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1 Abstract: In remote sensing domain, it is crucial to automatically annotate semantics, e.g., river,
> building, forest, etc, on the raster images. Deep Convolutional Encoder Decoder (DCED) network is
s the state-of-the-art semantic segmentation for remotely-sensed images. However, the accuracy is still
«  limited, since the network is not designed for remotely sensed images and the training data in this
s domain is deficient. In this paper, we aim to propose a novel CNN network for semantic segmentation
s  particularly for remote sensing corpora with three main contributions. First, we propose to apply
» arecent CNN network call “Global Convolutional Network (GCN)”, since it can capture different
e  resolutions by extracting multi-scale features from different stages of the network. Also, we further
o  enhance the network by improving its backbone using larger numbers of layers, which is suitable
1o for medium resolution remotely sensed images. Second, “Channel Attention” is presented into our
1 network in order to select most discriminative filters (features). Third, “Domain Specific Transfer
1= Learning” is introduced to alleviate the scarcity issue by utilizing other remotely sensed corpora with
1z different resolutions as pre-trained data. The experiment was then conducted on two given data sets:
12 (i) medium resolution data collected from Landsat-8 satellite and (ii) very high resolution data called
15 “ISPRS Vaihingen Challenge Data Set”. The results show that our networks outperformed DCED in
1 terms of F1 for 17.48% and 2.49% on medium and very high resolution corpora, respectively.

17 Keywords: Deep Convolutional Neural Networks; Multi-Class Segmentation; Global Convolution
1= Network; Channel Attention; Transfer Learning; ISPRS Vaihingen, Landsat-8

1o 1. Introduction

20 Semantic segmentation of earthly objects such as agriculture fields, forests, roads, urban and
21 water areas, from remotely-sensed images has been manipulated in many applications in various
22 domains, e.g., urban planning, map updates, route optimization, and navigation [1-5], allowing us to
2 better understand the domain’s images and create important real-world applications.

2a Deep convolutional neural network (CNN) is a well-known technique for automatic feature
2z learning. It can mechanically learn features in different levels and abstractions from raw images by
2 multiple hierarchical stacking convolution and pooling layers [4-14]. To accomplish such a challenging
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= task, features at different levels are required. Specifically, abstract high-level features are more suitable
2e  for the recognition of confusing manmade objects, while labeling of fine-structured objects could
20 benefit from detailed low-level features [1]. Therefore, different numbers of layers will effect the
30 performance of deep learning model.

31 In the past few years, the modern CNNSs have been extensively proposed including Global
s2 Convolutional Network (GCN) [15] in which the large kernel and effective receptive field play
3 an important role in performing classification and localization tasks simultaneously. The GCN is
:a  proposed to address the classification and localization issues for semantic segmentation and to suggest
55 aresidual-based boundary refinement for further refining object boundaries. However, this type of
ss architecture ignores the global context such as weights of the features in each stage. Furthermore, most
s> methods of this type are just summed up the features of adjacent stages without considering their
ss diverse representations. This leads to some inconsistent results that suffer from accuracy performance.
s The primary challenge of this remote sensing task is a lack of training data. This, in fact, has become a
20 motivation of this work.

a1 In this paper, we present a novel Global Convolutional Network for segmenting multi-objects
«2 from aerial and satellite images. To this end, it is focused on three aspects: (i) varying backbones
«s using ResNet50, ResNet101, and ResNet152; (ii) applying “Channel Attention Block” [16,17] to assign
s« weights for the feature maps in each stage of backbone architecture, and (iii) “Domain Specific Transfer
s Learning” [18-20] is employed to relieve the scarcity issue. The experiments were conducted using
s satellite imagery (from the Landsat-8 satellite) which is provided by a government organization in
«z Thailand and well-known aerial imagery, ISPRS Vaihingen Challenge corpus [34], which is publicly
«s available. The results showed that our method outperforms the baseline including Deep Convolutional
s Encoder-Decoder (DCED) in terms of F1 and mean of class-wise Intersection over Union (Mean IoU).
50 The remainder of this paper is arranged as follows. Related work is discussed in Section 2. Section
s1 3 describes our proposed methodology. Experimental data sets and evaluations are described in
s2  Section 4. Experimental results and discussions are presented in Section 5. Finally, we conclude our
ss  work and discuss future work in Section 6.

s 2. Related Work

55 Deep learning has been successfully applied for remotely-sensed data analysis, notably land
se cover mapping on urban areas [1-3] and has increasingly become a promising tool for accelerating
sz image recognition process with high accuracy results [4-14,21-29], and is a fast-growing field, and
ss new architectures appear every few days. This related work is divided into three subsections: we
so first discuss deep learning concepts for semantic segmentation, followed by a set of multi-objects
s segmentation techniques using modern deep learning architecture, and finally; modern technique of
&1 deep learning are discussed.

o2 2.1. Deep learning concepts for semantic segmentation

o3 Semantic segmentation algorithms are often formulated to solve structured pixel-wise labeling
e problems based on the deep convolutional neural network (CNN). Noh et al. [13] proposed a novel
es semantic segmentation technique utilizing a deconvolutional neural network (DeCNN) and the top
ss layer from DCNN adopted from VGG16 [4,8]. DeCNN structure is composed of upsampling layers
ez and deconvolution layers, describing pixel-wise class labels and predicting segmentation masks,
es respectively. Their proposed deep learning methods yield high performance in PASCAL VOC 2012
e corpus, with the 72.5% accuracy in the best case scenario (the highest accuracy—as of the time of writing
7 this paper—compared to other methods that were trained without requiring additional or external
n data). Long et al. [12] proposed an adapted contemporary classification networks incorporating
72 Alex, VGG and GoogLe networks into fully CNN. In this method, some of the pooling layers were
7 skipped: layer 3 (FCN-8s), layer 4 (FCN-16s), and layer 5 (FCN-32s). The skip architecture reduces
=a the potential over-fitting problem and has showed improvements in performance, ranging from 20%
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75 t0 62.2% in the experiments tested on PASCAL VOC 2012 data. Ronneberger et al. [14] proposed
76 U-Net, a DCNN for biomedical image segmentation. The architecture consists of a contracting path
7z and a symmetric expanding path that capture context and consequently, enable precise localization.
ze The proposed network claimed to be capable to learn despite the limited number of training images,
7 and performed better than the prior best method (a sliding-window DCNN) on the ISBI challenge
s for segmentation of neuronal structures in electron microscopic stacks. Vijay Badrinarayanan [30-32]
e proposed Deep Convolutional Encoder-Decoder network (DCED), namely “SegNet”, consists of two
== main networks encoder and decoder, and some outer layers. The two outer layers of the decoder
es network are responsible for feature extraction task, the results of which are transmitted to the next layer
e« adjacent to the last layer of the decoder network. This layer is responsible for pixel-wise classification
es  (determining which pixel belongs to which class). There is no fully connected layer in between feature
ss extraction layers. In the upsampling layer of decoder, pool indices from encoder are distributed to the
ez decoder where kernel will be trained in each epoch (training round) at convolution layer. In the last
ss layer (classification), softmax is used as a classifier for pixel-wise classification. DCED is one of the
s deep learning model that exceeds the state-of-the-art on many remote sensing corpus.

% In this work, DCED method is selected as one of our baseline since it is the most popular
o1 architecture used in various networks for semantic segmentation.

o2 2.2. Modern deep learning architecture for semantic segmentation

03 Recently, lots of approaches based on DCED have achieved high performance on different
o« benchmarks [16,30-32]. However, most of them are still suffer from accuracy performance issues.
s Therefore, many works of modern deep learning architectures were proposed such as instance-aware
e semantic segmentation [33] which is slightly different from “semantic segmentation”. Instead of
oz labeling all pixels, it focuses on the target objects and labels only pixels of those objects. FCIS [27] is
os based techniques based on fully convolutional networks (FCN). Mask R-CNN [9] is also built around
e FCN and incorporates with a proposed joint formulation. Peng [15] presents concept of large kernel
100 matters to improve semantic segmentation by global convolutional network (GCN). They proposes a
11 GCN to address both the classification and localization issues for the semantic segmentation. Uses
102 large separable kernels to expand the receptive field, also added a boundary refinement block to further
103 improve localization performance near boundaries. From the Cityscapes challenge, GCN outperforms
10s  all the previous publications (all modern deep learning baselines) and reaches the new state-of-art.
15 Therefore, GCN is selected to be the one of our proposed method and selected to be the main model
106 ON our work.

w7 2.3. Modern technique of deep learning

108 Modern technique of deep learning is an important factor for an accuracy of CNN. While the
10 most popular modern ideas tick for semantic segmentation tasks such as Global Context, Attention
10 Module, Semantic Boundary Detection has been used for boosting accuracy.

111 Global Context [16] is some modern methods have proven the effectiveness of global average
12 pooling in the semantic segmentation task. For example, PSPNet [29] and Deeplab v3 [5] respectively
us  extend it to the Spatial Pyramid Pooling [29] and Atrous Spatial Pyramid Pooling [5], resulting in great
us performance in different benchmarks. However, to take advantage of the pyramid pooling module
us  sufficiently, these two methods adopt the base feature network to 8 times downsample with atrous
ue convolution [5] which is time-consuming and memory intensive.

117 Attention Module [16]: Attention is helpful to focus on what we want. Recently, the attention
us module becomes increasingly a powerful tool for deep neural networks [16,17]. The method in[16,17]
e pays attention to different scale information. In this work, we utilize channel attention block to select
120 the features similar to Learning a Discriminative Feature Network [16].

121 Refinement residual block [16]: The feature maps of each stage in feature network all go through
122 the Refinement Residual Block. For our work, we use Boundary Refinement Block (BR) to be concept
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123 of “Refinement residual block” from [15]. The first component of the block isa 1 x 1 convolution layer.
122 We use it to unify the number of channels to 21. Meanwhile, it can combine the information across all
125 channels. Then the following is a basic residual block, which can refine the feature map. Furthermore,
126 this block can strengthen the recognition ability of each stage, inspired from the architecture of ResNet
127 [7].

12s 3. Proposed Method

120 In this section, the details of our proposed network are explained (shown in Figure 2). The network
130 is based on GCN with three aspects of improvements: (i) modification of backbone architecture (shown
11 in P1in Figure 2), (ii) applying the “Channel Attention Block” (shown in P2 in Figure 2), and (ii7) using
132 concept of domain specific “Transfer Learning” (shown in P3 in Figure 2).

133 3.1. Data Preprocessing

138 In this paper, there are two benchmark corpus including (i) ISPRS Vaihingen Challenge corpus
135 and (if) Landsat-8 data set. They are very high and medium resolution images, consecutively. More
136 details of the data sets will be explained in Section 4.1 and Section 4.2. Before a discussion about the
137 model, it is worth to explain our data preprocessing procedure, since it is required when working with
138 neural network and deep learning models. Thus, the mean subtraction is executed.

130 In addition, data augmentation is often required on more complex object recognition tasks.
1s0  Therefore, a random horizontal flip is generated to increase the training data. For the ISPRS corpus, all
11 images are standardized and cropped into 512 x 512 pixels with a resolution of 9 cm? /pixel. For the
12 Landsat-8 corpus, each image is also flipped horizontally and scaled to 512 x 512 with a resolution of
s 30m2/ pixel from original images (16,800 x 15,800 pixels).

1as  3.2. Global Convolutional Network (GCN) with variations of backbones

145 GCN [15] as shown in Figure 1 is a modern architecture that surpasses the drawbacks of traditional
14s  semantic segmentation network, such as, Deep Convolutional Encoder Decoder Networks (DCED). A
1z traditional network usually cascades convolutional layers in order to generate sophisticated features;
s they can be considered as local features that is specialized only for a specific task. However, it is not
140 Necessary to employ only specialized features, but the general features are also important. Thus, GCN
10 overcomes this issue by introducing a multi-level architecture that each level aims to capture different
11 resolution of features, so both local and global features are considered into the model.

152 As in Figure 1, there are two main blocks in GCN: localization block and classification block. First
153 from the localization view in the left block, the structure is a stack of classical fully-convolutional
15« layer called “level”. Each level aims to construct features with different resolutions. Second from the
15 classification view, there are two modules: GCN and Boundary Refinement (BR). For the GCN module,
156 the kernel size of the convolutional structure should be as large as possible, which is motivated by
157 the densely-connected structure of classification models. Specially, if the kernel size increases to the
1ss  spatial size of feature map (named global convolution), the network will share the same benefit with
10 pure classification models. The BR module is added to further improve localization performance near
160 boundaries.


http://dx.doi.org/10.20944/preprints201812.0090.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 December 2018 d0i:10.20944/preprints201812.0090.v1

Backbone Model

. Conv-1
Satellite 256x256x64 BR Preditction

|

Res-2 GCN .
128x128x256 112821 [ BR g

|

. Res3 | || GCN
64x64x512 128,21

!

Res-4 Ll GCN N
32x32x1024 128,21

!

Res-5 _.| GCN
16x16x2048 128,21

Figure 1. An overview of original Global Convolutional Network [15].

161 Although the GCN architecture has shown promising prediction performance, it can still be
162 possible to further improved by varying backbones using ResNet [7] with different numbers of layers
163 as ResNet50, ResNet101, and ResNet152 as shown in Figure 3. Also, GCN is suggested to work on
1es large kernel size. In this paper, we set the large kernel size as 9 (this previous work [15]).
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Figure 2. An overview of our proposed network.
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Figure 3. An overview of the whole backbone pipeline in (left) the main backbone with varying by
ResNet50, ResNet101, and ResNet152; and (right) the major drivers of our main classification network
(composed of of Global Convolutional Network (GCN) and Boundary Refinement (BR) block [15]).

3.3. Channel Attention Block

Attention Mechanisms [16,17] in Neural Networks are very loosely based on the visual attention
mechanism found in humans. Human visual attention is well-studied and while there exist different
models, all of them essentially come down to be able to focus on a certain region of an image with
“very high resolution”, while perceiving the surrounding image in “medium resolution”, and then
adjusting the focal point over time.

To apply this atttentional layer to our network, the channel attention block is shown in Block “A”
in Figure 2 and its detailed architecture is shown in Figure 4. It is designed to change the weights
of the remote sensing features on each stage (level), so that the weights are assigned more values on
important features adaptively.

Mul Sum >

©

Concatenation
}
Global Pooling
|
1x1 Convolution
}
ReLU
!
1x1 Convolution
}
Sigmoid

Figure 4. Components of Channel Attention Block. The blue and red lines represent the upsample and
downsample operators, respectively. The red line cannot change the size of feature maps, just a path of
information passing.
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175 3.4. Domain Specific Transfer Learning

176 Although the deep learning approach often performs promising prediction performance, it
17z requires a large amount of training data. Since it is difficult to obtain annotated satellite images, the
17e  perform in prior works should be limited.

179 Fortunately, there is a recent concept called “Domain Specific Transfer Learning” [18-20] that
1.0 allows to reuse the weights obtaining from other domains’ inputs. It is currently very popular in the
w1 field of Deep Learning because it enables you to train Deep Neural Networks with comparatively
12 insufficient data. This is very useful since most real-world problems typically do not have millions of
s labeled data points to train such complex models.

184 From the inadequacy issue, we propose an effective Transfer Deep Neural Network to perform
s knowledge transfer between Very High Resolution (VHR) corpus and Medium Resolution (MR) corpus.
16 It is shown in Figure 5.
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Res-5  _
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Figure 5. Domain Specific Transfer Learning strategy reuses pre-trained weights of models between
two data sets — very high (ISPRS) and medium (Landsat-8; LS-8) resolution images.

17 4. Experimental Data Sets and Evaluation

188 In our experiments, two types of data sets are used: (i) medium resolution imagery (satellite
180 images; Landsat-8 data set) made by the government organization in Thailand, name as GISTDA
100 (Geo-Informatics and Space Technology Development Agency (Public Organization)) and (ii) very
11 high resolution imagery (aerial images; ISPRS Vaihingen data set). All experiments are evaluated
102 based on major metrics, such as Average Accuracy, F1 Score and Mean IoU Score.

13 4.1. Landsat-8 Data Set

194 In this type of data, the satellite images are from Nan, province in Thailand. The data set is
105 Obtained from Landsat-8 satellite consisting of 1,012 satellite images as shown some samples in Figure
106 6.

107 This corpus is comprised of a large, diverse set of medium resolution (16,800 x 15, 800) pixels,

1 Where 1,012 of these images have high quality pixel-level labels of 5 classes: Agriculture, Forest,
100 Miscellaneous, Urban, and Water Class. The 1,012 images are split into 800 training and 112 validation
200 images with publicly available annotation, as well as 100 test images with annotations withheld
21 and comparison to other methods are performed via a dedicated evaluation server. For quantitative
202 evaluation, mean of class-wise Intersection over Union (Mean [oU) and F1 score are used.
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Figure 6. Sample satellite images from Nan, a province in Thailand (left) and corresponding ground
truth (right). The label of medium resolution data set includes five categories: impervious surface
(Agriculture, yellow), Forest (green), Miscellaneous (Misc, brown), Urban (red) and Water (blue).

203 4.2. ISPRS Vaihingen Data Set

208 One of the major challenges in remote sensing is the automated extraction of urban objects from
20 data acquired by airborne sensors. Semantic Labeling Contest provides two state-of-the-art airborne
200 image corpora, consisting of (i) Vaihingen corpus is a relatively small village with many detached
20z buildings and small multi-story buildings, and (ii) Potsdam corpus shows a typical historic city with
20e large building blocks, narrow streets and dense settlement structure. In our experiments, Vaihingen
200 corpus was selected and used.

210 ISPRS 2D Semantic labeling challenge in Vaihingen [34] (Figure 7 and Figure 8) is used to be
2 our benchmark data set. It consists of three spectral bands (i.e., red, green and near-infrared bands),
21z corresponding DSM (Digital Surface Model) and NDSM (Normalized Digital Surface Model) data.
213 Overall, there are 33 images of about 2,500 x 2,000 pixels at a Ground sampling distance (GSD) of
zs about 9 cm in image data. Among them, the ground truth of only 16 images are available, and those of
215 the remaining 17 images are withheld by the challenge organizer for online test. For offline validation,
216 we randomly split the 16 images with ground truth available into a training set of 10 images, and a
21z validation set of 6 images. For this work, DSM and NDSM data in all the experiments on this data
zue  set are not used. Following other methods, 4 tiles (image numbers 5, 7, 23, 30) are removed from the
210 training set as a validation set. Experimental results are reported on the validation set if not specified.
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Figure 7. Overview of the ISPRS 2D Vaihingen Labeling corpus. There are 33 tiles. Numbers in the
figure refer to the individual tile flag.

Figure 8. The sample input tile from Figure? (left) and corresponding ground truth (right). The label of
Vaihingen challenge includes six categories: impervious surface (imp surf, white), building (blue), low
vegetation (low veg, cyan), tree (green), car (yellow) and clutter /background (red).

220  4.3. Evaluation

221 The multi-class classification task can be considered as multi-segmentation, where class pixels are
222 positives and the remaining non-spotlight pixels are negatives. Let TP denotes the number of true
223 positives, TN denotes the number of true negatives, FP denotes the number of false positives, and FN
224 denotes the number of false negatives.

226 Precision, recall, F1, and Mean IoU are shown in equations (1-5). Precision is the percentage of
226 correctly classified main pixels among all predicted pixels by the classifier. Recall is the percentage
22z of correctly classified main pixels among all actual main pixels. F1 is a combination of precision and
226 recall.
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220 To evaluate the performance of different comparing deep models, we will discuss the above two
230 major metrics (F1) and mean of class-wise Intersection over Union (Mean Iol)) on each category, and
21 the mean value of metrics to assess the average performance.

Accuracy = TP+ TN 1)
YT TP+ +FP+FN+TN
. TP
Precision = TP L EP (2)
TP
Recall = m (3)
2x Precision x Recall
= precison + Recall @
TP
Mean 10U = 45 Fp T PN ©)
232 5. Experimental Results and Discussions
233 The implementation is based on a deep learning framework, called “Tensorflow-Slim” [35], which

2

w

« is extended from Tensorflow. All experiments were conducted on servers with Intel ® Xeon®) Processor
s E5-2660 v3 (25M Cache, 2.60 GHz), 32 GB of memory (RAM), Nvidia GeForce GTX 1070 (8 GB), Nvidia
23s  GeForce GTX 1080 (8 GB) and Nvidia GeForce GTX 1080 Ti (11 GB). In stead of using the whole image
a3z (1,500 1,500 pixels) to train the network, we randomly crop all images to be 512512 as inputs of each
238 epoch.

230 For training, Adam optimizer [11] is chosen with an initial learning rate of 0.004 and weight decay
2e0 0f 0.00001. Batch normalization [10] is used before each convolutional layer in our implementation
21 to ease the training and make it be able to concatenate feature maps from different layers. To avoid
22 overfitting, common data augmentations are used as details in Section 3.1. For the measurements, we
2a3  use the mean pixel intersection-over-union (mean IolU) and F1 score as the metric.

244 Inspired by [16,26,36], we use the “poly” learning rate policy where the learning rate is multiplied
2es by Eq. 6 with power 0.9 and initial learning rate as 4¢ 3. The learning rate is scheduled by multiplying
26 the initial as seen in Eq. 6.

2

w

. 1 epoch 0.9
learning rate = (1 7Maproch) (6)
247 All models are trained for 50 epochs with mini-batch size of 4, and each batch contains the cropped

2as  images that are randomly selected from training patches. These patches are resized to 521 x 521 pixels.
2e0 . The statistics of batch normalization is updated on the whole mini-batch.

250 This section illustrates details of our experiments. The proposed deep learning network is based
21 on GCN with three improvements: (i) varying backbones using ResNet, (ii) Channel Attention and
=2 Global Average Pooling, and (iii) Domain Specific Transfer Learning. From all proposed strategies,
=3 there are six acronyms of strategies as shown in Table 1.

Table 1. Abbreviations on our proposed deep learning methods

Abbreviation Description
A Channel Attention Block
GCN Global Convolutional Network
GCNb50 Global Convolutional Network with ResNet50

GCN101 Global Convolutional Network with ResNet101
GCN152 Global Convolutional Network with ResNet52
TL Domain Specific Transfer Learning
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254 For the experimental setup, there are three experiments on two remotely-sensed data sets:
s Landsat-8 data set and ISPRS Vaihingen challenge data set (details in Section 4.1 and Section 4.2). The
26 experiments aim to illustrate that each proposed strategy can really improve the performance. First,
27 “GCN152” method is compared to “GCN50” method and “GCN101” method for the varying backbones
=8 using ResNet with different numbers of layers on GCN networks strategy. Second, “GCN152-A"
20 method is compared to “GCN152” method for the “Channel Attention” strategy. Third, the full
200 proposed technique “GCN152-TL-A” method is compared to existing methods for the concept of
201 domain specific transfer learning.

N
o

202 5.1. Results on Landsat-8 Corpus with Discussion

263 In this subsection, the experiment was conducted on the Landsat-8 corpus. The result is shown
2es in Table 2 and Table 3 by comparing between baseline and variations of the proposed techniques. It
2es  shows that our network with all strategies “GCN152-TL-A” outperforms other methods. More details
2es  Will be discussed to show that each of the proposed techniques can really improve an accuracy. Only
207 in this experiment, there are state of the art baseline, including Deep Convolutional Encoder-Decoder
20s  (DCED) [30-32].

200 5.1.1. Effect of enhanced GCN on Landsat-8 corpus

270 Our first strategy aims to increase an F1 and Mean IoU score of the network by varying backbones
xnn using ResNet 50, ResNet 101, and ResNet 152 rather than the traditional one, DCED method. From
22 Table 2 and Table 3, F1 of GCN152 (0.7563) outperforms that of GCN50(0.6847) and GCN101 (0.7290),
2z and baseline method; DCED(0.6495); this yields higher F1 at 2.74%, 3.52%, and 4.43% respectively.
z2a Mean IoU of GCN152 (0.6364) outperforms that of GCN50 (0.5734), GCN101 (0.6154), and baseline
2rs - method; DCED (0.5384); this yields higher Mean IoU at 2.10%, 3.50%, and 4.20% consecutively. The
276 main reason is due to higher precision, but slightly lower recall. This can imply that enhanced GCN
277 is more significantly efficient than DCED method (baseline) for this medium resolution corpus and
2re  ResNet with a large number of layers is more robust than the small number of layers.

279 When comparing the results between the original GCN method and the enhanced GCN methods
2s0 on Landsat-8 corpus (Table 2), it clearly shows that GCN with the larger layer of the backbone can
21 improve the network performance in term of F1 and mean IoU

22 5.1.2. Effect of using “Channel Attention” on Landsat-8 corpus

203 Our second mechanism focuses on applying “Channel Attention Block” (details in Section 3.4) to
2es change the weights of the features on each stage to enhance the consistency. From Table 2 and 3, the
25 F1 of GCN152-A (0.7897) is greater than that of GCN152 (0.7563); this yields higher F1 score at 3.34%.
2es  and the Mean IoU of GCN152-A (0.6726) is superior to that of GCN152 (0.6364); this yields higher
207 Mean IoU score at 3.62%. The result (Figure 9e and Figure 12e) shows that can make the network to
20 Obtain discriminative features stage-wise to make the prediction intra-class consistent. This is based
280 on the consideration that we re-weighted all feature maps of each layer.

200 5.1.3. Effect of using “Domain Specific Transfer Learning” on Landsat-8 corpus

201 Our last strategy aims to use approach of domain specific “Transfer Learning” (details in Section
202 3.3) by reusing the pre-trained weight from “GCN152-A” model on ISPRS Vaihingen corpus. From
203 Table 2 and Table 3, F1 of “GCN152-TL-A” method is the winner; it clearly outperforms not only
20s the baseline, but also all previous generations. Its F1 is higher than DCED (baseline) at 17.80%. Its
205  Mean Iol is higher than DCED at 17.94%. Also, the result illustrates that concept of domain specific
26 “Transfer Learning” can enhance both precision (0.8293) and recall (0.8476).

207 Figure 9 and Figure 12 shows twelve sample results from the proposed method. By applying all
strategies, the images in the last column (Figure 9f and Figure 12f) are similar to the ground truths

N
©
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200 (Figure 9b and Figure 12b). Furthermore, Fl-results and Mean IoU scores are improved for each
a0 strategy we added to the network as shown in Figure 9(c-f) and Figure 12(c-f).

Table 2. Results on the testing data of Landsat-8 corpus between baseline and five variations of our
proposed techniques in terms of precision, recall, F1 and Mean IoU.

Pretrained Backbone Model Precision  Recall F1 Mean IoU
Baseline - - DCED [30-32] 0.6137 0.7209 0.6495 0.5384
- Res50 GCN [15] 0.6678 0.7333  0.6847 0.5734
Proposed - Res101 GCN 0.6899 0.8031 0.7290 0.6154
Method - Res152 GCN 0.7115 0.8131 0.7563 0.6364
- Res152 GCN-A 0.7997 0.7937 0.7897 0.6726
TL Res152 GCN-A 0.8293 0.8476  0.8275 0.7178

Baseline Proposed Methods
() DCED (d) GCN152 (e) GCN152-A (f) GCN152-TL-A

k]

(a) Input Image

(b) Label Image

|l

Figure 9. Six testing sample input and output satellite images on Landsat-8 in Nan provinces in

Thailand, where rows refer different images. (a) Original input image; (b) Target map (ground truth);
(c) Output of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f)
Output of GCN152-TL-A.
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Table 3. Results on the testing data of Landsat-8 corpus between each class with our proposed

techniques in terms of AverageAccuracy

Model Agriculture Forest Misc Urban Water

Baseline DCED [30-32] 0.9616 0.7472  0.0976  0.7878  0.4742
GCN50 [15] 0.9407 0.8258 0.1470 0.8828 0.5426

Proposed Method GCN101 0.9677 0.8806 0.2561 0.7971  0.5480
GCN152 0.9780 0.8444 04256 0.7158 0.5937

GCN152-A 0.9502 0.9118 0.6689 0.8675 0.6001

GCN152-TL-A 0.9781 0.8472 0.8732 0.7988  0.6493

301 To achieve highest accuracy, the network must be configured and trained many epochs until all
parameters in the network are converged. Figure 11(a) illustrates that the proposed network has been
properly set and trained until it is really converged and ran more smoothly than baseline in Figure
10(a). Furthermore, Figure 10(b) and Figure 11(b) show that the higher number of epochs tend to show
better F1 score. Thus, the number of chosen epochs based on the validation data is 49 (The best model

for this data set).

302

303

0.16 —— Training error
== Validation error

0.10

0.08

o
o
-3

Cost on the training data

307

308

0.04

-+ Precision on validation
—— Recall on validation
—— F1on validation

20
Epoch

(b)

30 40 50

Figure 10. Iteration plot on Landsat-8 corpus of the baseline technique, DECE [30-32]; x refers to epochs
and y refers to different measures (a) Plot of model loss (cross entropy) on training and validation data
sets and (b) Performance plot on the validation data set.

—— Training error
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Cost on the training data

Score

0.9
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034

0.2
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Figure 11. Iteration plot on Landsat-8 corpus of the proposed technique, “GCN152-TL-A”; x refers
to epochs and y refers to different measures (a) Plot of model loss (cross entropy) on training and

validation data sets, (b) Performance plot on the validation data set.

Twelve sample testing results (shown as Figure 9 and Figure 12) from the proposed method
on Nan provinces (is one of the northern provinces (changwat) of Thailand and agriculture is the
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500 province’s main industry). The results of the last column look closest to the ground truth in the second

310

column.

Proposed Methods
(d) GCN152 (e) GCN152-A () GCN152-TL-A

;3
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Figure 12. Six testing sample input and output satellite images on Landsat-8 in Nan provinces in

Thailand, where rows refer different images. (a) Original input image; (b) Target map (ground truth);
(c) Output of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f)
Output of GCN152-TL-A.

As can be seen in Figure 9 and Figure 12, the performance of our best model outperforms
other advanced models by a considerable margin on each category, especially for the Agriculture,
Miscellaneous (Misc), and Water. Furthermore, the loss curves shown in Figure 11(a) exhibit that, our
best model performs better on all the given categories.

5.2. Results on ISPRS Vaihingen Challenge Corpus with Discussion

In this subsection, the experiment was conducted on the ISPRS Vaihingen Challenge corpus. The
result is shown in Table 4 and Table 5 by comparing between baseline and variations of the proposed
techniques. It shows that our network with all strategies (GCN152-TL-A) outperforms other methods.
More details will be discussed to show that each of the proposed techniques can really improve an
accuracy. Only in this experiment, there are one baseline, including DCED network.
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sz 5.2.1. Effect of enhanced GCN on ISPRS Vaihingen corpus

322 Our first strategy aims to increase an F1 and Mean IoU score of the network by varying backbones
s23  using ResNet 50, ResNet 101, and ResNet 152 rather than the traditional one, DCED method. From
s2« Table 4 and Table 5, F1 of GCN152 (0.7864) outperforms that of GCN50 (0.776), GCN101 (0.768),
a2 and baseline method; DCED (0.7693); this yields higher F1 at 0.02%, 0.68%, and 1.01% respectively.
s26  Mean IoU of GCN152 (0.8977) outperforms that of GCN50 (0.8776), GCN101 (0.8972), and baseline
s2z - method; DCED (0.8651); this yields higher Mean IoU at 0.02%, 0.68%, and 1.01% consecutively. This
s2¢ can imply that enhanced GCN is also more accurate than DCED approach on very high resolution
;20 data set. ResNet with large number of layers is still more robust than small number of layers same as
330 that performed on Landsat-8 corpus (Section 5.1.1).

331 When comparing the results between the original GCN method and the enhanced GCN methods
sz on Landsat-8 corpus (Table 4), it clearly shows that GCN with the larger layer of the backbone can
s improve the network performance in term of F1 and mean IoU

s3a 5.2.2. Effect of using “Channel Attention” on ISPRS Vaihingen corpus

335 Our second mechanism focuses on utilizing “Channel Attention Block” to change the weights of
:3s  the features on each stage to enhance the consistency. From Table 4 and 5, the F1 of GCN152-A (0.7902)
337 is greater than that of GCN152 (0.7864); this yields higher F1 score at 0.38%. and the Mean loU of
a3s GCN152-A (0.9057) is better than that of GCN152 (0.8977); this yields higher Mean IoU score at 0.80%.
330 The results (Figure 13e and Figure 14e) show that can also make the network to obtain discriminative
0 features stage-wise to make the prediction intra-class consistent on very high resolution images.

s 5.2.3. Effect of using “Domain Specific Transfer Learning” on ISPRS Vaihingen corpus

242 Our last strategy aims to performing approach of domain specific “Transfer Learning” (details in
w3 Section 3.3) by reusing the pre-trained weight from “GCN152-A” model on Landsat-8 corpus. From
aas  Table 4 and Table 5, F1 of “GCN152-TL-A” method is the winner; it clearly outperforms not only the
as  baseline, but also all previous generations. Its F1 is higher than DCED (baseline) at 2.49% and 1.82%
s consecutively. Its Mean IolU is higher than DCED and GCN at 4.76% and 3.51% respectively. Also,
sz the result illustrates that concept of domain specific “Transfer Learning” can enhance both precision
sas  (0.7888) and recall (0.8001).

340 Figure 13 and Figure 14 shows twelve sample results from the proposed method. By applying all
0 strategies, the images in the last column (Figure 13f and Figure 14f) are similar to the ground truths
351 (Figure 13b and Figure 14b). Furthermore, Fl-results and Mean IoU scores are improved for each
2 strategy we added to the network as shown in Figure 13(c-f) and Figure 14(c-f).

353 To further evaluate the effectiveness of the proposed “GCN152-TL-A” comparisons with baseline’
ssa  method on the one challenging benchmark and one private benchmark are presented as follows as
sss  Table 2 and Table 3 for Landsat-8 data set on Nan province (Thailand) corpus and Table 4 and Table 5
s for Vaihengen data set. All extensive experiments on the Landsat-8 and ISPRS dataset demonstrate
ss7  that the proposed method achieve clear promising gains compared with the baseline approache.

Table 4. Results on the testing data of ISPRS 2D semantic labeling challenge corpus between baseline
and five variations of our proposed techniques in terms of precision, recall, F1 and Mean IoU.

Pretrained Backbone Model Precision  Recall F1 Mean IoU
Baseline - - DCED [30-32] 0.7519 0.7925 0.7693 0.8651
- Res50 GCN [15] 0.7636 0.7917  0.776 0.8776
P - Res101 GCN 0.7713 0.8059 0.7862 0.8972
roposed
Method - Res152 GCN 0.7736 0.8021 0.7864 0.8977
- Res152 GCN-A 0.7847 0.7961 0.7902 0.9057

TL Res152 GCN-A 0.7888 0.8001  0.7942 0.9123
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Baseline Proposed Methods
(c) DCED (d) GCN152 (e) GCN152-A
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Figure 13. Six testing sample input and output aerial images on ISPRS Vaihingen challenge corpus,

where rows refer different images. (a) Original input image; (b) Target map (ground truth); (c) Output
of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f) Output of
GCN152-TL-A.

Table 5. Results on the testing data of ISPRS Vaihingen challenge corpus between each class with our
proposed techniques in terms of AverageAccuracy

Model IS Buildings LV Tree Car
Baseline DCED [30-32]  0.9590 0.9778 0.9108 0.9805 0.6832

GCN50 [15] 0.9595 0.9628 0.9403 0.9896 0.7292

Proposed Method GCN101 0.9652 0.9827 0.9615 0.9797 0.7387
GCN152 0.9543 0.9962 09445 09754 0.7710

GCN152-A 0.9614 0.9865 09554 0.9871 0.8181

GCN152-TL-A  0.9664 0.9700 0.9499 0.9901 0.8567

358 Figure 13 and Figure 14 show twelve sample testing results from the proposed method on ISPRS
30 Vaihingen corpus. The results of the last column are also similar to the ground truth in the second
360 column same as performed on Landsat-8 corpus. Considering to each class (are shown in Table 3 and
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ser  Table 5), almost every classes (three out of five) from our proposed methods are the winner in term
2 Average Accuracy.

Baseline Proposed Methods
(c) DCED (d) GCN152 (e) GCN152-A (f) GCN152-TL-A

(a) Input Image (b) Label Image
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Figure 14. Six testing sample input and output aerial images on ISPRS Vaihingen challenge corpus,
where rows refer different images. (a) Original input image; (b) Target map (ground truth); (c) Output
of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f) Output of
GCN152-TL-A.

363 As can be seen in Figure 13 and Figure 14, the performance of our best model outperforms
ses Other advanced models by a considerable margin on each category, especially for the Impervious
ses  Surfaces (IS), Tree, and Car. To show the effectiveness of the proposed methods, we have performed
66 comparisons against a number of state-of-the-art semantic segmentation methods, as listed in Table
se7 4, Table 5 that performs on ISPRS corpus and Table 2, Table 3 that performs on Landsat-8 corpus.
ses  Encoder Decoder (DCED) [30-32] and GCN [15] are the versions with ResNet-50 as their backbone. In
se0 particular, we re-implement the DCED with Tensorflow-Slim [35], since the released code is built on
a0 Caffe [37]. We can see that our proposed methods significantly outperforms other methods on both
snn F1score and mean IoU.

a2 In terms of the computational cost, our framework requires slightly additional training time
a3 compared to the baseline approach, DCED, by about 6.25% (6-7 hours), and GCN, by about 4.5% (4-5
sz hours). In our experiment, DCED’s training procedure took approximately 16 hours per data set, and
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a5 finished after 50 epochs with 1,152 second per epoch. Our framework is modify on GCN-based deep
s7e  learning architecture. The “Channel Attention” model increases the time 20 minutes from “GCN152”
sz method. There is no additional time required by reusing pre-trained weights.

s7s 6. Conclusions and Future Work

379 In this study, we propose a novel CNN framework to perform semantic labeling on remote-sensed
0 images. Our proposed method achieves excellent performance by presenting three aspects. First,
se1  Global Convolutional Network (GCN) is employed and enhanced by adding larger numbers of layers
;2 to better capture the complex features. Second, “Channel Attention” is proposed to assign a proper
;a3 weight for each extracted feature on different stages of the network. Finally, “Domain Specific Transfer
;e Learning” is introduced to to allay the scarcity issue by training the initial weights using other remotely
ses  sensed corpora whose resolutions can be different. The experiments were conducted on two data sets:
s Landsat-8 (medium resolutions) and ISPRS Vaihingen Challenge (very hign resolution) data sets. The
se7  results show that our model that combines all proposed strategies outperforms baseline models in
;e terms of F1 and MeanloU. The final results show that our enhanced GCN outperforms the baseline
;0 (DCED)—17.48% for F1 on Landsat-8 corpus and 2.48% on ISPRS corpus.

390 In the future, more choices of semantic labeling, modern optimization techniques and/or other
s01  novel activation functions will be investigated and compared to obtain the best GCN-based framework
32 for semantic segmentation in remotely-sensed images. Moreover, incorporating other data sources (e.g.
303 digital surface model) might be needed to increase the accuracy of the Deep Learning for both the CNN
3¢ and modern Deep Learning layer with very low confidence simultaneously. These aforementioned
s0s issues will be investigated in future research.
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s0as Abbreviations

405 The following abbreviations are used in this manuscript:

BR Boundary Refinement

CNN  Convolutional Neural Network
DCED Deep Convolutional Encoder-Decoder
GCN Global Convolutional Network

IS Impervious Surfaces

Misc Miscellaneous

MR Medium Resolution

RGB Red-Green-Blue

LS Landsat
LV Low Vegetation
TL Transfer Learning

VHR  Very High Resolution
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