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Abstract: Current understanding of mechanisms of cellular resistance to genotoxic stress is 11 
incomplete but is critical for a variety of medical applications. Recent developments in the 12 
CRISPR/Cas technologies open new opportunities for targeted interrogation of resistance genes and 13 
pathways. In the present work, we used nuclease dead Cas9 constructs to achieve targeted 14 
overexpression of endogenous genes encoding two essential subunits of DNA damage sensor 15 
complex, XPC and HR23B, in HEK293T cells. Both individual and simultaneous overexpression of 16 
the two genes was achieved and the effects on cellular resistance to ionizing radiation and paraquat 17 
was examined. Using the fluorometric microculture cytotoxicity assay, we showed that 18 
simultaneous, but not separate overexpression of the two genes lead to a 30% increase in 19 
survivability. Irradiated cells that overexpressed both XPC and HR23B genes showed higher 20 
clonogenic capacity and proliferation rate compared to the irradiated transfection control as 21 
revealed by the clonogenic survival assay. Modulation of the gene expression did not affect cell 22 
resistance to paraquat. In summary, our results demonstrate a high potential of CRISPR/dCas9-23 
enabled multiplex overexpression of stress-response genes in functionally justified combinations, 24 
exemplified here by the XPC-HR23B complex, for achieving an enhanced cellular radioresistance. 25 
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1. Introduction 28 
Mechanisms triggered in response to genotoxic stress in mammalian cells define cellular 29 

resistance to such stress factors. Understanding the mechanisms governing genome integrity and the 30 
possibility of their manipulation and regulation have been the focus of biological research in recent 31 
decades. This is due to the high fundamental and applied value of such knowledge. Indeed, the 32 
mechanisms maintaining genome stability under normal conditions or under the influence of stress 33 
factors are closely associated with the mechanisms involved in aging, carcinogenesis and evolution 34 
[1–3]. The ability to control the resistance of cells and organisms to genotoxic stress will be of great 35 
importance for improving cancer therapies, extending human longevity, creating more stable cells-36 
producers of recombinant therapeutic proteins and new agricultural plant varieties and breeds of 37 
animals, and also for protecting astronauts from cosmic radiation during prospective manned deep 38 
space expeditions. 39 

Recent discoveries and developments in CRISPR/Cas genome editing [4,5] and transcription 40 
programming (CRISPRa and CRISPRi) [6–11] technologies open vast opportunities in controlling a 41 
wide variety of cellular functions, including resistance to genotoxic factors, such as ionizing radiation 42 
[12]. In this regard, it can be assumed that a gain-of-function approach would be more promising for 43 
studying and achieving the goal of enhancing stress resistance than a loss-of-function approach. First, 44 
knocking down stress response genes to lower cell resistance to stress does not automatically mean 45 
that enhancing the expression of the gene would increase resistance. Secondly, inactivating a gene to 46 
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directly enhance stress resistance may have side effects since most genes, especially regulators of 47 
gene expression, are involved in multiple, often non-related cellular pathways and functions [13]. 48 
Lastly, off-targeted [14] and on-targeted [15] side effects of gene-editing involving were reported, as 49 
well as preferential selection of gene-edited cells containing aberrant p53-regulated pathways [16,17]. 50 
Previously, we carried out systemic analysis of published literature with respect to modulation of 51 
stress resistance by overexpression of different genes [12]. Approximately at the same time, the first 52 
works were published in which the CRISPR activation (CRISPRa) screening was performed to find 53 
genes, overexpression of which leads to resistance to chemotherapeutic drugs [18,19]. But in our 54 
opinion, a wide variety of possible mechanisms for the development of resistance to genotoxic 55 
stresses [12] will not allow as to effectively identify all regulatory possibilities by the screening 56 
approach. It is necessary to conduct simultaneous focused researches based on known functions and 57 
interaction of products of specific genes. Moreover, obviously that achieving an increased stress 58 
resistance must not disturb the pathways involved in anticancer mechanisms, such as apoptosis or 59 
stress-induced cell senescence. With this in mind, precision overexpression of genes that play a role 60 
in the prevention, recognition and repair of DNA damage seems most promising. 61 

Most molecular mechanisms of maintaining the genome stability are based on the simultaneous 62 
or sequential operation of multiple proteins and their complexes [20,21], therefore making 63 
overexpression of individual genes less likely to be effective compared to simultaneous activation of 64 
two and more genes. To this end, CRISPRa technology provided unprecedented opportunities to 65 
study the regulation of the cellular resistance to stress factors. In particular, using transcription 66 
activators fused to nuclease dead Cas9 (dCas9), the feasibility of targeted adjustable simultaneous 67 
overexpression of several genes in their natural chromatin and chromosome context, including all 68 
splice-variants, was compellingly demonstrated [8]. 69 

In the present work, using the CRISPRa technology, we performed a targeted activation of two 70 
DNA damage recognition genes, XPC and HR23B, either separately or simultaneously, to examine 71 
the effect of such manipulation on cellular resistance to ionizing radiation or paraquat. These two 72 
genes were selected for this study based on their established role and mode of action during the first 73 
stage of recognition of single-stranded DNA damage of various types [22]. The products of the genes 74 
work as a complex, with the HR23B protein stabilizing XPC, enabling its binding to damaged DNA 75 
[23,24], and rapidly dissociating from XPC thereafter [25]. Another protein, Centrin 2 (CETN2), is also 76 
part of a complex that scans DNA for single-stranded lesions. However (CETN2) is not essential for 77 
function of the complex since it only facilitates the binding of the XPC complex to DNA, but does not 78 
stabilize the complex [26]. Based on this previous knowledge, we hypothesized that increasing the 79 
efficiency of DNA damage recognition would require simultaneous overexpression of XPC and 80 
HR23B genes. Such knowledge-based designed approach for the enhancement of cellular resistance 81 
to stress, to our knowledge, has not been used previously in contrast to genome-wide screening 82 
approaches. 83 

2. Materials and Methods 84 

2.1. Cells and plasmids 85 
The experiments were performed using a HEK293T cell line. The cells were maintained in Opti-86 

MEM medium (Gibco, Thermo Fisher Scientific, USA) supplemented with 5% fetal bovine serum 87 
(HyClone, Thermo Scientific, USA) without antibiotics at 37°C in a 5% CO2 and 95% air atmosphere. 88 
For dCas9-VPR expression the pXPR_120 plasmid was used which was a gift from John Doench & 89 
David Root (Addgene plasmid # 96917) [27]. Oligonucleotides coding sgRNA were cloned into the 90 
gRNA Cloning Vector Bbs I ver. 2 which was a gift from Hodaka Fujii (Addgene plasmid # 85586) 91 
[28].  92 
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2.2. sgRNA design and cloning 93 
Sequences of sgRNA targeting the promotors of the XPC and HR23B genes (1-400 nucleotides 94 

upstream of the transcription start site) were designed and selected using the Casdesigner and 95 
Casoffinder online tools [29,30] (Table 1). Synthesis of oligonucleotides for cloning in the gRNA 96 
Cloning Vector Bbs I ver. 2 was carried at Evrogen facilities (Russia). Cloning was performed with 97 
the restriction enzyme BbsI-HF (New England Biolabs, USA) and the T4 ligase (Evrogen, Russia). 98 

Table 1. Sequences of gRNA targeting the promotors of XPC and HR23B 99 

Gene Position relative to  
transcription start site 

Sequence 5’-3’ 

XPC -106 GTATTGTATCCTCACGTTTC 
-148 GTTCTCGCGAGAGGCGGGAA 
-349 GGCCTACGGCAAAATTCGGA 

HR23B -123 GGAACGCGCCTGCGTAATCC 
-221 GGGCGGAGCCTGCACAGAGG 
-249 GGCTACACATTGCGTAACTT 

2.3 Transfection and irradiation 100 
Transfection was performed in a 24-well plate using Lipofectamine 3000 (Invitrogen, USA) 101 

according to the manufacturer's protocol. Five hundred nanograms of the pXPR 120 plasmid and 500 102 
ng of an appropriate sgRNA plasmid mixture was used per one well. The efficiency of transfection 103 
was >80% as controlled by co-transfecting with the eGFP expressing LeGO-G2 vector (a gift from 104 
Boris Fehse (Addgene plasmid #25917)) [31]. Forty-eight hours after transfection the сells were 105 
trypsinized and transferred to 96-well plates for the analysis of survivability by the fluorometric 106 
microculture cytotoxicity assay (FMCA, 2000 cells/well), in 12-well plates for the clonogenic survival 107 
assay (50 or 200 cells/well) or in 60 mm Petri dishes for the assessment of the proliferation rate (200 108 
or 1000 cells/dish). An aliquot of cell suspension at this point was used for RNA extraction and gene 109 
expression analysis. Cells were allowed to adhere to cell culture plastic surfaces for 4 h and then 110 
irradiated with 1, 2, 3, 4 or 6 Gy of gamma-radiation (60Co, 0.73 Gy/min) for the FMCA or 3 Gy only 111 
for clonogenic survival assay. In a separate experiment, cells were treated with 100 µM paraquat in 112 
the growth medium. In 12-well plates and Petri dishes, the medium with paraquat was replaced by 113 
fresh paraquat-free medium after 24 h of incubation. Cells in a 96-well plate were kept in the medium 114 
with paraquat until analysis. For each plating format and variant of transfection one's own control 115 
was prepared from same cell suspension as all variant of treatment. 116 

2.4 Analysis of survival and proliferation  117 
Radioresistance was estimated using two different methods and in two independent 118 

experiments, separated in time: one was the FMCA measuring the fraction of surviving cells [32] and 119 
the other was the conventional clonogenic survival assay [33,34]. The survival of cells with and 120 
without overexpression of XPC and HR23B was analyzed 72 h after irradiation or the start of a 121 
paraquat treatment using the FMCA [32]. The results were expressed and statistically analyzed as 122 
mean fluorescence of 24 (for irradiation) or 12 (for paraquat) replicates (microcultures in separate 123 
wells/dishes) relative to the mean value of 24 replicates of untreated control. Each transfection variant 124 
had its own untreated control. 125 

For the clonogenic survival assay, cells plated onto 12-well plates were fixed 7 days after 126 
treatment and the number of surviving colonies (>100 cells per colony) was scored. The results were 127 
expressed and statistically analyzed as mean number of colonies in 12 replicate wells relative to 128 
untreated control.  129 
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For assessing the proliferation rate, cells in Petri dishes were fixed 5 days after treatment and 25 130 
colonies were randomly selected from each treatment/transfection group and the number of cells per 131 
colony was counted. 132 

Each experiment and plating format had its own control plated from the same cell suspension. 133 
In all three cases, the Student t-test with Bonferroni correction was used for comparison between 134 
groups. 135 

2.5 qRT-PCR 136 
RNA was extracted using Aurum Total RNA Mini Kit (BioRad, USA) as per manufacturer’s 137 

instructions. Extracted RNA was quantified using Qubit™ RNA BR Assay Kit and Qubit™ 138 
fluorometer (Thermo Fisher Scientific, USA). One microgram of total RNA per sample was reverse 139 
transcribed into cDNA using Maxima First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, 140 
USA) as per manufacturer’s recommendations. The real time PCR reactions were conducted using 141 
qPCRmix-HS SYBR (Evrogen, Russia) on a CFX96 PCR Detection System (Bio-Rad, USA). The 142 
following PCR cycling conditions were used: 95°C for 5 min, 40 cycles of 95°C for 15 sec, 58°C for 15 143 
sec and 72°C 30 sec. Each analysis was carried out in three technical replicates. Relative expression 144 
was calculated using the ΔΔCt method [35] by normalizing to the house keeping genes ACTB and 145 
GAPDH. Data were analyzed using CFX Manager (Bio-Rad, USA) and Excel (Microsoft, USA) 146 
software. Primers for XPC and HR23B were designed using Primer-BLAST online tool [36] (XPC-147 
forward – TGGGTCGTACCTCTGTGTGA, XPC-reverse – ATGTGCAGCGATGGTGAGAA, HR23B-148 
forward – ACAACTCAGCAGTCAGCTCC, HR23B-reverse – AGTGATGGATGCAGGTGTGG). 149 
Primer sequences for GAPDH were taken from Cheng et al. [37] (forward – 150 
ACACCCACTCCTCCACCTTTG, reverse – GCTGTAGCCAAATTCGTTGTCATAC), and for ACTB 151 
from Ding et al. [38] (forward – GCGCGGCTACAGCTTCA, reverse – 152 
CTTAATGTCACGCACGATTTCC). Oligonucleotides were synthesized by Evrogen (Russia). 153 

3. Results and discussion 154 
The HEK293T cells were transfected with a plasmid encoding dCas9 with the VPR activator and 155 

plasmids for the expression of the sgRNA. Forty-eight hours after transfection, cells were split and 156 
one part was used for gene expression analysis, whereas the other parts were irradiated with various 157 
doses of radiation (1, 2, 3, 4 or 6 Gy) or treated with paraquat (100 µM in culture medium). Seventy-158 
two hours after irradiation or the addition of paraquat, the survival of cells was assessed using the 159 
FMCA. In separate experiments, both the clonogenic survival and the proliferation rate were 160 
measured after irradiation at 3 Gy as described in Materials and Methods. 161 

When the described CRISPRa method targeted the expression of XPC alone, a three-fold 162 
overexpression of the gene was observed (Fig. 1A). This however resulted in a slight decrease in the 163 
resistance of cells to ionizing radiation and did not affect the resistance to paraquat (Fig. 1B). It is 164 
known that overexpression of XPC leads to an increase in the resistance of human colorectal cancer 165 
SW480 cells to cisplatin [39]; however, in vivo studies showed that ubiquitous overexpression of the 166 
gene lead to a decrease in the resistance of D. melanogaster to paraquat [40] and did not change the 167 
resistance to ionizing radiation [41]. The failure of XPC overexpression to enhance the resistance to 168 
genotoxic stress can be explained by the fact that the activity and the stability of the XPC protein 169 
depends on HR23B [23,24]. A disruption of the balance of XPC activity not related to DNA repair and 170 
independent of HR23B could also be implicated. For example, it was shown that XPC enhances DNA 171 
damage induced apoptosis by downregulating the antiapoptotic short isoform of caspase-2 [42]. In 172 
addition, XPC is involved in the regulation of transcription, the proteasomal degradation of certain 173 
proteins and some other mechanisms (reviewed in [43]).  174 

Targeting the HR23B resulted in a two-fold activation of the gene (Fig 1A). Similar to the XPC 175 
activation, this did not improve cellular resistance to irradiation or paraquat treatment. In fact, the 176 
survival of cells overexpressing HR23B after the paraquat treatment decreased (Fig. 1C), whereas 177 
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their radioresistance did not change (Fig. 1B). Changes in survivability were measured relative to 178 
transfection controls run in every single experiment. HR23B is also a multifunctional gene that in 179 
addition to recognizing DNA damage is involved in protein degradation and stability, cell cycle 180 
control and apoptosis [44]. 181 

In experiments where XPC and HR23B were targeted simultaneously, the levels of achieved 182 
overexpression were 4- and 2.5-fold, respectively (Fig, 1A). Cells with both genes overexpressed 183 
showed an increased survival after irradiation at all tested doses (1, 2, 3, 4 and 6 Gy) (Fig. 1B). The 184 
resistance to the paraquat treatment also increased (Fig 1C). In order to verify the obtained results, as 185 
well as to measure changes in cell proliferation, we partially repeated the experiments using the 186 
clonogenic survival assay on cells exposed to a 3 Gy radiation dose. Similar to the first set of 187 
experiments, a significant overexpression of both XPC and HR23B was achieved (Fig. 2A). These cells 188 
were again radioresistant as revealed by the clonogenic survival assay (Fig 2B). However, no 189 
alterations in the resistance to paraquat were seen (Fig 2C). The results also showed that radiation 190 
induced suppression of proliferation occurred to a lesser extent in the cells overexpressing XPC and 191 
HR23B compared to the transfecteion control (dCas9-VPR alone). Importantly, the basal level of 192 
proliferation was not altered by the overexpression of XPC and HR23B (Fig 2D).  193 

It is most feasible to assume that the enhanced radioresistance in our experiments was the result 194 
of an increased efficiency of DNA damage recognition by the XPC-HR23B complex. Yet, other 195 
functions of the complex may have contributed to the enhanced resistance to genotoxic stress. For 196 
example, the complex can activate 8-oxoguanine DNA glycosylase (OGG1) [45], whose 197 
overexpression can improve the sustainability of Chinese hamster ovary cell lines to oxidative stress 198 
[46]. The ability of the XPC-HR23B complex to promote the MDM2-mediated degradation of the p53 199 
tumor suppressor [47] can also contribute to cell survival. On the other hand, however, 200 
overexpression of XPC could stimulate DNA damage induced apoptosis [42]. 201 

It could be argued that our results demonstrating the enhancement of radioresistance by 202 
simultaneous, but not separate, overexpression of XPC and HR23B are not consistent with the studies 203 
indicating that HR23B protein is expressed in excess relative to XPC [26,48,49]. In this case one would 204 
expect that the overexpression of XPC alone should suffice for enhancing radioresistance. However, 205 
it is known that the regulation of HR23B activity is maintained by controlling its intracellular 206 
distribution. Thus, progestin and adipoQ receptor family member 3 (PAQR3) can sequester HR23B 207 
in the Golgi apparatus, reducing the protein level in the nucleus and, accordingly, its binding to XPC 208 
[50]. Moreover, intracellular distribution of HR23B is cell cycle dependent [51]. It would seem feasible 209 
to assume that overexpression of XPC would not affect the localization of HR23B, whereas 210 
overexpression of the latter would result in higher levels of the protein in all corresponding cellular 211 
compartments 212 

 213 
Figure 1. Simultaneous, but not individual, overexpression of XPC and HR23B genes enhance survivability of 214 
HEK293T cells after treatment with ionizing radiation or paraquat. A, Quantification of the expression of XPC 215 
and HR23B in cells transfected with dCas9-VPR activator and sgRNA targeting the XPC and HR23B promoters 216 
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in various combinations relative to cells transfected with the dCas9-VPR activator alone (transcription control 217 
or TC). The mean values of three independent experiments are presented. B, survivability of the cells transfected 218 
as in A after gamma-irradiation with 1, 2, 3, 4 and 6 Gy relative to non-irradiated control. The mean values for 219 
24 replicates per data point are presented. C, survivability of the cells transfected as in A after treatment with 220 
100 µM paraquat relative to untreated control. The mean values for 12 microcultures per data point are 221 
presented. *, ** and *** indicate the difference between marked groups at p <0.05, p<0.01 and p<0.001, respectively 222 
(t-Student test with Bonferroni correction). 223 
 224 

 225 
Figure 2. Simultaneous, but not individual, overexpression of XPC and HR23B genes enhance clonogenic 226 
survivability of HEK293T cells after treatment with ionizing radiation. A, Quantification of the expression of 227 
XPC and HR23B in cells transfected with dCas9-VPR activator and gRNA targeting the XPC and HR23B 228 
promoters in various combinations relative to cells transfected with the dCas9-VPR activator alone (transcription 229 
control or TC). The mean values of three independent experiments are presented. Clonogenic survivability of 230 
the cells transfected as in A and exposed to gamma-irradiation with 3 Gy (B) or 100 mM paraquat (C) relative to 231 
non-irradiated control. The mean values for 12 replicates per data point are presented. D, The proliferation rate 232 
of the cells transfected as in A, expressed as the number of cells per colony 5 days after irradiation with 3 Gy. *, 233 
*** indicate the difference between marked groups at p <0.05 and p<0.001, respectively (t-Student test with 234 
Bonferroni correction). 235 
 236 

One important question that remains to be answered is whether the increase in radioresistance 237 
in XPC and HR23B overexpressing cells is due to or can lead to the imbalance of the defense systems 238 
protecting the cell from neoplastic transformation and malignancy. Presently, this possibility cannot 239 
be ruled out because the functions of the XPC-HR23B complex are not limited to the DNA damage 240 
recognition alone. As mentioned above, the complex can promote the MDM2-mediated degradation 241 
of the p53 protein [47]. Several studies have suggested the role of the XPC-HR23B-CETN2 complex 242 
in maintaining the pluripotency of stem cells through interaction with Oct4/Sox2 [52,53], whose role 243 
in cancer stem cells was suggested [54]. However, this issue remains controversial, since the removal 244 
of the C-terminal region of XPC, including the sites interacting with HR23B and CETN2, had little 245 
impact on the transcriptional activity of Oct3/4 [55]. Nevertheless, based on the results of loss-of-246 
function studies, the enhancement of the main function of the XPC complex related to DNA damage 247 
recognition is expected to suppress the probability of carcinogenesis. Thus, the deficiency of the XPC 248 
function leads to the tremendously higher rates of cancer incidence in people with Xeroderma 249 
pigmentosum [56]. Similar observations were made in mouse studies [57–62]. Lastly, consistent with 250 
the suggestion of the lack of carcinogenic risk upon XPC and HR23B overexpression, HR23B was 251 
found to be expressed at substantially lower levels in highly invasive breast cancer cell lines 252 
compared to the low-invasive ones [63]. 253 

4. Conclusions 254 
In summary, our results demonstrate a high potential of CRISPR/dCas9-enabled multiplex 255 

overexpression of stress-response genes in functionally justified combinations, exemplified here by 256 
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the XPC-HR23B complex, for achieving an enhanced cellular radioresistance. A higher resistance to 257 
other oxidative stress factors is also feasible. This approach has several arguable advantages in 258 
studying the mechanisms of the regulation of cell stress resistance over the approaches based on loss-259 
of-function methods, including the genome screening knock-out studies that are gaining popularity. 260 
Importantly, the presented method allows overexpression of selected stress-response genes in their 261 
natural chromosomal context ensuring relevant and artefact free results. 262 
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