotting suggested absence of MCPIP1 proteins in
62 *Mcpip1*^{-/-} mice. Eight to ten-week-old mice were selected. The experiment protocol was approved
63 by the Institutional Animal Care and Use Committee of University of Central Florida. *Mcpip*^{-/-} mice
64 were backcrossed for at least 10 generations. All experiments were conducted by using littermate
65 mice.

66

67 1.2 Induction of Cerebral Ischemia

68 Mice were randomly assigned to wild type group and MCPIP1 knockout group and experiments
69 were performed in a blinded fashion. To induce focal brain ischemia, mouse transient middle
70 cerebral artery occlusion (MCAO) was produced by filament blockage of the right MCA as
71 previously described [14]. In brief, mice anesthesia was induced and maintained with 3% and 1.2%
72 isoflurane, respectively, along with oxygen-enriched air through a facemask, and rectal temperature
73 was kept between 36.5°C and 37.5°C during the course of the experiment by heating lamps.
74 Unilateral MCAO was produced by inserting a 7-0 nylon monofilament into the internal carotid
75 artery via an external carotid artery stump and filament is advanced up to 8-9mm into MCA from
76 the CCA junction. MCA occlusion period lasts for 120 minutes followed by reperfusion.

77

78 1.3 Assessment of BBB Breakdown

79 To assess BBB breakdown we used a method modified from a described FITC-dextran assay [5].
80 After 2 h ischemia followed by 24 h reperfusion, fluoro-isothiocyanate dextran 70 kDa FITC-dextran
81 (500mg/kg, Sigma, USA) was given by intravenous injection to each group mice and wait one
82 minute before rapidly removing the brain and transfer it to 4% paraformaldehyde at 4 °C for
83 24h. The brains were sliced into 50 μ m thick coronal sections and observed under a fluorescence
84 microscope (Leica TCS SP5) for the BBB leakage study. Three fields were captured from each
85 section and then analyzed. Each group has 6 mice.

86

87 **1.4 Quantitative Real-Time PCR**

88 Quantitative Real Time-PCR was conducted according to previously established procedures
89 [29].Briefly, genomic DNA is removed using DNase I (Ambion, USA) before 2.0 ug of total RNA
90 from microglia of mouse brain tissue was reverse-transcribed to cDNA using a commercially
91 available kit (Applied Biosystems, USA).Quantitative real-time PCR was performed with iCycler
92 Thermal Cycler (Bio-Rad, USA) using 2 X SYBR Green master mixes (Bio-Rad, USA).Forty cycles
93 proceeded under the following condition: 95 °C for 30 s, 60 °C for 30 s, proceeded by 10 min at 95 °C
94 for polymerase activation. Quantification was performed by the delta cycle time method, with
95 mouse β -actin used for normalization. The mouse specific primers (IDT, USA) are as follows,
96 MCPIP1: F: 5'-CCCCCTGACCGACCCTTAG; R: 5' GGCAGTGGTTCTTACGAAGGA, β -actin: F:
97 5'- AAATCGTGCCTGACATCAAAGA; R: 5'- GGCCATCTCCTGCTCGAA.

98

99 **1.5Western Blot**

100 Western blot was carried out as previously reported[8]. Proteins from mouse brain tissue were
101 extracted before concentrations were measured by the Bradford method (Bio-Rad, USA) with bovine
102 serum albumincreating a standard curve. Proteins (50ug) were loaded to the wells of the SDS-PAGE
103 for separation before being transferred from gel to nitrocellulose membranes in transfer buffer
104 containing 0.1% SDS. The membrane were incubated with 5% nonfat dry milk in 0.05% Tween 20 in
105 Tris-buffered saline (TTBS) for 2 h to prevent no-specific binding and then incubated in blocking
106 buffer (1:1,000 diluted) containing primary antibodies against MMP-3, MMP-9 (Cell Signaling,
107 USA), ZO-1, Claudin 5 and MCPIP1 (Santa Cruz, USA), in the 4°C, gently rocking, overnight. After
108 incubation, each membrane was washed three times for 10 min with TTBS and the membranes were
109 incubated with secondary antibody (Santa Cruz, USA) for 1 h (ata 1:2,000 dilution in of in
110 TTBS).Following three 10-min rinsed with TTBS, membranes were -incubated with SuperSignal
111 West Pico Chemiluminescent Substrate (Pierce, USA) and the intensity of bands was quantified by
112 AlphaImage 2200 (AlphaInnotech, USA) after exposure to x-ray film. Fold changes were calculated
113 as a ratio of the expression in the wild type group and MCPIP1 knockout group to the expression in
114 the control group. β -actin was used for a loading control.

115

116 **1.6 Immunohistochemistry**

117 At 24 hours after I/R, mice were subjected to transcardial perfusion with cold phosphate-buffered
118 saline, followed by 4% paraformaldehyde under anesthesia. Brains were removed and fixed by
119 immersion in 4% paraformaldehyde at 4°C. Coronal sections of 30 μ m were made with a vibrating
120 microtome (Leica Microsystems) in ice-cold phosphate-buffered saline. The sections were stored in
121 anti-freeze solution at -20°C for later use. The nonspecific binding sites on sections were blocked
122 with 3% bovine serum albumin after the sections were rinsed, and primary antibody against GFAP,
123 primary antibody against CD11b (BD Biosciences Pharmingen, San Diego, CA, USA), primary
124 antibody against NSE (Invitrogen, USA), primary antibody against CD31, primary antibody against
125 MCPIP1 (Santa Cruz Biotechnology, Dallas, Texas, USA), AlexaFluor®-488-conjugated secondary
126 antibody (Invitrogen, USA) and AlexaFluor®-594-conjugated secondary antibody (Invitrogen,
127 USA), monoclonal antibody conjugated to Alexa Fluor 594 against ZO-1(1:100, Invitrogen, USA),
128 monoclonal antibody conjugated to Alexa Fluor 488 against Claudin-5 (1:100, Invitrogen, USA) were
129 applied to the tissue section and incubated overnight. Sections were mounted in Vectashield

130 mounting medium (Vector Laboratories, Burlingame, CA, USA) and scanned under a fluorescence
 131 microscope (Leica TCS SP5). Three fields were captured from each section and then analyzed. Each
 132 group has 6 mice.
 133

134 **3. Results**

135 **3.1. MCPIP1 induction in Mouse Brain after MCAO**

136 To examine the potential effects of MCPIP1 in ischemic stroke we tested whether MCPIP1 was
 137 induced in the brain after ischemia/reperfusion (I/R) stress both at transcript and protein levels.
 138 After I/R stress, MCPIP1 mRNA and protein levels in the ipsilateral side of the brain cortex were
 139 significantly elevated compared to that of the sham group. Induction was detectable at 12h after
 140 MCAO and the transcript and protein levels reached 12.8 ± 1.63 and 9.2 ± 1.31 fold respectively, 24h
 141 after I/R stress in wild type mice (Fig. 1A, 1B), indicating that MCPIP1 may be an important factor
 142 after brain ischemic stress. There was no induction of MCPIP1 after I/R stress in *Mcpip*^{-/-} mice (Fig.
 143 1A, 1B).

144

145 **Figure 1.** MCPIP1 mRNA and protein levels are elevated in the brain of mouse undergoing
 146 ischemic stroke. (A), MCPIP1 mRNA expression in mouse brain with ischemic stress as
 147 measured by qRT-PCR. Values represent mean \pm SD, * $p < 0.05$, # $p < 0.01$ versus sham control;
 148 n=6. (B), MCPIP1 protein levels in mouse brain with ischemic stress as measured by
 149 Western blot. Results are representative of three independent experiments. Values
 150 represent mean \pm SD, * $p < 0.05$, # $p < 0.01$ versus sham control; n=6.

151

152 **3.2. Blood-Brain Barrier Disruption**

153 BBB disruption has been strongly implicated in the pathogenesis of acute ischemic stroke resulting in
 154 cerebral edema, brain hemorrhage, neuronal death and neurological deficits[9]. To determine
 155 whether MCPIP1 plays a critical role in regulating ischemic brain damage we examined BBB
 156 permeability by FITC-dextran extravasation in brain. As shown in Figure 3, FITC-dextran leakage
 157 was clearly seen in the peri-infarct cortex of the brain after a 2-hour MCAO followed by 24-hour
 158 reperfusion (Fig. 2b, 3d). Measurement of fluorescence intensity in peri-infarct cortical regions of the
 159 ischemic hemisphere showed that after 2 hour ischemia followed by 24 hours reperfusion *Mcpip*^{-/-}
 160 mice had a significantly higher BBB leakage than that in the wild-type (Fig. 2B).

161

162

163 **Figure 2.** MCPIP1 deficiency exacerbates ischemia-induced cortical blood-brain barrier
 164 (BBB) disruption. (A), Representative FITC-dextran perfusion in peri-infarct cortical
 165 capillary networks from wild-type and Mcpip1^{-/-} mice undergoing 2h brain ischemia
 166 followed by 24h reperfusion. (B), Measurement of fluorescence intensity in peri-infarct
 167 cortical regions of the ischemic hemisphere. Mcpip1^{-/-} mice had a significant increase in
 168 BBB leakage after 2 hour ischemia followed by 24 hours reperfusion. Values represent
 169 mean \pm SD, *p<0.05 versus wild type group. n=6 per group.

170 3.3 Matrix Metalloproteinase Elevation

171 Cerebral ischemic injury-induced inflammatory cytokines such as TNF α , IL-1 β are known to
 172 stimulate the expression of matrix metalloproteinases (MMPs) [17]. To investigate whether the
 173 absence of MCPIP1 enhanced the expression of MMPs, at 12 and 24h after MCAO, the expression of
 174 matrix metalloproteinase was measured in the brain of wild-type and Mcpip1^{-/-} mice. The results
 175 showed that the expression of MMP-3/9 after brain ischemia in mice lacking MCPIP1 was
 176 significantly higher versus the wild-type mice after ischemia (Fig. 3)

177

178 **Figure 3.** Representative western blots of MMP-9 and MMP-3 in peri-infarct cortical
 179 regions of the ischemic hemisphere at 12h and 24h after MCAO. Densitometric analysis
 180 shows that expression of MMP-9 and MMP-3 was significantly higher in MCPIP1 deficient
 181 mice as compared to that of wild type after MCAO. Values represent mean ± SD, * p<0.05
 182 versus wild type group. n= 6 per group.

183 *3.4 Tight junction degradation*

184 The BBB is mainly formed by specialized brain endothelial cells that are held together by
 185 well-developed tight junctions and creates a dynamic interface between the blood and the brain (9).
 186 To determine whether the absence of MCPIP1 caused a loss of tight junction components,
 187 immunostaining was performed to examine ischemia/reperfusion-induced changes in levels of the
 188 tight junction proteins (ie: claudin-5 and ZO-1) that are known to be critical for maintaining BBB
 189 integrity. In WT mice, claudin-5 and ZO-1 levels in peri-infarct ischemic cortical regions were found
 190 to be significantly lower at 24 hours after ischemic stroke (Fig. 4A, 4B). The levels of tight junction
 191 proteins claudin-5 and ZO-1 were significantly lower in Mcpip1^{-/-} mice versus wild-type mice at 24h
 192 after MCAO (Fig. 4C). Confirming the immunostaining results, the immunoblot analysis showed
 193 that claudin-5 and ZO-1 levels were significantly lower in Mcpip1^{-/-} mice as compared with that of
 194 the wild-type 24 h after MCAO (Fig. 4D). Immunohistochemical analysis of peri-infarct microvessels
 195 with antibodies against tight junction claudin-5 and endothelial marker CD31 showed that claudin-5
 196 level was significantly lower in the endothelial cells in Mcpip1^{-/-} mice as compared with their levels
 197 in the wild-type 24h after MCAO (Fig. 4A, 4B). These results indicated that absence of MCPIP1
 198 exacerbated the BBB disruption of mice undergoing ischemic stroke.

199

200
201 **Figure 4.** ZO-1 and Claudin-5 Degradation after Brain Ischemia. (A) and (B),
202 Representative immunostaining images of ZO-1 and claudin-5 in prei-infarct cortical
203 regions of the ischemic hemisphere. Cerebral ischemia induces rapid ZO-1 and claudin-5
204 degradation at 24h after MCAO *in vivo*. (C), Densitometric analysis shows that levels of
205 ZO-1 and claudin-5 were significantly lower in MCPIP1 deficient mice as compared to
206 that of wild type after MCAO. Values represent mean \pm SD. $p < 0.05$ as significant
207 difference between groups indicated. (D), ZO-1 and claudin-5 protein levels in
208 prei-infarct cortical regions of the ischemic hemisphere as measured by Western blot. The
209 levels of ZO-1 and claudin-5 were significantly lower in Mcpip1^{-/-} mice as compared to
210 that of wild type after 2 hour ischemia followed by 24 hours reperfusion. Results are
211 representative of three independent experiments. Values represent mean \pm SD. $p < 0.05$ as
212 significant difference between groups indicated. n=6 per group.

213

214 **4. Discussion**

215 The BBB comprises a functional neurovascular unit and dynamic interface between the blood
216 capillaries and the neuronal network. This is the first study to provide direct demonstration that
217 MCPIP1 probably plays a pivotal part in protecting the brain from cerebral ischemia-induced BBB
218 disruption and brain damage. Inflammation is a key factor in the pathogenesis of ischemic stroke.
219 Ischemic stroke-induced cerebral inflammatory responses can produce substantial brain injury,
220 elevation of MMP levels and BBB dysfunction. The post-ischemic neuroinflammatory response
221 involves microglial and astrocytic activation and upregulation of inflammatory mediators [18-20].
222 Proinflammatory cytokines and chemokines are an important factor that cause stroke-related brain
223 injury [3,21]. During ischemia, a variety of cell types, including endothelial cells, microglia,
224 astrocytes and neurons are activated and produce cytokines such as TNF- α , IL-1 β , IL-6, and
225 chemokines such as CINC and MCP-1[3]. In particular, cytokines that are upregulated in
226 inflammation like TNF- α and certain other interleukins can trigger the early events that cause BBB

227 breakdown and subsequent development of cerebral edema [22]. It is shown in the clinical data that
228 the main cause of stroke death in patients that suffered a malignant middle cerebral artery infarction
229 was focal brain edema [23-24]. Increase in brain water content was observed in animal model of
230 cerebral infarction within hours and brain water content reached the peak at 24 hour after
231 stroke[25].Progressive post-ischemic edema would lead to increased intracranial pressure with
232 compression of the brain stem, occlusive hydrocephalus and secondary ischemic damage, further
233 clinical deterioration, coma, and death within 2 to 5 days after stroke [8,26-28]. In previous studies
234 we identified that MCPIP1, an important inducible anti-inflammatory regulator [12,15], is
235 significantly induced in the brain by LPS and electroacupuncture and arouse LPS and
236 electroacupuncture pretreatment-induced ischemic brain tolerance [14,16]. In the present study our
237 resultsindicate that deficiency of MCPIP1 significantly promoted brain BBB leakage and from our
238 previous results demonstrated that absence of MCPIP1 significantly increases the infarct volume
239 and brain edema compared to wild type after ischemia/reperfusion injury [14]. Collectively, those
240 results indicate MCPIP1 plays a very important role in attenuating brain damage caused by stroke.
241 The causes of pathologic BBB opening are not fully characterized, but studies have suggested that
242 proteolytic enzymes degrading the vascular basement membrane results in disruption of the BBB
243 [8,28].MMP-2 activation is a key factor in the initial reversible opening phase of the BBB and
244 activated MMP-2 can degrade tight junction proteins [17]. The second phase of BBB opening occurs
245 after 24 to 48 hours reperfusion depending on the ischemia duration; the longer the duration, the
246 earlier and more disruptive the BBB opening [29].It has been manifested that MMP-3 and MMP-9
247 which is induced by cytokines produced during inflammation mediate the second phase of BBB
248 opening. We have previously found that absence of MCPIP1 caused an increase in production of
249 inflammatory cytokines in the brain after stroke [14]. The results obtained from the present study
250 showed that the absence of MCPIP1 caused a significant increase in the expression of MMP-3 and
251 MMP-9 in the brain after ischemic stroke indicating that MCPIP1 probably is a crucial
252 neuroprotective role against ischemic stroke by inhibiting the induction of MMP-3 and MMP-9 via
253 inhibition of inflammatory cytokine production.
254 There exists a complex network of tight junction proteins consist of claudins and ZO-1 functions to
255 hold adjacent endothelial cell together by linking transmembrane proteins to the actin cytoskeleton.
256 Expression of these tight junction proteins is modified in several neurological diseases including
257 stroke [30], and they are vulnerable to attack by MMPs. In this study, we proved that focal cerebral
258 ischemia/reperfusion-induced BBB structural integrity damage and BBB dysfunction is exacerbated
259 by absence of MCPIP1.Despite substantial research, the molecular mechanisms regulatingthe
260 ischemia/reperfusion-induced biphasic BBB opening are not completely understood. Among tight
261 junctionproteins, claudin-5, ZO-1 are two most widely studied components of the BBB function and
262 both are crucial to maintain the BBB structural integrity and permeability. The degradation of
263 claudin-5 as well as ZO-1 has highcorrelationwith the dynamic process of BBB break down
264 followingcerebral ischemia [31].The results from the present study showed that the absence of
265 MCPIP1 increased the degradation of the tight junction proteins to enhance the BBB disruption,
266 suggesting that MCPIP1 is an important factor inprotecting BBB in acute stroke.
267

268 **5. Conclusions**

269 Our data demonstrate that absence of MCPIP1 exacerbates ischemia-induced blood-brain barrier
270 disruption by enhancing the expression of matrix metalloproteinases.

271

272 **Author Contributions:** Resources, P.E.K.; data curation, J.L.; writing—original draft preparation, J.L., Z.J.
273 and J.Q.L. writing—review and editing, Z.J., J.L. and J.Q.L.; supervision, P.E.K.; project administration,
274 P.E.K.; funding acquisition, Z.J..

275 **Funding:** This research was funded by National Natural Science Foundation of China 81774010.

276 **Acknowledgments:** Thank Ms. Wang Jing for her help in the experiment process.

277 **Conflicts of Interest:** The authors declare no conflict of interest.

278

279 **References**

1. R. Gilberto González, Joshua A. Hirsch, W.J. Koroshetz, Michael H. Lev, Pamela W. Schaefer. Acute Ischemic stroke: Imaging and Intervention; Springer: Berlin, German, **2007**, 28:1622-1623.
2. Minami, M.; Katayama, T.; Satoh, M. Brain cytokines and chemokines: roles in ischemic injury and pain. *J Pharmacol Sci* **2006**, 100, 461-470.
3. Doyle, K.P.; Simon, R.P.; Stenzel-Poore, M.P. Mechanisms of ischemic brain damage. *Neuropharmacology* **2008**, 55, 310-318, doi:10.1016/j.neuropharm.2008.01.005.
4. Liesz, A.; Suri-Payer, E.; Veltkamp, C.; Doerr, H.; Sommer, C.; Rivest, S.; Giese, T.; Veltkamp, R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. *Nat Med* **2009**, 15, 192-199, doi:10.1038/nm.1927.
5. Haines, B.A.; Mehta, S.L.; Pratt, S.M.; Warden, C.H.; Li, P.A. Deletion of mitochondrial uncoupling protein-2 increases ischemic brain damage after transient focal ischemia by altering gene expression patterns and enhancing inflammatory cytokines. *J Cereb Blood Flow Metab* **2010**, 30, 1825-1833, doi:10.1038/jcbfm.2010.52.
6. Yang, Y.; Rosenberg, G.A. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. *Stroke* **2011**, 42, 3323-3328, doi:10.1161/STROKEAHA.110.608257.
7. Rosenberg, G.A. Neurological diseases in relation to the blood-brain barrier. *J Cereb Blood Flow Metab* **2012**, 32, 1139-1151, doi:10.1038/jcbfm.2011.197.
8. Ballabh, P.; Braun, A.; Nedergaard, M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. *Neurobiol Dis* **2004**, 16, 1-13, doi:10.1016/j.nbd.2003.12.016.
9. Rosenberg, G.A.; Mun-Bryce, S. Matrix metalloproteinases in neuroinflammation and cerebral ischemia. *Ernst Schering Res Found Workshop* **2004**, 1-16.
10. Machado, L.S.; Kozak, A.; Ergul, A.; Hess, D.C.; Borlongan, C.V.; Fagan, S.C. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. *BMC Neurosci* **2006**, 7, 56, doi:10.1186/1471-2202-7-56.
11. Zhou, L.; Azfer, A.; Niu, J.; Graham, S.; Choudhury, M.; Adamski, F.M.; Younce, C.; Binkley, P.F.; Kolattukudy, P.E. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. *Circ Res* **2006**, 98, 1177-1185, doi:10.1161/01.RES.0000220106.64661.71.
12. Liang, J.; Wang, J.; Azfer, A.; Song, W.; Tromp, G.; Kolattukudy, P.E.; Fu, M. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. *J Biol Chem* **2008**, 283, 6337-6346, doi:10.1074/jbc.M707861200.
13. Qi, Y.; Liang, J.; She, Z.G.; Cai, Y.; Wang, J.; Lei, T.; Stallcup, W.B.; Fu, M. MCP-induced protein 1 suppresses TNFalpha-induced VCAM-1 expression in human endothelial cells. *FEBS Lett* **2010**, 584, 3065-3072, doi:10.1016/j.febslet.2010.05.040.
14. Liang, J.; Wang, J.; Saad, Y.; Warble, L.; Becerra, E.; Kolattukudy, P.E. Participation of MCP-induced protein 1 in lipopolysaccharide preconditioning-induced ischemic stroke

316 tolerance by regulating the expression of proinflammatory cytokines. *J Neuroinflammation*
317 2011, 8, 182, doi:10.1186/1742-2094-8-182.

318 15. Liang, J.; Saad, Y.; Lei, T.; Wang, J.; Qi, D.; Yang, Q.; Kolattukudy, P.E.; Fu, M. MCP-induced
319 protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF- κ B
320 signaling. *J Exp Med* 2010, 207, 2959-2973, doi:10.1084/jem.20092641.

321 16. Jin, Z.; Liang, J.; Wang, J.; Kolattukudy, P.E. Delayed brain ischemia tolerance induced by
322 electroacupuncture pretreatment is mediated via MCP-induced protein 1. *J Neuroinflammation*
323 2013, 10, 63, doi:10.1186/1742-2094-10-63.

324 17. Rosenberg, G.A.; Yang, Y. Vasogenic edema due to tight junction disruption by matrix
325 metalloproteinases in cerebral ischemia. *Neurosurg Focus* 2007, 22, E4.

326 18. McColl, B.W.; Allan, S.M.; Rothwell, N.J. Systemic inflammation and stroke: aetiology,
327 pathology and targets for therapy. *Biochem Soc Trans* 2007, 35, 1163-1165,
328 doi:10.1042/BST0351163.

329 19. McColl, B.W.; Rothwell, N.J.; Allan, S.M. Systemic inflammatory stimulus potentiates the acute
330 phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via
331 interleukin-1- and neutrophil-dependent mechanisms. *J Neurosci* 2007, 27, 4403-4412,
332 doi:10.1523/JNEUROSCI.5376-06.2007.

333 20. Nilupul Perera, M.; Ma, H.K.; Arakawa, S.; Howells, D.W.; Markus, R.; Rowe, C.C.; Donnan,
334 G.A. Inflammation following stroke. *J Clin Neurosci* 2006, 13, 1-8, doi:10.1016/j.jocn.2005.07.005.

335 21. Moskowitz, M.A.; Lo, E.H.; Iadecola, C. The science of stroke: mechanisms in search of
336 treatments. *Neuron* 2010, 67, 181-198, doi:10.1016/j.neuron.2010.07.002.

337 22. Harscher, S.; Reichart, R.; Terborg, C.; Hagemann, G.; Kalff, R.; Witte, O.W. Outcome after
338 decompressive craniectomy in patients with severe ischemic stroke. *Acta Neurochir (Wien)*
339 2006, 148, 31-37; discussion 37, doi:10.1007/s00701-005-0617-0.

340 23. Silver, F.L.; Norris, J.W.; Lewis, A.J.; Hachinski, V.C. Early mortality following stroke: a
341 prospective review. *Stroke* 1984, 15, 492-496.

342 24. Kasner, S.E.; Demchuk, A.M.; Berrouschat, J.; Schmutzhard, E.; Harms, L.; Verro, P.; Chalela,
343 J.A.; Abbur, R.; McGrade, H.; Christou, I., et al. Predictors of fatal brain edema in massive
344 hemispheric ischemic stroke. *Stroke* 2001, 32, 2117-2123.

345 25. Slivka, A.; Murphy, E.; Horrocks, L. Cerebral edema after temporary and permanent middle
346 cerebral artery occlusion in the rat. *Stroke* 1995, 26, 1061-1065; discussion 1065-1066.

347 26. Frank, J.I. Large hemispheric infarction, deterioration, and intracranial pressure. *Neurology* 1995,
348 45, 1286-1290.

349 27. Meistrell, M.E., 3rd; Botchkina, G.I.; Wang, H.; Di Santo, E.; Cockcroft, K.M.; Bloom, O.;
350 Vishnubhakat, J.M.; Ghezzi, P.; Tracey, K.J. Tumor necrosis factor is a brain damaging cytokine
351 in cerebral ischemia. *Shock* 1997, 8, 341-348.

352 28. Asahi, M.; Wang, X.; Mori, T.; Sumii, T.; Jung, J.C.; Moskowitz, M.A.; Fini, M.E.; Lo, E.H.
353 Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier
354 and white matter components after cerebral ischemia. *J Neurosci* 2001, 21, 7724-7732.

355 29. Rosenberg, G.A.; Estrada, E.Y.; Dencoff, J.E. Matrix metalloproteinases and TIMPs are associated
356 with blood-brain barrier opening after reperfusion in rat brain. *Stroke* 1998, 29, 2189-2195.

357 30. Zlokovic, B.V. The blood-brain barrier in health and chronic neurodegenerative disorders.
358 *Neuron* 2008, 57, 178-201, doi:10.1016/j.neuron.2008.01.003.

359 31. Lakhan, S.E.; Kirchgessner, A.; Tepper, D.; Leonard, A. Matrix metalloproteinases and
360 blood-brain barrier disruption in acute ischemic stroke. *Front Neurol* 2013, 4, 32,
361 doi:10.3389/fneur.2013.00032.