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Abstract: In remote sensing domain, it is crucial to automatically annotate semantics, e.g., river,1

building, forest, etc, on the raster images. Deep Convolutional Encoder Decoder (DCED) network is2

the state-of-the-art semantic segmentation for remotely-sensed images. However, the accuracy is still3

limited, since the network is not designed for remotely sensed images and the training data in this4

domain is deficient. In this paper, we aim to propose a novel CNN network for semantic segmentation5

particularly for remote sensing corpora with three main contributions. First, we propose to apply6

a recent CNN network call “Global Convolutional Network (GCN)”, since it can capture different7

resolutions by extracting multi-scale features from different stages of the network. Also, we further8

enhance the network by improving its backbone using larger numbers of layers, which is suitable9

for medium resolution remotely sensed images. Second, “Channel Attention” is presented into our10

network in order to select most discriminative filters (features). Third, “Domain Specific Transfer11

Learning” is introduced to alleviate the scarcity issue by utilizing other remotely sensed corpora with12

different resolutions as pre-trained data. The experiment was then conducted on two given data sets:13

(i) medium resolution data collected from Landsat-8 satellite and (ii) very high resolution data called14

“ISPRS Vaihingen Challenge Data Set”. The results show that our networks outperformed DCED in15

terms of F1 for 17.48% and 2.49% on medium and very high resolution corpora, respectively.16

Keywords: Deep Convolutional Neural Networks; Multi-Class Segmentation; Global Convolution17

Network; Channel Attention; Transfer Learning; ISPRS Vaihingen, Landsat-818

1. Introduction19

Semantic segmentation of earthly objects such as agriculture fields, forests, roads, urban and20

water areas, from remotely-sensed images has been manipulated in many applications in various21

domains, e.g., urban planning, map updates, route optimization, and navigation [1–5], allowing us to22

better understand the domain’s images and create important real-world applications.23

Deep convolutional neural network (CNN) is a well-known technique for automatic feature24

learning. It can mechanically learn features in different levels and abstractions from raw images by25

multiple hierarchical stacking convolution and pooling layers [4–14]. To accomplish such a challenging26
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task, features at different levels are required. Specifically, abstract high-level features are more suitable27

for the recognition of confusing manmade objects, while labeling of fine-structured objects could28

benefit from detailed low-level features [1]. Therefore, different numbers of layers will effect the29

performance of deep learning model.30

In the past few years, the modern CNNs have been extensively proposed including Global31

Convolutional Network (GCN) [15] in which the large kernel and effective receptive field play32

an important role in performing classification and localization tasks simultaneously. The GCN is33

proposed to address the classification and localization issues for semantic segmentation and to suggest34

a residual-based boundary refinement for further refining object boundaries. However, this type of35

architecture ignores the global context such as weights of the features in each stage. Furthermore, most36

methods of this type are just summed up the features of adjacent stages without considering their37

diverse representations. This leads to some inconsistent results that suffer from accuracy performance.38

The primary challenge of this remote sensing task is a lack of training data. This, in fact, has become a39

motivation of this work.40

In this paper, we present a novel Global Convolutional Network for segmenting multi-objects41

from aerial and satellite images. To this end, it is focused on three aspects: (i) varying backbones42

using ResNet50, ResNet101, and ResNet152; (ii) applying “Channel Attention Block” [16,17] to assign43

weights for the feature maps in each stage of backbone architecture, and (iii) “Domain Specific Transfer44

Learning” [18–20] is employed to relieve the scarcity issue. The experiments were conducted using45

satellite imagery (from the Landsat-8 satellite) which is provided by a government organization in46

Thailand and well-known aerial imagery, ISPRS Vaihingen Challenge corpus [34], which is publicly47

available. The results showed that our method outperforms the baseline including Deep Convolutional48

Encoder-Decoder (DCED) in terms of F1 and mean of class-wise Intersection over Union (Mean IoU).49

The remainder of this paper is arranged as follows. Related work is discussed in Section 2. Section50

3 describes our proposed methodology. Experimental data sets and evaluations are described in51

Section 4. Experimental results and discussions are presented in Section 5. Finally, we conclude our52

work and discuss future work in Section 6.53

2. Related Work54

Deep learning has been successfully applied for remotely-sensed data analysis, notably land55

cover mapping on urban areas [1–3] and has increasingly become a promising tool for accelerating56

image recognition process with high accuracy results [4–14,21–29], and is a fast-growing field, and57

new architectures appear every few days. This related work is divided into three subsections: we58

first discuss deep learning concepts for semantic segmentation, followed by a set of multi-objects59

segmentation techniques using modern deep learning architecture, and finally; modern technique of60

deep learning are discussed.61

2.1. Deep learning concepts for semantic segmentation62

Semantic segmentation algorithms are often formulated to solve structured pixel-wise labeling63

problems based on the deep convolutional neural network (CNN). Noh et al. [13] proposed a novel64

semantic segmentation technique utilizing a deconvolutional neural network (DeCNN) and the top65

layer from DCNN adopted from VGG16 [4,8]. DeCNN structure is composed of upsampling layers66

and deconvolution layers, describing pixel-wise class labels and predicting segmentation masks,67

respectively. Their proposed deep learning methods yield high performance in PASCAL VOC 201268

corpus, with the 72.5% accuracy in the best case scenario (the highest accuracy—as of the time of writing69

this paper—compared to other methods that were trained without requiring additional or external70

data). Long et al. [12] proposed an adapted contemporary classification networks incorporating71

Alex, VGG and GoogLe networks into fully CNN. In this method, some of the pooling layers were72

skipped: layer 3 (FCN-8s), layer 4 (FCN-16s), and layer 5 (FCN-32s). The skip architecture reduces73

the potential over-fitting problem and has showed improvements in performance, ranging from 20%74
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to 62.2% in the experiments tested on PASCAL VOC 2012 data. Ronneberger et al. [14] proposed75

U-Net, a DCNN for biomedical image segmentation. The architecture consists of a contracting path76

and a symmetric expanding path that capture context and consequently, enable precise localization.77

The proposed network claimed to be capable to learn despite the limited number of training images,78

and performed better than the prior best method (a sliding-window DCNN) on the ISBI challenge79

for segmentation of neuronal structures in electron microscopic stacks. Vijay Badrinarayanan [30–32]80

proposed Deep Convolutional Encoder-Decoder network (DCED), namely “SegNet”, consists of two81

main networks encoder and decoder, and some outer layers. The two outer layers of the decoder82

network are responsible for feature extraction task, the results of which are transmitted to the next layer83

adjacent to the last layer of the decoder network. This layer is responsible for pixel-wise classification84

(determining which pixel belongs to which class). There is no fully connected layer in between feature85

extraction layers. In the upsampling layer of decoder, pool indices from encoder are distributed to the86

decoder where kernel will be trained in each epoch (training round) at convolution layer. In the last87

layer (classification), softmax is used as a classifier for pixel-wise classification. DCED is one of the88

deep learning model that exceeds the state-of-the-art on many remote sensing corpus.89

In this work, DCED method is selected as one of our baseline since it is the most popular90

architecture used in various networks for semantic segmentation.91

2.2. Modern deep learning architecture for semantic segmentation92

Recently, lots of approaches based on DCED have achieved high performance on different93

benchmarks [16,30–32]. However, most of them are still suffer from accuracy performance issues.94

Therefore, many works of modern deep learning architectures were proposed such as instance-aware95

semantic segmentation [33] which is slightly different from “semantic segmentation”. Instead of96

labeling all pixels, it focuses on the target objects and labels only pixels of those objects. FCIS [27] is97

based techniques based on fully convolutional networks (FCN). Mask R-CNN [9] is also built around98

FCN and incorporates with a proposed joint formulation. Peng [15] presents concept of large kernel99

matters to improve semantic segmentation by global convolutional network (GCN). They proposes a100

GCN to address both the classification and localization issues for the semantic segmentation. Uses101

large separable kernels to expand the receptive field, also added a boundary refinement block to further102

improve localization performance near boundaries. From the Cityscapes challenge, GCN outperforms103

all the previous publications (all modern deep learning baselines) and reaches the new state-of-art.104

Therefore, GCN is selected to be the one of our proposed method and selected to be the main model105

on our work.106

2.3. Modern technique of deep learning107

Modern technique of deep learning is an important factor for an accuracy of CNN. While the108

most popular modern ideas tick for semantic segmentation tasks such as Global Context, Attention109

Module, Semantic Boundary Detection has been used for boosting accuracy.110

Global Context [16] is some modern methods have proven the effectiveness of global average111

pooling in the semantic segmentation task. For example, PSPNet [29] and Deeplab v3 [5] respectively112

extend it to the Spatial Pyramid Pooling [29] and Atrous Spatial Pyramid Pooling [5], resulting in great113

performance in different benchmarks. However, to take advantage of the pyramid pooling module114

sufficiently, these two methods adopt the base feature network to 8 times downsample with atrous115

convolution [5] which is time-consuming and memory intensive.116

Attention Module [16]: Attention is helpful to focus on what we want. Recently, the attention117

module becomes increasingly a powerful tool for deep neural networks [16,17]. The method in[16,17]118

pays attention to different scale information. In this work, we utilize channel attention block to select119

the features similar to Learning a Discriminative Feature Network [16].120

Refinement residual block [16]: The feature maps of each stage in feature network all go through121

the Refinement Residual Block. For our work, we use Boundary Refinement Block (BR) to be concept122
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of “Refinement residual block” from [15]. The first component of the block is a 1 × 1 convolution layer.123

We use it to unify the number of channels to 21. Meanwhile, it can combine the information across all124

channels. Then the following is a basic residual block, which can refine the feature map. Furthermore,125

this block can strengthen the recognition ability of each stage, inspired from the architecture of ResNet126

[7].127

3. Proposed Method128

In this section, the details of our proposed network are explained (shown in Figure 2). The network129

is based on GCN with three aspects of improvements: (i) modification of backbone architecture (shown130

in P1 in Figure 2), (ii) applying the “Channel Attention Block” (shown in P2 in Figure 2), and (iii) using131

concept of domain specific “Transfer Learning” (shown in P3 in Figure 2).132

3.1. Data Preprocessing133

In this paper, there are two benchmark corpus including (i) ISPRS Vaihingen Challenge corpus134

and (ii) Landsat-8 data set. They are very high and medium resolution images, consecutively. More135

details of the data sets will be explained in Section 4.1 and Section 4.2. Before a discussion about the136

model, it is worth to explain our data preprocessing procedure, since it is required when working with137

neural network and deep learning models. Thus, the mean subtraction is executed.138

In addition, data augmentation is often required on more complex object recognition tasks.139

Therefore, a random horizontal flip is generated to increase the training data. For the ISPRS corpus, all140

images are standardized and cropped into 512 × 512 pixels with a resolution of 9 cm2/pixel. For the141

Landsat-8 corpus, each image is also flipped horizontally and scaled to 512 × 512 with a resolution of142

30 m2/pixel from original images (16, 800 × 15, 800 pixels).143

3.2. Global Convolutional Network (GCN) with variations of backbones144

GCN [15] as shown in Figure 1 is a modern architecture that surpasses the drawbacks of traditional145

semantic segmentation network, such as, Deep Convolutional Encoder Decoder Networks (DCED). A146

traditional network usually cascades convolutional layers in order to generate sophisticated features;147

they can be considered as local features that is specialized only for a specific task. However, it is not148

necessary to employ only specialized features, but the general features are also important. Thus, GCN149

overcomes this issue by introducing a multi-level architecture that each level aims to capture different150

resolution of features, so both local and global features are considered into the model.151

As in Figure 1, there are two main blocks in GCN: localization block and classification block. First152

from the localization view in the left block, the structure is a stack of classical fully-convolutional153

layer called “level”. Each level aims to construct features with different resolutions. Second from the154

classification view, there are two modules: GCN and Boundary Refinement (BR). For the GCN module,155

the kernel size of the convolutional structure should be as large as possible, which is motivated by156

the densely-connected structure of classification models. Specially, if the kernel size increases to the157

spatial size of feature map (named global convolution), the network will share the same benefit with158

pure classification models. The BR module is added to further improve localization performance near159

boundaries.160
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Figure 1. An overview of original Global Convolutional Network [15].

Although the GCN architecture has shown promising prediction performance, it can still be161

possible to further improved by varying backbones using ResNet [7] with different numbers of layers162

as ResNet50, ResNet101, and ResNet152 as shown in Figure 3. Also, GCN is suggested to work on163

large kernel size. In this paper, we set the large kernel size as 9 (this previous work [15]).164

Figure 2. An overview of our proposed network.
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Figure 3. An overview of the whole backbone pipeline in (le f t) the main backbone with varying by
ResNet50, ResNet101, and ResNet152; and (right) the major drivers of our main classification network
(composed of of Global Convolutional Network (GCN) and Boundary Refinement (BR) block [15]).

3.3. Channel Attention Block165

Attention Mechanisms [16,17] in Neural Networks are very loosely based on the visual attention166

mechanism found in humans. Human visual attention is well-studied and while there exist different167

models, all of them essentially come down to be able to focus on a certain region of an image with168

“very high resolution”, while perceiving the surrounding image in “medium resolution”, and then169

adjusting the focal point over time.170

To apply this atttentional layer to our network, the channel attention block is shown in Block “A”171

in Figure 2 and its detailed architecture is shown in Figure 4. It is designed to change the weights172

of the remote sensing features on each stage (level), so that the weights are assigned more values on173

important features adaptively.174

Figure 4. Components of Channel Attention Block. The blue and red lines represent the upsample and
downsample operators, respectively. The red line cannot change the size of feature maps, just a path of
information passing.
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3.4. Domain Specific Transfer Learning175

Although the deep learning approach often performs promising prediction performance, it176

requires a large amount of training data. Since it is difficult to obtain annotated satellite images, the177

perform in prior works should be limited.178

Fortunately, there is a recent concept called “Domain Specific Transfer Learning” [18–20] that179

allows to reuse the weights obtaining from other domains’ inputs. It is currently very popular in the180

field of Deep Learning because it enables you to train Deep Neural Networks with comparatively181

insufficient data. This is very useful since most real-world problems typically do not have millions of182

labeled data points to train such complex models.183

From the inadequacy issue, we propose an effective Transfer Deep Neural Network to perform184

knowledge transfer between Very High Resolution (VHR) corpus and Medium Resolution (MR) corpus.185

It is shown in Figure 5.186

Figure 5. Domain Specific Transfer Learning strategy reuses pre-trained weights of models between
two data sets – very high (ISPRS) and medium (Landsat-8; LS-8) resolution images.

4. Experimental Data Sets and Evaluation187

In our experiments, two types of data sets are used: (i) medium resolution imagery (satellite188

images; Landsat-8 data set) made by the government organization in Thailand, name as GISTDA189

(Geo-Informatics and Space Technology Development Agency (Public Organization)) and (ii) very190

high resolution imagery (aerial images; ISPRS Vaihingen data set). All experiments are evaluated191

based on major metrics, such as Average Accuracy, F1 Score and Mean IoU Score.192

4.1. Landsat-8 Data Set193

In this type of data, the satellite images are from Nan, province in Thailand. The data set is194

obtained from Landsat-8 satellite consisting of 1,012 satellite images as shown some samples in Figure195

6.196

This corpus is comprised of a large, diverse set of medium resolution (16, 800 × 15, 800) pixels,197

where 1,012 of these images have high quality pixel-level labels of 5 classes: Agriculture, Forest,198

Miscellaneous, Urban, and Water Class. The 1,012 images are split into 800 training and 112 validation199

images with publicly available annotation, as well as 100 test images with annotations withheld200

and comparison to other methods are performed via a dedicated evaluation server. For quantitative201

evaluation, mean of class-wise Intersection over Union (Mean IoU) and F1 score are used.202
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Figure 6. Sample satellite images from Nan, a province in Thailand (left) and corresponding ground
truth (right). The label of medium resolution data set includes five categories: impervious surface
(Agriculture, yellow), Forest (green), Miscellaneous (Misc, brown), Urban (red) and Water (blue).

4.2. ISPRS Vaihingen Data Set203

One of the major challenges in remote sensing is the automated extraction of urban objects from204

data acquired by airborne sensors. Semantic Labeling Contest provides two state-of-the-art airborne205

image corpora, consisting of (i) Vaihingen corpus is a relatively small village with many detached206

buildings and small multi-story buildings, and (ii) Potsdam corpus shows a typical historic city with207

large building blocks, narrow streets and dense settlement structure. In our experiments, Vaihingen208

corpus was selected and used.209

ISPRS 2D Semantic labeling challenge in Vaihingen [34] (Figure 7 and Figure 8) is used to be210

our benchmark data set. It consists of three spectral bands (i.e., red, green and near-infrared bands),211

corresponding DSM (Digital Surface Model) and NDSM (Normalized Digital Surface Model) data.212

Overall, there are 33 images of about 2, 500 × 2, 000 pixels at a Ground sampling distance (GSD) of213

about 9 cm in image data. Among them, the ground truth of only 16 images are available, and those of214

the remaining 17 images are withheld by the challenge organizer for online test. For offline validation,215

we randomly split the 16 images with ground truth available into a training set of 10 images, and a216

validation set of 6 images. For this work, DSM and NDSM data in all the experiments on this data217

set are not used. Following other methods, 4 tiles (image numbers 5, 7, 23, 30) are removed from the218

training set as a validation set. Experimental results are reported on the validation set if not specified.219
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Figure 7. Overview of the ISPRS 2D Vaihingen Labeling corpus. There are 33 tiles. Numbers in the
figure refer to the individual tile flag.

Figure 8. The sample input tile from Figure7 (left) and corresponding ground truth (right). The label of
Vaihingen challenge includes six categories: impervious surface (imp surf, white), building (blue), low
vegetation (low veg, cyan), tree (green), car (yellow) and clutter/background (red).

4.3. Evaluation220

The multi-class classification task can be considered as multi-segmentation, where class pixels are221

positives and the remaining non-spotlight pixels are negatives. Let TP denotes the number of true222

positives, TN denotes the number of true negatives, FP denotes the number of false positives, and FN223

denotes the number of false negatives.224

Precision, recall, F1, and Mean IoU are shown in equations (1-5). Precision is the percentage of225

correctly classified main pixels among all predicted pixels by the classifier. Recall is the percentage226

of correctly classified main pixels among all actual main pixels. F1 is a combination of precision and227

recall.228
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To evaluate the performance of different comparing deep models, we will discuss the above two229

major metrics (F1) and mean of class-wise Intersection over Union (Mean IoU)) on each category, and230

the mean value of metrics to assess the average performance.231

Accuracy =
TP + TN

TP ++FP + FN + TN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2×Precision×Recall

Precison + Recall
(4)

Mean IoU =
TP

TP + FP + FN
(5)

5. Experimental Results and Discussions232

The implementation is based on a deep learning framework, called “Tensorflow-Slim” [35], which233

is extended from Tensorflow. All experiments were conducted on servers with Intel R© Xeon R© Processor234

E5-2660 v3 (25M Cache, 2.60 GHz), 32 GB of memory (RAM), Nvidia GeForce GTX 1070 (8 GB), Nvidia235

GeForce GTX 1080 (8 GB) and Nvidia GeForce GTX 1080 Ti (11 GB). In stead of using the whole image236

(1,500×1,500 pixels) to train the network, we randomly crop all images to be 512×512 as inputs of each237

epoch.238

For training, Adam optimizer [11] is chosen with an initial learning rate of 0.004 and weight decay239

of 0.00001. Batch normalization [10] is used before each convolutional layer in our implementation240

to ease the training and make it be able to concatenate feature maps from different layers. To avoid241

overfitting, common data augmentations are used as details in Section 3.1. For the measurements, we242

use the mean pixel intersection-over-union (mean IoU) and F1 score as the metric.243

Inspired by [16,26,36], we use the “poly” learning rate policy where the learning rate is multiplied244

by Eq. 6 with power 0.9 and initial learning rate as 4e−3. The learning rate is scheduled by multiplying245

the initial as seen in Eq. 6.246

learning rate = (1 − epoch
MaxEpoch

)0.9 (6)

All models are trained for 50 epochs with mini-batch size of 4, and each batch contains the cropped247

images that are randomly selected from training patches. These patches are resized to 521 × 521 pixels.248

. The statistics of batch normalization is updated on the whole mini-batch.249

This section illustrates details of our experiments. The proposed deep learning network is based250

on GCN with three improvements: (i) varying backbones using ResNet, (ii) Channel Attention and251

Global Average Pooling, and (iii) Domain Specific Transfer Learning. From all proposed strategies,252

there are six acronyms of strategies as shown in Table 1.253

Table 1. Abbreviations on our proposed deep learning methods

Abbreviation Description

A Channel Attention Block
GCN Global Convolutional Network

GCN50 Global Convolutional Network with ResNet50
GCN101 Global Convolutional Network with ResNet101
GCN152 Global Convolutional Network with ResNet52

TL Domain Specific Transfer Learning
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For the experimental setup, there are three experiments on two remotely-sensed data sets:254

Landsat-8 data set and ISPRS Vaihingen challenge data set (details in Section 4.1 and Section 4.2). The255

experiments aim to illustrate that each proposed strategy can really improve the performance. First,256

“GCN152” method is compared to “GCN50” method and “GCN101” method for the varying backbones257

using ResNet with different numbers of layers on GCN networks strategy. Second, “GCN152-A”258

method is compared to “GCN152” method for the “Channel Attention” strategy. Third, the full259

proposed technique “GCN152-TL-A” method is compared to existing methods for the concept of260

domain specific transfer learning.261

5.1. Results on Landsat-8 Corpus with Discussion262

In this subsection, the experiment was conducted on the Landsat-8 corpus. The result is shown263

in Table 2 and Table 3 by comparing between baseline and variations of the proposed techniques. It264

shows that our network with all strategies “GCN152-TL-A” outperforms other methods. More details265

will be discussed to show that each of the proposed techniques can really improve an accuracy. Only266

in this experiment, there are state of the art baseline, including Deep Convolutional Encoder-Decoder267

(DCED) [30–32].268

5.1.1. Effect of enhanced GCN on Landsat-8 corpus269

Our first strategy aims to increase an F1 and Mean IoU score of the network by varying backbones270

using ResNet 50, ResNet 101, and ResNet 152 rather than the traditional one, DCED method. From271

Table 2 and Table 3, F1 of GCN152 (0.7563) outperforms that of GCN50(0.6847) and GCN101 (0.7290),272

and baseline method; DCED(0.6495); this yields higher F1 at 2.74%, 3.52%, and 4.43% respectively.273

Mean IoU of GCN152 (0.6364) outperforms that of GCN50 (0.5734), GCN101 (0.6154), and baseline274

method; DCED (0.5384); this yields higher Mean IoU at 2.10%, 3.50%, and 4.20% consecutively. The275

main reason is due to higher precision, but slightly lower recall. This can imply that enhanced GCN276

is more significantly efficient than DCED method (baseline) for this medium resolution corpus and277

ResNet with a large number of layers is more robust than the small number of layers.278

When comparing the results between the original GCN method and the enhanced GCN methods279

on Landsat-8 corpus (Table 2), it clearly shows that GCN with the larger layer of the backbone can280

improve the network performance in term of F1 and mean IoU281

5.1.2. Effect of using “Channel Attention” on Landsat-8 corpus282

Our second mechanism focuses on applying “Channel Attention Block” (details in Section 3.4) to283

change the weights of the features on each stage to enhance the consistency. From Table 2 and 3, the284

F1 of GCN152-A (0.7897) is greater than that of GCN152 (0.7563); this yields higher F1 score at 3.34%.285

and the Mean IoU of GCN152-A (0.6726) is superior to that of GCN152 (0.6364); this yields higher286

Mean IoU score at 3.62%. The result (Figure 9e and Figure 12e) shows that can make the network to287

obtain discriminative features stage-wise to make the prediction intra-class consistent. This is based288

on the consideration that we re-weighted all feature maps of each layer.289

5.1.3. Effect of using “Domain Specific Transfer Learning” on Landsat-8 corpus290

Our last strategy aims to use approach of domain specific “Transfer Learning” (details in Section291

3.3) by reusing the pre-trained weight from “GCN152-A” model on ISPRS Vaihingen corpus. From292

Table 2 and Table 3, F1 of “GCN152-TL-A” method is the winner; it clearly outperforms not only293

the baseline, but also all previous generations. Its F1 is higher than DCED (baseline) at 17.80%. Its294

Mean IoU is higher than DCED at 17.94%. Also, the result illustrates that concept of domain specific295

“Transfer Learning” can enhance both precision (0.8293) and recall (0.8476).296

Figure 9 and Figure 12 shows twelve sample results from the proposed method. By applying all297

strategies, the images in the last column (Figure 9f and Figure 12f) are similar to the ground truths298
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(Figure 9b and Figure 12b). Furthermore, F1-results and Mean IoU scores are improved for each299

strategy we added to the network as shown in Figure 9(c-f) and Figure 12(c-f).300

Table 2. Results on the testing data of Landsat-8 corpus between baseline and five variations of our
proposed techniques in terms of precision, recall, F1 and Mean IoU.

Pretrained Backbone Model Precision Recall F1 Mean IoU

Baseline - - DCED [30–32] 0.6137 0.7209 0.6495 0.5384

- Res50 GCN [15] 0.6678 0.7333 0.6847 0.5734

Proposed
Method

- Res101 GCN 0.6899 0.8031 0.7290 0.6154
- Res152 GCN 0.7115 0.8131 0.7563 0.6364
- Res152 GCN-A 0.7997 0.7937 0.7897 0.6726

TL Res152 GCN-A 0.8293 0.8476 0.8275 0.7178

Figure 9. Six testing sample input and output satellite images on Landsat-8 in Nan provinces in
Thailand, where rows refer different images. (a) Original input image; (b) Target map (ground truth);
(c) Output of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f)
Output of GCN152-TL-A.
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Table 3. Results on the testing data of Landsat-8 corpus between each class with our proposed
techniques in terms of AverageAccuracy

Model Agriculture Forest Misc Urban Water

Baseline DCED [30–32] 0.9616 0.7472 0.0976 0.7878 0.4742

GCN50 [15] 0.9407 0.8258 0.1470 0.8828 0.5426
Proposed Method GCN101 0.9677 0.8806 0.2561 0.7971 0.5480

GCN152 0.9780 0.8444 0.4256 0.7158 0.5937
GCN152-A 0.9502 0.9118 0.6689 0.8675 0.6001

GCN152-TL-A 0.9781 0.8472 0.8732 0.7988 0.6493

To achieve highest accuracy, the network must be configured and trained many epochs until all301

parameters in the network are converged. Figure 11(a) illustrates that the proposed network has been302

properly set and trained until it is really converged and ran more smoothly than baseline in Figure303

10(a). Furthermore, Figure 10(b) and Figure 11(b) show that the higher number of epochs tend to show304

better F1 score. Thus, the number of chosen epochs based on the validation data is 49 (The best model305

for this data set).306

(a) (b)

Figure 10. Iteration plot on Landsat-8 corpus of the baseline technique, DECE [30–32]; x refers to epochs
and y refers to different measures (a) Plot of model loss (cross entropy) on training and validation data
sets and (b) Performance plot on the validation data set.

(a) (b)

Figure 11. Iteration plot on Landsat-8 corpus of the proposed technique, “GCN152-TL-A”; x refers
to epochs and y refers to different measures (a) Plot of model loss (cross entropy) on training and
validation data sets, (b) Performance plot on the validation data set.

Twelve sample testing results (shown as Figure 9 and Figure 12) from the proposed method307

on Nan provinces (is one of the northern provinces (changwat) of Thailand and agriculture is the308
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province’s main industry). The results of the last column look closest to the ground truth in the second309

column.310

Figure 12. Six testing sample input and output satellite images on Landsat-8 in Nan provinces in
Thailand, where rows refer different images. (a) Original input image; (b) Target map (ground truth);
(c) Output of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f)
Output of GCN152-TL-A.

As can be seen in Figure 9 and Figure 12, the performance of our best model outperforms311

other advanced models by a considerable margin on each category, especially for the Agriculture,312

Miscellaneous (Misc), and Water. Furthermore, the loss curves shown in Figure 11(a) exhibit that, our313

best model performs better on all the given categories.314

5.2. Results on ISPRS Vaihingen Challenge Corpus with Discussion315

In this subsection, the experiment was conducted on the ISPRS Vaihingen Challenge corpus. The316

result is shown in Table 4 and Table 5 by comparing between baseline and variations of the proposed317

techniques. It shows that our network with all strategies (GCN152-TL-A) outperforms other methods.318

More details will be discussed to show that each of the proposed techniques can really improve an319

accuracy. Only in this experiment, there are one baseline, including DCED network.320
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5.2.1. Effect of enhanced GCN on ISPRS Vaihingen corpus321

Our first strategy aims to increase an F1 and Mean IoU score of the network by varying backbones322

using ResNet 50, ResNet 101, and ResNet 152 rather than the traditional one, DCED method. From323

Table 4 and Table 5, F1 of GCN152 (0.7864) outperforms that of GCN50 (0.776), GCN101 (0.768),324

and baseline method; DCED (0.7693); this yields higher F1 at 0.02%, 0.68%, and 1.01% respectively.325

Mean IoU of GCN152 (0.8977) outperforms that of GCN50 (0.8776), GCN101 (0.8972), and baseline326

method; DCED (0.8651); this yields higher Mean IoU at 0.02%, 0.68%, and 1.01% consecutively. This327

can imply that enhanced GCN is also more accurate than DCED approach on very high resolution328

data set. ResNet with large number of layers is still more robust than small number of layers same as329

that performed on Landsat-8 corpus (Section 5.1.1).330

When comparing the results between the original GCN method and the enhanced GCN methods331

on Landsat-8 corpus (Table 4), it clearly shows that GCN with the larger layer of the backbone can332

improve the network performance in term of F1 and mean IoU333

5.2.2. Effect of using “Channel Attention” on ISPRS Vaihingen corpus334

Our second mechanism focuses on utilizing “Channel Attention Block” to change the weights of335

the features on each stage to enhance the consistency. From Table 4 and 5, the F1 of GCN152-A (0.7902)336

is greater than that of GCN152 (0.7864); this yields higher F1 score at 0.38%. and the Mean IoU of337

GCN152-A (0.9057) is better than that of GCN152 (0.8977); this yields higher Mean IoU score at 0.80%.338

The results (Figure 13e and Figure 14e) show that can also make the network to obtain discriminative339

features stage-wise to make the prediction intra-class consistent on very high resolution images.340

5.2.3. Effect of using “Domain Specific Transfer Learning” on ISPRS Vaihingen corpus341

Our last strategy aims to performing approach of domain specific “Transfer Learning” (details in342

Section 3.3) by reusing the pre-trained weight from “GCN152-A” model on Landsat-8 corpus. From343

Table 4 and Table 5, F1 of “GCN152-TL-A” method is the winner; it clearly outperforms not only the344

baseline, but also all previous generations. Its F1 is higher than DCED (baseline) at 2.49% and 1.82%345

consecutively. Its Mean IoU is higher than DCED and GCN at 4.76% and 3.51% respectively. Also,346

the result illustrates that concept of domain specific “Transfer Learning” can enhance both precision347

(0.7888) and recall (0.8001).348

Figure 13 and Figure 14 shows twelve sample results from the proposed method. By applying all349

strategies, the images in the last column (Figure 13f and Figure 14f) are similar to the ground truths350

(Figure 13b and Figure 14b). Furthermore, F1-results and Mean IoU scores are improved for each351

strategy we added to the network as shown in Figure 13(c-f) and Figure 14(c-f).352

To further evaluate the effectiveness of the proposed “GCN152-TL-A” comparisons with baseline’353

method on the one challenging benchmark and one private benchmark are presented as follows as354

Table 2 and Table 3 for Landsat-8 data set on Nan province (Thailand) corpus and Table 4 and Table 5355

for Vaihengen data set. All extensive experiments on the Landsat-8 and ISPRS dataset demonstrate356

that the proposed method achieve clear promising gains compared with the baseline approache.357

Table 4. Results on the testing data of ISPRS 2D semantic labeling challenge corpus between baseline
and five variations of our proposed techniques in terms of precision, recall, F1 and Mean IoU.

Pretrained Backbone Model Precision Recall F1 Mean IoU

Baseline - - DCED [30–32] 0.7519 0.7925 0.7693 0.8651

- Res50 GCN [15] 0.7636 0.7917 0.776 0.8776

Proposed
Method

- Res101 GCN 0.7713 0.8059 0.7862 0.8972
- Res152 GCN 0.7736 0.8021 0.7864 0.8977
- Res152 GCN-A 0.7847 0.7961 0.7902 0.9057

TL Res152 GCN-A 0.7888 0.8001 0.7942 0.9123
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Figure 13. Six testing sample input and output aerial images on ISPRS Vaihingen challenge corpus,
where rows refer different images. (a) Original input image; (b) Target map (ground truth); (c) Output
of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f) Output of
GCN152-TL-A.

Table 5. Results on the testing data of ISPRS Vaihingen challenge corpus between each class with our
proposed techniques in terms of AverageAccuracy

Model IS Buildings LV Tree Car

Baseline DCED [30–32] 0.9590 0.9778 0.9108 0.9805 0.6832

GCN50 [15] 0.9595 0.9628 0.9403 0.9896 0.7292
Proposed Method GCN101 0.9652 0.9827 0.9615 0.9797 0.7387

GCN152 0.9543 0.9962 0.9445 0.9754 0.7710
GCN152-A 0.9614 0.9865 0.9554 0.9871 0.8181

GCN152-TL-A 0.9664 0.9700 0.9499 0.9901 0.8567

Figure 13 and Figure 14 show twelve sample testing results from the proposed method on ISPRS358

Vaihingen corpus. The results of the last column are also similar to the ground truth in the second359

column same as performed on Landsat-8 corpus. Considering to each class (are shown in Table 3 and360
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Table 5), almost every classes (three out of five) from our proposed methods are the winner in term361

Average Accuracy.362

Figure 14. Six testing sample input and output aerial images on ISPRS Vaihingen challenge corpus,
where rows refer different images. (a) Original input image; (b) Target map (ground truth); (c) Output
of Encoder Decoder (Baseline); (d) Output of GCN152; (e) Output of GCN152-A; and (f) Output of
GCN152-TL-A.

As can be seen in Figure 13 and Figure 14, the performance of our best model outperforms363

other advanced models by a considerable margin on each category, especially for the Impervious364

Surfaces (IS), Tree, and Car. To show the effectiveness of the proposed methods, we have performed365

comparisons against a number of state-of-the-art semantic segmentation methods, as listed in Table366

4, Table 5 that performs on ISPRS corpus and Table 2, Table 3 that performs on Landsat-8 corpus.367

Encoder Decoder (DCED) [30–32] and GCN [15] are the versions with ResNet-50 as their backbone. In368

particular, we re-implement the DCED with Tensorflow-Slim [35], since the released code is built on369

Caffe [37]. We can see that our proposed methods significantly outperforms other methods on both370

F1 score and mean IoU.371

In terms of the computational cost, our framework requires slightly additional training time372

compared to the baseline approach, DCED, by about 6.25% (6-7 hours), and GCN, by about 4.5% (4-5373

hours). In our experiment, DCED’s training procedure took approximately 16 hours per data set, and374
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finished after 50 epochs with 1,152 second per epoch. Our framework is modify on GCN-based deep375

learning architecture. The “Channel Attention” model increases the time 20 minutes from “GCN152”376

method. There is no additional time required by reusing pre-trained weights.377

6. Conclusions and Future Work378

In this study, we propose a novel CNN framework to perform semantic labeling on remote-sensed379

images. Our proposed method achieves excellent performance by presenting three aspects. First,380

Global Convolutional Network (GCN) is employed and enhanced by adding larger numbers of layers381

to better capture the complex features. Second, “Channel Attention” is proposed to assign a proper382

weight for each extracted feature on different stages of the network. Finally, “Domain Specific Transfer383

Learning” is introduced to to allay the scarcity issue by training the initial weights using other remotely384

sensed corpora whose resolutions can be different. The experiments were conducted on two data sets:385

Landsat-8 (medium resolutions) and ISPRS Vaihingen Challenge (very hign resolution) data sets. The386

results show that our model that combines all proposed strategies outperforms baseline models in387

terms of F1 and MeanIoU. The final results show that our enhanced GCN outperforms the baseline388

(DCED)—17.48% for F1 on Landsat-8 corpus and 2.48% on ISPRS corpus.389

In the future, more choices of semantic labeling, modern optimization techniques and/or other390

novel activation functions will be investigated and compared to obtain the best GCN-based framework391

for semantic segmentation in remotely-sensed images. Moreover, incorporating other data sources (e.g.392

digital surface model) might be needed to increase the accuracy of the Deep Learning for both the CNN393

and modern Deep Learning layer with very low confidence simultaneously. These aforementioned394

issues will be investigated in future research.395
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Abbreviations404

The following abbreviations are used in this manuscript:405

406

BR Boundary Refinement
CNN Convolutional Neural Network
DCED Deep Convolutional Encoder-Decoder
GCN Global Convolutional Network
IS Impervious Surfaces
Misc Miscellaneous
MR Medium Resolution
RGB Red-Green-Blue
LS Landsat
LV Low Vegetation
TL Transfer Learning
VHR Very High Resolution

407
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