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Abstract: Detailed built-up area information is valuable for mapping complex urban environments. 
Although a large number of classification algorithms about built-up areas have been developed, 
they are rarely tested from the perspective of feature engineering and feature learning. Therefore 
we launched a unique investigation to provide a full test of the OLI imagery for 15-m resolution 
built-up area classification in 2015, in Beijing, China. Training a classifier requires many sample 
points, and we propose a method based on the ESA's 38-meter global built-up area data of 2014, 
Open Street Map and MOD13Q1-NDVI to achieve rapid and automatic generation of a large 
number of sample points. Our aim is to examine the influence of a single pixel and image patch 
under traditional feature engineering and modern feature learning strategies. In feature 
engineering, we consider spectra, shape and texture as the input features, and SVM, random forest 
(RF) and AdaBoost as the classification algorithms. In feature learning, the convolution neural 
network (CNN) is used as the classification algorithm. In total, 26 built-up land cover maps were 
produced. Experimental results show that: (1) the approaches based on feature learning are 
generally better than those based on feature engineering in terms of classification accuracy, and the 
performance of ensemble classifiers e.g., RF, is comparable to that of CNN. Two dimensional CNN 
and the 7 neighborhood RF have the highest classification accuracy of nearly 91%. (2) Overall, the 
classification effect and accuracy based on image patches are better than those based on single 
pixels. The features that can highlight the information of the target category (for example, PanTex 
and EMBI) can help improve classification accuracy. 

Keywords: built-up area; classification; Landsat 8- OLI; feature engineering; feature learning; 
CNN; accuracy evaluation 

 

1. Introduction 

Built-up area refers to the land of urban and rural residential and public facilities. Built-up areas 
are one of the most important elements of land use and play an extremely important role in urban 
development planning [1]. Extracting built-up areas is crucial for mapping and managing complex 
urban environments across local and regional scales [7-11]. Landsat images are frequently used and 
are a good source of data for generating such information over large areas [39, 42].However, 
mapping built-up land poses a significant challenge for remote sensing due to the high spatial 
frequency and heterogeneity of surface features. Various algorithms have been applied to extract 
built-up areas, including supervised classification, unsupervised clustering, and reinforcement 
learning [15-17]. In the process of built-up area extraction, the most important considerations are 
how to design or learn better features to characterize the buildings and how to choose a more 
appropriate classification strategy. Congcong Li [5] tested two unsupervised and 13 supervised 
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classification algorithms to distinguish urban land in Guangzhou city and then assessed all 
algorithms in a per-pixel classification decision experiment and all supervised algorithms in a 
segment-based experiment. Rahman [6] compared the influence of spatial resolution, spectral band 
set and the classification approach for mapping detailed urban land cover in Nottingham, UK. A 
WorldView-2 image provide the basis for a set of 12 images with variable spatial and spectral 
characteristics within three different approaches (maximum likelihood (ML), support vector 
machine (SVM) and object-based image analysis (OBIA)) to yield 36 output land cover maps. D. LU 
[53] summarized the major advanced classification approaches and the techniques used for 
improving classification accuracy. 

In this paper, we focus on the following three aspects: (1) In the large region of mapping 
built-up areas, Google Earth Engine (GEE) is used to obtain high-quality images. (2) Using existing 
built-up area data products and open map data, a large number of samples are selected quickly and 
automatically, and then, the samples are filtered and corrected. (3) From the viewpoint of feature 
engineering and feature learning, the influence of the classification strategy and the features on the 
result of built-up area extraction is synthetically analyzed. 

Next, we review the methods and techniques of feature engineering and feature learning and 
the classification strategies based on single pixels and image patches. The application and 
advantages and disadvantages of these methods and techniques in built-up area extraction are 
discussed. We also discuss the progress and shortcomings of built-up area mapping based on low 
and medium resolution images.  

1.1.Feature Engineering versus Feature Learning 

A key step for pattern recognition and classification is to select independent and measurable 
features with a large amount of information, distinction and independence. According to prior 
knowledge, feature engineering performs mathematical operations on the image to obtain the 
typical and iconic features that can represent the extracted object. This is equivalent to the realization 
of feature transformation, mapping from the original image feature space to a new feature space 
after feature engineering. Different combinations of bands can highlight different surface features. 
The simplest feature transformation of remote sensing images is the band operation. In [2], [3] and 
[4], normalized difference building index (NDBI), an index-based build-up index (IBI) and a 
texture-derived built-up presence index (PanTex) were proposed to characterize buildings. However 
these methods based on the remote sensing index have a strong dependence on threshold selection, 
and finding a suitable threshold is very difficult. In recent years, very high resolution and 
hyperspectral images have been gradually used in building extraction. The texture, shape, geometry 
and three-dimensional features of images have been applied to recognize and distinguish objects. 
Many methods based on morphological filtering [7], spatial structure features [8], grayscale texture 
features [9], image segmentation [10], geometric features [11] and three-dimensional modeling [12] 
have increasingly been applied to building extraction. Pattern classification based on feature 
engineering has a good advantage in extracting certain ground objects (vegetation and water). 
However, for the recognition and classification of built-up areas, because of uneven distribution and 
fragmentation of buildings, large surface spectral heterogeneity and morphology characteristics 
without fixed pattern, it is difficult to find a suitable feature in a wide range of urban and suburban 
areas. 

In recent years, with the increase of artificial intelligence and large data, pattern classification 
based on feature learning has become a popular research topic, especially in in-depth learning 
[13-17] and reinforcement learning [18-23]. Feature learning automatically learns and utilizes 
features from raw data. Deep learning (DL) can automatically extract hierarchical data features by 
unsupervised or semi-supervised feature learning algorithms. In contrast, traditional machine 
learning methods require manual design features. DL is a representation learning algorithm based 
on large scale data in machine learning. Modern DL methods have often been applied successfully in 
the field of feature learning, such as self-encoder [24], Restricted Boltzmann Machine [25] and 
Generative Adversarial Networks [26]. These implement automatic learning abstract feature 
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representation in an unsupervised or semi-supervised manner, and their results support advanced 
achievements in areas such as speech recognition, image classification [27], and object recognition 
[28]. With the rapid development of CNNs, especially the excellent performance of deep convolution 
neural networks on the ImageNet contest [29-32], CNN has shown great advantages in image 
pattern recognition, scene classification [33], object detection and other issues. An increasing number 
of researchers have applied CNN to remote sensing image classification. In [34], [35] and [36], CNNs 
of different structures were used for building extraction. Yang [37] showed that the combination of a 
subset of spectral bands can promote the classification accuracy of convolution neural networks. 

1.2. Pixel–Based versus Patch-Based Classification 

With the improvement of image spatial resolution, the basic unit of remote sensing land cover 
mapping has undergone a transformation from image pixels to image objects (segments and 
patches). The goal of remote sensing land cover mapping is usually to obtain the semantic category 
of each pixel. Traditionally, built-up extraction has been conducted using pixel-based approaches, 
where land cover classes are allocated to each individual pixel. In a feature space, a classifier (e.g., 
SVM, KNN) is used to separate the feature space into several regions. In the transformation of the 
feature space and the image plane space, there is the problem of the same object with different 
spectra and different objects with the same spectrum because the spatial relationship cannot be 
considered. Therefore, the classification results of the image plane will exhibit salt-and-pepper noise 
and fragmentation. Rahman Momeni [6] compared the influence of spatial resolution, spectral band 
set and the classification approach for mapping detailed urban land cover based on WorldView-2 
images. Their results demonstrate that spatial resolution is clearly the most influential factor when 
mapping complex urban environments. Lin Wang [38] identified and inspected the urban built-up 
area boundary based on the temperature retrieval method, and used qualitative and quantitative 
analysis methods to analyze the spatial-temporal characteristics of the Jingzhou urban built-up area 
expansion from 1990 to 2014. 

With the improvement of image spatial resolution, especially the launching of SPOT, QuickBird 
and Worldview, a large number of high-resolution images are publicly available. The era of 
large-scale remote sensing data has come. High-resolution images, hyperspectral images and radar 
data are widely used to extract built-up areas. Relying on single pixel spectral information cannot 
adequately describe and reflect the feature information of ground objects. Instead of the pixels’ 
features, one might use image patches as the features of geo-objects. In one image patch, the spatial 
relations and semantic links between pixels are considered, regarding a patch as one or more target 
objects, such as scene recognition, semantic segmentation, object detection. Ping Zhong [39] 
presented a multiple conditional random fields (CRFs) ensemble model to incorporate multiple 
features and learn their contextual information, and the experiments on a wide range of images 
show that their ensemble model produces higher built-up extraction accuracy than single CRF. 
Xiaogang Ning [40] presented a method for extracting built-up areas from VHSR remote sensing 
imagery using feature-level-based fusion of right angle corners, right angle sides and road marks. 
On average, the completeness and the quality of their proposed method are 17.94% and 13.33% 
better than those of the PanTex method. 

1.3. Built-up Area Extraction from Medium-Resolution Images 

Although there are an increasing number of high-resolution images, medium-resolution images 
are still the most widely used for a wide range of ground object extraction, because of the limited 
computer performance and considerable data mining technology. Worldwide, the spatial resolution 
of built-up area data ranges from low to high with 500 m, 250 m, 38 m and 30 m. The IGBP scheme 
was classified using the C4.5 decision tree algorithm that ingested a full year of 8-day MODIS Nadir 
BRDF-Adjusted Reflectance [41]. Jie Wang [42] utilized a random forest classification algorithm to 
map global land cover in 2001 and 2010 with spatial-temporal consistency based on MODIS data and 
Landsat images. Peng Gong [43] produced the first 30 m resolution global land-cover maps based on 
four classifiers(maximum likelihood, J4.8 decision tree, random forest and support vector machine) 
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using Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data. Based on 
TM and ETM + images, Jun Chen [44] applied the pixel-object hierarchical classification method to 
extract the global man-made surface, and the user accuracy reached 80%. Using the symbolic 
classification algorithm [45], ESA processed massive Landsat images and high-resolution images to 
extract 38-meter resolution global residential areas in 1975, 1990, 2000 and 2014, with an overall 
accuracy of more than 85%. Based on the Google Earth Engine (GEE) platform [46], Xiaoping Liu 
proposed the urban comprehensive land use index [47], and found the appropriate threshold in the 
global sub-climate areas and extracted multi-temporal urban built-up areas [48]. 

In the smaller region, research on built-up area extraction methods has become a popular topic. 
Ping Zhang [49] proposed an empirical normalized difference of a seasonal brightness temperature 
index (NDSTI) for enhancing a built-up area based on the contrast heat emission seasonal response 
of a built-up area to solar radiation, and adopted a decision tree classification method for the rapid 
and accurate extraction of the built-up area. Ran Goldblatta [10] presented an efficient and low-cost 
machine-learning approach for pixel-based image classification of built-up areas at a large 
geographic scale using Landsat data. Their methodology combines nighttime-lights data and 
Landsat 8 and overcomes the lack of extensive ground reference data. Xiaolong Ma [50] presented a 
sample-optimized approach for classifying urban area data in several cities of western China using a 
combination of the DMSP-OLS for nighttime-light data, Landsat images, and GlobeLand30. Ran 
Goldblatt [51] applied a classification and regression tree, SVM and random forests to extract urban 
areas in India based on a single pixel using the GEE platform. 

In this paper, we compare the accuracy and efficiency of the approaches for built-up area 
extraction from Landsat 8-OLI images based on single pixels or image patches in two perspectives of 
feature engineering and feature learning. We systematically and comprehensively compare the 
impact of features and classifiers on built-up area extraction results using 15-meter resolution 
OLI-images. Moreover, given the influential role that the classification approach plays on output 
accuracy, and how this is linked intrinsically with image specifications, all image data sets are 
classified using parametric and non-parametric pixel-based and patch-based, classifiers. This 
enables a fuller and more robust assessment of the Landsat 8 data, but also transmits helpful and 
practical information for urban planners and other user communities on the level of thematic detail 
that can be achieved when mapping complex built-up areas. Finally, an analysis is conducted using 
a relatively large image covering of approximately 32400 km2 of the city of Beijing, China and its 
environs. This means that built-up area extraction is generated at a scale of practical value and 
relevance (the whole city-scale), unlike the earlier experiments of Congcong Li [5] and Rahman 
Momeni [6], which were limited to very small, local areas. 

2. Study Site and Data 

2.1. Study Area and OLI Image 

The study area is the city of Beijing, the capital of China, located at 107E longitude, 36N latitude. 
Beijing has a population of slightly more than 21 million. The climate is a typical north temperate 
semi-humid continental monsoon climate, with a hot and rainy summer, a cold and dry winter, and 
a short spring and autumn. The landscape consists of 62% mountains and 38% plains. The 
topography of Beijing is high in the northwest and low in the southeast, with an altitude of 
approximately 43.5 m. Beijing is a typical international metropolis with prosperous business circles 
and developed transportation systems. The objects on the ground surface are complex and 
heterogeneous. Within the Fifth Ring, the buildings are densely distributed, while the buildings are 
sparse in the suburb outside the Fifth Ring. Therefore, we determined that choosing Beijing as an 
experimental area is typical, scientific and reasonable. 

The Landsat 8-OLI land imager has 9 bands and the imaging width is 185x185 km. The 
resolution of Band1 to Band7 is 30 meters, and Band8 is a panchromatic band with 15-meter 
resolution. Compared with the ETM sensor on Landsat-7, the OLI terrestrial imager has made the 
following adjustments: (1) The wavelength of Band 5 is adjusted to 0.845 - 0.885 um, eliminating the 
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influence of water vapor absorption at 0.825 um. (2)The band 8 panchromatic wave band is narrow, 
so the vegetation and non-vegetation areas can be distinguished better. (3) The newly added blue 
band of Band 1 (0.433-0.453 um) is mainly used for coastal zone observation. 

Table 1. Comparison of Landsat 7 and Landsat 8 satellite bands. 

Landsat 8-OLI Landsat 7-ETM 

Band 
Index 

Band 
Name 

Bandwidth 
(μm) 

Resolution 
(m) 

Band 
Index 

Band 
Name 

Bandwidth 
(μm) 

Resolution 
(m) 

Band 1 COASTAL 0.43 – 0.45 30     
Band 2 BLUE 0.45 – 0.51 30 Band 1  BLUE 0.45 – 0.52 30 
Band 3 GREEN 0.53 – 0.59 30 Band 2  GREEN 0.52 – 0.60 30 
Band 4 RED 0.64 – 0.67 30 Band 3  RED 0.63 – 0.69 30 
Band 5 NIR 0.85 – 0.88 30 Band 4  NIR 0.77 – 0.90 30 
Band 6 SWIR 1 1.57 – 1.65 30 Band 5  SWIR 1 1.55 – 1.75 30 
Band 7 SWIR 2 2.11 – 2.29 30 Band 7  SWIR 2 2.09 – 2.35 30 
Band 8 PAN 0.50 – 0.68 15 Band 8  PAN 0.52 – 0.90 15 

We selected OLI images on GEE, taking into account the large amount of cloud cover in spring 
and autumn, so the dates of the images are mainly in summer. To ensure data quality, we utilized 
the minimum cloud cover synthesis algorithm provided by GEE to preprocess and generate the 
required images [46]. To facilitate built-up area extraction at 15 m resolution, the first seven bands 
(Band 1 to Band 7) of the Landsat 8 OLI images are up-sampled to 15 meters using the nearest 
neighborhood sampling. Then we clipped the image with a size of 12000*12000 pixels. As shown in 
figure 1, the false color (7, 6, 4 band combination) shows that the quality of the data is good and 
meets the requirements. To facilitate the mapping display and more clearly express the details, we 
choose two representative regions A and B with sizes of 1000 * 1000. B is an urban central region 
with a dense distribution of buildings, while A is in the suburban region and the distribution of 
buildings is sparse. However we still consider the whole research area as the analysis object when 
we conduct the experiment. 

 
Figure 1. Research area and samples. 
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2.2. Massive Samples Automatically Selected from Built-up Production 

The training and testing samples are automatically selected from the 38-meter global built-up 
production of ESA in 2014 [45]. A large number of sample points are automatically generated, 
filtered and corrected. As shown in figure 2, the detailed process includes three steps: (1) Randomly 
selecting 20 thousand sample points in each experimental area; (2) Using the buildings and water 
data sets of Open Street Map (OSM) in China and the MOD13Q1-NDVI data to filter and correct the 
selected sample points. The aim is to modify the built-up sample points in the vegetation area and 
the water body into non-built-up sample points, and to modify the non-built-up sample points in the 
built-up area into the built-up sample points; (3) Combining with ArcGIS Online Image (ESRI 
image) for manual correction. Finally, sample points of built-up area and non-built-up area are 
obtained. The sample points after filtration and correction are hierarchically divided into training 
samples and test samples at a proportion of 6:4. Finally, there are 11499 training samples and 7667 
test samples ultimately. In figure 1, the yellow points represent built-up samples, and the blue points 
represent non built-up samples. 

 
Figure 2. Sample generation and correction. 

3. Research Methods 

In this paper, the accuracy and efficiency of extracting a 15-m resolution built-up area based on 
a single pixel and image patch are compared and analyzed comprehensively in the two perspectives 
of feature engineering and feature learning. As shown in table 2, we proceed from four aspects: (1) 
single-pixel classification under feature engineering, that is, pre-set features, using the original 
8-band spectrum, building remote sensing index (NDBI and IBI), morphological building index 
(EMBI), building area presence index (PanTex), texture feature mean of these five features, the 
classifier is SVM, RF and AdaBoost. (2) Image patch classification under feature engineering, the 
original 8-band features, considering the single pixel within the neighborhood of 3*3, 5*5, 7*7 pixel 
patches, that is, generate a new feature vector, and then classify. The classifier is still SVM, RF and 
AdaBoost. (3) Single pixel classification under feature learning. For eigenvectors of 8 bands on a 
single pixel, one-dimensional CNN is used to learn the spectral features, and then classification is 
realized. (4) Image patch classification under feature learning, the original 8 bands, considering the 
5*5 neighborhood pixel block, using two-dimensional CNN, while learning the spectral and plane 
spatial location relationship features, and then built-up area is distinguished. 
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Table 2. Overall framework of method and technology. 

 Feature Engineering Feature Learning 

Pixel 

Feature description Abbreviations Classifier Network Architecture Abbreviations 

Spectrum 
Original 8 Bands OS8 

 
SVM 

 
 

RF 
 
 

AdaBoost 

CNN with one 
dimensional Convolution 

on inputting bands  
of each pixel 

CNN_1D 

Pan+NDBI+IBI RSBI 
Morphology Pan+ EMBI EMBI 

Texture 

Pan+Build-up 
presence index PanTex 
Texture from 

GLCM TEGL 

Patch Original 8 
Bands 

3*3 neighborhood P3 
CNN fed with an image 

patch of size 5*5 CNN_2D 5*5 neighborhood P5 

7*7 neighborhood P7 

3.1. Feature Engineering 

3.1.1. Pixel-Based classification 

Based on single pixel classification, spectral (OS8 and RSBI), morphological (EMBI), texture 
features (PanTex and TEGL) are considered in this paper. EMBI and texture features are computed 
mathematically from panchromatic band, while NDBI and IBI in RSBI are calculated from 
multispectral bands. The panchromatic band is very important for 15-m-resolution built-up area 
extraction, and to make the feature dimension greater than 1, RSBI, EMBI and PanTex include 
panchromatic band. The range of values of each feature is different, to train better classifiers, so all 
the features are normalized to the range of 0 to 1, and then linearly stretched to 0-255 with the type of 
UINT8. We apply SVM, RF and AdaBoost to realize classification for a single pixel. There will be 15 
classification results based on 3 kinds of classifiers and 5 kinds of features. 
(1) Spectrum 

OS8: The first seven bands, which were sampled up to 15 meters, were stacked with 
panchromatic band to form 8-band data as the original spectral feature. 

RSBI: Buildings have unique spectral characteristics. Through the combination and operation 
of different bands, the remote sensing index that can characterize the building information is 
obtained. In [2], Y. ZHA et al. proposed a method based on Normalized Difference Built-up Index 
(NDBI) to automate the process of mapping built-up areas. Built-up areas are effectively mapped 
through arithmetic manipulation of NDBI (see Equation (1)) derived from near infrared (NIR) and 
short wave infrared band (SWIR1). 

1
NDBI

1

SWI R NI R

SWI R NI R





                                      (1) 

where SWIR1 is Band 6 of Landsat 8, and NIR is Band 5. 

In [3], a new index derived from existing indices – an index-based built-up index (IBI) is 
proposed for the rapid extraction of built-up land features in satellite imagery. The IBI is 
distinguished from conventional indices by its first-time use of thematic index-derived bands 
including RED, GREEN, near-infrared (NIR) and short wave infrared (SWIR1) to construct an index 
rather than by using original image bands. Built-up areas are effectively extracted by setting the 
appropriate threshold for IBI. The IBI is calculated using Equation (2). 

2 * 1 / ( 1 ) [ / ( ) / ( 1) ]
I BI

2 * 1 / ( 1 ) [ / ( ) / ( 1) ]

SWI R SWI R NI R NI R NI R RED GREEN GREEN SWI R

SWI R SWI R NI R NI R NI R RED GREEN GREEN SWI R

    


    
  (2) 

where SWIR1 is Band 6 of Landsat 8, NIR is Band 5, RED is Band 4, and GREEN is Band 3. 
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(2) Morphology: Pan + EMBI 

Referring to the study of Huang Xin [52], EMBI (see Equation (3)), regarded as a characteristic 
feature of a building object, is the mean value of the multi-directional and multi-scale differential 
morphological sequence. 

DMP ( , )

EMBI

N N

OFC

i j

D S

W TH i j
d s

N N

d s

D S







                                 (3) 

where, DMP ( , )
OFCW TH i jd s

denotes the different morphological characteristics of the size and direction of 

structural elements,
ND and

NS denote the number of directions and dimensions of structural 
elements respectively. 

Considering the building size on 15-meter resolution panchromatic image, we set the size of the 
linear structure element from one pixel to six pixels, and the direction from 10 degrees to 180 
degrees, so

ND =18 and
NS  = 6, and there are 108 linear structure elements. EMBI is calculated based 

on these linear structure elements. 
(3) Texture 

Built-up presence index: Pan + PanTex 
Based on the high local contrast of buildings, a texture calculation method of the building area 

existence index (PanTex) was proposed by Pesaresi [4]. The method is slightly adjusted in this paper. 
For the panchromatic image, the grayscale co-occurrence matrix (GLCM) of the 12 displacement 
vectors shown in figure 3 is calculated in the sliding window of 5*5. Then, based on each GLCM, the 
contrast texture statistical features are computed. Finally, 12 contrast features of all displacement 
vectors are maximized as the pixel values of the center pixel in the sliding window. The PanTex is 
calculated using Equation (4). 

 
Figure 3. 12 Displacement vectors in the 5*5 window. 

 
max( 5, , )iPanTex w V CON                              (4) 

where, w = 5 indicates the size of the analysis window as 5 * 5, Vi represents the displacement 
vector used to calculate the GLCM, the maximum value of i is 12, and CON represents the contrast 
characteristics calculated based on the GLCM. The CON is calculated using Equation (5). 

2( ) ( , )
i j

CON i j P i j                              (5) 

where, i and j are the discrete values of the row and column directions in GLCM, and P (i, j) is 
the corresponding value of i and j in GLCM. 

Five mean texture features: Texture from GLCM 
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ASM: The Angular Second Moment (ASM) reflects the distribution of the grayscale and the size 
of the texture. The value of ASM depends on the distribution of elements in GLCM. If the values of 
all elements tend to be the same, the ASM values are smaller; however, if the values of the elements 
are more different and distributed more centrally, the ASM values are larger. In addition, the large 
ASM value means that the distribution of the texture patterns is more uniform and regular. 

1 1 2

0 0
( , )

L L

i j

ASM P i j
 

 

                                  (6) 

CON：The contrast (CON) can show us the clarity of the image and the depth of the texture. It 
reflects how the values of the GLCM elements are distributed and the local variation information of 
the image, that is, the moment of inertia near the main diagonal of GLCM. The greater the value of 
the element from the diagonal in GLCM, the greater the contrast. 
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COR：The correlation (COR) measures the similarity of the spatial gray level co-occurrence 
matrix elements in row or column directions, thus the magnitude of correlation value reflects the 
local gray level correlation in the image. When the values of matrix elements are uniform and equal, 
the value of the correlation is large; on the contrary, if the pixel values of the matrix differ greatly, 
the value of the correlation is small. If there are horizontal directional textures in the image, the COR 
of the horizontal direction matrix is larger than the COR value of the other matrix. 
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ENT: Entropy (ENT) is the measure of the amount of information that an image has. Texture 
information is also a random measure of the image information. Entropy is larger when all elements 
in GLCM have the largest randomness, all values are almost equal, and the elements are dispersed. 
ENT represents the degree of non-uniformity or complexity of the texture in images. 
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HOM: The homogeneity (HOM) reflects the homogeneity of the image texture and measures 
the local variation of image texture. A large value indicates that there is a lack of variation among 
different regions of the image texture, and the local distribution is very uniform. 
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                                  (10) 

For each pixel of a 15-meter resolution panchromatic gray image, all GLCMs of all displacement 
vectors are calculated by considering the neighborhood window of 5 * 5. Then the ASM, CON, COR, 
ENT, HOM corresponding to each GLCM are calculated. In the end, the average value is 
determined. Five texture features based on GLCM in the 5 * 5 neighborhood are finally obtained: 
mean-ASM, mean-CON, mean-COR, mean-ENT and mean-HOM. 
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Figure 4. Feature maps of different feature descriptors. 

3.1.2. Patch-based classification 

For each pixel, we consider its neighborhood windows of 3 * 3, 5 * 5 and 7 * 7, and input the 
pixel patch into the classifier, which is equivalent to the increase of feature dimension. In the original 
8-band images, the feature dimensions of patches in 3, 5 and 7 neighborhoods are 72, 200 and 392 
respectively. We also apply SVM, RF and AdaBoost to realize classification for image patches. There 
are 9 classification results based on 3 types of classifiers and 3 types of image patch size. 

3.1.3. Classification algorithm 

The main idea of SVM [50] is to establish an optimal decision hyperplane to maximize the 
distance between the nearest two classes of samples on both sides of the plane, to provide good 
generalization ability for classification problems. RF is a parallel ensemble classification algorithm, 
but AdaBoost is a serial classifier. The essence of RF is an improvement on the decision tree 
algorithm, which merges multiple decision trees, and the establishment of each tree depends on the 
samples extracted independently [51]. The core idea of AdaBoost is to train different weak classifiers 
using the same training set, and then assemble these weak classifiers to form a stronger final 
classifier. In this paper, we use the three classifiers (svm.SVC, ensemble.RandomForestClassifier and 
ensemble.AdaBoostClassifier) provided by the Python sklearn module. Referring to [5, 6, 43, 53], and 
through theoretical analysis and experiment, the parameters of the three classifiers are shown in 
table 3. 
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Table 3. Parameters of classifiers used in our experiments (Python sklearn). 

Algorithm Abbreviation Parameter Type Parameter name ( sklearn) Parameter Set 

Support  
Vector  

Machine 
SVM 

kernel type kernel rbf 
penalty coefficient  C 10 

gamma gamma 100 

Random  
Forests 

RF 
base classifier base_estimator decision Tree 

number of trees n_estimators 60 

AdaBoost 
Classifier 

AdaBoost 
base classifier base_estimator decision Tree 

number of trees n_estimators 60 
learning rate learning_rate 10-3 

3.2. Feature Learning 

The original image is input into the CNN model in the form of a three-dimensional pixel patch 
or a single pixel sequence. For the input layer, the up-sampled seven bands are stacked with the 
panchromatic band. After the convolution layer and pooling layer of the CNN, the multi-level 
features of the buildings and non-buildings can be automatically learned. For single-pixel 
classification, a one-dimensional convolution (CNN_1D) is utilized to learn the spectral features. For 
image patch classification, the two-dimensional convolution (CNN_2D) is applied to learn spectral 
and spatial relations simultaneously. The loss function is cross-entropy, and the categories are 
determined by the softmax layer. We compare the accuracy and efficiency of the one-dimensional 
temporal convolution on a single pixel with that of the two-dimensional spatial convolution in the 
neighborhood. We apply Python-Keras module to build the CNN and combine sklearn module to 
realize classification and accuracy evaluation. 

3.2.1. CNN_1D classification 

For each pixel, only spectral information is taken into account without considering the spatial 
relationship between pixels. Within the convolutional layer, there are two Conv1D layers realizing 
one-dimensional band directional convolution, which is equivalent to complex band operation. Then 
we use three fully-connected layers. To prevent overfitting, one batch-normalization layer and a 
dropout layer are added. The output layer consists of a soft max operator, which outputs two 
categories. In the whole network, we use the popular function called Rectified Linear Unit (ReLU) to 
solve the vanishing gradient problem for the training epochs in the network. 

 
Figure 5. Network structure of CNN_1D. 

3.2.2. CNN_2D classification 

In the 15-meter resolution image, the size of the building is generally less than 5 pixels. For each 
pixel, the 5-neighborhood is considered, which means that the size of image patch is 5*5*8. 
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Therefore, an image patch with 8 bands and 5*5 neighborhood centered on each sample is input into 
the neural network. Within the convolutional layer, there are two Conv2D and two max-pooling 
layers, which aim to extract spectral features and spatial features, and more high-grade features. In 
the fully-connected layer, we use three fully-connected layers. Meanwhile, one batch-normalization 
layer and a dropout layer are added to prevent overfitting. The output layer consists of a soft max 
operator, which outputs two categories. In the whole network, we also use ReLU as the activation 
function. 

 
Figure 6. Network structure of CNN_2D. 

4. Experimental results and evaluation 

In total, 26 built-up land cover results were produced. However, considering the large range of 
research, the large amount of map data, and the reduction of mapping resolution, so we cut out the 
results of two small areas (A and B) for map display. As shown in figure 7, for feature engineering 
based on a single pixel, 30 maps were produced using a combination of 5 features (OS8, RSBI, EMBI, 
PanTex, TEGL) and three classifiers (SVM, RF, AdaBoost). For feature engineering based on image 
patches, 18 maps were produced, using a combination of 3 kinds of neighbourhoods (P3, P5, P7) and 
three classifiers (SVM, RF, AdaBoost). For feature learning, there were 4 maps, including the result 
of one-dimensional convolution on a single pixel and the result of the two-dimensional convolution 
on an image patch. The main aim of this paper is to compare the accuracy and efficiency of 
extracting a 15-meter resolution built-up area based on a single pixel and image patch in two cases of 
feature engineering and feature learning, for completeness, all 52 classified maps for sub-regions A 
and B were extracted and are provided in figure 7 and figure 9. For the sake of qualitative 
comparison, we compared the results of all conditions with those of Global-Urban-2015 [48] and 
GlobalLand30 [44]. 

A total of 7667 test samples were used for accuracy evaluation. The test samples were classified 
to obtain the predictive label of each sample, and then the confusion matrix shown in table 4 was 
obtained according to the real label and the predictive label. Then, the overall accuracy (OA), recall 
and precision were calculated based on the confusion matrix. OA represents the correctly predicted 
sample size for all samples. Recall indicates the size of the predicted built-up sample in all true 
built-up samples. Precision indicates the size of the true built-up sample in all predicted built-up 
samples. These three precision indices can be used to comprehensively evaluate the accuracy of the 
built-up area extraction. 

Table 4. The representation of confusion matrix for the test samples. 

 Prediction  

Ground 
Truth 

 Non Built-up Built-up Sum 
Non Built-up True Negative (TN) False Positive (FP) Actual Negative(TN+FP) 

Built-up False Negative (FN) True Positive (TP) Actual Positive(FN+TP) 
 Sum Predicted Negative(TN+FN) Predicted Positive(FP+TP) TN+ TP+ FN+ FP 

The OA, Recall and Precision are calculated using Equation (11), Equation (12) and Equation (13) 
respectively. 
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                               (11) 
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                                     (12) 

TP
Pr eci si on

TP FP



                                  (13) 

where the meanings of TP , TN, FN and FP are shown in table 4. 

4.1. Feature engineering and feature learning 

From the perspective of feature engineering and feature learning, based on feature engineering 
classification, the classification results are highly correlated with the setting of features, and 
appropriate features are conducive to improving classification accuracy. However, feature learning 
does not need to consider manual feature setting. CNN can automatically learn multi-level features 
from the original image and then achieve classification by black box operation. As shown in figure 7 
and figure 9, table 5 and table 6, the classification accuracy based on feature learning is generally 
better than that based on feature engineering. However, in feature engineering, when the original 8 
bands consider the neighborhood and the classifier is RF, the overall accuracy reaches 90%, which is 
comparable to the results of CNN_2D. 
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Figure 7. Classification results based on feature engineering. 

Table 5. Accuracy evaluation based on feature engineering. 

Feature 
Engineering 

SVM RF AdaBoost 
OA Recall Precision OA Recall Precision OA Recall Precision 

OS8 0.849 0.922 0.794 0.887 0.904 0.864 0.841 0.834 0.831 
RSBI 0.782 0.762 0.774 0.805 0.781 0.802 0.780 0.745 0.781 
EMBI 0.810 0.760 0.825 0.810 0.760 0.825 0.809 0.755 0.827 

PanTex 0.824 0.825 0.808 0.821 0.820 0.805 0.817 0.811 0.804 
TEGL 0.662 0.517 0.693 0.758 0.733 0.752 0.696 0.664 0.686 

P3 0.730 0.960 0.644 0.900 0.902 0.889 0.850 0.838 0.841 
P5 0.525 0.001 0.429 0.903 0.906 0.891 0.855 0.839 0.853 
P7 0.525 0.000 0.000 0.906 0.907 0.896 0.855 0.846 0.848 
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Figure 8. Classification accuracies of built-up area based on Feature Engineering. 

4.2. Single pixel and image patch 

Considering a single pixel and image patch, the classification based on a single pixel only 
considers the feature vectors of the pixel, ignoring the spatial relationship between pixels in the 
image spatial plane. As shown in figure 7 and table 5, overall, the classification effect and accuracy 
based on the image patch are better than those based on a single pixel, but the feature dimension of 
the image patch is large, and there may be feature redundancy. When training samples are large, a 
more complex classification model is needed. As shown in figure 8 and table 6, CNN based on the 
image patch has a significant advantage over CNN based on a single pixel. 

Under feature engineering, the accuracy of classifications based on a single pixel is significantly 
lower than those based on an image patch. Comparing OS8, RSBI, EMBI, PanTex and TEGL, the 
order of OA and Recall are OS8, PanTex, EMBI, RSBI, TEGL from high to low. The original spectrum 
(OS8) has the best effect, and the OA of OS8 and PanTex is higher than 82%. The analysis shows that 
the feature dimension is not necessarily related to the improvement of classification accuracy. 
Highlighting the characteristics of the target category information can help improve classification 
accuracy. Combining figure 7 and figure 4, PanTex and EMBI can efficaciously distinguish built-up 
areas, while RSBI and TEGL cannot reflect buildings well. In particular, the five texture features 
under TEGL have redundancy and conflict. In the 5-dimensional feature space, it is difficult to learn 
the appropriate classification boundary, which leads to a poor classification effect. 

 
Figure 9. Classification results based on feature learning. 
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As shown in figure 9 and figure 10, the built-up area extraction effect based on CNN_2D is the 
best. We found many details in the results of CNN_2D, which are missing in the other two 
productions (GlobalLand30 and Global-Urban-2015). One of the reasons is that the result of 
CNN_2D is produced from satellite images with higher spatial resolutions. Consequently, within the 
urban area, non-built-up areas, e.g., water and vegetation in dense buildings, can be discriminated 
from built-up areas within the Landsat 8 images. Meanwhile, in the suburbs, small built-up areas 
and narrow roads become distinguishable from the background. Another reason is the higher 
classification accuracy of the CNN. 

Table 6. Accuracy evaluation based on feature learning. 

CNN model Training accuracy OA Recall Precision 
CNN_1D 0.872 0.823 0.675 0.935 
CNN_2D 0.968 0.901 0.915 0.882 

4.3. Classification strategy 

From the perspective of classification strategy, compared with traditional machine learning 
algorithms such as SVM, RF and AdaBoost, CNN has the advantages of autonomous learning, 
stability and robustness. In addition, CNN can learn the dual characteristics of the spectrum and 
spatial structure in a black box. Users can migrate and use the trained network structure, and only 
need to focus on input and output. As shown in figure 7 and figure 9, the classification accuracy of 
P5-RF and P7-RF differs little from that of CNN_2D and is far superior to other classification results. 
CNN has the structure of batch-normalization and dropout, which can prevent over-fitting. With the 
increase of the convolutional layer and pooling layer, the network becomes increasingly complex 
and has stronger fitting and predicting ability. Integrated classifiers (such as RF and AdaBoost), 
which synthesize the prediction results of all base classifiers and determine the final category by a 
voting method, can effectively prevent over-fitting, and still have higher classification accuracy 
when the feature dimension is high. However SVM is more suitable for small sample learning. When 
the number of samples is too large and the feature dimension is high, most of the training samples 
are regarded as support vectors, resulting in over-fitting, and the final classification accuracy is very 
low, even worse than a random guess. The OA of P3-SVM, P5-SVM and P7-SVM were 0.730, 0.525 
and 0.525, respectively, and the training accuracy was 1 for all measures. Overfitting occurred 
obviously, which led to the classification failure. 

 
Figure 10. Classification accuracies of the built-up area based on feature learning. 

5. Discussion 

5.1. Support vectors of SVM 

As shown in figures 7 and 8, tables 5 and 7, P3-SVM, P5-SVM, and P7-SVM were over-fitted, 
and the number of support vectors in 11499 training samples was 11431, 11485, and 11493, 
respectively. Therefore, all training samples are regarded as support vectors, so the model trained is 
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too complex with poor generalization ability and is unable to accurately predict the unclassified 
data. In the above experimental analysis, the penalty coefficient (C) and Gamma, which are the key 
parameters, are set to 10 and 100, respectively. The setting of these two parameters is reasonable and 
scientifically based on prior knowledge and experimental attempts. When the features were OS8, 
RSBI, EMBI, PanTex and TEGL, the classification results met expectations, and no overfitting was 
observed. When considering 3, 5, 7 neighborhoods, the number of features is 72, 200, and 392 
respectively, the feature dimension increases significantly, and these high-dimensional features have 
greater correlation and redundancy, resulting in over-fitting in SVM. 

Table 7. Number of support vectors of SVM. 

Classifier OS8 P3 P5 P7 
SVM 9612 11431 11485 11493 

SVM-L2 6368 5201 4564 4250 

We analyze the principle of the SVM classification algorithm. Overfitting is mainly due to the 
irregular distribution and clustering of training data in the feature space, resulting in a large number 
of samples as support vectors, and the classification boundary is very complex. Therefore, we utilize 
the L2 regularization method provided by Python-sklearn to process the original 8-band data, 
eliminate the noise and scattering of the data, and then use SVM to classify. The results show that the 
over-fitting is effectively suppressed. As shown in table 7 and table 8, after L2 regularization, the 
number of support vectors corresponding to OS8, P3, P5 and P7 was significantly reduced, and the 
OA were 0.800, 0.832, 0.858 and 0.874, respectively. The classification effect significantly improved, 
which agreed with the logic and expectations. 

Table 8. Accuracy evaluation based on SVM-L2. 

Feature Training accuracy OA Recall Precision 
OS8 0.799 0.800 0.721 0.835 
P3 0.833 0.832 0.769 0.862 
P5 0.863 0.858 0.821 0.872 
P7 0.881 0.874 0.858 0.874 

5.2. CNN_2D versus VGG16 

We compare the results of CNN_2D with VGG16 [30]. As shown in figure 11, we reserve the 
weight of the convolution layers and the pooling layers of VGG16 and reset the top layers including 
the fully-connected layers, the BatchNormalization layer and the softmax layer. Since the original 
image has 8 bands and cannot be directly input to VGG16, we fuse panchromatic and multispectral 
bands by Gram-Schmidt pan sharpening to obtain the fusion image with 15 m resolution having 7 
bands. Then, we consider three bands in two ways: (1) The first three principal components are 
taken after principal component analysis; (2) the 432 bands representing RGB are taken directly. For 
VGG16, the channels of input data must be 3, and the size must be greater than 48*48, so the 
neighborhood of 5*5 is up-sampled to 50*50 by nearest neighbor sampling. 

 
Figure 11. Transfer learning and fine-tuning of VGG16. 
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We set the ratio of training samples and validation samples to 6:4 for training the proposed 
CNN and VGG16. The accuracy and loss of the training process are shown in figure 12. 

 
Figure 12. Accuracy and loss in the training process of the proposed CNN_2D, VGG16-PCA and 
VGG16-RGB. 

We recorded the training accuracy, training loss, test accuracy, test loss, and the training time of 
200 epochs. Table 9 shows that the accuracy of the CNN_2D is significantly better than that of 
VGG16, and the training time is greatly shortened. In figure 13, the classification effect of CNN_2D is 
obviously greater than that of VGG16, and the extraction of built-up areas is more detailed and 
accurate. 

Table 9. The accuracy and loss of CNN_2D, VGG16-PCA and VGG16-RGB. 

CNN-strategy Training accuracy OA Recall Precision Training time (s) 
CNN_2D 0.968 0.901 0.915 0.882 4000 

VGG16-PCA 0.886 0.806 0.782 0.812 36000 
VGG16-RGB 0.873 0.790 0.755 0.781 34000 

 
Figure 13. Results of built-up area by the CNN_2D, VGG16-PCA and VGG16-RGB. 

6. Conclusion 

This paper presents a unique investigation to provide a full evaluation of OLI imagery for 15 
m-resolution built-up area classification from two viewpoints. First, traditional feature engineering 
and modern feature learning strategies are compared. Next, the influence of a single pixel and image 
patch is examined. In contrast, previous studies have generally tended to conduct limited 
comparisons between, for instance, coarse and fine resolution or pixel- and object-based 
classification. First, our training samples are automatically selected and filtered based on the existing 
product data. Then, we make a multi-level and all-around comparison from two different 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2018                   doi:10.20944/preprints201812.0067.v1

Peer-reviewed version available at Remote Sens. 2018, 11, 2; doi:10.3390/rs11010002

http://dx.doi.org/10.20944/preprints201812.0067.v1
http://dx.doi.org/10.3390/rs11010002


 19 of 21 

 

perspectives: single pixel and image patch, feature engineering and feature learning. In feature 
engineering, we have taken into account the spectrum, morphology, texture and other 
characteristics. In previous studies, there was no such detailed and comprehensive consideration. 
Finally, our work is conducted on a relatively large image area, the city of Beijing, China and its 
environs, ensuring that urban land cover information is generated at a scale of practical value. In 
contrast, earlier experiments have often been limited to very small, local areas. All tests were 
evaluated by the same set of test samples with overall accuracy and Kappa coefficient. The results 
can be summarized as follows: 

(1) The classification accuracy based on feature learning is generally better than that based on 
feature engineering. However in feature engineering, when the original 8 bands consider the 
neighborhood and the classifier is RF, the overall accuracy reaches 90%, which is comparable to the 
results of CNN_2D. 

(2) The classification effect and accuracy based on the image patch are better than those based 
on a single pixel, but the feature dimension of the image patch is large, and there may be feature 
redundancy. When training samples are large, a more complex classification model is needed. CNNs 
based on image patches have a significant advantage over CNNs based on single pixels. The results 
of CNN_2D, water and vegetation in dense buildings can be discriminated from built-up area within 
the Landsat 8 images. Meanwhile, in the suburbs, small built-up areas and narrow roads become 
distinguishable from the background. 

(3) Compared with traditional machine learning algorithms such as SVM, RF and AdaBoost, 
CNN has the advantages of autonomous learning, stability and robustness. The classification 
accuracy of P5-RF and P7-RF differs little from that of CNN_2D and is far superior to other 
classification results. The accuracy of CNN_2D is significantly better than that of VGG16. L2 
regularization can eliminate the noise and scattering of the original 8-band data, effectively suppress 
SVM over-fitting and significantly reduce the number of support vectors. 

The research of this paper can be used as a reference for the extraction and mapping of large 
15-meter resolution building areas. The comprehensive comparison of classification algorithms can 
help researchers in remote sensing image pattern recognition to understand the principle and 
applicability of the algorithm and better carry out scientific research. In this paper, a large number of 
samples are selected automatically based on existing data products, which is of great significance to 
improve the efficiency and effectiveness of supervised classification, and can save considerable 
manpower and time. At the same time, there are some shortcomings to this research, such as not 
using multi-scale remote sensing data (low, medium and high resolution) for comparative analysis 
of built-up area extraction, the spatial relationship of the pixels in an image patch is not analyzed in 
depth, and the hidden layer of CNN is not displayed and analyzed in detail. We will study these 
problems in follow-up work and hope that more scholars will be involved. 
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