

1 Article

2 **Comparative study of physicochemical and**
3 **antibacterial properties of ZnO nanoparticles prepared**
4 **by laser ablation of Zn target in water and air**5 **Ekaterina A. Gavrilenko¹, Daria A. Goncharova¹, Ivan N. Lapin¹, Anna L. Nemoykina²,**
6 **Valery A. Svetlichnyi^{1,*}, Ali A. Aljulaih^{3,4}, Neli Mintcheva^{3,5} and Sergei A. Kulinich^{3,4,6,*}**7 ¹ Siberian Physical Technical Institute, Tomsk State University, Lenina, 36, Tomsk, 634050, Russia8 ² Laboratory of Biopolymers and Biotechnology, Tomsk State University, Lenina, 36, Tomsk, 634050, Russia9 ³ Institute of Innovative Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1259, Japan10 ⁴ Department of Mechanical Engineering, Tokai University, Hiratsuka, Kanagawa 259-1259, Japan11 ⁵ Department of Chemistry, University of Mining and Geology, Sofia 1700, Bulgaria12 ⁶ Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1259, Japan13 ^{*} Correspondence: svet@spti.tsu.ru (V.A.S.); skulinich@tokai-u.jp (S.A.K.)

14 Tel.: +7-3822-531-591 (V.A.S.); +81-463-58-1211 (ext.4893) (S.A.K.)

15

16 **Abstract:** Here, we report on ZnO nanoparticles (NPs) generated by nanosecond pulsed laser
17 (Nd:YAG, 1064 nm) through ablation of metallic Zn target in water and air and their comparative
18 analysis as potential nanomaterials for biomedical applications. The prepared nanomaterials were
19 carefully characterized in terms of their structure, composition, morphology and defects. It was
20 found that in addition to the main wurtzite ZnO phase, which is conventionally prepared and
21 reported by others, the sample laser-generated in air also contained some amount of monoclinic
22 zinc hydroxynitrate. Both nanomaterials were then used to modify model wound dressings based
23 on biodegradable poly-L-lactic acid. The as-prepared model dressings were tested as biomedical
24 materials with bactericidal properties towards *S. aureus* and *E.coli* strains. The advantages of the
25 NPs prepared in air over their counterparts generated in water found in this work are discussed.26 **Keywords:** Pulsed laser ablation in water; pulsed laser ablation in air; ZnO nanoparticles;
27 biomedical materials; PLLA-scaffold; antibacterial properties
2829 **1. Introduction**30 Because of their unique physicochemical properties, nanomaterials have recently attracted a lot
31 of research interest as materials and components for various applications. Zinc oxide (ZnO) is a wide-
32 bandgap semiconductor of the II-VI group ($E_g = 3.3$ eV) [1,2]. Of all known metal-oxide
33 semiconductors, it is probably the most extensively studied material with applications in numerous
34 fields, such as optoelectronics, piezoelectronics, spintronics, solar energy, gas sensing, bio-sensing,
35 UV-blue diodes, and photocatalysis, just to name several [1-6]. Because of its high surface energy, its
36 nanoparticles (NPs) are able to generate various reactive oxygen species (ROS), which makes such
37 NPs efficient bacteria inhibitors attractive for biomedical use as well. Having low toxicity, ZnO
38 nanomaterials, unlike those of many other semiconductor oxides, can be applied to problems such as
39 water, working surface and wound disinfection, as well as in food industry, and hence the number
40 of studies on potential use of ZnO nanomaterials keep growing nowadays quite fast [1-6].41 There are many approaches to prepare ZnO NPs, such as, for example, hydrothermal methods,
42 chemical deposition from gas phase, microwave and sonochemical approaches, numerous sol-gel
43 based methods, and so on [1-3]. One of attractive methods to produce so-called "pure" ZnO
44 nanostructures (i.e. with surface free of any impurities or stabilizers) for biomedical use is based on

45 pulsed laser ablation (PLA) of metallic Zn target in different media (mainly in liquids) [4-10]. The
46 method uses pulsed lasers (with different pulse energy and pulse width) to ablate zinc target and
47 produce species which then react with the surrounding liquid and form ZnO NPs. The formation
48 mechanisms are quite complex, depending on laser pulse parameters and composition of liquid
49 medium, and involve several fast stages that overlap and compete with each other, such as:
50 absorption of irradiation, melting and evaporation on the target, expansion of the formed
51 plasma/vapor, chemical reactions and quenching by the liquid, formation of clusters and primary
52 NPs, and secondary irradiation of the formed NPs by laser beam, just to name the main ones. Thus,
53 the method combines both “top-down” and “bottom-up” synthesis approaches, as the target gets
54 destroyed by laser beam into very small clusters (atoms, radicals, ions), after which self-assembly of
55 such species into ZnO NPs follows (accompanied by oxidation processes and quenching to ambient
56 temperatures) [7,9]. In addition to PLA in liquids [4-10], more recently the PLA approach in gases or
57 vacuum was also applied to nanomaterial preparation, including Zn-based NPs [11,12].

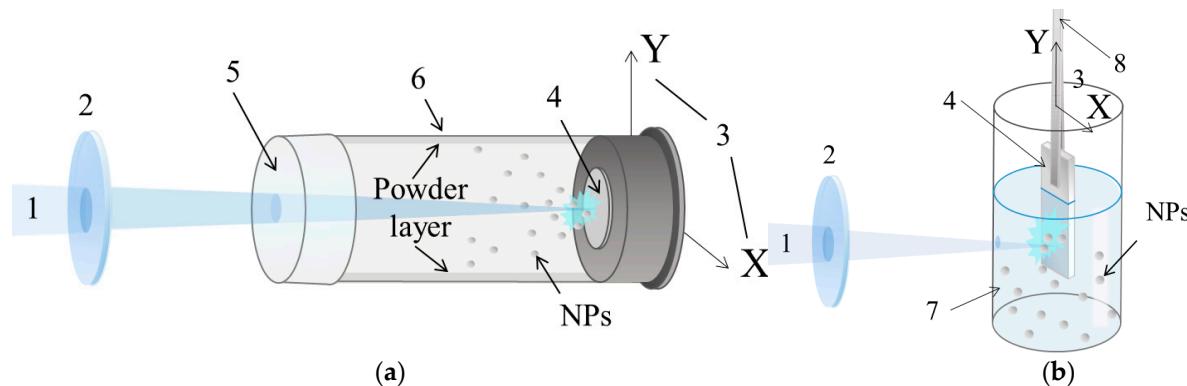
58 The characteristics of laser-produced ZnO NPs were found to depend on both laser parameters
59 (wavelength, frequency, pulse energy, energy fluence, and pulse duration) and on target and ablation
60 medium (vacuum, gas, or liquid). The effect of liquid on the physicochemical properties of generated
61 ZnO NPs was extensively studied, the main media used being based on water, water-ethanol
62 mixtures, H₂O₂, alkali and acidic solutions, salts and various surfactants [4-10,13-15]. The produced
63 NPs were reported to have different shapes, such as rods, spheres, flakes, dendrites, spindles, also
64 including additional phases, such as β -Zn(OH)₂, metallic zinc, zinc peroxide ZnO₂, or having
65 core@shell morphology Zn@ZnO as a result of incomplete oxidation of metallic zinc [8,13-15].

66 The PLA-generated NPs were reported to demonstrated high reactivity, unique optical, catalytic
67 and antibacterial properties, which is often explained by their structural and surface defects [4-
68 8,10,13-15]. The defectiveness of various ZnO NPs was extensively analyzed as various defects are
69 known to provide different functionalities to ZnO materials [6,14,16,17]. Similar to other II-VI
70 semiconductors, ZnO tends to have deficiencies in its anion sub-lattice, which leads to the formation
71 of oxygen vacancies (V_O) with low formation energy, interstitial zinc (Zn_i) and zinc atoms in oxygen
72 sub-lattice (Zn_o), as well as defects such as interstitial oxygen (O_i) and oxygen in the zinc sub-lattice
73 (O_{Zn}), the latter defects requiring high energies [14,16]. In their comparative study, Goto and co-
74 workers showed that PLA in pure water mainly generated ZnO NPs with O_i defects, while NPs
75 prepared in pure ethanol were rich in Zn_i-V_{Zn} defects, which was explained by stronger oxidation
76 ability of water [14]. At the same time, no information on defect composition of ZnO NPs PLA-
77 prepared in air was reported thus far.

78 The present work aimed at preparing ZnO NPs by means of PLA in water and air and comparing
79 their composition, structure, and properties. The materials were then incorporated into polymeric
80 tissues based on poly-L-lactic acid (PLLA) used as scaffold, where their antibacterial behavior against
81 two different bacteria strains was evaluated and compared.

82 2. Materials and Methods

83 2.1. Preparation of ZnO NPs using PLA method


84 In this study, all nanomaterials were obtained by means of a nanosecond pulsed laser (Nd:YAG
85 type, TII LS-2131M-20, LOTIS model, Belarus) that ablated Zn targets (purity 99.5 %) using the
86 following parameters: 1064 nm, 20 Hz, 7 ns, and 150 mJ/pulse (as wavelength, frequency, pulse width
87 and pulse energy, respectively). Two somewhat different setups were used, as presented in Fig.1.

88 For experiments in air, target with a diameter of 30 mm and thickness of 10 mm was fixed onto
89 the back wall of the cylindrical quartz reactor filled with ambient air (see Fig.1a). The reactor was 200
90 mm in length, its internal diameter being 45 mm, and volume being ~ 300 cm³. The wall of the reactor
91 was made of polyethylene membrane which is transparent for the irradiation used. The laser beam
92 was focused on the target surface by a long-focus (F= 500 mm) collecting lens. The produced NPs
93 precipitated on the reactor walls forming a powdery layer. The whole ablation procedure took 3 h,

94 during which the target was slowly moved along the vertical direction. The powder was then
 95 mechanically removed from the walls, and the collected sample was denoted as ZnO_air.

96 To prepare ZnO nanostructures in liquid phase, a zinc plate target (40×15×10 mm³ in size) was
 97 immersed into a cylindrical glass reactor filled with distilled water. The laser irradiation was focused
 98 by a short-focus (F = 50 mm) lens, with the beam entering the reactor through its sidewall, as seen in
 99 Fig.1b. To enhance NP oxidation, air was bubbled through the water by a compressor. The ablation
 100 time was 2 h, after which the produced colloid was centrifuged and dried in air at 50°C. The ablation
 101 and separation procedures were repeated several times to collect a sufficient amount of nanomaterial.
 102 Hereafter, the sample produced in water is denoted as ZnO_water.

103 In both cases, the initial power density on the target surface was estimated to be around 250
 104 MW/cm². To maintain uniform irradiation of the target surface, thus providing uniform and constant
 105 ablation, the target was automatically moved both horizontally and vertically in the XY plane normal
 106 to incident beam. In both cases, the average material production rate observed after experiments was
 107 ~40 mg/h. More detailed description of similar experiments both in liquid and air were previously
 108 published elsewhere [17].

109 **Figure 1.** Setups used in the present study for PLA in air (a) and water (b). 1: laser beam; 2: focusing lens; 3:
 110 movement direction for target; 4: Zn target; 5: polyethylene membrane; 6: cylindric reactor; 7: distilled water; 8:
 111 target holder.

112 2.2. Preparation of ZnO-PLLA composites

113 As a model material for bandage tissues with antibacterial properties, we chose biodegradable
 114 polymer poly-L-lactic acid (PLLA) which easily decays upon hydrolysis and fermenting processes
 115 giving rise to non-toxic compounds. PLLA is also known to be biocompatible, which makes it an
 116 excellent candidate for pharmaceutical and biomedical applications [18]. Using the previously
 117 reported methodology based on electrospinning [19], PLLA scaffold was prepared and then kindly
 118 supplied to us by Drs. S. Tverdokhlebov and E. Bolbasov (Tomsk Polytechnic University).

119 The above mentioned nanopowders of ZnO (samples ZnO_air and ZnO_water) were dispersed
 120 in distilled water by means of sonication, so that the concentration of materials was 1 g/L in both
 121 cases. Pieces of PLLA scaffold, 10×10 cm² in size and 250 μm-thick, were placed on a net where they
 122 were homogenously fed with colloidal solutions with ZnO NPs by means of a pump. The NP-loaded
 123 scaffolds were then dried with air at 20 °C, after which the procedures were repeated until the loading
 124 level of 1 mg/cm² was achieved. Thus, two samples were obtained which consisted of PLLA scaffolds
 125 loaded with ZnO NPs of two types with same loading (composite samples referred to as
 126 ZnO_water_PLLA and ZnO_air_PLLA below).

127 2.3. Characterization of nanopowders and ZnO-PLLA composites

128 The crystal structure of the samples was analyzed by X-ray diffractometry (XRD), for which a
 129 XRD 6000 model (from Shimadzu) was used. The samples were analyzed with CuK α irradiation (λ =
 130 1.54056 Å) at sampling rate of 0.02 °/s and in the range of 2 θ from 10 to 70°. Phase identification and
 131 quantitative analysis of XRD patterns were conducted using the database PDF4 and PowderCell 2.4

132 software (from BAM, Germany). The morphology and size of NPs were studied by transmission
133 electron microscopy (TEM, model CM 12 from Philips, Netherlands) with accelerating voltage of 120
134 kV. Drops of freshly prepared dispersions were placed onto copper grids coated with carbon film
135 and then dried at room temperature. The surface morphology of PLLA scaffolds loaded with ZnO
136 NPs was studied by scanning electron microscopy (SEM, model VEGA 3 SBH from Tescan, Czechia).

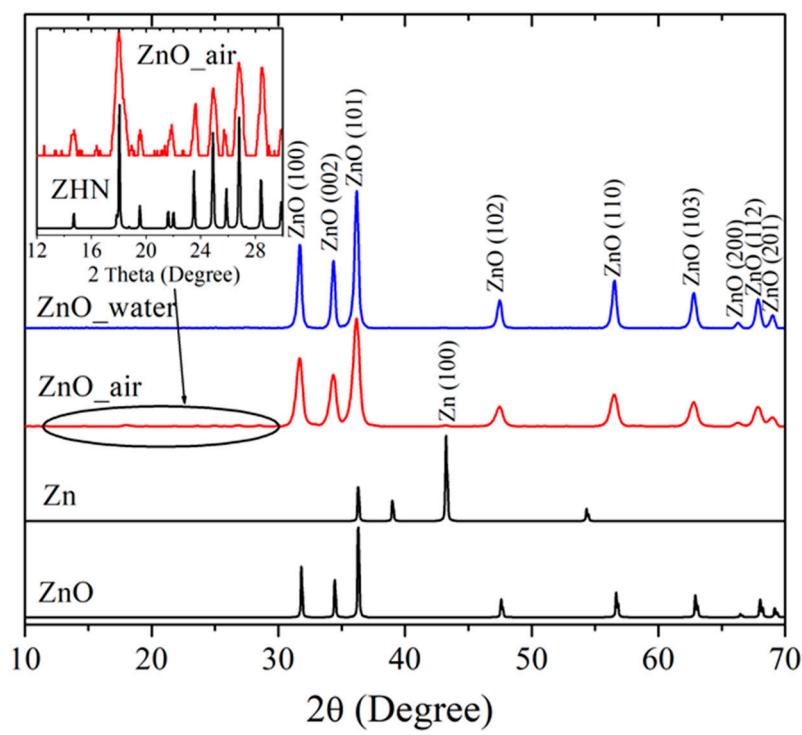
137 The specific surface area of the prepared powder samples was evaluated by using a standard
138 Brunauer–Emmett–Teller procedure (low-temperature adsorption/desorption of nitrogen) in a
139 TriStar II 3020 analyzer (Micromeritics, USA). The samples were degassed at 200 °C for 2 h prior to
140 the measurements in a VacPrep 061 station (Micromeritics, USA).

141 UV-Vis absorption spectra of both powder samples and ZnO-PLLA composites were examined
142 by the diffuse-reflection spectroscopy (DRS) technique on a Cary 100 spectrophotometer (Varian,
143 Australia) with accessory DRA-CA-30I (Labsphere, USA) in the range of 200-800 nm. As reference
144 samples, MgO powder and as-supplied (i.e., unloaded with ZnO) PLLA scaffold were used.
145 Reflection spectra were converted using the Kubelka–Munk transformation approach. The obtained
146 absorption spectra were used to evaluated the bandwidth values (E_g) of the ZnO nanomaterials, for
147 which they were replotted in the $(F(R)hv)^2$ versus $E(eV)$ coordinates and the absorption edge was
148 then extrapolated onto the absciss axis. Photoluminescence (PL) spectra of the samples were recorded
149 at room temperature by means of a Fluorolog 3-22 spectrometer (Horiba, Jobin Yvon, USA) with an
150 excitation wavelength being 350 nm. Fourier-transform infrared (FTIR) spectra were registered by a
151 Nicolet 6700 spectrometer (Thermo Fisher Scientific, USA). Raman shift spectra were collected by an
152 InVia (Renishaw, UK) Raman spectrometer, while the second harmonic of Nd:YAG laser ($\lambda=532$ nm)
153 was used as excitation source.

154 Zeta potential values of the NPs were determined through electrophoretic light scattering with
155 phase analysis (PALS) using a Nano Brook Omni instrument (Brookhaven, USA). To determine the
156 isoelectric point (pH_{iep}), a BI-ZTU autotitrator was utilized (Brookhaven, USA). Titration was done
157 with aqueous KOH, prior to which ZnO dispersions in water (0.1 g/L) were sonicated for 10 min.

158 2.4. Antibacterial activity of NPs

159 The antibacterial activity of the prepared inorganic-organic composites as model wound
160 dressing materials was tested in accordance with the standard ISO 20743:2013 [20] and by using two
161 bacteria strains: (1) gram-positive *Staphylococcus aureus* (*S. aureus*, test strain ATCC 25923) and (2)
162 gram-negative *Escherichia coli* (*E. coli*, test strain B-6954, Russian Collection of Microorganisms). Both
163 loaded with NPs and as-supplied (ZnO-free) PLLA scaffolds were cut to samples with sizes 3×5 cm 2
164 for testing. Bacteria cultures (0.2 mL) with concentration of 10^5 CFU/mL in nutrient broth (diluted 20
165 times with distilled water) were placed onto each PLLA sample. Immediately after contact, as well
166 as after 24 h, the tested objects were rinsed with 20 mL of physiological solution for 5 min. The
167 obtained liquid was placed into a Petri dish containing 100 mL of beef-extract agar (also known as
168 meat-and-peptone agar, MPA), and the obtained material was then cultivated at 37 °C for 24 h. The
169 quantity of grown microorganisms was counted in cultures extracted after the contact with both
170 control (ZnO-free) and NP-modified PLLA samples after cultivation, which permitted to determine
171 the death percentage of tested microorganisms. The values of antibacterial activity A were
172 determined using formula (1):


$$A = (\lg C_t - \lg C_0) - (\lg T_t - \lg T_0) = F - G, \quad (1)$$

173 where $F = (\lg C_t - \lg C_0)$ is the growth rate on the control (ZnO-free) PLLA sample; $\lg C_t$ is the average
174 decimal logarithm of the number of bacteria found on three control samples incubated for 24 h; $\lg C_0$
175 the average decimal logarithm of the number of bacteria observed on three control samples
176 immediately upon seeding with bacteria; $G = (\lg T_t - \lg T_0)$ the growth rate on the sample loaded with
177 antibacterial NPs; $\lg T_t$ the average value of decimal logarithm of the number of bacteria observed
178 after incubation for 24 h on three treated samples; $\lg T_0$ the average decimal logarithm of bacteria
179 number observed immediately after bacteria seeding on three PLLA samples loaded with ZnO.

180 3. Results and discussion

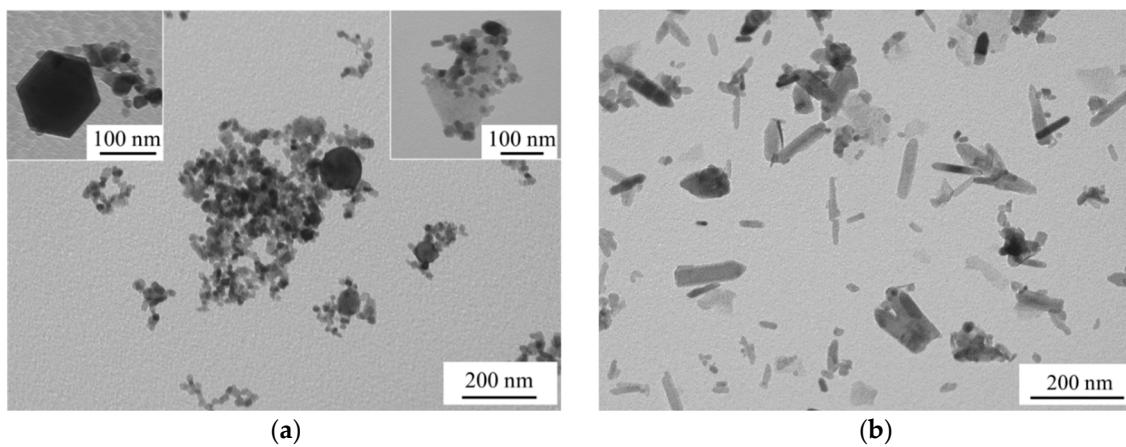
181 3.1 XRD data

182 Figure 2 exhibits XRD patterns of the laser-produced samples ZnO_water (blue line) and
 183 ZnO_air (red) and compares them with XRD data for metallic Zn and ZnO, both taken from databases
 184 (black lines). Both samples are well-seen to demonstrate intense peaks at $2\theta = 31.68^\circ, 34.34^\circ, 36.17^\circ,$
 185 $47.48^\circ, 56.51^\circ, 62.78^\circ, 66.27^\circ, 67.85^\circ$ and 69.00° , implying the presence of wurtzite ZnO (PDF4 Card
 186 no. 04-007-9805) as dominating phase. This is consistent with previous reports on ZnO NPs prepared
 187 via PLA in liquids [5,6,10,14,15], confirming that highly-active Zn species generated by laser pulse
 188 react with oxygen and/or water molecules, giving rise to ZnO nanomaterial. Small amounts of
 189 metallic zinc were also detected in the samples, as very weak peaks at $2\theta = 43.19^\circ$ (PDF4 Card no. 01-
 190 071-4620), the signal being somewhat stronger in the sample produced in air than in its counterpart
 191 generated in water. This observation is also in agreement with previous studies as small amounts of
 192 metallic-phase inclusion was previously reported by different groups for various ZnO NPs produced
 193 in liquids [6,14,15].

194
 195 **Figure 2.** XRD patterns of PLA-prepared samples ZnO_water (blue), ZnO_air (red), and Zn and ZnO patterns
 196 from database (black). Inset shows pattern of sample ZnO_air and that of ZHN phase in a narrower range of
 197 2θ between 12° and 30° .

198 In addition to the diffraction peaks of ZnO, the sample produced in air exhibited a series of small
 199 peaks in the range $2\theta = 10-30^\circ$ (see inset in Fig.2). The latter peaks were indexed as monoclinic zinc
 200 hydronitrate (ZHN), $Zn_5(OH)_8(NO_3)_2 \times 2H_2O$, whose pattern (PDF4 Card no. 01-072-0627) is also given
 201 in the inset for convenience. Previously, this phase was reported in the NPs generated via laser
 202 ablation of Zn foil immersed into aqueous solution of zinc nitrate [21]. In the present study, the
 203 formation of ZHN is explained by interaction of laser-induced plasma with Zn species (atoms, ions,
 204 radicals, clusters) and air components, such as molecules (N_2, O_2, H_2O) and excited species (N^*, NO^* ,
 205 NO_2^*, OH^*). It is very likely that zinc nitrate $Zn(NO_3)_2$ is one of intermediate products of such
 206 reactions. It should be noted here that no formation of ZHN is observed as a result of atmospheric
 207 corrosion of metallic Zn, which supports the efficiency of PLA in preparing metastable phases. More
 208 detailed phase composition of the ZnO samples, as well as their specific surface area and NP sizes,
 209 are presented in Table 1.

210

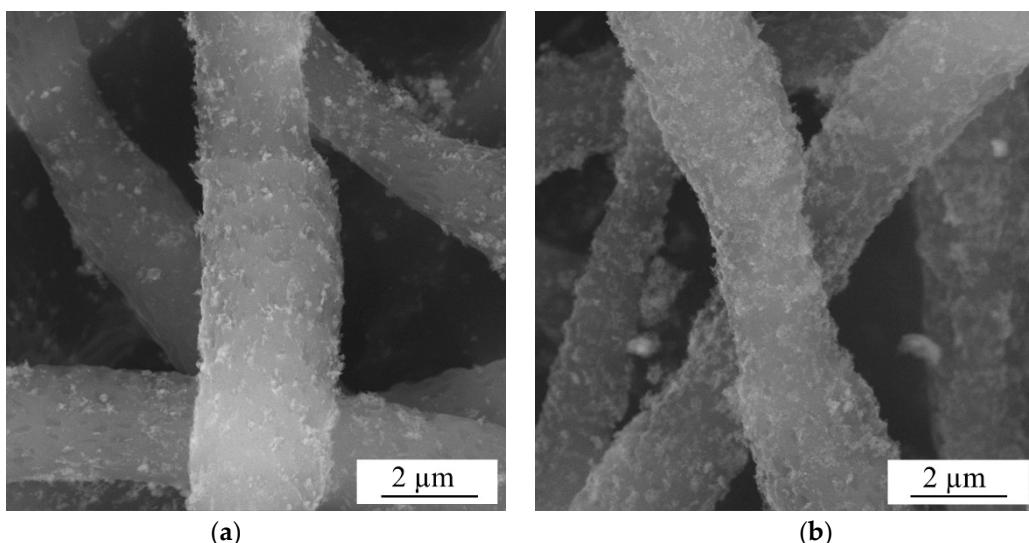

Table 1. Structural characteristics and specific surface area values of prepared samples.

Sample	Phase composition		Surface area (m ² /g)	NPs average size parameters (nm)		
	Name	%		Diameter (nm)	Length (nm)	Width (nm)
ZnO_air	ZnO	92	36±4	18-26	-	-
	ZHN	7				
	Zn	1				
ZnO_water	ZnO	> 99	20±2	12-21	30-100	14-20
	Zn	< 1				

211 Thus, the XRD measurements indicate that the nanomaterial obtained in water was mainly ZnO
 212 with traces of metallic Zn, while the NPs prepared in air had a few per cent of ZHN.

213 *3.2 Microscopic observations*214 *3.2.1. TEM images*

215 According to TEM image of sample ZnO_air in Fig.3a, the material prepared in air consisted of
 216 NPs with different shapes: spheres, nanocubes, and polyhedrons (see insets in Fig.3a), with average
 217 sizes being 18-26 nm. Meanwhile, sample ZnO_water had mainly nanorods as its main component
 218 (Fig.3b). Similarly shaped ZnO NPs were previously reported by Honda et al. [15] who ablated Zn in
 219 water with millisecond pulsed laser and explained nanorod formation by an increase in temperature
 220 during PLA. Another group also produced ZnO nanorods by PLA of Zn in water by means of
 221 nanosecond pulsed laser followed by heat treatment of the formed colloid at 60-80 °C [22]. In this
 222 study, we also used no surfactant when ablating in water, and thus some increase in temperature
 223 during PLA (and secondary irradiation of the initial ZnO NPs) could lead to their recrystallization
 224 into nanorods. ZnO NPs are known to have various shapes as the phase has no symmetry center in
 225 its crystal lattice [23]. This may explain the variety of shapes observed in Fig.3a. At the same time,
 226 when small ZnO NPs had a chance to recrystallize, they tended to form rod-like shapes, as well seen
 227 in Fig.3b.


228 Figure 3. TEM images of samples: ZnO_air (a) and ZnO_water (b).

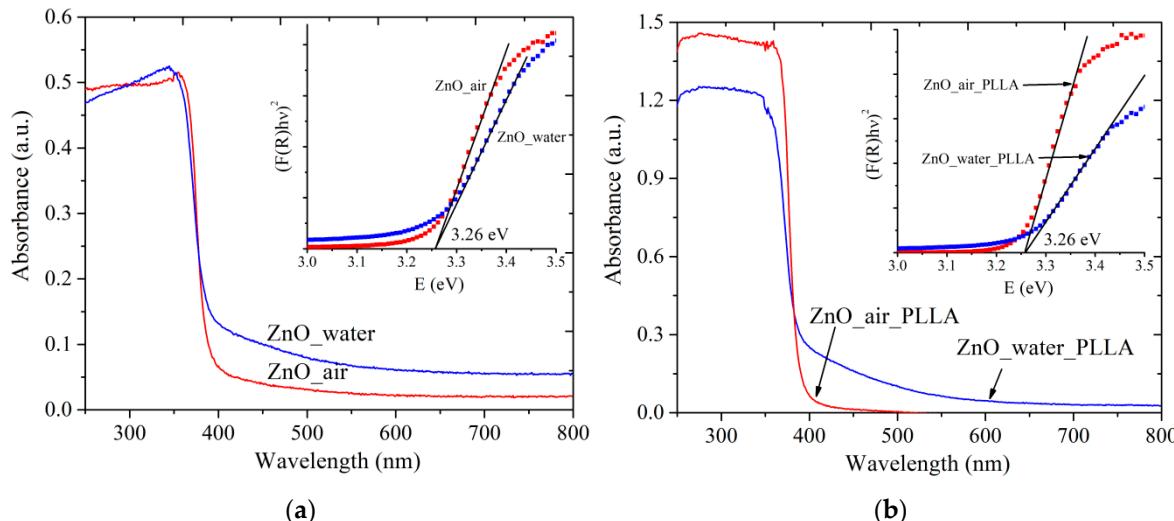
229 The sizes and shapes of NPs exhibited in Fig.3 correlate well with the results of BET
 230 measurements. The specific surface area of the smaller NPs produced in air is seen in Table 1 to be
 231 1.8 times larger compared with their counterparts obtained in water. It is also worth noting one more
 232 time that the rod-shaped morphology and somewhat bigger sizes of the NPs presented in Fig.3b are
 233 results of secondary growth processes taking place in water after their initial formation.

234

235 3.2.2. SEM images of ZnO-PLLA scaffolds

236 The surface morphology of PLLA scaffolds, both as-supplied and modified by ZnO NPs, was
237 studied by SEM, with images of samples ZnO_water_PLLA (a) and ZnO_air_PLLA (b) being
238 presented in Fig.4. It is clearly seen in Fig.4 that both types of ZnO NPs are distributed quite
239 uniformly over the scaffold surface. At the same time, the NPs obtained in water are seen in panel (a)
240 to be somewhat more agglomerated, while those prepared in air cover the PLLA matrix somewhat
241 more homogeneously. This can be explained by better dispersibility of sample ZnO_air in solvent
242 prior to its loading onto the PLLA scaffold.

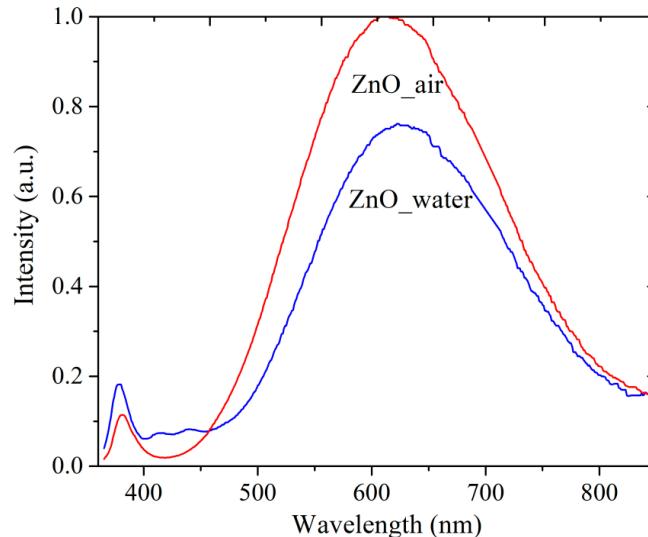
243 **Figure 4.** SEM images of model wound dressing tissues based on PLLA scaffold loaded with ZnO_water (a) and
244 ZnO_air (b) NPs.


245 The uniform NP distribution on the PLLA fibers and good adhesion were believed to be
246 achieved owing to electrostatic interaction forces between the fibers and ZnO NPs. Polymer fibers of
247 PLLA produced by electrospinning are known to have a high negative surface charge [24], while the
248 laser-generated ZnO NPs possess positive surface charge, as will be described below in section 3.4.

249 3.3 Spectroscopic data

250 3.3.1. UV-Vis spectra

251 The absorption spectra of both powder samples are presented in Fig.5a. Similarly, Fig.5b exhibits
252 absorption spectra of PLLA scaffolds loaded with the same NPs. The wurtzite ZnO phase is known
253 to possess a characteristic shoulder of exciton absorption in the UV range below ~400 nm, which
254 results from the electron transfer from the valence zone (formed by Zn(3d) and O(2p) orbitals) to the
255 conductance zone (formed by Zn(4s) orbitals) [1,23]. This absorption band is observed at room
256 temperature because of the high binding energy of excitons [1,16]. Both samples, ZnO_water (blue
257 curve) and ZnO_air (red curve) are seen in panel (a) to have very weak absorption in visible range,
258 which is believed to result from admixtures (such as metallic Zn, carbonate species, and so on). When
259 the powders were loaded onto a polymer scaffold, the obtained composite materials are seen in panel
260 (b) to demonstrate very similar spectra (compare blue and red curves in Figs.5a,b).


261 The absorption spectra were used to evaluate the bandwidth of the materials (see insets in Fig.5).
262 Interestingly, both samples gave the same value of ~ 3.26 eV, in both forms, i.e. as-prepared and after
263 loading onto PLLA matrix. This value agrees well with literature values for ZnO nanomaterials where
264 E_g was reported to be of 3.2-3.4 eV [1,25,26]. No quantum-confinement effects are observed as the
265 obtained ZnO NPs are relatively large (over 10 nm).

266 **Figure 5.** UV-Vis absorption spectra of powder samples (a) and ZnO-PLLA composites with NPs (b). Insets
 267 present how E_g values were evaluated. Red and blue lines represent data for ZnO NPs produced in air and water,
 268 respectively.

269 *3.3.2. Photoluminescence spectra*

270 Figure 6 presents PL spectra of as-prepared samples. Both samples (ZnO_air, red curve, and
 271 ZnO_water, blue curve) are seen to have two bands in their PL spectra: a narrow UV peak around
 272 380 nm and a wide band in the visible range, with maxima at 612 nm (red spectrum) and 625 nm
 273 (blue spectrum). The two bands are known to have the exciton (UV) and defect (visible range) nature
 274 [6,14,15,27,28]. The maximum of defect-related visible PL of sample ZnO_water is less intense and
 275 red-shifted compared with that of sample ZnO_air.

276 **Figure 6.** PL spectra of samples PLA-generated in air (red line) and water (blue). Excitation source use
 277 had $\lambda_{ex}=350$ nm.
 278

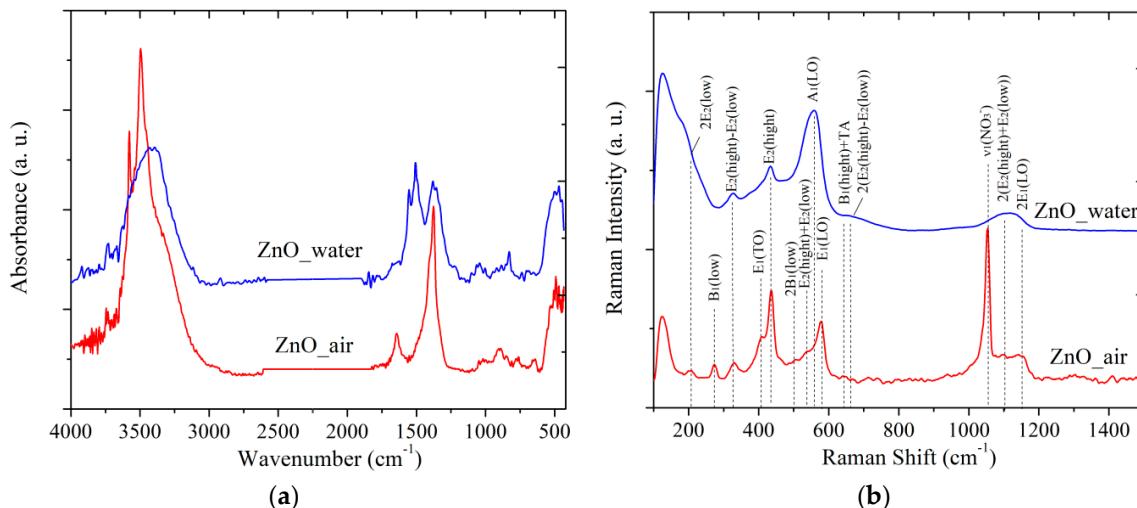
279 It should be mentioned that there is no full agreement in the literature on interpreting defect-
 280 related PL in ZnO [14,15,27-30]. On one hand, the nature of defects is obviously one of main factors,
 281 while on the other hand, the NP size and morphology were also reported to play their role
 282 [6,14,29,30]. Experimentally, it was found that during aging of ZnO colloids prepared via PLA in
 283 liquid, red-shift of the defect-related PL band occurred [31]. According to work [30], the redshift in
 284 ZnO PL is owing to the presence of defects such as Zn_i, O_i, and OH groups, and especially surface
 285 defects that are caused by all the peculiarities of PLA in liquid medium as preparation technique. All
 286 this taken into account, as well as the results of XRD and TEM presented above, one can conclude

287 that the redshift of the PL band of sample ZnO_water could result from the following two factors:
288 excess of O_i defects and the rod-shaped morphology of the NPs.

289 Altogether, the PL spectra in Fig.6 demonstrate that both powders produced by PLA are rich in
290 defects, which should make them attractive for applications in catalysis or as antibacterial
291 nanomaterials.

292 *3.3.3. IR and Raman spectra*

293 The IR spectra of the PLA-prepared samples are presented in Fig. 7a. The band observed for
294 both samples (red and blue curves) at 500 cm⁻¹ is characteristic of valence vibrations of the Zn-O band
295 [13]. Apart from Zn-O vibrations, two wide and intense bands in the range of 3750-2800 cm⁻¹ and
296 1630-1200 cm⁻¹ are observed for both samples, as well as a number of less pronounced bands between
297 ~1000 and 600 cm⁻¹.

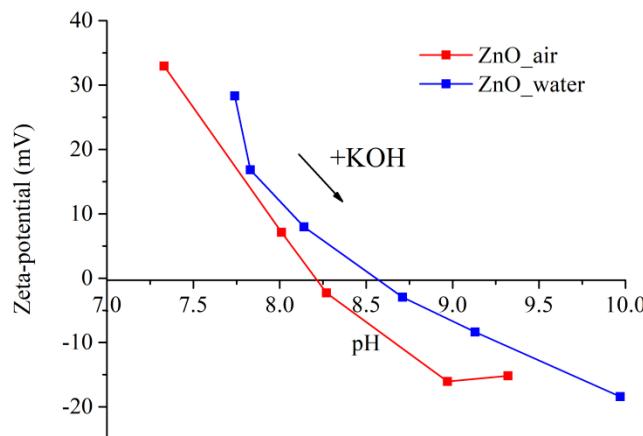

298 Sample ZnO_water demonstrates a wide and featureless band at ~3400 cm⁻¹, similar to what was
299 previously reported by others for ZnO NPs prepared via PLA in water [9]. This band originates from
300 the valent vibrations of OH groups [32], OH groups bound to H atoms [33], and from Zn-OH species
301 [9]. In particular, there is a narrow peak at 3740 cm⁻¹ which can be assigned to vibrations of isolated
302 OH group of water on the [10̄10] facet of ZnO [32]. The sample prepared in air exhibits more features
303 in this spectral region (see red spectrum in Fig.7a).

304 The second intense band of sample ZnO_water is believed to be related to carbonate species. For
305 instance, the peak seen at 1372 cm⁻¹ is most likely from the carbonate group of hydrozincite, which is
306 also supported by another band at 1515 cm⁻¹ [28]. The bands at 1049 and 825 cm⁻¹ are also related to
307 the v₁ and v₂ vibrations of carbonate groups from hydrozincite [34]. In this region, the sample PLA-
308 prepared in water demonstrates a more intense band at 1609 cm⁻¹ which is related to deformational
309 vibrations of intercalated H₂O molecules. In addition, the vibration band v₃ of nitric group (1374 cm⁻¹)
310 belonging to Zn₅(OH)₈(NO₃)₂·2H₂O is also expected to manifest itself in this region [35].

311 The Raman spectra of samples are exhibited in Fig.7b. The wurtzite ZnO (space group C_{6v}^4) is
312 known to demonstrate the following optical modes: polar A₁ and E₁ that are active in the IR and
313 Raman ranges, doubly-degenerate E₂ mode with frequencies E₂(low) and E₂(high), and inactive
314 "silent" B₁ mode. The spectrum of sample ZnO_air (red line in Fig.7b) is seen to have more features,
315 demonstrating, e.g., bands at 205, 408, and 437 cm⁻¹ which are related to the main optical vibrations
316 of the crystal lattice 2E₂(low), transversal E₁(TO) and E₂(high) vibrations, respectively. Since sample
317 ZnO_air exhibits a more pronounced band E₂(high) at 437 cm⁻¹, this implies that its NPs are better
318 crystallized than those obtained in water (compare red and blue curves in Fig.7b). The band at 577
319 cm⁻¹ can be assigned to either the A₁(LO) or to E₁(LO) lateral vibrations. This spectral range can also
320 be linked to a mixed quasi-LO mode with E₁ and A₁ symmetries that are closely related to the presence
321 of defects [36]. Because PLA-generated NPs are known to be rich in defects [7,9,14], it is safe to assume
322 that the peak at 577 cm⁻¹ originates from the E₁(LO) mode. Finally, the bands below 150 cm⁻¹ are hard
323 to identify and are most likely to be related to defects as well.

324 The distinctive feature of sample ZnO_water (blue spectrum in Fig.7b) is its wide dominating
325 A₁(LO) mode around 560 cm⁻¹, which is characteristic of lattice vibrations parallel to the growth
326 direction. This agrees well with the above presented TEM images where rod-like morphology of the
327 NPs prepared in water was revealed.

328 In agreement with the XRD results, where the presence of ZHN phase was revealed, the Raman
329 spectrum of sample ZnO_air also demonstrates additional modes of this phase (see peaks at 273, 506
330 and 639 cm⁻¹ in Fig.7b) that correspond to the B₁(low), 2B₁(low) and B₁(high)+TA vibrations,
331 respectively. In addition, the intense peak at 1050 cm⁻¹ belonging to v₁(NO₃) vibrations of nitric group
332 is also observed [37]. The weak band at 713 cm⁻¹ is also due to the nitric group, presening its v₄(NO₃)
333 vibration mode. Finally, the wide band between 1050 and 1150 cm⁻¹ observed for both samples is
334 related to multi-phonon vibrations of ZnO crystal lattice.



335 **Figure 7.** FTIR (a) and Raman (b) spectra of powder samples. Red and blue lines present data for samples
 336 prepared in air and water, respectively.

337 Thus, the FTIR and Raman spectroscopic data correlate well with the above presented XRD, PL
 338 and TEM results. In particular, they confirm: (i) the presence of ZHN phase in sample ZnO_air; (ii)
 339 the rod-shaped morphology of NPs generated in water; and (iii) the highly-defective nature of both
 340 samples as previously revealed by their PL spectra.

341 *3.4. Zeta potential*

342 The value of ζ - potential is known to determine the stability of a colloidal solution, the system
 343 being stable when it is over ± 30 mV. Information on surface charge of NPs permits to predict their
 344 interaction with bacterium cell membrane, the strength of which also depends on the bacteria type.
 345 Figure 8 exhibits the values of ζ -potential of the two samples dispersed in water as they were titrated
 346 with KOH solution to determine their pH_{iep}.

347 **Figure 8.** Zeta potential of NPs evaluated at different pH values. Blue and red symbols stand for samples
 348 prepared in water and air, respectively.
 349

350 It is well-seen in Fig.8 that the ζ -potential values of both samples are positive, being +33 mV (red
 351 curve) and +28 mV (blue curve) for NPs produced in air and water, respectively. Because of the larger
 352 value of its ζ -potential, the dispersion of sample ZnO_air is more stable in water, which agrees with
 353 the above discussion in section 3.2.2. While the initial pH of water was ~6.3, the values were shifted
 354 to pH 7.3 (red curve) and pH 7.8 (blue curve) when the tested powders were dispersed. The values
 355 of the isoelectric point obtained for the dispersions were found to be in the basic range, agreeing well
 356 with the literature [38]. Thus, the surface of both types of NPs is positively charged at pH below this

357 value as protons from water are transferred onto the NPs and form surface Zn-OH₂⁺ groups [39]. The
 358 difference between the two curves in Fig.8 and thus in the values of pH_{iep} implies that the surface
 359 chemistry of the two powders prepared in different media is different, which was previously
 360 revealed by both IR and Raman spectroscopy measurements.

361 As previously mentioned in section 3.2.2, the positive ζ -potential of both laser-generated
 362 samples is an important factor that contributed to good surface adhesion and uniform deposition of
 363 their NPs onto PLLA scaffolds, the latter being negatively charged.

364 *3.4. Antibacterial activity*

365 Table 2 shows the results of antibacterial tests obtained on the model PLLA tissues loaded with
 366 the two laser-generated ZnO powders. It is clearly seen that both samples demonstrated good
 367 antibacterial activity towards *S. aureus* (A>3, according to ISO 20743: 2013), the activity of sample
 368 ZnO_air_PLLA being significantly higher. The latter finding could be explained by either the larger
 369 specific surface area of its NPs or their surface chemistry, both assumptions needing additional
 370 studies.

371 **Table 2.** Antibacterial activity of prepared samples towards *S. aureus* and *E. coli*.

Sample	The level of growth		Antibacterial activity (A = F - G)
	Control $F = \lg C_t - \lg C_0$	Sample $G = \lg T_t - \lg T_0$	
<i>S. aureus</i> (+)			
ZnO_water_PLLA	+ 3.18	- 1.62	+ 4.80
ZnO_air_PLLA		- 2.48	+ 5.66
<i>E. coli</i> (-)			
ZnO_water_PLLA	+ 2.95	+ 1.53	+ 1.42
ZnO_air_PLLA		+ 1.67	+ 1.28

372 At the same time, the antibacterial activity of both samples towards *E. coli*, though exhibiting
 373 strong inhibitory effect, was found to be very close to each other and lower than in case of *S. aureus*.
 374 This agrees well with our previous results reported for PLA-prepared ZnO NPs deposited onto cotton
 375 fabrics [10]. The observed difference in bactericidal action between the two strains tested is believed
 376 to be caused by their wall structures. While the *S. aureus* is known to be protected by its wall made
 377 of peptidoglycan (which has teichoic and lipoteichoic acids), the *E. coli* bacteria have an outer
 378 membrane that has a more complex chemical composition and contains lipopolysaccharide
 379 surrounded by a thin layer of peptidoglycan. The latter more complex structure provides the *E. coli*
 380 higher resistivity. It should be noted, however, that for wound dressing it is the bactericidal action
 381 against the *S. aureus* that is of higher importance than that against *E. coli*.

382 There are several models explaining the antibacterial action of ZnO NPs. One possible
 383 mechanism proposed suggests that their bactericidal effect can be related to reactive oxygen species
 384 generated by such particles [40]. It cannot be excluded that the inhibiting action could also be due to
 385 the Zn²⁺ cations that are released as a result of partial dissolution of ZnO NPs [41] and result in
 386 membrane dysfunction [42] and NP internalization with the bacterium surface [43]. More details on
 387 possible bactericidal mechanisms of ZnO NPs can be found elsewhere [2, 44].

388 The antibacterial tests carried out in this study confirm a high bactericidal potential of nano-
 389 sized ZnO loaded onto biodegradable PLLA matrix as a model dressing for wound treatment.
 390 Besides, the novel ZnO powder produced via PLA in air was found to demonstrate higher
 391 antibacterial activity, which can be explained by its more uniform distribution over matrix fibers and
 392 by a larger specific surface area of its NPs.

393

394

395 **4. Conclusions**

396 In this study, we prepared ZnO nanoparticles (NPs) via ablating Zn target with nanosecond
397 pulsed laser in water and air media and compared their properties. It was found that the NPs
398 produced in air were of spherical shape, while their counterparts produced in water were somewhat
399 larger and rod-shaped. Both samples were based on hexagonal wurtzite ZnO phase, while because
400 of interaction with atmosphere nitrogen, the sample generated in air also had some fraction of
401 monoclinic zinc hydroxynitrate.

402 The NPs prepared in air were more stable in colloid (having zeta potential $\zeta > 30$ mV) and
403 demonstrated better dispersibility in water. After characterization by various structural and
404 spectroscopic techniques, both powders were loaded onto polymeric matrix of biodegradable poly-
405 L-lactic acid, thus forming model biomedical composite materials for wound dressing. The
406 antibacterial behavior of the two model dressings was tested against *S. aureus* and *E. coli* strains,
407 showing promising bactericidal action against the former.

408 Upon comparing ZnO NPs produced in water and air, this work demonstrates that the latter
409 NPs had better dispersibility in water, while their antibacterial behavior was at least comparable with
410 that of the former ones. Thus, when it comes to using ZnO NPs as powders, for example to disperse
411 them and load onto/into biodegradable polymer matrix, nanoparticles produced via laser ablation in
412 air should be considered as real promising alternatives to their counterparts prepared in water.

413 **Author Contributions:** conceptualization, V.A.S. and S.A.K.; methodology, D.A.G.; validation, A.A.A. and
414 N.M.; investigation, E.A.G., D.A.G., I.N.L. and A.L.N.; visualization, E.A.G.; writing and editing, E.A.G., V.A.S.
415 and S.A.K.

416 **Funding:** This research was funded by the Tomsk State University competitiveness improvement program, and
417 by the Japan Society for the Promotion of Science (JSPS, grant no. 16K04904). D.A.G was supported by the
418 scholarship program of the President of the Russian Federation for young scientists and post-graduate students
419 (SP-2018 Competition).

420 **Acknowledgments:** The authors thank Dr. T.S. Kharlamova for zeta potential measurements and Dr.
421 M.A. Gerasimova for photoluminescence measurements. Characterization was carried out using equipment of
422 the Tomsk Regional Common Use Centre, Tomsk State University.

423 **Conflicts of Interest:** The authors declare no conflict of interest.

424 **References**

1. Özgür, Ü.; Alivov, Ya.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. *J. Appl. Phys.* **2005**, *98*, 041301, doi:10.1063/1.1992666
2. Król, A.; Pomastowski, P.; Rafińska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. *Adv. Colloid Interface Sci.* **2017**, *249*, 37–52, doi:10.1016/j.cis.2017.07.033
3. Gomez, J.L.; Tigli, O. Zinc oxide nanostructures: From growth to application. *J. Mater. Sci.* **2013**, *48*, 612–624, doi:10.1007/s10853-012-6938-5
4. Mintcheva, N.; Aljulaih, A.A.; Wunderlich, W.; Kulinich, S.A.; Iwamori, S. Laser-ablated ZnO nanoparticles and their photocatalytic activity toward organic pollutants. *Materials* **2018**, *11*, 1127, doi:10.3390/ma11071127
5. Kondo, T.; Sato, Y.; Kinoshita, M.; Shankar, P.; Mintcheva, N.; Honda, M.; Iwamori, S.; Kulinich, S.A. Room temperature ethanol sensor based on ZnO prepared via laser ablation in water. *Jpn. J. Appl. Phys.* **2017**, *56*, 080304, doi:10.7567/jjap.56.080304
6. Kulinich, S.A.; Kondo, T.; Shimizu, Y.; Ito, T. Pressure effect on ZnO nanoparticles prepared via laser ablation in water. *J. Appl. Phys.* **2013**, *113*, 033509, doi: 10.1063/1.4775733
7. Zeng, H.; Du, X.W.; Singh, S.C.; Kulinich, S.A.; Yang, S.; He, J.; Cai, W. Nanomaterials via laser ablation/irradiation in liquid: A review. *Adv. Funct. Mater.* **2012**, *22*, 1333–1353, doi:10.1002/adfm.201102295

443 8. Liang, C.; Shimizu, Y.; Masuda, M.; Sasaki, T.; Koshizaki, N. Preparation of layered zinc
444 hydroxide/surfactant nanocomposite by pulsed-laser ablation in a liquid medium. *Chem. Mater.* **2004**, *16*,
445 963–965, doi:10.1021/cm034706e

446 9. Yan, Z.; Chrisey, D.B. Pulsed laser ablation in liquid for micro-/nanostructure generation. *J. Photochem.*
447 *Photobiol. C.* **2012**, *13*, 204–223, doi:10.1016/j.jphotochemrev.2012.04.004

448 10. Svetlichnyi, V.; Shabalina, A.; Lapin, I.; Goncharova, D.; Nemoykina, A. ZnO nanoparticles obtained by
449 pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity.
450 *Appl. Surf. Sci.* **2016**, *372*, 20–29, doi:10.1016/j.apsusc.2016.03.043

451 11. Yang, X.C.; Riehemann, W.; Dubiel, M.; Hofmeister, H. Nanoscaled ceramic powders produced by laser
452 ablation. *Mater. Sci. Eng., B* **2002**, *95*, 299–307, doi:10.1016/S0921-5107(02)00291-X

453 12. Niu, K.Y.; Kulinich, S.A.; Jing, Y.; Zhu, A.L.; Du, X.W. Galvanic replacement reactions of active-metal
454 nanoparticles. *Chem. Eur. J.* **2012**, *18*, 4234–4241, doi:10.1002/chem.201102544

455 13. Gondal, M.A.; Drmosh, Q.A.; Yamani, Z.H.; Saleh, T.A. Synthesis of ZnO nanoparticles by laser ablation in
456 liquid and their annealing transformation into ZnO nanoparticles. *Appl. Surf. Sci.* **2009**, *256*, 298–304,
457 doi:10.1016/j.apsusc.2009.08.019

458 14. Goto, T.; Honda, M.; Kulinich, S.A.; Shimizu, Y.; Ito, T. Defects in ZnO nanoparticles laser-ablated in water-
459 ethanol mixtures at different pressures. *Jpn. J. Appl. Phys.* **2015**, *54*, 070305, doi:10.7567/JJAP.54.070305

460 15. Honda, M.; Goto, T.; Owashi, T.; Rozhin, A.G.; Yamaguchi, S.; Ito, T.; Kulinich, S.A. ZnO nanorods
461 prepared via ablation of Zn with millisecond laser in liquid media. *Phys. Chem. Chem. Phys.* **2016**, *18*, 23628–
462 23637, doi:10.1039/C6CP04556A

463 16. Janotti, A.; Van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. *Rep. Prog. Phys.* **2009**, *72*,
464 126501, 1–29, doi:10.1088/0034-4885/72/12/126501

465 17. Svetlichnyi, V.A.; Shabalina, A.V.; Lapin, I.N.; Goncharova, D.A.; Kharlamova, T.S.; Stadnichenko, A.I.
466 Comparative study of magnetite nanoparticles obtained by pulsed laser ablation in water and air. *Appl.*
467 *Surf. Sci.* **2019**, *467*–468, 402–410, doi:10.1016/j.apsusc.2018.10.189

468 18. Albertsson, A.-C.; Varma, I.K. Degradable aliphatic polyesters. In *Advances in Polymer Science*; A.-C.
469 Albertsson Ed; Springer: Berlin, Germany, 2002; Volume. 157, pp 1–40, ISBN 978-3-642-10576-0.

470 19. Badaraev, A.D.; Nemoykina, A.L.; Bolbasov, E.N.; Tverdokhlebov, S.I. PLLA scaffold modification using
471 magnetron sputtering of the copper target to provide antibacterial properties. *Resour.-Effic. Technol.* **2017**,
472 *3*, 204–2011, doi:10.1016/j.reffit.2017.05.004

473 20. ISO 20743:2013 Textiles - Determination of antibacterial activity of textile products. **2013** (2nd Edition)

474 21. Roske, C.W.; Lefler, J.W.; Müller, A.M. Complex nanomineral formation utilizing kinetic control by PLAL.
475 *J. Colloid Interface Sci.* **2017**, *489*, 68–75, doi:10.1016/j.jcis.2016.08.079

476 22. Ishikawa, Y.; Shimizu, Y.; Sasaki, T.; Koshizaki N. Preparation of zinc oxide nanorods using pulsed laser
477 ablation in water media at high temperature. *J. Colloid Interface Sci.* **2006**, *300*, 612–615,
478 doi:10.1016/j.jcis.2006.04.005

479 23. Panda, D.; Tseng T.Y One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and
480 device applications. *J. Mater. Sci.* **2013**, *48*, 6849–6877, doi:10.1007/s10853-013-7541-0

481 24. Croisier, F.; Aqil, A.; Malherbe, C.; Gilbert, B.; Detrembleur, C.; Jerome, C. Charged Poly(D,L-lactide)
482 nanofibers: Towards customized surface properties, *Macromol. Symp.* **2011**, *309*–310, 20–27,
483 doi:10.1002/masy.201100037

484 25. Pearton, S.J.; Norton, D.P.; Ip, K.; Steiner, T.; Heo, Y.W. Recent advances in processing of ZnO. *J. Vac. Sci.*
485 *Technol., B.* **2004**, *22*, 932–948, doi:10.1116/1.1714985

486 26. Yi, G.C.; Wang, C.; Park, W. ZnO nanorods: Synthesis, characterization and applications. *Semicond. Sci.*
487 *Technol.* **2005**, *20*, 22–34, doi:10.1088/0268-1242/20/4/003

488 27. Vempati, S.; Mitra, J.; Dawson P. One-step synthesis of ZnO nanosheets: a blue-white fluorophore. *Nanoscale*
489 *Res. Lett.* **2012**, *7*, 470, 1–10, doi:10.1186/1556-276X-7-470

490 28. Mao, J.; Chen, X.; Ling, T.; Du X. Strong blue emission from zinc hydroxide carbonate nanosheets. *J. Lumin.*
491 **2016**, *177*, 242–248, doi:10.1016/j.jlumin.2016.05.006

492 29. Anantachaisilp, S.; Smith, S.M.; Ton-That, C.; Pornsuwan, S.; Moo, A.R.; Nenstiel, C.; Hoffmann, A.;
493 Phillips, M.R. Nature of red luminescence in oxygen treated hydrothermally grown zinc oxide nanorods.
494 *J. Lumin.* **2015**, *168*, 20–25, doi:10.1016/j.jlumin.2015.07.025

495 30. Kurudirek, S.V.; Pradel ,K.C.; Summers, C.J. Low-temperature hydrothermally grown 100 nm vertically
496 well-aligned ultralong and ultradense ZnO nanorod arrays with improved PL property. *J. Alloys Compd.*
497 2017, 702, 700–709, doi:10.1016/j.jallcom.2017.01.273

498 31. Svetlichnyi, V.A.; Lapin, I.N. Structure and properties of nanoparticles fabricated by laser ablation of Zn
499 metal targets in water and ethanol. *Russ. Phys. J.* 2013, 56, 581–587, doi:10.1007/s11182-013-0071-z

500 32. Wöll, C. The chemistry and physics of zinc oxide surfaces. *Prog. Surf. Sci.* 2007, 82, 55–120,
501 doi:10.1016/j.progsurf.2006.12.002

502 33. Barsukov, D.V.; Subbotina, I.R. IR-study of hydrated surface of oxide photocatalysts. *Russ. Chem. Bull.* 2017,
503 66, 1847–1853, doi:10.1007/s11172-017-1956-8

504 34. Japi, D.; Bitenc, M.; Marinšek, M.; Orel, Z.C. The impact of nano-milling on porous ZnO prepared from
505 layered zinc hydroxide nitrate and zinc hydroxide carbonate. *Mater. Res. Bull.* 2014, 60, 738–745,
506 doi:10.1016/j.materresbull.2014.09.061

507 35. Li, P.; Xu, Z.P.; Hampton, M.A.; Vu, D.T.; Huang, L.; Rudolph, V.; Nguyen, A.V. Control preparation of
508 zinc hydroxide nitrate nanocrystals and examination of the chemical and structural stability. *J. Phys. Chem.*
509 C. 2012, 116, 10325–10332, doi:10.1021/jp300045u

510 36. Klingshirn, C.F.; Meyer, B.K.; Waag, A.; Hoffmann A.; Geurts, J. Zinc oxide: From fundamental properties
511 towards novel applications. In *Springer Series in Materials Science*; Hull R., Jagadish, C., Osgood, R.M. Jr.,
512 Parisi, J., Wang Z., Warlimont, H., Eds; Springer: New York, USA, 2010; Volume. 120; pp. 233–266. ISBN
513 978-3-642-10576-0.

514 37. Liu, X.; Wang, C.; Liu, X.; Ouyang, L.; You, Z.; Lu, Y.; Chen, X. Understanding the factors that control the
515 formation and morphology of $Zn_5(OH)_8(NO_3)_2 \times 2H_2O$ through hydrothermal route. *J. Nanomater.* 2013, 2013,
516 938370, doi:10.1155/2013/938370

517 38. Degen, A.A.; Kosec, M. Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution.
518 *J. Eur. Ceram. Soc.* 2000, 20, 667–673, doi:10.1016/S0955-2219(99)00203-4

519 39. Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water
520 treatment technology: A review. *Water Res.* 2016, 88, 428–448, doi:10.1016/j.watres.2015.09.045

521 40. Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison
522 of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and
523 oxidative stress properties. *ACS Nano* 2008, 2, 2121–2134, doi:10.1021/nn800511k

524 41. Li, M.; Pokhrel, S.; Jin, X.; Mädler, L.; Damoiseaux, R.; Hoek, E.M. Stability, bioavailability, and bacterial
525 toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. *Environ. Sci. Technol.* 2011, 45, 755–
526 761, doi:10.1021/es102266g

527 42. Kavitha, T.; Gopalan, A.I.; Lee, K.-P.; Park, S.-Y. Glucose sensing, photocatalytic and antibacterial
528 properties of graphene–ZnO nanoparticle hybrids. *Carbon* 2012, 50, 2994–3000,
529 doi:10.1016/j.carbon.2012.02.082

530 43. Huang, Z.; Zheng, X.; Yan, D.; Yin, G.; Liao, X.; Kang, Y.; Yao, Y.; Huang, D.; Hao, B. Toxicological effect of
531 ZnO nanoparticles based on bacteria. *Langmuir* 2008, 24, 4140–4144, doi:10.1021/la7035949

532 44. Sirelkhatim, A.; Mahmud, S.; Seenii, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad,
533 D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. *Nano-Micro Lett.*
534 2015, 7, 219–242, doi:10.1007/s40820-015-0040-x