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Abstract

The paper is devoted to the investigation of regional observability with constraints on the state
of semilinear parabolic systems. The purpose is to reconstruct the initial state between two
prescribed functions only on an internal subregion ω of the system evolution domain Ω. The
proofs use two approaches, the subdifferential and HUM approach. Finally, a numerical example
is provided to verify the effectiveness of our theory results.
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1 Introduction

Observability is one of the fundamental concept in analysis and control theory, many practical
problems in various fields of engineering, physics, and chemistry are formulated as distributed sys-
tems employing PDEs and studied using this concept. Roughly speaking, observability generally
means that it is possible to reconstruct the initial (state or gradient state) of a distributed system
based on partial measurements takes on the system by the mean of tools called sensors.
Semilinear systems constitute an important subclass of nonlinear systems because numerous real-
world problems have a semilinear structure, they include applications in nuclear, thermal, physical,
chemical, etc. This kind of systems occupied now an important place in control and systems theory
with a large list of publications. For example, Fabre et al. [4] prove approximate controllability
in Lp(Ω) for 1 ≤ p ≤ ∞ using a control which can be internal or on the boundary and when
the nonlinearity N is globally Lipschitz. Moreover, in the case of the interior control, they
prove approximate controllability in C0(Ω). Fernàndez-Cara [5] studied the null-controllability
for semilinear distributed parabolic systems when the nonlinear term N grows slower. Zhang
[16] investigated the local exact controllability of semilinear evolution systems. The fixed point
theorems, and Gronwall’s inequality was used by Zuazua [18] to solve the problem of controllability
for semilinear systems. Zerrik et al. [15] introduced the concept of regional controllability for a
class of semilinear evolution equations, they prove the exact controllability when the system is
asymptotically linear.
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In the theory of distributed parameter systems, many works deal with the problem of observability
for semilinear systems defined in the whole domain Ω. This concept has been carried out the wide
literature (see Magnusson, [11] and Baroun & Jacob, [2]). Recently, the concept of regional
observability for semilinear systems was introduced and developed by (Zerrik et al. [14] and
Boutoulout et al. [3]), which they study the possibility to reconstruct the initial (state or gradient
state) only on a subregion ω of the evolution domain Ω.
In this paper, we study for the first time the concept of regional observability with constraints
on the state for a class of semilinear parabolic systems (also called enlarged observability). The
introduction of this kind of concept is motivated by many real problems. This is the case, for
example, the mathematical model of real systems is obtained from measures or form approxima-
tions. Then, the solution of such systems is approximately known and required to be only between
two bounds.
This paper is divided as follows. The studied problem and some preliminaries are introduced in
section 2. In section 3, we characterize the enlarged observability of the system. In section 4, we
give a characterization of this concept using subdifferential technics. Section 5, is focused on the
regional reconstruction of the initial state between two prescribed functions only in an internal
subregion of the evolution domain. Finally, we develop a numerical approach which is illustrated
by simulations that lead to some conjectures.

2 Problem formulation and preliminaries

Let Ω be an open subset of Rn (n = 1, 2, 3), with a regular boundary ∂Ω. For 0 < T < +∞, let
us denote QT = Ω×]0, T [ and ΣT = ∂Ω×]0, T [. We consider the following semilinear parabolic
system: 

∂y

∂t
(x, t) = Ay(x, t) +N y(x, t) in QT

y(ξ, t) = 0 on ΣT

y(x, 0) = y0(x) in Ω,

(1)

where A is a second-order linear differential operator with compact resolvent which generates
a strongly continuous semigroup (S(t))t≥0 on a Hilbert space X = L2(Ω). We suppose that
y0 ∈ L2(Ω) is unknown and N is a nonlinear continuous operator from L2(Ω) to L2(Ω).
We associate to the system (1) the linear one defined by

∂y

∂t
(x, t) = Ay(x, t) in QT

y(ξ, t) = 0 on ΣT

y(x, 0) = y0(x) in Ω.

(2)

The system (2) has a unique solution y ∈ L2(]0, T [×Ω) (see Lions and Magenes (1968) [8]).
Without lose of generality we note y(x, t) := y(t).
System (1) is augmented with the output function given by

z(t) = Cy(t), t ∈]0, T [ , (3)

where C : D(C) ⊆ L2(Ω) −→ L2(0, T ;Rq), is called the observation operator is a linear opera-
tor(possibly unbounded), depends on the number q and the nature of the considered sensors. The
observation space is O = L2(0, T ;Rq).
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It is well known that global Lipschitz continuity of the nonlinear N implies that the problem (1)
admits a unique mild solution (see Pazy (1990) [12] and Zeidler (1990) [13]) given by the variation
of parameters formula

y(t) = S(t)y0 +

∫ t

0

S(t− τ)N y(τ)dτ, (4)

with y ∈ L2(0, T ;L2(Ω)).
We define a nonlinear semigroup (F (t))t≥0 associated to the solution of (1) by

F (t)y0 = y(t), t ∈]0, T [. (5)

Hence the output function is formally given by

z(t) = CF (t)y0, t ∈ ]0,T[,

with F (·) is a family of nonlinear operators map L2(Ω) into itself, and they satisfy the following
properties:

• (P1) F (0)x = x, for x ∈ L2(Ω).

• (P2) F (t+ s)x = F (t)F (s)x, for s, t ∈]0, T [ and x ∈ L2(Ω).

• (P3) For each x ∈ L2(Ω), the L2(Ω)− valued function F (·)x is continuous over [0,+∞).

The first and second property is obtained through the uniqueness of mild solutions, and the third
property follows from the fact that the solution y(t) of (4) is continuous.
Then (F (t))t≥0 is a family of nonlinear operators on L2(Ω) which formed a nonlinear semigroup on
L2(Ω), with the above-mentioned properties (P1), (P2) and (P3). If in particular, a semigroup
on L2(Ω) provides mild solutions of (1) in the sense of (5), we call it the nonlinear semigroup on
L2(Ω) associated with the semilinear system (1) and we have

F (t)y0 = S(t)y0 +

∫ t

0

S(t− τ)N y(τ)dτ, t ∈]0, T [, y0 ∈ L2(Ω). (6)

The output function is only well defined if C is bounded. However, in case of unbounded observa-
tion operator, we have Cy(t) is not defined, then we introduce the notion of admissible operator
and we have that C is an admissible operator for the nonlinear semigroup (F (t))t≥0 in the sense
of Definition 2.1, if we can extend the mapping y 7−→ CF (·)y to a bounded linear operator from
L2(Ω) to L2(0, T ;Rq).

Definition 2.1 [2] Let C ∈ L(D(C),O), we say that C is an admissible observation operator for
(F (t))t≥0, if there exists a constant λ > 0 such that

‖CF (·)y0 − CF (·)y′0‖L2(0,T ;Rq) ≤ λ ‖y0 − y′0‖ , (7)

for any y0, y
′
0 ∈ D(C).

Let us consider the observability operators defined by

K : L2(Ω) −→ O
z 7−→ CS(.)z

and
G : L2(Ω) −→ O

z′ 7−→ CF (.)z′,

their adjoints K∗ and G∗ are given by

K∗ : O −→ L2(Ω)

z 7−→
∫ T

0

S∗(t)C∗z(t)dt
and

G∗ : O −→ L2(Ω)

z′ 7−→
∫ T

0

F ∗(t)C∗z′(t)dt.
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3 Regional enlarge observability

For ω be an intern subregion of Ω with a positive Lebesgue measure. We consider the restriction
operator

χω : L2(Ω) −→ L2(ω)
y 7−→ χωy = y|ω.

Its adjoint χ∗ω is given by

χ∗
ω
y :=

{
y in ω
0 in Ω\ω.

Let α(·) and β(·) be two functions defined in L2(ω) such that α(·) ≤ β(·) a.e. in ω. Throughout
the paper we set

[α(·), β(·)] = {y ∈ L2(ω) |α(·) ≤ y(·) ≤ β(·) a.e. in ω}

Definition 3.1 1. We say that the linear system (2) together with the output (3) is exactly
[α(·), β(·)]−observable in ω if

Im(χωK
∗) ∩ [α(·), β(·)] 6= ∅ (8)

2. We say that the system (1) together with the output (3) is exactly [α(·), β(·)]−observable in
ω if

Im(χωG
∗) ∩ [α(·), β(·)] 6= ∅ (9)

Remark 3.1 If the system (1) together with the output (3) is exactly [α(·), β(·)]−observable in
ω1 then it is exactly [α(·), β(·)]−observable in any subregion ω2 ⊆ ω1.

The study of Regional Enlarged Observability (REO) of a distributed parameter system governed
by semilinear parabolic equations amounts to solve the following problem.

Problem.
Given the system (1) together with the output (3) in ω at time t ∈ [0, T ], is it possible to
reconstruct y(0)|ω = χωy0 between α(·) and β(·) in ω?

4 Subdifferential approach

The purpose of this section is to apply the subdifferential approach (see Aubin (1984) [1]) to solve
the problem of regional enlarged observability of semilinear parabolic system observed by internal
zonal sensor and reconstruct the initial state y0 between α(·) and β(·) in ω.
This problem is equivalent to minimize the reconstruction error given by{

min ‖Gy − z‖2O
y ∈ Y, (10)

where Y = { y ∈ L2(Ω) | χωy ∈ [α(·), β(·)] }.
In this section, we are interested to solve the problem of minimization (10).
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Let us denote by:
• Γ0(L

2(Ω)) the set of functions f : L2(Ω) −→ R̃ =] − ∞,+∞] which are proper, lower semi-
continuous (l.s.c) and convex in L2(Ω).
• For f ∈ Γ0(L

2(Ω)), the domain of f is defined by

dom(f) = {y ∈ L2(Ω) | f(y) <∞}.
• For y0 ∈ dom(f), the subdifferential of f at y0 is given by the set

∂f(y0) = { y∗ ∈ L2(Ω) | f(y) ≥ f(y0) +
〈
y∗, y − y0

〉
, ∀y ∈ L2(Ω) },

• For J a nonempty subset of L2(Ω)

ΨJ (y) =

{
0 if y ∈ J
+∞ otherwise,

denotes the indicator function of J .
With all these notations, the problem (10) is equivalent to the following problem:{

inf(‖Gy − z‖2O + ΨY (y))
y ∈ L2(Ω).

(11)

Hence the solution of (11) is characterized by the following result.

Theorem 4.1 If the system (1) together with the output (3) is exactly [α(·), β(·)]−observable in
ω, then the following assertions are equivalent.

1. y∗ is a solution of (11).

2. y∗ ∈ Y and Ψ∗Y (−2G∗(Gy∗ − z)) = −2 ‖Gy∗‖2O + 2 〈G∗z, y∗〉.
Proof.
Let us consider f(y) = ‖Gy − z‖2O, we have y∗ solution of (11) if and only if

0 ∈ ∂(f + ΨY )(y∗) (Fermat’s rule).

It is clear that f ∈ Γ0(L
2(Ω)) and since Y is closed, convex and nonempty, we obtain

ΨY ∈ Γ0(L
2(Ω)).

Moreover, under the hypothesis that the system (1) together with the output (3) is exactly
[α(·), β(·)]−observable in ω, we have dom(f) ∩ dom(ΨY ) 6= ∅. Since f is continuous we obtain

∂(f + ΨY )(y∗) = ∂f(y∗) + ∂ΨY (y∗),

it follows that y∗ is a solution of (11) if and only if 0 ∈ ∂f(y∗) + ∂ΨY (y∗).
Moreover, f is Frechet–differentiable, then

∂f(y∗) = {∇f(y∗)} = {2G∗(Gy∗ − z)},
thus y∗ is a solution of (11) if and only if

−2G∗(Gy∗ − z) ∈ ∂ΨY (y∗),

which is equivalent to

y∗ ∈ Y, Ψ∗Y (−2G∗(Gy∗ − z)) = −2 ‖Gy∗‖2O + 2 〈G∗z, y∗〉 .
The proof is complete.

Remark 4.1 This approach is difficult to implement numerically, that is why we are exposing in
the next paragraph an approach which can be implemented by numerical examples.
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5 HUM approach

The purpose of this paragraph is to give an extension of the Hilbert Uniqueness Method introduced
in the linear case by Lions (see Lions (1988) [9], (1989) [10]), which allows the determination of the
initial state between α(·) and β(·) in ω and does not take into account the residual part between
α(·) and β(·) in the subregion Ω\ω.
Let the initial state decomposed in the following form:

y0 =

{
y10 in [α(·), β(·)]
y20 in L2(Ω)\[α(·), β(·)]. (12)

In this section, our subject is the reconstruction of the component y10. We consider the system (1)
observed by an internal zonal sensor (D, f). where D is a nonempty closed part of Ω representing
the geometric support of the sensor, and f define the spatial distribution of the information on
the support D, for more details (see [6], [7]). Then the output function is given by

z(t) =

∫
D

y(x, t)f(x)dx. (13)

Let G be defined by
G = { g ∈ L2(Ω) | g = 0 in L2(Ω)\[α(·), β(·)] }. (14)

We consider the semilinear system given by
∂ϕ

∂t
(x, t) = −Aϕ(x, t) +Nϕ(x, t) in QT

ϕ(ξ, t) = 0 on ΣT

ϕ(x, 0) = ϕ0(x) in Ω,

(15)

which can be decomposed as the follows:
∂ϕ1

∂t
(x, t) = −Aϕ1(x, t) in QT

ϕ1(ξ, t) = 0 on ΣT

ϕ1(x, 0) = ϕ0(x) in Ω,

(16)

and 
∂θ

∂t
(x, t) = −Aθ(x, t) +N (θ(x, t) + ϕ1(x, t)) in QT

θ(ξ, t) = 0 on ΣT

θ(x, 0) = 0 in Ω.

(17)

Without loss of generality, we note ϕ1(x, t) := ϕ1(t) and θ(x, t) := θ(t).

Let us consider ϕ0 ∈ G, we define the mapping

ϕ0 7−→ ‖ϕ0‖G =

(∫ T

0

〈ϕ1(t), f〉
2
L2(D) dt

) 1
2

, (18)

which induces a semi-norm in G. If the linear system (16) is exactly [α(·), β(·)]−observable in ω,
then the semi-norm defines a norm in G (see Zouiten et al. (2017) [17]), we also designate by G
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the completion of G with respect to the norm (18).

We define the auxiliary system by
∂ψ̃

∂t
(x, t) = A∗ψ̃(x, t) +N ψ̃(x, t)− 〈ϕ(t), f〉L2(D) (χ

D
f)(x) in QT

∂ψ̃

∂ν
A∗

(ξ, t) = 0 on ΣT

ψ̃(x, T ) = 0 in Ω.

(19)

Consider the nonlinear operator µ defined by

µ : G −→ G∗

ϕ0 7−→ P(ψ̃(0)),

where P = χ∗
ω
χω the projection operator.

We consider the following decomposition ψ̃ = ψ0 + ψ1, where ψ0 and ψ1 are the solutions of the
following systems:

∂ψ0

∂t
(x, t) = A∗ψ0(x, t)− 〈ϕ1(t), f〉L2(D) (χ

D
f)(x) in QT

∂ψ0

∂ν
A∗

(ξ, t) = 0 on ΣT

ψ0(x, T ) = 0 in Ω,

(20)

and
∂ψ1

∂t
(x, t) = A∗ψ1(x, t) +N (ψ0(x, t) + ψ1(x, t))− 〈θ(t), f〉L2(D) (χ

D
f)(x) in QT

∂ψ1

∂ν
A∗

(ξ, t) = 0 on ΣT

ψ1(x, T ) = 0 in Ω,

(21)

we have
µϕ0 = P(ψ0(0)) + P(ψ1(0)).

We consider the following operators:

Λ : G −→ G∗
ϕ0 7−→ P(ψ0(0))

and
K : G −→ G∗
ϕ0 7−→ P(ψ1(0)).

Then
µ(ϕ0) = Λ(ϕ0)︸ ︷︷ ︸

linear part

+ K(ϕ0)︸ ︷︷ ︸
nonlinear part

.

If the linear system (16) is exactly [α(·), β(·)]−observable in ω, then Λ is an isomorphism
(see [17]), and we obtain

ϕ0 = Λ−1P(ψ̃(0))− Λ−1Kϕ0 . (22)
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Considering the following system:
∂ψ

∂t
(x, t) = A∗ψ(x, t) +Nψ(x, t)− z(t)(χ

D
f)(x) in QT

∂ψ

∂ν
A∗

(ξ, t) = 0 on ΣT

ψ(x, T ) = 0 in Ω.

(23)

If ϕ0 is chosen such that ψ(0) = ψ̃(0) in ω, then the system (23) can be seen like the adjoint of
the system (1) and our problem of regional enlarged observability turns up to find the fixed point
of the equation

Φ(ϕ0) = ϕ0 , (24)

where
Φ : G −→ G∗
ϕ0 −→ Λ−1P(ψ(0))− Λ−1Kϕ0 ,

then we have the following result.

Theorem 5.1 If the linear system (2) together with the output (3) is exactly [α(·), β(·)]−observable
in ω, and N satisfies that there exists δ > 0 such that

‖N (x)‖ ≤ δ ‖x‖ ,

then the equation (24) admits a unique fixed point ϕ0 corresponding to the initial state to be
observed between α(·) and β(·) in ω.

Proof.
We have

Φ(ϕ0) = Λ−1P(ψ(0))− Λ−1Kϕ0 ,

we show under some hypothesis that the operator Φ has a unique fixed point which corresponds
to the initial state to be observed between α(·) and β(·) in ω via two steps.

Step 1. Let us consider p > 0, and BP = B(0, p), we have

H(BP ) = {P(ψ1(0)) | ϕ0 ∈ Bp} ,

and
B̃P = {P(ψ1(t)) | ϕ0 ∈ Bp, t ∈ [0, T ]} .

We find that H(BP ) ⊂ B̃P , then it is sufficient to show that B̃P is relatively compact.

We have ψ1(·) is a solution of (21), then

ψ1(t) = S(t)ψ1(T ) +

∫ t

T

S(t− τ) [N (ψ0(τ) + ψ1(τ))− 〈θ(τ), f〉 (χ
D
f)(x)] dτ,

we obtain

ψ1(t) = −
∫ T

t

S(t− τ) [N (ψ0(τ) + ψ1(τ))− 〈θ(τ), f〉 (χ
D
f)(x)] dτ,
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with ψ1(·) ∈ C(0, T ;L2(Ω)). Then

∃ η > 0 such that ‖P(ψ1(t))‖G∗ ≤ η ‖ψ1(t)‖ .

Since (S(t))t≥0 is a strongly continuous semigroup in [0, T ], we have

∃M > 0 such that ‖S(t)‖ ≤M , ∀t ∈ [0, T ] .

According to the expression of ψ1(t), we have

‖ψ1(t)‖ ≤M

∫ T

t

[
δ(‖ψ0(τ)‖+ ‖ψ1(τ)‖) + ‖θ(τ)‖ ‖f‖2

]
dτ.

Since ψ0(·) is a solution of (20), then

ψ0(t) = −
∫ t

T

S(t− τ) 〈ϕ1(τ), f〉 (χ
D
f)(x)dτ,

we obtain

‖ψ0(t)‖ ≤M

∫ T

t

‖ϕ1(τ)‖ ‖f‖2 dτ.

Or ϕ1 is a solution of (16), thus
ϕ1(t) = −S(t)ϕ0 ,

‖ϕ1(t)‖ ≤M ‖ϕ0‖ .

Then ∫ T

t

‖ϕ1(τ)‖ dτ ≤ TM ‖ϕ0‖ .

Hence
‖ψ0(t)‖ ≤ TM2 ‖f‖2 ‖ϕ0‖ ,

we obtain ∫ T

t

‖ψ0(τ)‖ dτ ≤ T 2M2 ‖f‖2 ‖ϕ0‖ .

On the other hand, we have θ(·) is a solution of (17), then

θ(t) =

∫ t

0

S(t− τ)N [θ(τ) + ϕ1(τ)]dτ,

which give

‖θ(t)‖ ≤Mδ

∫ t

0

‖θ(τ)‖+ ‖ϕ1(τ)‖ dτ,

therefore

‖θ(t)‖ ≤ tM2δ ‖ϕ0‖+Mδ

∫ t

0

‖θ(τ)‖ dτ.

Since t 7−→ tM2δ ‖ϕ0‖ is nondecreasing and using Gronwall theorem, we obtain

‖θ(t)‖ ≤ TM2δeTMδ ‖ϕ0‖ ,

9
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then ∫ T

t

‖θ(τ)‖ dτ ≤ T 2M2δeTMδ ‖ϕ0‖ .

Finally, we obtain

‖ψ1(t)‖ ≤ T 2M3δ ‖f‖2
[
1 + eTMδ

]
‖ϕ0‖+Mδ

∫ T

t

‖ψ1(τ)‖ dτ,

by Gronwall theorem

‖ψ1(t)‖ ≤ eTMδ
(
T 2M3δ ‖f‖2

[
1 + eTMδ

])
‖ϕ0‖ .

Then B̃p is uniformly bounded.

Now let us show that B̃p is equicontinuous. Indeed, we have

ψ1(t2)− ψ1(t1) =

∫ t2

T

S(t2 − τ) [N (ψ0(τ) + ψ1(τ))− 〈θ(τ), f〉 (χ
D
f)(x)] dτ

−
∫ t1

T

S(t1 − τ) [N (ψ0(τ) + ψ1(τ))− 〈θ(τ), f〉 (χ
D
f)(x)] dτ,

we obtain

ψ1(t2)− ψ1(t1) =

∫ t2

T

(S(t2 − τ)− S(t1 − τ)) [N (ψ0(τ) + ψ1(τ))− 〈θ(τ), f〉 (χ
D
f)(x)] dτ

+

∫ t2

t1

S(t1 − τ) [N (ψ0(τ) + ψ1(τ))− 〈θ(τ), f〉 (χ
D
f)(x)] dτ

= D1 +D2,

where

D1 =

∫ t2

T

(S(t2 − τ)− S(t1 − τ)) [N (ψ0(τ) + ψ1(τ))− 〈θ(τ), f〉 (χ
D
f)(x)] dτ

D2 =

∫ t2

t1

S(t1 − τ) [N (ψ0(τ) + ψ1(τ))− 〈θ(τ), f〉 (χ
D
f)(x)] dτ.

We obtain that for all ε1 > 0, there exists ζ > 0 such that |t2 − t1| < ζ implies

‖S(t2 − τ)− S(t1 − τ)‖ ≤ ε1 ∀t ∈ [0, T ] ,

which yields
‖D1‖ ≤ ε1T

2M2δ ‖f‖2
([

1 + TMδeTMδ
] [

1 + eTMδ
])
‖ϕ0‖ ,

and
‖D2‖ ≤ ζT 2M3δ ‖f‖2

([
1 + TMδeTMδ

] [
1 + eTMδ

])
‖ϕ0‖ .

Then
‖P(ψ1(t2))− P(ψ1(t1))‖G∗ ≤ η ‖ψ1(t2)− ψ1(t1)‖

≤ ε1ηF1 + ζηF2,
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with {
F1 = T 2M2δ ‖f‖2

([
1 + TMδeTMδ

] [
1 + eTMδ

])
‖ϕ0‖ ,

F2 = T 2M3δ ‖f‖2
([

1 + TMδeTMδ
] [

1 + eTMδ
])
‖ϕ0‖ .

For
ε1 ≤

ε

2ηF1

and ζ ≤ ε

2ηF2

,

we obtain
‖P(ψ1(t2))− P(ψ1(t1))‖G∗ ≤ ε.

Thus, the operator Φ : Bp −→ G∗ is compact.

Step 2. Φ enforces the ball Bp in itself. If the system (2) is exactly [α(·), β(·)]−observable in ω,
then Λ−1P is bounded and we have

‖Φ(ϕ0)‖ ≤
∥∥Λ−1P

∥∥ (‖ψ(0)‖+ ‖ψ1(0)‖).

Then applying the theorem of Schauder (see Zeidler (1990) [13]) the operator Φ admits a unique
fixed point and the initial state to be observed between α(·) and β(·) in ω is given by

y10 = χωϕ0 .

The proof is complete.

Remark 5.1 One can proceed in the same way if the system (1) is augmented with

z(t) = y(b, t), b ∈ Ω, t ∈]0, T [,

which is observed by a pointwise sensor.

Assume that the system (2) is exactly [α(·), β(·)]–observable in ω. Then we have the following
algorithm.
Algorithm.

Step 1 : • The subregion ω, the domain D and the function of distribution f .
• Choose the function y0 ∈ [α(·), β(·)].
• Threshold accuracy ε.

Step 2 : Repeat
� Solve the system (16) to obtain ϕ1 .
� Solve the system (17) to obtain θ.
� Solve the system (20) to obtain ψ0.
� Solve the system (21) to obtain ψ1.
� Resolution of Φ(ϕ0) = ϕ0 , and obtain ϕ0 .

Until ‖ϕ0 − Φ(ϕ0)‖ < ε.

Step 3 : The solution ϕ0 corresponds to the initial state to be observed between
α(·) and β(·) in ω.
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6 Simulation results

Here we present a numerical example that leads to some results related to the choice of the sub-
region, the constraints functions, and the sensor location.

Let us consider the system defined for Ω =]0, 1[ by the following one-dimensional system observed
by a pointwise sensor:

∂y

∂t
(x, t) = 0.01

∂2y

∂x2
(x, t) +

+∞∑
i=1

|〈y(t), ϕ
i
〉| 〈y(t), ϕ

i
〉ϕ

i
(x) in ]0, 1[×]0, T [

y(0, t) = y(1, t) = 0 on ]0, T [
y(x, 0) = y0(x) in ]0, 1[,

(25)

where the operator A =
∂2

∂x2
has a complete set of eigenfunctions (ϕ

i
)i∈N in L2(Ω).

The system (25) is augmented with the output function given by

z(t) = y(b, t), t ∈]0, T [, (26)

with b = 0.83 and T = 2. Let us consider

y0(x) = (x− 1)2 sin2(x),

α(x) =
2

11
x(1− x),

β(x) =
1

4
x(1− x).

Applying the previous algorithm, we obtain the following results.

• For ω =]0.25, 0.70[

Figure 1 – The estimated initial state y0e
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Figure.1 shows that the initial state estimated yoe is between α(·) and β(·) in ω =]0.25, 0.70[, then
the system (25)–(26) is [α(·), β(·)]–observable in ω.
The initial state yoe is estimated with a reconstruction error

‖y0 − yoe‖2= 1.8× 10−3.

• If the sensor is located in b = 0.78, we obtain

Figure 2 – The estimated initial state y0e

Figure.2 shows that the initial state estimated yoe is not between α(·) and β(·) in
ω =]0.25, 0.70[, this means that the system (25)–(26) is not [α(·), β(·)]–observable in ω.

7 Conclusion

This paper deals with the notion of regional enlarged observability of semilinear parabolic systems.
The internal enlarged observability of linear systems was used to solve this problem. Interesting
results are obtained and illustrated with numerical example and simulations. Many questions
remain open, such as the case of the regional enlarged observability of semilinear systems using
Lagrangian approach and the case of the regional enlarged observability for a class of fractional
order systems. Those questions are still under consideration and the results will appear in a future
paper.
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