

Article

Semantic Segmentation on Remotely-Sensed Images Using Enhanced Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning

Teerapong Panboonyuen ^{1*}, Kulsawasd Jitkajornwanich ², Siam Lawawirojwong ³, Panu Srestasathien ³, and Peerapon Vateekul ^{1*}

¹ Chulalongkorn University Big Data Analytics and IoT Center (CUBIC), Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok 10330, Thailand; teerapong.panboonyuen@gmail.com, peerapon.v@chula.ac.th

² Data Science and Computational Intelligence (DSCI) Laboratory, Department of Computer Science, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Rd, Ladkrabang, Bangkok 10520, Thailand; kulsawasd.ji@kmitl.ac.th

³ Geo-Informatics and Space Technology Development Agency (Public Organization), 120, The Government Complex, Chaeng Wattana Rd, Lak Si, Bangkok 10210, Thailand; siam@gistda.or.th, panu@gistda.or.th

* Correspondence: teerapong.panboonyuen@gmail.com; peerapon.v@chula.ac.th;

† Current address: Affiliation 3

‡ These authors contributed equally to this work.

Version December 7, 2018 submitted to Preprints

1 **Abstract:** In remote sensing domain, it is crucial to automatically annotate semantics, e.g., river,
2 building, forest, etc, on the raster images. Deep Convolutional Encoder Decoder (DCED) network is
3 the state-of-the-art semantic segmentation for remotely-sensed images. However, the accuracy is still
4 limited, since the network is not designed for remotely sensed images and the training data in this
5 domain is deficient. In this paper, we aim to propose a novel CNN network for semantic segmentation
6 particularly for remote sensing corpora with three main contributions. First, we propose to apply
7 a recent CNN network call “Global Convolutional Network (GCN)”, since it can capture different
8 resolutions by extracting multi-scale features from different stages of the network. Also, we further
9 enhance the network by improving its backbone using larger numbers of layers, which is suitable
10 for medium resolution remotely sensed images. Second, “Channel Attention” is presented into our
11 network in order to select most discriminative filters (features). Third, “Domain Specific Transfer
12 Learning” is introduced to alleviate the scarcity issue by utilizing other remotely sensed corpora with
13 different resolutions as pre-trained data. The experiment was then conducted on two given data sets:
14 (i) medium resolution data collected from Landsat-8 satellite and (ii) very high resolution data called
15 “ISPRS Vaihingen Challenge Data Set”. The results show that our networks outperformed DCED in
16 terms of *F1* for 17.48% and 2.49% on medium and very high resolution corpora, respectively.

17 **Keywords:** Deep Convolutional Neural Networks; Multi-Class Segmentation; Global Convolution
18 Network; Channel Attention; Transfer Learning; ISPRS Vaihingen, Landsat-8

19 1. Introduction

20 Semantic segmentation of earthly objects such as agriculture fields, forests, roads, urban and
21 water areas, from remotely-sensed images has been manipulated in many applications in various
22 domains, e.g., urban planning, map updates, route optimization, and navigation [1–5], allowing us to
23 better understand the domain’s images and create important real-world applications.

24 Deep convolutional neural network (CNN) is a well-known technique for automatic feature
25 learning. It can mechanically learn features in different levels and abstractions from raw images by
26 multiple hierarchical stacking convolution and pooling layers [4–14]. To accomplish such a challenging

27 task, features at different levels are required. Specifically, abstract high-level features are more suitable
28 for the recognition of confusing manmade objects, while labeling of fine-structured objects could
29 benefit from detailed low-level features [1]. Therefore, different numbers of layers will effect the
30 performance of deep learning model.

31 In the past few years, the modern CNNs have been extensively proposed including Global
32 Convolutional Network (GCN) [15] in which the large kernel and effective receptive field play
33 an important role in performing classification and localization tasks simultaneously. The GCN is
34 proposed to address the classification and localization issues for semantic segmentation and to suggest
35 a residual-based boundary refinement for further refining object boundaries. However, this type of
36 architecture ignores the global context such as weights of the features in each stage. Furthermore, most
37 methods of this type are just summed up the features of adjacent stages without considering their
38 diverse representations. This leads to some inconsistent results that suffer from accuracy performance.
39 The primary challenge of this remote sensing task is a lack of training data. This, in fact, has become a
40 motivation of this work.

41 In this paper, we present a novel Global Convolutional Network for segmenting multi-objects
42 from aerial and satellite images. To this end, it is focused on three aspects: (i) varying backbones
43 using ResNet50, ResNet101, and ResNet152; (ii) applying “Channel Attention Block” [16,17] to assign
44 weights for the feature maps in each stage of backbone architecture, and (iii) “Domain Specific Transfer
45 Learning” [18–20] is employed to relieve the scarcity issue. The experiments were conducted using
46 satellite imagery (from the Landsat-8 satellite) which is provided by a government organization in
47 Thailand and well-known aerial imagery, ISPRS Vaihingen Challenge corpus [34], which is publicly
48 available. The results showed that our method outperforms the baseline including Deep Convolutional
49 Encoder-Decoder (DCED) in terms of *F1* and mean of class-wise Intersection over Union (*Mean IoU*).

50 The remainder of this paper is arranged as follows. Related work is discussed in Section 2. Section
51 3 describes our proposed methodology. Experimental data sets and evaluations are described in
52 Section 4. Experimental results and discussions are presented in Section 5. Finally, we conclude our
53 work and discuss future work in Section 6.

54 2. Related Work

55 Deep learning has been successfully applied for remotely-sensed data analysis, notably land
56 cover mapping on urban areas [1–3] and has increasingly become a promising tool for accelerating
57 image recognition process with high accuracy results [4–14,21–29], and is a fast-growing field, and
58 new architectures appear every few days. This related work is divided into three subsections: we
59 first discuss deep learning concepts for semantic segmentation, followed by a set of multi-objects
60 segmentation techniques using modern deep learning architecture, and finally; modern technique of
61 deep learning are discussed.

62 2.1. Deep learning concepts for semantic segmentation

63 Semantic segmentation algorithms are often formulated to solve structured pixel-wise labeling
64 problems based on the deep convolutional neural network (CNN). Noh et al. [13] proposed a novel
65 semantic segmentation technique utilizing a deconvolutional neural network (DeCNN) and the top
66 layer from DCNN adopted from VGG16 [4,8]. DeCNN structure is composed of upsampling layers
67 and deconvolution layers, describing pixel-wise class labels and predicting segmentation masks,
68 respectively. Their proposed deep learning methods yield high performance in PASCAL VOC 2012
69 corpus, with the 72.5% accuracy in the best case scenario (the highest accuracy—as of the time of writing
70 this paper—compared to other methods that were trained without requiring additional or external
71 data). Long et al. [12] proposed an adapted contemporary classification networks incorporating
72 Alex, VGG and GoogLe networks into fully CNN. In this method, some of the pooling layers were
73 skipped: layer 3 (FCN-8s), layer 4 (FCN-16s), and layer 5 (FCN-32s). The skip architecture reduces
74 the potential over-fitting problem and has showed improvements in performance, ranging from 20%

75 to 62.2% in the experiments tested on PASCAL VOC 2012 data. Ronneberger et al. [14] proposed
76 U-Net, a DCNN for biomedical image segmentation. The architecture consists of a contracting path
77 and a symmetric expanding path that capture context and consequently, enable precise localization.
78 The proposed network claimed to be capable to learn despite the limited number of training images,
79 and performed better than the prior best method (a sliding-window DCNN) on the ISBI challenge
80 for segmentation of neuronal structures in electron microscopic stacks. Vijay Badrinarayanan [30–32]
81 proposed Deep Convolutional Encoder-Decoder network (DCED), namely “SegNet”, consists of two
82 main networks encoder and decoder, and some outer layers. The two outer layers of the decoder
83 network are responsible for feature extraction task, the results of which are transmitted to the next layer
84 adjacent to the last layer of the decoder network. This layer is responsible for pixel-wise classification
85 (determining which pixel belongs to which class). There is no fully connected layer in between feature
86 extraction layers. In the upsampling layer of decoder, pool indices from encoder are distributed to the
87 decoder where kernel will be trained in each epoch (training round) at convolution layer. In the last
88 layer (classification), softmax is used as a classifier for pixel-wise classification. DCED is one of the
89 deep learning model that exceeds the state-of-the-art on many remote sensing corpus.

90 In this work, DCED method is selected as one of our baseline since it is the most popular
91 architecture used in various networks for semantic segmentation.

92 2.2. Modern deep learning architecture for semantic segmentation

93 Recently, lots of approaches based on DCED have achieved high performance on different
94 benchmarks [16,30–32]. However, most of them are still suffer from accuracy performance issues.
95 Therefore, many works of modern deep learning architectures were proposed such as instance-aware
96 semantic segmentation [33] which is slightly different from “semantic segmentation”. Instead of
97 labeling all pixels, it focuses on the target objects and labels only pixels of those objects. FCIS [27] is
98 based techniques based on fully convolutional networks (FCN). Mask R-CNN [9] is also built around
99 FCN and incorporates with a proposed joint formulation. Peng [15] presents concept of large kernel
100 matters to improve semantic segmentation by global convolutional network (GCN). They proposes a
101 GCN to address both the classification and localization issues for the semantic segmentation. Uses
102 large separable kernels to expand the receptive field, also added a boundary refinement block to further
103 improve localization performance near boundaries. From the Cityscapes challenge, GCN outperforms
104 all the previous publications (all modern deep learning baselines) and reaches the new state-of-art.
105 Therefore, GCN is selected to be the one of our proposed method and selected to be the main model
106 on our work.

107 2.3. Modern technique of deep learning

108 Modern technique of deep learning is an important factor for an accuracy of CNN. While the
109 most popular modern ideas tick for semantic segmentation tasks such as Global Context, Attention
110 Module, Semantic Boundary Detection has been used for boosting accuracy.

111 Global Context [16] is some modern methods have proven the effectiveness of global average
112 pooling in the semantic segmentation task. For example, PSPNet [29] and Deeplab v3 [5] respectively
113 extend it to the Spatial Pyramid Pooling [29] and Atrous Spatial Pyramid Pooling [5], resulting in great
114 performance in different benchmarks. However, to take advantage of the pyramid pooling module
115 sufficiently, these two methods adopt the base feature network to 8 times downsample with atrous
116 convolution [5] which is time-consuming and memory intensive.

117 Attention Module [16]: Attention is helpful to focus on what we want. Recently, the attention
118 module becomes increasingly a powerful tool for deep neural networks [16,17]. The method in [16,17]
119 pays attention to different scale information. In this work, we utilize channel attention block to select
120 the features similar to Learning a Discriminative Feature Network [16].

121 Refinement residual block [16]: The feature maps of each stage in feature network all go through
122 the Refinement Residual Block. For our work, we use Boundary Refinement Block (BR) to be concept

123 of “Refinement residual block” from [15]. The first component of the block is a 1×1 convolution layer.
124 We use it to unify the number of channels to 21. Meanwhile, it can combine the information across all
125 channels. Then the following is a basic residual block, which can refine the feature map. Furthermore,
126 this block can strengthen the recognition ability of each stage, inspired from the architecture of ResNet
127 [7].

128 3. Proposed Method

129 In this section, the details of our proposed network are explained (shown in Figure 2). The network
130 is based on GCN with three aspects of improvements: (i) modification of backbone architecture (shown
131 in P1 in Figure 2), (ii) applying the “Channel Attention Block” (shown in P2 in Figure 2), and (iii) using
132 concept of domain specific “Transfer Learning” (shown in P3 in Figure 2).

133 3.1. Data Preprocessing

134 In this paper, there are two benchmark corpus including (i) ISPRS Vaihingen Challenge corpus
135 and (ii) Landsat-8 data set. They are very high and medium resolution images, consecutively. More
136 details of the data sets will be explained in Section 4.1 and Section 4.2. Before a discussion about the
137 model, it is worth to explain our data preprocessing procedure, since it is required when working with
138 neural network and deep learning models. Thus, the mean subtraction is executed.

139 In addition, data augmentation is often required on more complex object recognition tasks.
140 Therefore, a random horizontal flip is generated to increase the training data. For the ISPRS corpus, all
141 images are standardized and cropped into 512×512 pixels with a resolution of $9 \text{ cm}^2/\text{pixel}$. For the
142 Landsat-8 corpus, each image is also flipped horizontally and scaled to 512×512 with a resolution of
143 $30 \text{ m}^2/\text{pixel}$ from original images ($16,800 \times 15,800$ pixels).

144 3.2. Global Convolutional Network (GCN) with variations of backbones

145 GCN [15] as shown in Figure 1 is a modern architecture that surpasses the drawbacks of traditional
146 semantic segmentation network, such as, Deep Convolutional Encoder Decoder Networks (DCED). A
147 traditional network usually cascades convolutional layers in order to generate sophisticated features;
148 they can be considered as local features that is specialized only for a specific task. However, it is not
149 necessary to employ only specialized features, but the general features are also important. Thus, GCN
150 overcomes this issue by introducing a multi-level architecture that each level aims to capture different
151 resolution of features, so both local and global features are considered into the model.

152 As in Figure 1, there are two main blocks in GCN: localization block and classification block. First
153 from the localization view in the left block, the structure is a stack of classical fully-convolutional
154 layer called “level”. Each level aims to construct features with different resolutions. Second from the
155 classification view, there are two modules: GCN and Boundary Refinement (BR). For the GCN module,
156 the kernel size of the convolutional structure should be as large as possible, which is motivated by
157 the densely-connected structure of classification models. Specially, if the kernel size increases to the
158 spatial size of feature map (named global convolution), the network will share the same benefit with
159 pure classification models. The BR module is added to further improve localization performance near
160 boundaries.

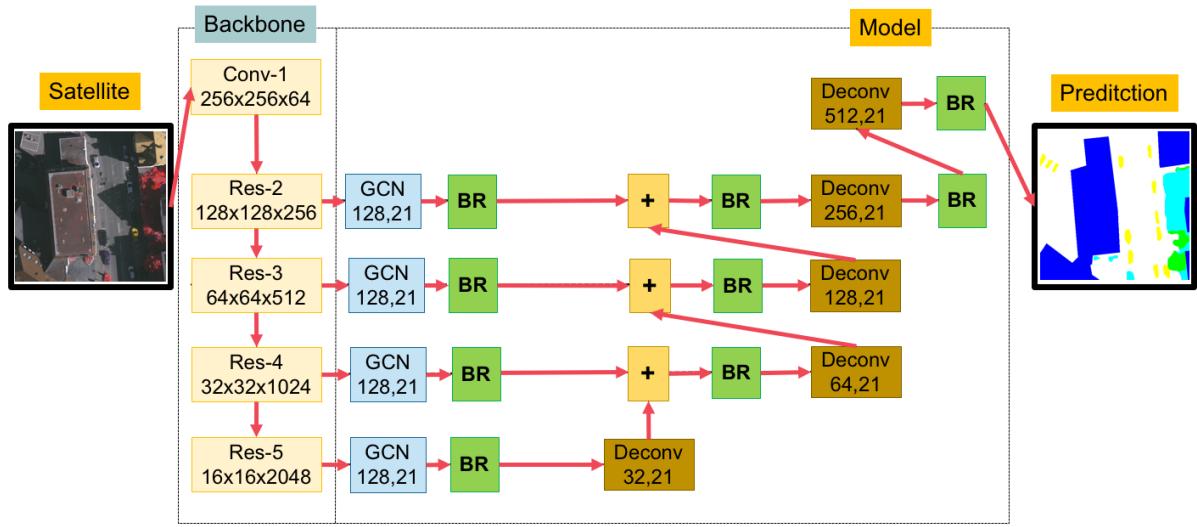


Figure 1. An overview of original Global Convolutional Network [15].

161 Although the GCN architecture has shown promising prediction performance, it can still be
 162 possible to further improved by varying backbones using ResNet [7] with different numbers of layers
 163 as ResNet50, ResNet101, and ResNet152 as shown in Figure 3. Also, GCN is suggested to work on
 164 large kernel size. In this paper, we set the large kernel size as 9 (this previous work [15]).

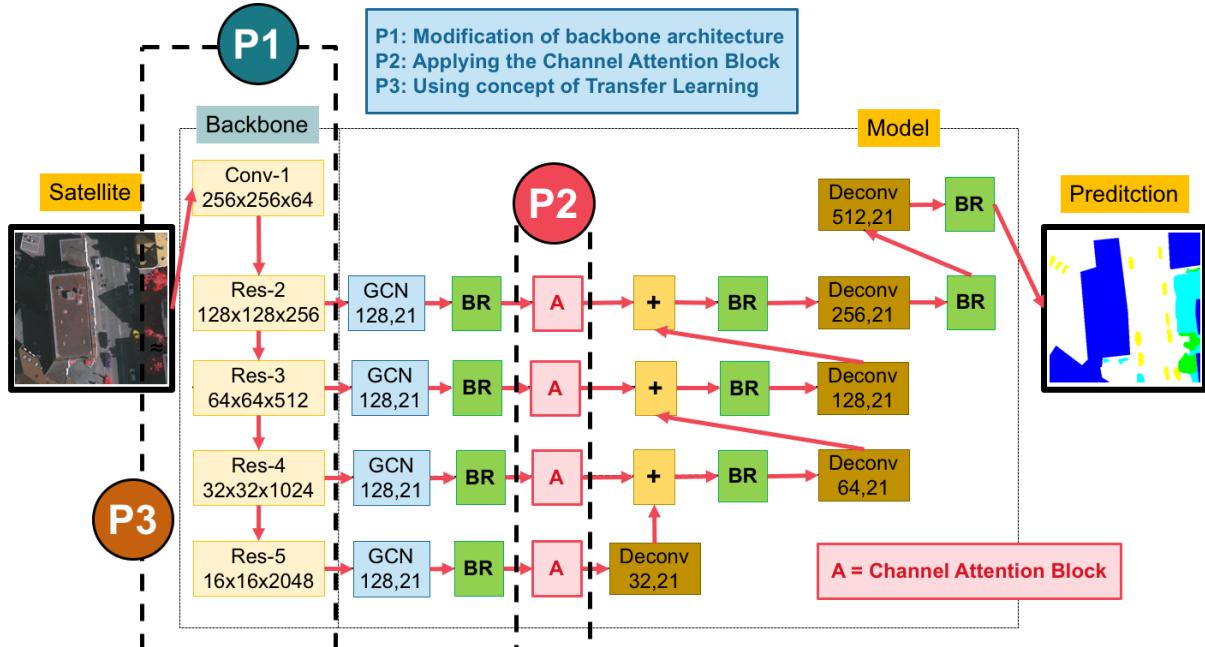


Figure 2. An overview of our proposed network.

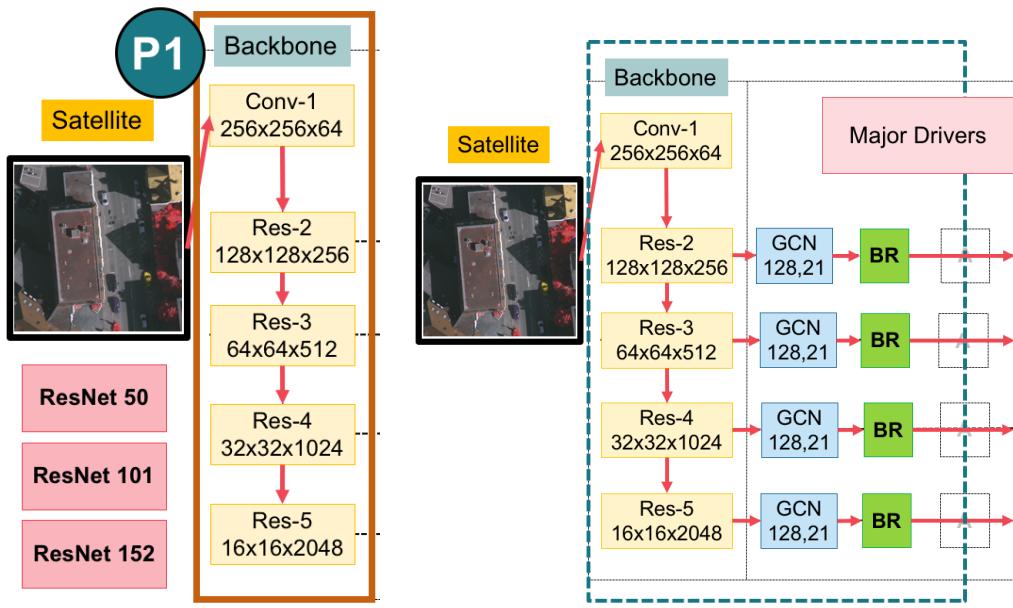


Figure 3. An overview of the whole backbone pipeline in (*left*) the main backbone with varying by ResNet50, ResNet101, and ResNet152; and (*right*) the major drivers of our main classification network (composed of Global Convolutional Network (GCN) and Boundary Refinement (BR) block [15]).

165 3.3. *Channel Attention Block*

166 Attention Mechanisms [16,17] in Neural Networks are very loosely based on the visual attention
 167 mechanism found in humans. Human visual attention is well-studied and while there exist different
 168 models, all of them essentially come down to be able to focus on a certain region of an image with
 169 “very high resolution”, while perceiving the surrounding image in “medium resolution”, and then
 170 adjusting the focal point over time.

171 To apply this attentional layer to our network, the channel attention block is shown in Block “A”
 172 in Figure 2 and its detailed architecture is shown in Figure 4. It is designed to change the weights
 173 of the remote sensing features on each stage (level), so that the weights are assigned more values on
 174 important features adaptively.

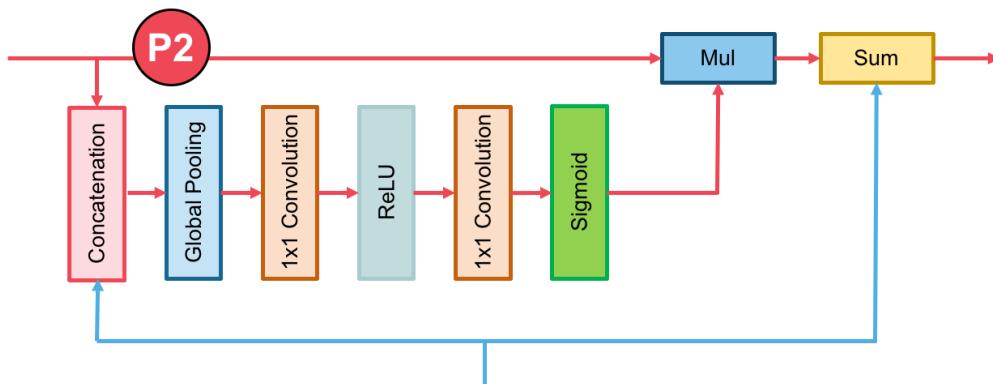


Figure 4. Components of Channel Attention Block. The blue and red lines represent the upsample and downsample operators, respectively. The red line cannot change the size of feature maps, just a path of information passing.

175 *3.4. Domain Specific Transfer Learning*

176 Although the deep learning approach often performs promising prediction performance, it
 177 requires a large amount of training data. Since it is difficult to obtain annotated satellite images, the
 178 perform in prior works should be limited.

179 Fortunately, there is a recent concept called “Domain Specific Transfer Learning” [18–20] that
 180 allows to reuse the weights obtaining from other domains’ inputs. It is currently very popular in the
 181 field of Deep Learning because it enables you to train Deep Neural Networks with comparatively
 182 insufficient data. This is very useful since most real-world problems typically do not have millions of
 183 labeled data points to train such complex models.

184 From the inadequacy issue, we propose an effective Transfer Deep Neural Network to perform
 185 knowledge transfer between Very High Resolution (VHR) corpus and Medium Resolution (MR) corpus.
 186 It is shown in Figure 5.

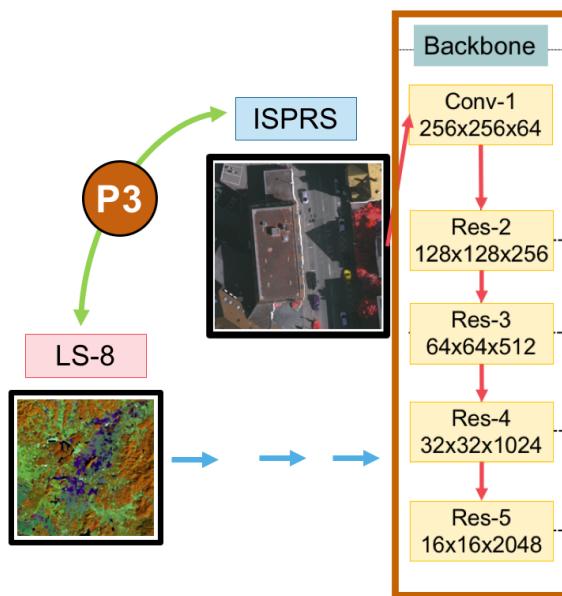


Figure 5. Domain Specific Transfer Learning strategy reuses pre-trained weights of models between two data sets – very high (ISPRS) and medium (Landsat-8; LS-8) resolution images.

187 **4. Experimental Data Sets and Evaluation**

188 In our experiments, two types of data sets are used: (i) medium resolution imagery (satellite
 189 images; Landsat-8 data set) made by the government organization in Thailand, name as GISTDA
 190 (Geo-Informatics and Space Technology Development Agency (Public Organization)) and (ii) very
 191 high resolution imagery (aerial images; ISPRS Vaihingen data set). All experiments are evaluated
 192 based on major metrics, such as *Average Accuracy*, *F1 Score* and *Mean IoU Score*.

193 *4.1. Landsat-8 Data Set*

194 In this type of data, the satellite images are from Nan, province in Thailand. The data set is
 195 obtained from Landsat-8 satellite consisting of 1,012 satellite images as shown some samples in Figure
 196 6.

197 This corpus is comprised of a large, diverse set of medium resolution ($16,800 \times 15,800$) pixels,
 198 where 1,012 of these images have high quality pixel-level labels of 5 classes: Agriculture, Forest,
 199 Miscellaneous, Urban, and Water Class. The 1,012 images are split into 800 training and 112 validation
 200 images with publicly available annotation, as well as 100 test images with annotations withheld
 201 and comparison to other methods are performed via a dedicated evaluation server. For quantitative
 202 evaluation, mean of class-wise Intersection over Union (*Mean IoU*) and *F1* score are used.

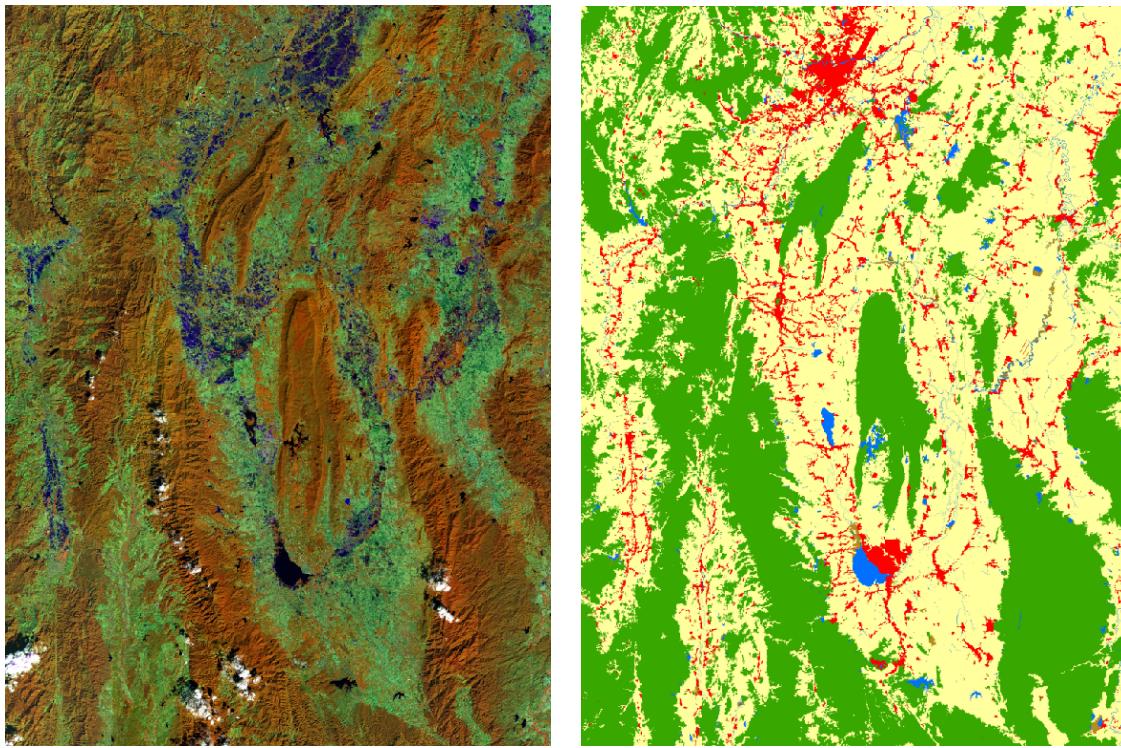


Figure 6. Sample satellite images from Nan, a province in Thailand (left) and corresponding ground truth (right). The label of medium resolution data set includes five categories: impervious surface (Agriculture, yellow), Forest (green), Miscellaneous (Misc, brown), Urban (red) and Water (blue).

203 4.2. *ISPRS Vaihingen Data Set*

204 One of the major challenges in remote sensing is the automated extraction of urban objects from
 205 data acquired by airborne sensors. Semantic Labeling Contest provides two state-of-the-art airborne
 206 image corpora, consisting of (i) Vaihingen corpus is a relatively small village with many detached
 207 buildings and small multi-story buildings, and (ii) Potsdam corpus shows a typical historic city with
 208 large building blocks, narrow streets and dense settlement structure. In our experiments, Vaihingen
 209 corpus was selected and used.

210 ISPRS 2D Semantic labeling challenge in Vaihingen [34] (Figure 7 and Figure 8) is used to be
 211 our benchmark data set. It consists of three spectral bands (i.e., red, green and near-infrared bands),
 212 corresponding DSM (Digital Surface Model) and NDSM (Normalized Digital Surface Model) data.
 213 Overall, there are 33 images of about $2,500 \times 2,000$ pixels at a Ground sampling distance (GSD) of
 214 about 9 cm in image data. Among them, the ground truth of only 16 images are available, and those of
 215 the remaining 17 images are withheld by the challenge organizer for online test. For offline validation,
 216 we randomly split the 16 images with ground truth available into a training set of 10 images, and a
 217 validation set of 6 images. For this work, DSM and NDSM data in all the experiments on this data
 218 set are not used. Following other methods, 4 tiles (image numbers 5, 7, 23, 30) are removed from the
 219 training set as a validation set. Experimental results are reported on the validation set if not specified.

Figure 7. Overview of the ISPRS 2D Vaihingen Labeling corpus. There are 33 tiles. Numbers in the figure refer to the individual tile flag.

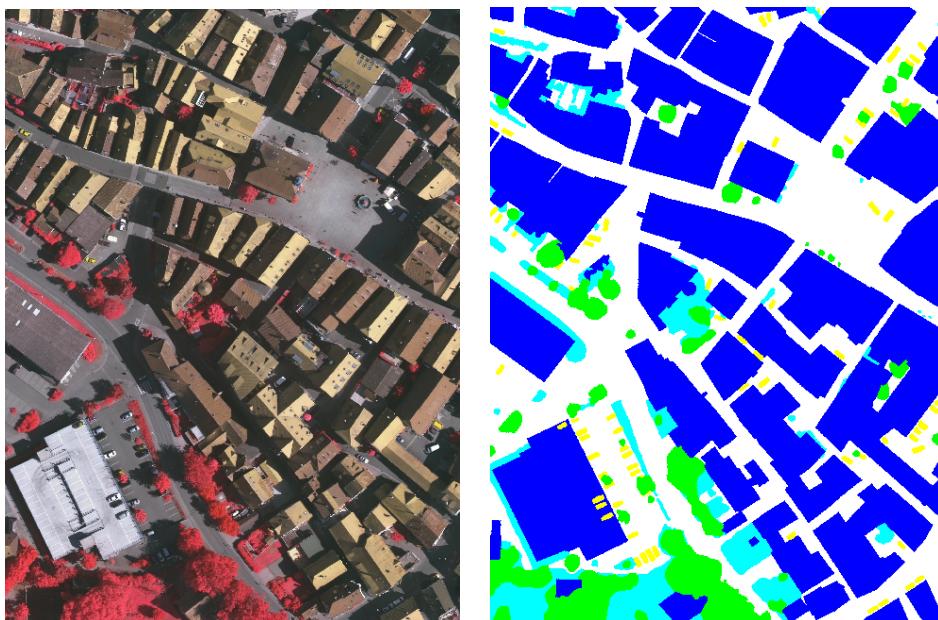


Figure 8. The sample input tile from Figure 7 (left) and corresponding ground truth (right). The label of Vaihingen challenge includes six categories: impervious surface (imp surf, white), building (blue), low vegetation (low veg, cyan), tree (green), car (yellow) and clutter/background (red).

4.3. Evaluation

The multi-class classification task can be considered as multi-segmentation, where class pixels are positives and the remaining non-spotlight pixels are negatives. Let TP denotes the number of true positives, TN denotes the number of true negatives, FP denotes the number of false positives, and FN denotes the number of false negatives.

Precision, recall, F1, and Mean IoU are shown in equations (1-5). Precision is the percentage of correctly classified main pixels among all predicted pixels by the classifier. Recall is the percentage of correctly classified main pixels among all actual main pixels. $F1$ is a combination of *precision* and *recall*.

229 To evaluate the performance of different comparing deep models, we will discuss the above two
 230 major metrics ($F1$) and mean of class-wise Intersection over Union (*Mean IoU*) on each category, and
 231 the mean value of metrics to assess the average performance.

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN} \quad (1)$$

$$Precision = \frac{TP}{TP + FP} \quad (2)$$

$$Recall = \frac{TP}{TP + FN} \quad (3)$$

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall} \quad (4)$$

$$Mean\ IoU = \frac{TP}{TP + FP + FN} \quad (5)$$

232 5. Experimental Results and Discussions

233 The implementation is based on a deep learning framework, called “Tensorflow-Slim” [35], which
 234 is extended from Tensorflow. All experiments were conducted on servers with Intel® Xeon® Processor
 235 E5-2660 v3 (25M Cache, 2.60 GHz), 32 GB of memory (RAM), Nvidia GeForce GTX 1070 (8 GB), Nvidia
 236 GeForce GTX 1080 (8 GB) and Nvidia GeForce GTX 1080 Ti (11 GB). In stead of using the whole image
 237 (1,500 \times 1,500 pixels) to train the network, we randomly crop all images to be 512 \times 512 as inputs of each
 238 epoch.

239 For training, Adam optimizer [11] is chosen with an initial learning rate of 0.004 and weight decay
 240 of 0.00001. Batch normalization [10] is used before each convolutional layer in our implementation
 241 to ease the training and make it be able to concatenate feature maps from different layers. To avoid
 242 overfitting, common data augmentations are used as details in Section 3.1. For the measurements, we
 243 use the mean pixel intersection-over-union (*mean IoU*) and $F1$ score as the metric.

244 Inspired by [16,26,36], we use the “poly” learning rate policy where the learning rate is multiplied
 245 by Eq. 6 with power 0.9 and initial learning rate as $4e^{-3}$. The learning rate is scheduled by multiplying
 246 the initial as seen in Eq. 6.

$$learning\ rate = (1 - \frac{epoch}{MaxEpoch})^{0.9} \quad (6)$$

247 All models are trained for 50 epochs with mini-batch size of 4, and each batch contains the cropped
 248 images that are randomly selected from training patches. These patches are resized to 521 \times 521 pixels.
 249 . The statistics of batch normalization is updated on the whole mini-batch.

250 This section illustrates details of our experiments. The proposed deep learning network is based
 251 on GCN with three improvements: (i) varying backbones using ResNet, (ii) Channel Attention and
 252 Global Average Pooling, and (iii) Domain Specific Transfer Learning. From all proposed strategies,
 253 there are six acronyms of strategies as shown in Table 1.

Table 1. Abbreviations on our proposed deep learning methods

Abbreviation	Description
A	Channel Attention Block
GCN	Global Convolutional Network
GCN50	Global Convolutional Network with ResNet50
GCN101	Global Convolutional Network with ResNet101
GCN152	Global Convolutional Network with ResNet52
TL	Domain Specific Transfer Learning

254 For the experimental setup, there are three experiments on two remotely-sensed data sets:
255 Landsat-8 data set and ISPRS Vaihingen challenge data set (details in Section 4.1 and Section 4.2). The
256 experiments aim to illustrate that each proposed strategy can really improve the performance. First,
257 “GCN152” method is compared to “GCN50” method and “GCN101” method for the varying backbones
258 using ResNet with different numbers of layers on GCN networks strategy. Second, “GCN152-A”
259 method is compared to “GCN152” method for the “Channel Attention” strategy. Third, the full
260 proposed technique “GCN152-TL-A” method is compared to existing methods for the concept of
261 domain specific transfer learning.

262 *5.1. Results on Landsat-8 Corpus with Discussion*

263 In this subsection, the experiment was conducted on the Landsat-8 corpus. The result is shown
264 in Table 2 and Table 3 by comparing between baseline and variations of the proposed techniques. It
265 shows that our network with all strategies “GCN152-TL-A” outperforms other methods. More details
266 will be discussed to show that each of the proposed techniques can really improve an accuracy. Only
267 in this experiment, there are state of the art baseline, including Deep Convolutional Encoder-Decoder
268 (DCED) [30–32].

269 *5.1.1. Effect of enhanced GCN on Landsat-8 corpus*

270 Our first strategy aims to increase an *F1* and *Mean IoU* score of the network by varying backbones
271 using ResNet 50, ResNet 101, and ResNet 152 rather than the traditional one, DCED method. From
272 Table 2 and Table 3, *F1* of GCN152 (0.7563) outperforms that of GCN50(0.6847) and GCN101 (0.7290),
273 and baseline method; DCED(0.6495); this yields higher *F1* at 2.74%, 3.52%, and 4.43% respectively.
274 *Mean IoU* of GCN152 (0.6364) outperforms that of GCN50 (0.5734), GCN101 (0.6154), and baseline
275 method; DCED (0.5384); this yields higher *Mean IoU* at 2.10%, 3.50%, and 4.20% consecutively. The
276 main reason is due to higher precision, but slightly lower recall. This can imply that enhanced GCN
277 is more significantly efficient than DCED method (baseline) for this medium resolution corpus and
278 ResNet with a large number of layers is more robust than the small number of layers.

279 When comparing the results between the original GCN method and the enhanced GCN methods
280 on Landsat-8 corpus (Table 2), it clearly shows that GCN with the larger layer of the backbone can
281 improve the network performance in term of *F1* and *mean IoU*

282 *5.1.2. Effect of using “Channel Attention” on Landsat-8 corpus*

283 Our second mechanism focuses on applying “Channel Attention Block” (details in Section 3.4) to
284 change the weights of the features on each stage to enhance the consistency. From Table 2 and 3, the
285 *F1* of GCN152-A (0.7897) is greater than that of GCN152 (0.7563); this yields higher *F1* score at 3.34%.
286 and the *Mean IoU* of GCN152-A (0.6726) is superior to that of GCN152 (0.6364); this yields higher
287 *Mean IoU* score at 3.62%. The result (Figure 9e and Figure 12e) shows that can make the network to
288 obtain discriminative features stage-wise to make the prediction intra-class consistent. This is based
289 on the consideration that we re-weighted all feature maps of each layer.

290 *5.1.3. Effect of using “Domain Specific Transfer Learning” on Landsat-8 corpus*

291 Our last strategy aims to use approach of domain specific “Transfer Learning” (details in Section
292 3.3) by reusing the pre-trained weight from “GCN152-A” model on ISPRS Vaihingen corpus. From
293 Table 2 and Table 3, *F1* of “GCN152-TL-A” method is the winner; it clearly outperforms not only
294 the baseline, but also all previous generations. Its *F1* is higher than DCED (baseline) at 17.80%. Its
295 *Mean IoU* is higher than DCED at 17.94%. Also, the result illustrates that concept of domain specific
296 “Transfer Learning” can enhance both precision (0.8293) and recall (0.8476).

297 Figure 9 and Figure 12 shows twelve sample results from the proposed method. By applying all
298 strategies, the images in the last column (Figure 9f and Figure 12f) are similar to the ground truths

299 (Figure 9b and Figure 12b). Furthermore, *F1*-results and *Mean IoU* scores are improved for each
 300 strategy we added to the network as shown in Figure 9(c-f) and Figure 12(c-f).

Table 2. Results on the testing data of Landsat-8 corpus between baseline and five variations of our proposed techniques in terms of *precision*, *recall*, *F1* and *Mean IoU*.

	Pretrained	Backbone	Model	Precision	Recall	F1	Mean IoU
Baseline	-	-	DCED [30–32]	0.6137	0.7209	0.6495	0.5384
Proposed Method	-	Res50	GCN [15]	0.6678	0.7333	0.6847	0.5734
	-	Res101	GCN	0.6899	0.8031	0.7290	0.6154
	-	Res152	GCN	0.7115	0.8131	0.7563	0.6364
	-	Res152	GCN-A	0.7997	0.7937	0.7897	0.6726
	TL	Res152	GCN-A	0.8293	0.8476	0.8275	0.7178

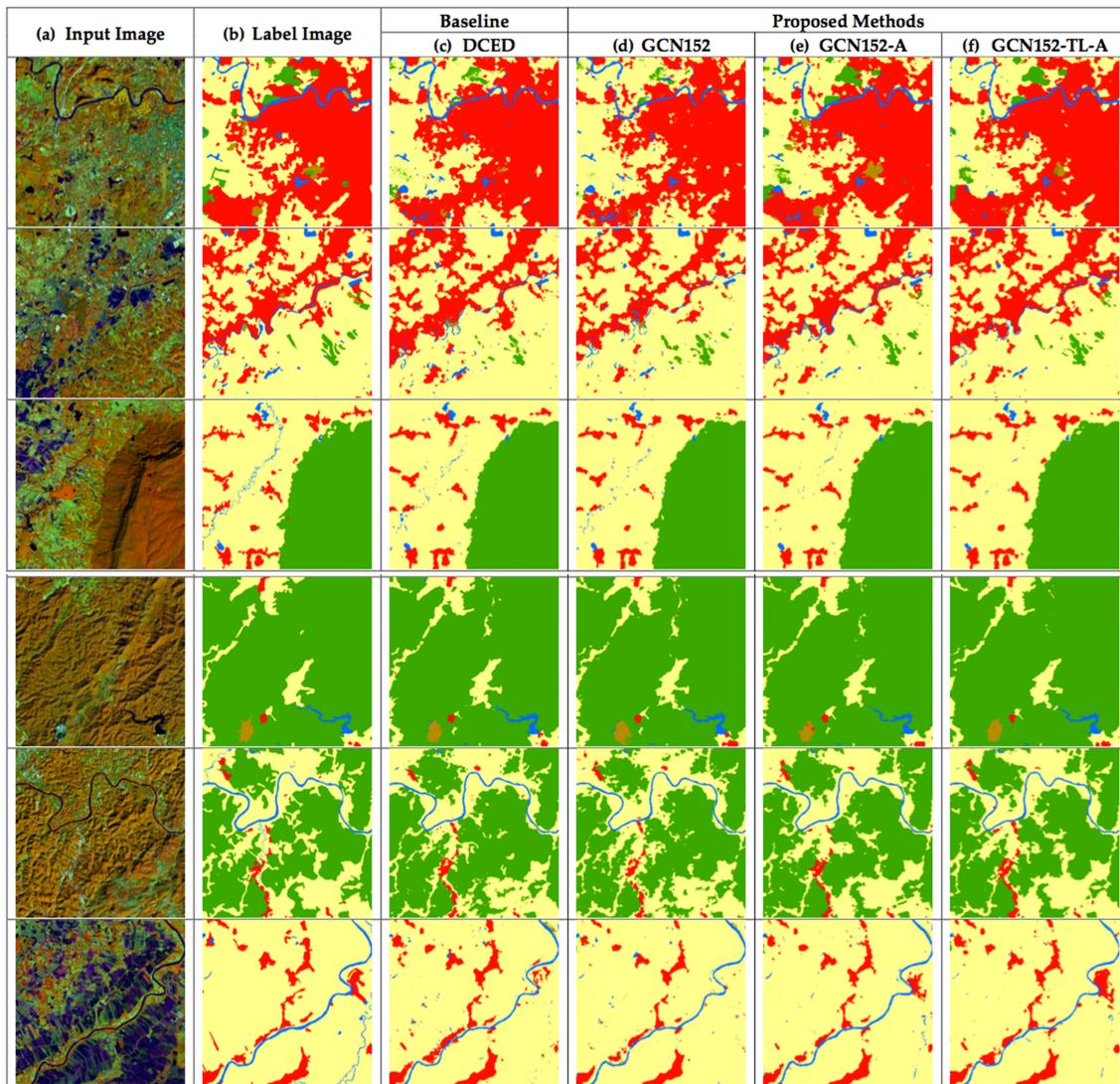


Figure 9. Six testing sample input and output satellite images on Landsat-8 in Nan provinces in Thailand, where rows refer different images. (a) Original input image; (b) Target map (ground truth); (c) Output of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f) Output of GCN152-TL-A.

Table 3. Results on the testing data of Landsat-8 corpus between each class with our proposed techniques in terms of *Average Accuracy*

	Model	Agriculture	Forest	Misc	Urban	Water
Baseline	DCED [30–32]	0.9616	0.7472	0.0976	0.7878	0.4742
Proposed Method	GCN50 [15]	0.9407	0.8258	0.1470	0.8828	0.5426
	GCN101	0.9677	0.8806	0.2561	0.7971	0.5480
	GCN152	0.9780	0.8444	0.4256	0.7158	0.5937
	GCN152-A	0.9502	0.9118	0.6689	0.8675	0.6001
	GCN152-TL-A	0.9781	0.8472	0.8732	0.7988	0.6493

301 To achieve highest accuracy, the network must be configured and trained many epochs until all
 302 parameters in the network are converged. Figure 11(a) illustrates that the proposed network has been
 303 properly set and trained until it is really converged and ran more smoothly than baseline in Figure
 304 10(a). Furthermore, Figure 10(b) and Figure 11(b) show that the higher number of epochs tend to show
 305 better F1 score. Thus, the number of chosen epochs based on the validation data is 49 (The best model
 306 for this data set).

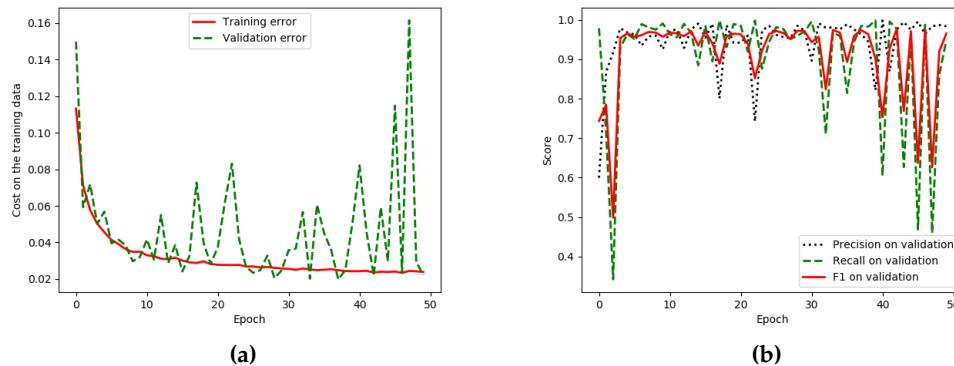


Figure 10. Iteration plot on Landsat-8 corpus of the baseline technique, DECE [30–32]; x refers to epochs and y refers to different measures **(a)** Plot of model loss (cross entropy) on training and validation data sets and **(b)** Performance plot on the validation data set.

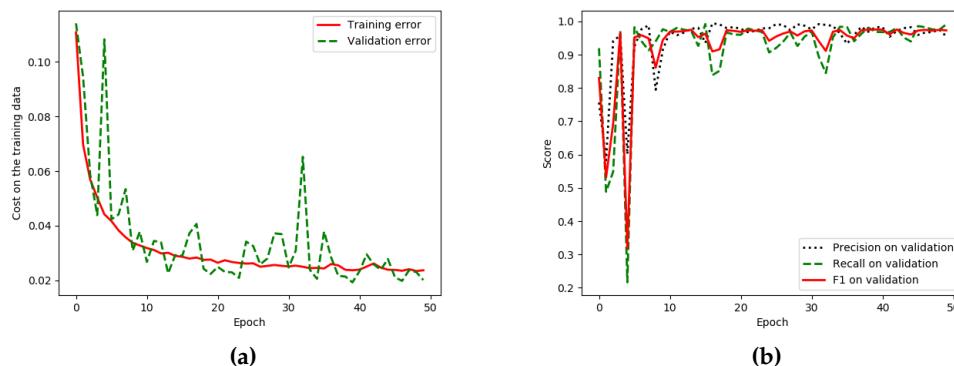


Figure 11. Iteration plot on Landsat-8 corpus of the proposed technique, "GCN152-TL-A"; x refers to epochs and y refers to different measures **(a)** Plot of model loss (cross entropy) on training and validation data sets, **(b)** Performance plot on the validation data set.

307 Twelve sample testing results (shown as Figure 9 and Figure 12) from the proposed method
 308 on Nan provinces (is one of the northern provinces (changwat) of Thailand and agriculture is the

309 province's main industry). The results of the last column look closest to the ground truth in the second
 310 column.

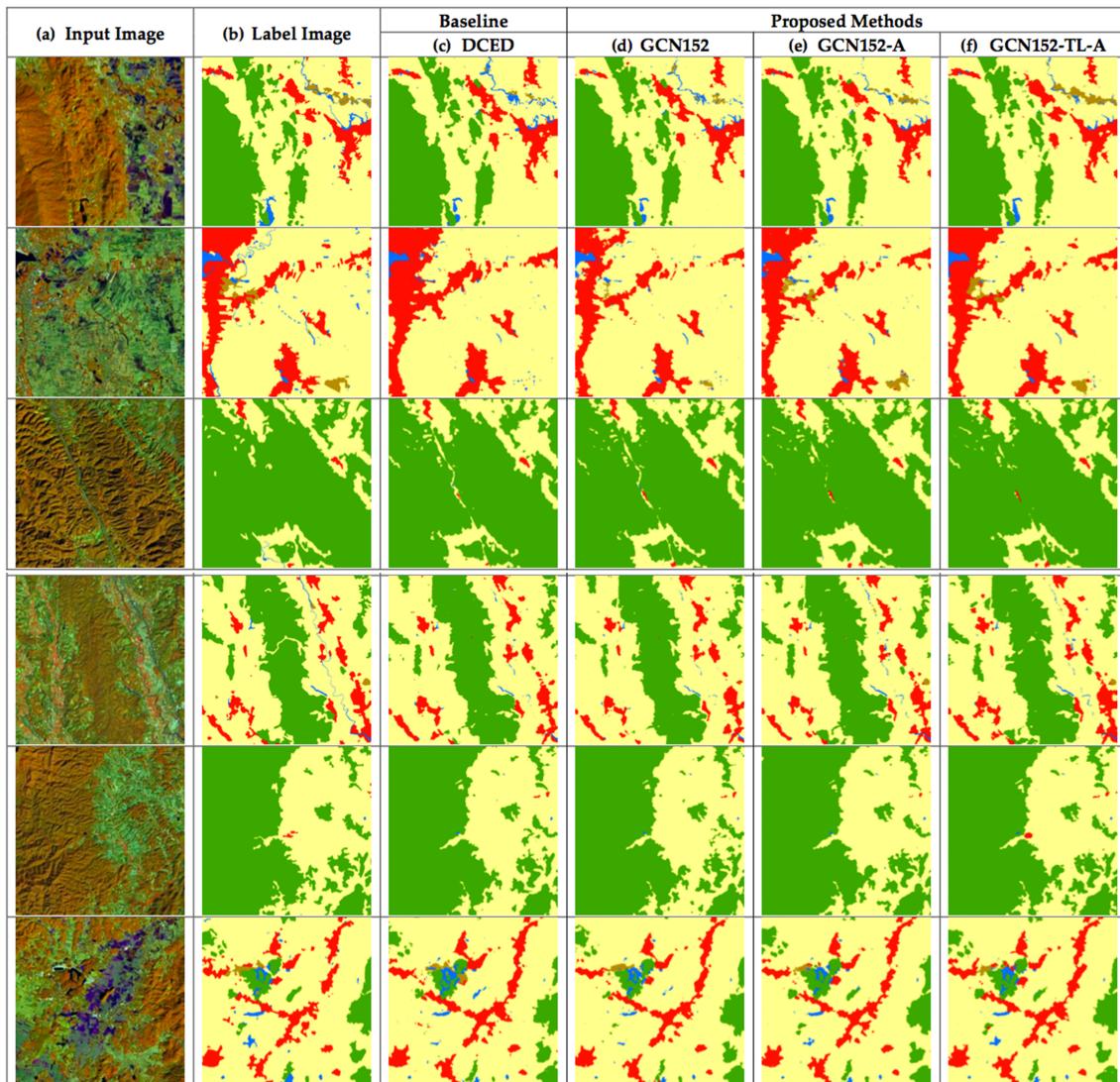


Figure 12. Six testing sample input and output satellite images on Landsat-8 in Nan provinces in Thailand, where rows refer different images. (a) Original input image; (b) Target map (ground truth); (c) Output of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f) Output of GCN152-TL-A.

311 As can be seen in Figure 9 and Figure 12, the performance of our best model outperforms
 312 other advanced models by a considerable margin on each category, especially for the Agriculture,
 313 Miscellaneous (Misc), and Water. Furthermore, the loss curves shown in Figure 11(a) exhibit that, our
 314 best model performs better on all the given categories.

315 5.2. Results on ISPRS Vaihingen Challenge Corpus with Discussion

316 In this subsection, the experiment was conducted on the ISPRS Vaihingen Challenge corpus. The
 317 result is shown in Table 4 and Table 5 by comparing between baseline and variations of the proposed
 318 techniques. It shows that our network with all strategies (GCN152-TL-A) outperforms other methods.
 319 More details will be discussed to show that each of the proposed techniques can really improve an
 320 accuracy. Only in this experiment, there are one baseline, including DCED network.

321 5.2.1. Effect of enhanced GCN on ISPRS Vaihingen corpus

322 Our first strategy aims to increase an *F1* and *Mean IoU* score of the network by varying backbones
 323 using ResNet 50, ResNet 101, and ResNet 152 rather than the traditional one, DCED method. From
 324 Table 4 and Table 5, *F1* of GCN152 (0.7864) outperforms that of GCN50 (0.776), GCN101 (0.768),
 325 and baseline method; DCED (0.7693); this yields higher *F1* at 0.02%, 0.68%, and 1.01% respectively.
 326 *Mean IoU* of GCN152 (0.8977) outperforms that of GCN50 (0.8776), GCN101 (0.8972), and baseline
 327 method; DCED (0.8651); this yields higher *Mean IoU* at 0.02%, 0.68%, and 1.01% consecutively. This
 328 can imply that enhanced GCN is also more accurate than DCED approach on very high resolution
 329 data set. ResNet with large number of layers is still more robust than small number of layers same as
 330 that performed on Landsat-8 corpus (Section 5.1.1).

331 When comparing the results between the original GCN method and the enhanced GCN methods
 332 on Landsat-8 corpus (Table 4), it clearly shows that GCN with the larger layer of the backbone can
 333 improve the network performance in term of *F1* and *mean IoU*

334 5.2.2. Effect of using “Channel Attention” on ISPRS Vaihingen corpus

335 Our second mechanism focuses on utilizing “Channel Attention Block” to change the weights of
 336 the features on each stage to enhance the consistency. From Table 4 and 5, the *F1* of GCN152-A (0.7902)
 337 is greater than that of GCN152 (0.7864); this yields higher *F1* score at 0.38%. and the *Mean IoU* of
 338 GCN152-A (0.9057) is better than that of GCN152 (0.8977); this yields higher *Mean IoU* score at 0.80%.
 339 The results (Figure 13e and Figure 14e) show that can also make the network to obtain discriminative
 340 features stage-wise to make the prediction intra-class consistent on very high resolution images.

341 5.2.3. Effect of using “Domain Specific Transfer Learning” on ISPRS Vaihingen corpus

342 Our last strategy aims to performing approach of domain specific “Transfer Learning” (details in
 343 Section 3.3) by reusing the pre-trained weight from “GCN152-A” model on Landsat-8 corpus. From
 344 Table 4 and Table 5, *F1* of “GCN152-TL-A” method is the winner; it clearly outperforms not only the
 345 baseline, but also all previous generations. Its *F1* is higher than DCED (baseline) at 2.49% and 1.82%
 346 consecutively. Its *Mean IoU* is higher than DCED and GCN at 4.76% and 3.51% respectively. Also,
 347 the result illustrates that concept of domain specific “Transfer Learning” can enhance both precision
 348 (0.7888) and recall (0.8001).

349 Figure 13 and Figure 14 shows twelve sample results from the proposed method. By applying all
 350 strategies, the images in the last column (Figure 13f and Figure 14f) are similar to the ground truths
 351 (Figure 13b and Figure 14b). Furthermore, *F1*-results and *Mean IoU* scores are improved for each
 352 strategy we added to the network as shown in Figure 13(c-f) and Figure 14(c-f).

353 To further evaluate the effectiveness of the proposed “GCN152-TL-A” comparisons with baseline'
 354 method on the one challenging benchmark and one private benchmark are presented as follows as
 355 Table 2 and Table 3 for Landsat-8 data set on Nan province (Thailand) corpus and Table 4 and Table 5
 356 for Vaihengen data set. All extensive experiments on the Landsat-8 and ISPRS dataset demonstrate
 357 that the proposed method achieve clear promising gains compared with the baseline approache.

Table 4. Results on the testing data of ISPRS 2D semantic labeling challenge corpus between baseline and five variations of our proposed techniques in terms of *precision*, *recall*, *F1* and *Mean IoU*.

	Pretrained	Backbone	Model	<i>Precision</i>	<i>Recall</i>	<i>F1</i>	<i>Mean IoU</i>
Baseline	-	-	DCED [30–32]	0.7519	0.7925	0.7693	0.8651
Proposed Method	-	Res50	GCN [15]	0.7636	0.7917	0.776	0.8776
	-	Res101	GCN	0.7713	0.8059	0.7862	0.8972
	-	Res152	GCN	0.7736	0.8021	0.7864	0.8977
	-	Res152	GCN-A	0.7847	0.7961	0.7902	0.9057
TL		Res152	GCN-A	0.7888	0.8001	0.7942	0.9123

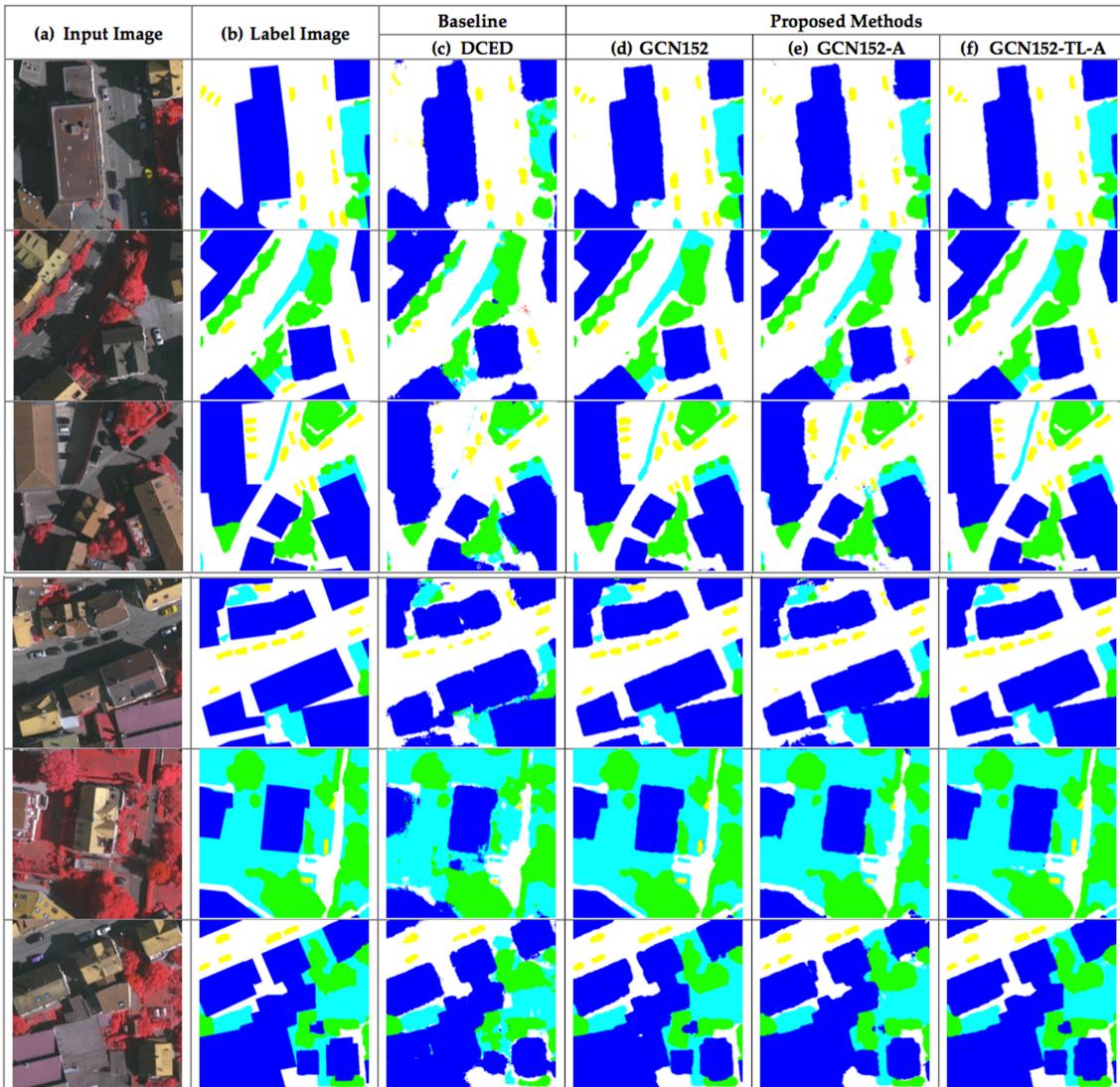


Figure 13. Six testing sample input and output aerial images on ISPRS Vaihingen challenge corpus, where rows refer different images. (a) Original input image; (b) Target map (ground truth); (c) Output of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f) Output of GCN152-TL-A.

Table 5. Results on the testing data of ISPRS Vaihingen challenge corpus between each class with our proposed techniques in terms of *AverageAccuracy*

	Model	IS	Buildings	LV	Tree	Car
Baseline	DCED [30–32]	0.9590	0.9778	0.9108	0.9805	0.6832
Proposed Method	GCN50 [15]	0.9595	0.9628	0.9403	0.9896	0.7292
	GCN101	0.9652	0.9827	0.9615	0.9797	0.7387
	GCN152	0.9543	0.9962	0.9445	0.9754	0.7710
	GCN152-A	0.9614	0.9865	0.9554	0.9871	0.8181
	GCN152-TL-A	0.9664	0.9700	0.9499	0.9901	0.8567

358 Figure 13 and Figure 14 show twelve sample testing results from the proposed method on ISPRS
 359 Vaihingen corpus. The results of the last column are also similar to the ground truth in the second
 360 column same as performed on Landsat-8 corpus. Considering to each class (are shown in Table 3 and

361 Table 5), almost every classes (three out of five) from our proposed methods are the winner in term
 362 *Average Accuracy*.

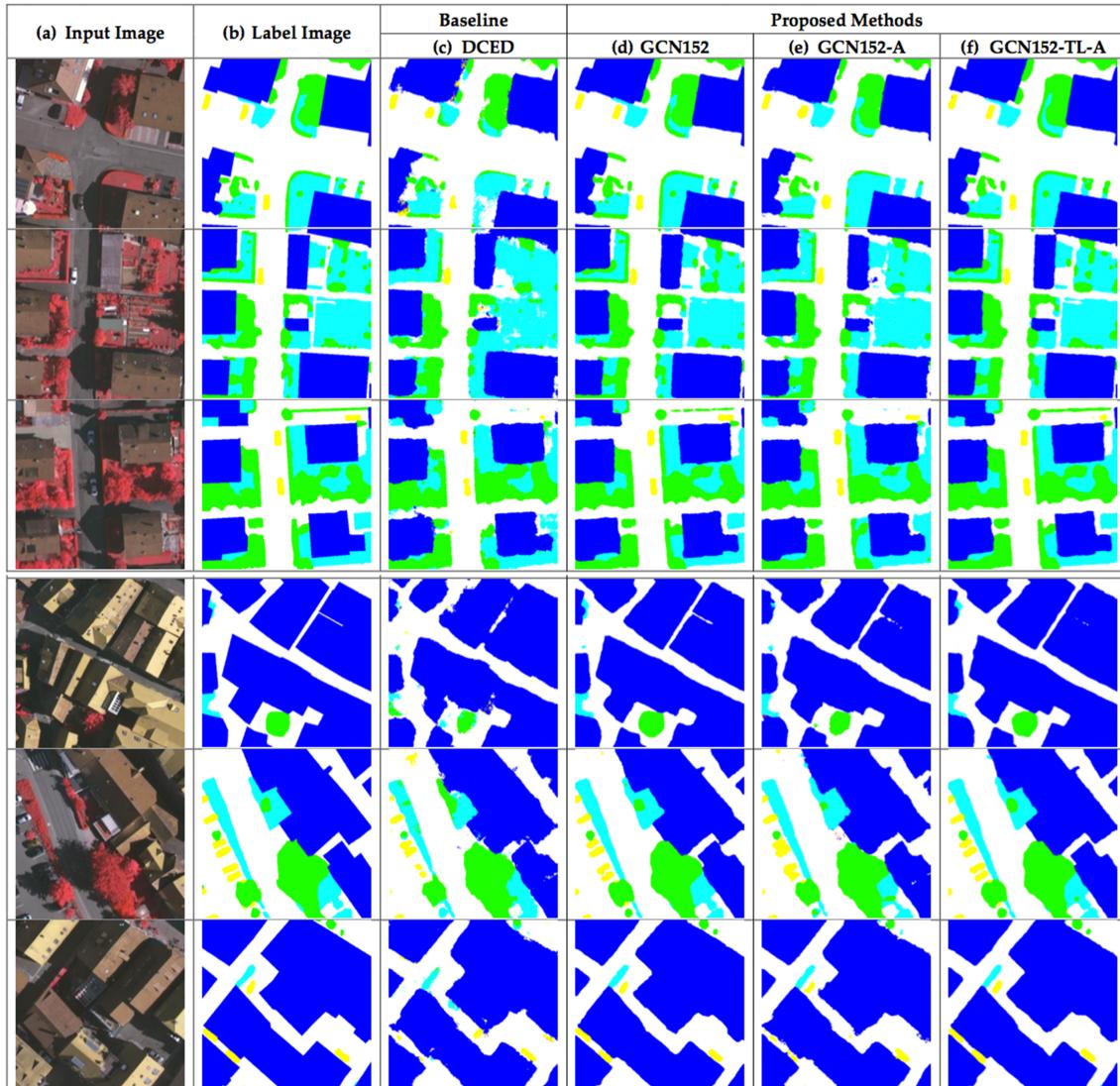


Figure 14. Six testing sample input and output aerial images on ISPRS Vaihingen challenge corpus, where rows refer different images. (a) Original input image; (b) Target map (ground truth); (c) Output of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f) Output of GCN152-TL-A.

363 As can be seen in Figure 13 and Figure 14, the performance of our best model outperforms
 364 other advanced models by a considerable margin on each category, especially for the Impervious
 365 Surfaces (IS), Tree, and Car. To show the effectiveness of the proposed methods, we have performed
 366 comparisons against a number of state-of-the-art semantic segmentation methods, as listed in Table
 367 4, Table 5 that performs on ISPRS corpus and Table 2, Table 3 that performs on Landsat-8 corpus.
 368 Encoder Decoder (DCED) [30–32] and GCN [15] are the versions with ResNet-50 as their backbone. In
 369 particular, we re-implement the DCED with Tensorflow-Slim [35], since the released code is built on
 370 Caffe [37]. We can see that our proposed methods significantly outperforms other methods on both
 371 *F1 score* and *mean IoU*.

372 In terms of the computational cost, our framework requires slightly additional training time
 373 compared to the baseline approach, DCED, by about 6.25% (6-7 hours), and GCN, by about 4.5% (4-5
 374 hours). In our experiment, DCED's training procedure took approximately 16 hours per data set, and

375 finished after 50 epochs with 1,152 second per epoch. Our framework is modify on GCN-based deep
376 learning architecture. The “Channel Attention” model increases the time 20 minutes from “GCN152”
377 method. There is no additional time required by reusing pre-trained weights.

378 6. Conclusions and Future Work

379 In this study, we propose a novel CNN framework to perform semantic labeling on remote-sensed
380 images. Our proposed method achieves excellent performance by presenting three aspects. First,
381 Global Convolutional Network (GCN) is employed and enhanced by adding larger numbers of layers
382 to better capture the complex features. Second, “Channel Attention” is proposed to assign a proper
383 weight for each extracted feature on different stages of the network. Finally, “Domain Specific Transfer
384 Learning” is introduced to to allay the scarcity issue by training the initial weights using other remotely
385 sensed corpora whose resolutions can be different. The experiments were conducted on two data sets:
386 Landsat-8 (medium resolutions) and ISPRS Vaihingen Challenge (very hign resolution) data sets. The
387 results show that our model that combines all proposed strategies outperforms baseline models in
388 terms of *F1* and *MeanIoU*. The final results show that our enhanced GCN outperforms the baseline
389 (DCED)—17.48% for *F1* on Landsat-8 corpus and 2.48% on ISPRS corpus.

390 In the future, more choices of semantic labeling, modern optimization techniques and/or other
391 novel activation functions will be investigated and compared to obtain the best GCN-based framework
392 for semantic segmentation in remotely-sensed images. Moreover, incorporating other data sources (e.g.
393 digital surface model) might be needed to increase the accuracy of the Deep Learning for both the CNN
394 and modern Deep Learning layer with very low confidence simultaneously. These aforementioned
395 issues will be investigated in future research.

396 **Acknowledgments:** T. Panboonyuen thanks the scholarship from The 100th Anniversary Chulalongkorn
397 University Fund granted and The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot
398 Endowment Fund). We greatly acknowledge Geo-informatics and Space Technology Development Agency
399 (GISTDA), Thailand, for providing satellite imagery used in this study.

400 **Author Contributions:** Teerapong Panboonyuen performed all the experiments and wrote the paper; and
401 Peerapon Vateekul performed the results analysis and edited manuscript. Kulsawasd Jitkajornwanich,
402 SiamLawawirojwong and Panu Srestasathiern reviewed results. Teerapong Panboonyuen revised manuscript.

403 **Conflicts of Interest:** The authors declare no conflict of interest.

404 Abbreviations

405 The following abbreviations are used in this manuscript:

406 BR	Boundary Refinement
CNN	Convolutional Neural Network
DCED	Deep Convolutional Encoder-Decoder
GCN	Global Convolutional Network
IS	Impervious Surfaces
Misc	Miscellaneous
407 MR	Medium Resolution
RGB	Red-Green-Blue
LS	Landsat
LV	Low Vegetation
TL	Transfer Learning
VHR	Very High Resolution

408 References

409 1. Liu, Y.; Fan, B.; Wang, L.; Bai, J.; Xiang, S.; Pan, C. Semantic labeling in very high resolution images via
410 a self-cascaded convolutional neural network. *ISPRS Journal of Photogrammetry and Remote Sensing* **2018**,
411 145, 78–95.

412 2. Wang, H.; Wang, Y.; Zhang, Q.; Xiang, S.; Pan, C. Gated convolutional neural network for semantic
413 segmentation in high-resolution images. *Remote Sensing* **2017**, *9*, 446.

414 3. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: a
415 comprehensive review and list of resources. *IEEE Geoscience and Remote Sensing Magazine* **2017**, *5*, 8–36.

416 4. Panboonyuen, T.; Vateekul, P.; Jitkajornwanich, K.; Lawawirojwong, S. An Enhanced Deep Convolutional
417 Encoder-Decoder Network for Road Segmentation on Aerial Imagery. *Recent Advances in Information and
418 Communication Technology Series* **2017**, 566.

419 5. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation
420 with deep convolutional nets, atrous convolution, and fully connected crfs. *arXiv preprint arXiv:1606.00915*
421 **2016**.

422 6. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image
423 segmentation. *arXiv preprint arXiv:1706.05587* **2017**.

424 7. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE
425 conference on computer vision and pattern recognition, 2016, pp. 770–778.

426 8. Panboonyuen, T.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathien, P.; Vateekul, P. Road
427 Segmentation of Remotely-Sensed Images Using Deep Convolutional Neural Networks with Landscape
428 Metrics and Conditional Random Fields. *Remote Sensing* **2017**, *9*, 680.

429 9. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. Computer Vision (ICCV), 2017 IEEE International
430 Conference on. IEEE, 2017, pp. 2980–2988.

431 10. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal
432 covariate shift. *arXiv preprint arXiv:1502.03167* **2015**.

433 11. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980* **2014**.

434 12. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. Proceedings
435 of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

436 13. Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. Proceedings of
437 the IEEE International Conference on Computer Vision, 2015, pp. 1520–1528.

438 14. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
439 International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer,
440 2015, pp. 234–241.

441 15. Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large kernel matters—improve semantic segmentation by
442 global convolutional network. Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference
443 on. IEEE, 2017, pp. 1743–1751.

444 16. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Learning a Discriminative Feature Network for
445 Semantic Segmentation. *arXiv preprint arXiv:1804.09337* **2018**.

446 17. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. *arXiv preprint arXiv:1709.01507* **2017**, *7*.

447 18. Xie, M.; Jean, N.; Burke, M.; Lobell, D.; Ermon, S. Transfer learning from deep features for remote sensing
448 and poverty mapping. *arXiv preprint arXiv:1510.00098* **2015**.

449 19. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks?
450 Advances in neural information processing systems, 2014, pp. 3320–3328.

451 20. Liu, J.; Wang, Y.; Qiao, Y. Sparse Deep Transfer Learning for Convolutional Neural Network. AAAI, 2017,
452 pp. 2245–2251.

453 21. Valada, A.; Vertens, J.; Dhall, A.; Burgard, W. Adapnet: Adaptive semantic segmentation in adverse
454 environmental conditions. Robotics and Automation (ICRA), 2017 IEEE International Conference on. IEEE,
455 2017, pp. 4644–4651.

456 22. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable
457 convolution for semantic image segmentation. *arXiv preprint arXiv:1802.02611* **2018**.

458 23. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time
459 semantic segmentation. *arXiv preprint arXiv:1808.00897* **2018**.

460 24. Zhang, H.; Dana, K.; Shi, J.; Zhang, Z.; Wang, X.; Tyagi, A.; Agrawal, A. Context encoding for semantic
461 segmentation. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

462 25. Bilinski, P.; Prisacariu, V. Dense Decoder Shortcut Connections for Single-Pass Semantic Segmentation.
463 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6596–6605.

464 26. Yang, M.; Yu, K.; Zhang, C.; Li, Z.; Yang, K. DenseASPP for Semantic Segmentation in Street Scenes.
465 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3684–3692.

466 27. Li, Y.; Qi, H.; Dai, J.; Ji, X.; Wei, Y. Fully convolutional instance-aware semantic segmentation. *arXiv preprint arXiv:1611.07709* **2016**.

467 28. Zhao, H.; Qi, X.; Shen, X.; Shi, J.; Jia, J. Icnet for real-time semantic segmentation on high-resolution images.
468 *arXiv preprint arXiv:1704.08545* **2017**.

470 29. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. IEEE Conf. on Computer Vision
471 and Pattern Recognition (CVPR), 2017, pp. 2881–2890.

472 30. Badrinarayanan, V.; Handa, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for
473 robust semantic pixel-wise labelling. *arXiv preprint arXiv:1505.07293* **2015**.

474 31. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture
475 for image segmentation. *arXiv preprint arXiv:1511.00561* **2015**.

476 32. Kendall, A.; Badrinarayanan, V.; Cipolla, R. Bayesian segnet: Model uncertainty in deep convolutional
477 encoder-decoder architectures for scene understanding. *arXiv preprint arXiv:1511.02680* **2015**.

478 33. Dai, J.; He, K.; Sun, J. Instance-aware semantic segmentation via multi-task network cascades. Proceedings
479 of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3150–3158.

480 34. International Society for Photogrammetry and Remote Sensing. 2D Semantic Labeling Challenge. <http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html>. Accessed: 2018-09-09.

481 35. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.;
482 others. Tensorflow: a system for large-scale machine learning. OSDI, 2016, Vol. 16, pp. 265–283.

483 36. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
484 Advances in neural information processing systems, 2012, pp. 1097–1105.

485 37. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
486 Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM international
487 conference on Multimedia. ACM, 2014, pp. 675–678.

488