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Abstract: We provide a very general review of the resonant transmission line method for optical
fiber problems. The method has been found to work seamlessly for a variety of difficult problems
including elliptical and eccentric core fibers as well as “holey”, photonic crystal fibers. A latest
version has been shown to offer great versatility with respect to cases of unconventional,
inhomogeneous index profiles.
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1. Introduction

The method of Resonant Transmission Lines (RTL) has evolved from some original observations
around the generic theme of transverse resonance in direct association with the standard theory of
the solutions of the general telegrapher’s equation in transmission lines. It was originally applied in
simple cases of standard step index and radial index profiles [1]-[6]. Later on, the idea behind the
method was expanded to include a very general class of so called, Sturm-Liouville problems
including the canonical form of the standard Schrodinger problem [7],[8],[9]. Lately, it was also
applied successfully in the case of superlattices with periodic potentials [10] which are similar to the
general class of photonic crystal fibers (PCF) or Bragg fibers in general [14]. Several other cases of
unusual refractive index profiles have been successfully treated with the same method [11],[12],[13].
In the present work, we expose more recent developments in an effort to expand the validity of the
RTL method in all unconventional fiber models.

We shall heretofore refer to all the cylindrical optical fibers as the class of conventional optical
fibers (COF) for as long as they can be separated in a set of n very thin successive cylindrical layers
of average radius r of uniform refractive index values nji. Indices of successive layers will be allowed
in general to be different for each step as say, n(ri). The resulting, total index profile 1(r) variation
from the centre of the fiber up to the limit outer air medium, completely defines the propagation
properties inside the fiber.

We shall also separate another class of unconventional optical fibers (UOF) as the ones in which
at least in some of its successive thin cylindrical layers present an additional variation of the total
index profile along its radial coordinate ¢ in the form n(r,¢). Such cases include elliptic core, non
symmetric or eccentric core fibers and in general, all cases of not strictly circular core fibers. In these
cases any discretization into thin cylindrical layers that “cuts” through the core and cladding, results
in a variation of the refractive index along ¢. In figure (1) we show such a case of a thin circular
cylindrical layer cutting an elliptic core fiber. As is evident in the schematic, the variation is analogous
to the arc length of the circular sector cut by the ellipse for each discretization step.
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Fig. 1. Example of the alternating character of the local index value from a thin shell radial
discretization.
Additionally, photonic fibers made of silica with a set of small air holes around their centers will
have many cylindrical layers of varying refractive indexes along 0. In figure 2, we show an example
of a PCF with a hexagonal lattice of seven rows of air holes.

Silica

air hole LA [d]

Fig.2 Schematic depiction of the alternating step index resulting from radial discretization in
PCF.
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Again, radial discretization with thin circular cylindrical layers results in alternatively cutting
through air holes and silica of a PCF as depicted in the schematic. The main aim in the present
work, is to develop the original RTL method so as to be able to include all such UOF cases via an
appropriate transformation to mathematically equivalent COF cases.

2. Mathematical equivalence of homogeneous circular cylindrical layers to electric transmission
lines

The basis for the application of the previously introduced RTL is the radial discretization of all
cylindrical fibers via a separation into a succession of thin cylindrical layers each one with its own
constant refractive index . These layers can be extended outside of the cladding in order to take into
consideration the effect of the surrounding air (n=1). Each thin cylindrical layer could have thickness
Or proportional to each average radius r which means that given discrete steps as ér =1, —nry

ri+7p

with r= —— one has

1+€

%rl =1, (out)
nom_ e g )1t /2 (1)
ra+ry 2 1-¢/.

2 _ .
5, i (in)

For any such circular cylindrical layer Maxwell equations (for a constant wavelength i.e. constant

frequency ‘w’) can be written in their standard form as

{ V)_()E = —ja)uoﬁ_) ?
VXH = jweyn?(r)E

Taking into consideration the relations wpy, = kogz, and wey = ? where k, =% , Zo = 1207

0

and replacing Zoﬁ with H in order E and H to have the same units (V/m) , Maxwell equations

become then

{ vi(ﬁ = —jkoH ) 3
VXH = jkon?(r)E

In circular cylindrical geometry of coordinates (r, ¢, z) the following set of three partial differential

equations can be derived by the first vector Maxwell equation as

105, 9Bp _ _;

rap 9z JkoHy

JE, 0E .

2 9% = —jkeyh @
10(rBy) _ 10Er _ _;
tr ar rap JkoH,

Applying a Fourier Transform along ‘z’ and ‘¢” with wave numbers ‘B" and “'I" , where [ is integer

(because along ‘¢’ we have Fourier series of period 2m), the set (4) becomes:

T

jl —— T e
J . E, _].[;qu = —jkoH,

. g OEz L T

JBE, — or _]koH(p )
19(rEy il = T
O

In (5) we use new variables E,,E,, E,, H,, H,, H, to denote the Fourier Transforms of the respective
Electromagnetic field components. Furthermore replacing  and r by their reduced variables

according to the following relations :
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Then (5) takes the form

"
o, —

jl — . T T
J . Ez __]ﬁE(p = _]Hr

JBE, — =% = —jH, (6)
19(rEp)  jle _ 4
l;T_7Er— JH,

Following a similar approach the second Maxwell vector equation (3) can be written in the form

[ =
( ]_Hz_]ﬂH(p = jn?(r)E;

| r

e O, . —
].BHr ™ = ]nZ(T‘)E(p (7)
19(rHg) _jlg _ + 2, NF

=5 —TH, = jn* (") E,

Furthermore following a cumbersome analysis, it is possible to prove that the system of equations (6)
and (7) can be transformed in a set of four differential equations (8), relating the equivalent “voltage’

and “current” functions Vy, Iy, Vg, Iz  defined as follows:

IH, + prH,
M — ]F
rH_T ﬁrﬁ —lEZ
IM = =
J) J)
lE, + BrE
4y =TI,

Ig =n’rE, = [H, — prH,

(Br)?+12
T

where we use the notation F =

Vym
or

Y ;
= _j_FIM —JMIg

A — _jFv,,

G}
Vg ' YZ . (8)
-_— = _jnzFIE _]MIM

or
a1 )
l a_rE = —jn?FVg

2
In (8) we introduced the total propagation factor y? = i—z + B? —n? and the auxiliary function M =

218
[(Br)2+12]F
At this point it is noticed that Vy, I, Vg, Iz are continuous functions at the boundaries because the
tangential components of electric and magnetic fields T{; _I-I; and E_(p—) Ej on the cylindrical surface
are continuous functions passing the boundaries’ of the cylindrical layer. Using the previous

relations, the Fourier Transforms of the Electro-Magnetic field components along (r, I, f ) can be
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expressed as functions of their equivalent “voltages” and “currents” functions with the auxiliary

relations

7 _Jjl = _ Ik
Hrsz/T" Erzﬁ

—_— B
E, =1V, "81
P E/T+Jf M

I
H, = ﬁIE +jBVu

_ 1
E, = _JEIM + pVg

It becomes evident by inspection that the final equations (8) represent two coupled electric

transmission lines.

2.1 Decoupling the transmission line equations

The prescribed set of equations (8) constitutes a homogeneous set of ordinary differential equations
of r and considering that the all vectors [Vy, Iy, Vg, Iz] can be turned into exponential functions of
given by Vy = Vet Iy = 1ye’", Vg = Vge'T, I, = I;e’", where Vy, Iy, Vg, Iz are constants i.e. not
functions of r. Thus the system (8) can be transformed in an algebraic set of the following four

equations

2
(&v, = —%IM — jMIy

$Iy = —jFVy
PR ©)
|fVE = _jnzFIE —JMly
\ &ly = —jn?FVg
; 2
Replacing Iy = — %VM, Ig = — g Ve , we obtain a set of two homogeneous equations

y? n2fF
V=7V —M=—Vg &2y = y*Vy — n*MFV;
y? P Oy £V, =y2V, — MF
EVE=nT$VE_MEVM g g
This then leads to the eigenvalue equations
MFVy + (&2 —=y*)Vg =0
From the standard form of the eigenvalue problem we obtain through the determinant  differential
equations as follows
(62 —y2)2 —n?M?F? =0 ,or 2 =y?2 £+ nMF (10)
Hence the system has two eigenvalues and two mutually excluded or “normal” eigenvectors. The
eigenvectors will be found by replacing &2 by its value. Thus for é* =y —nMF, n?MFVy—
nMFVy = 0 =>V, =nV; and the eigenvector is Vs = V) + nVy While for &% =y% +nMF, V), =

—nV; and the eigenvector becomes V; = V) —nV;. Their respective “current” eigenvectors are

m_ Vm _1 e = e = _E g i
related as e el thus I, = " and I, =1, + — Iy =1y . Since the auxiliary M
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function has the sign of I, the set (%, ), for | = —I becomes equal to the set (Vg, ;). Thus we can

consider as a unique solution for the set (V;,1;) and the integer ‘I 'varies —ec to + e , and of course

&2 =y?2 —nMF :

ws_ &

or - jF S (11)
s )

Ez —]FIS

Furthermore V;, I; should be continuous functions at their boundaries although n(r) varies from

layer to layer. This is achieved via the adjustemnt V, = Vi, + nVy = 2V,, and I, = I, + £ = 2I ,
Yy Yy ] s M E M s =yt M

which are continuous functions of r by definition.

Vym _ 52

ar  jFM

oy (12)
or = JFlu

Another option for achieving continuity is to consider the functions V;; = VTM +Vy and I, =nly +

Iz .In this case V;z = 2V; and I, = 2I; that are also continuous. Thus

wg_ _ &,
ar - jleF E (13)
dlg — _.Fnzl
ar J E

Thus the set of two coupled transmission lines (9) is equivalent to two independent transmission lines
(12) and (13).

The two waves represented by the equations of transmission lines (12) and (13), are geometrically
normal because the first is related to Magnetic field and the second to Electric field that are
geometrically normal for transmitted EM waves. This property is an inherent proprety of EM modes
in optical fibers related to birefringence phenomena. However the 3 respective values, for any mode,

are always found to be very close and can be considered as practically equal.

2.2 Equivalent circuits for cylindrical layers , boundary conditions and birefringence

Taking into consideration the transmission line theory, it can be proved that each layer of

infinitesimal thickness Or is equivalent to a T-circuit as the one shown in figure 3

Zp Zp
’—D L___—=*
Vin Vout
lin lout
Zp

Fig. 3. The equivalent quadrupole for each cylindrical sector.
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tanh [(Eér)/ 2]

[

For £6r « 1 the impedances can be approximated by the equivalent relations

}F smh(fér)

2(6r
ZB = £ ( /2)
E (14)
7 = 1
P jrér

If £2 >0, both Zg,Z, are “capacitive” reactances, for &2 < 0 however Zz becomes “inductive”

reactance. For (Vg Iz) the approximate respective impedances of the T-circuit are given as

_£07)
B ™ 2
jn“F
o (15)
P in2por

As previously stated the functions (Vy,Iy) of each layer are continuous at the cylindrical
boundaries of the layer, thus if we divide the fiber (including a sufficient number of air layers) in
successive thin layers and replace them by their equivalent T-circuits, an overall lossless transmission
line is formed with only reactive elements. For given ‘l’, the ‘8" values that lead to the resonance of
the overall transmission line are the eigenvalues of the whole optical fiber.

When a transmission line is in resonance, at any arbitrary point 7, of the line, the sum of reactive
impedances arising from the successive T-circuits on the left and right sides of r, should be equal to
zero, thus the equation giving the eigenvalues of the transmission line is the following :

{Zirg + Zrry =0 (16)

Equation (16) provides the eigen-values ‘g “ for a given ‘I’ , where 4 Lror Z rr, are the overall reactive
impedances of successive T-circuits on the left and right of r,, using (14) or (15). The value of 1, is
usually given by the core radius. For the same ‘I’ the equations (14) and (15) give usually slightly
different values of ‘s’ ,this phenomenon is called “Birefringence”. For circular step index fibers the
birefringence is negligible, however for elliptic fibers and fibers of any other non circular cores the
birefringence phenomenon could be not negligible.

In order to calculate the overall reactive impedances on the left and right of 7, we should find the
impedances for r - 0 and for r > . As we proceed to 0 or to e the remaining piece of

transmission line becomes “homogeneous” i.e. its overall reactive impedance is equal to its

characteristic impedance given by Z = £ ( - i ) Then we must have
JF jneF

r—>owF - B%r MF->0,¢&-.p2—n%2 > Z,_.,.=0

12 l 1 1
r—>0.F—>7, §—>;9 Zr_)o—m(or—)

jn2

For =0 Z,,, = (open circuit at the center of the equivalent transmission line) It is useful to notice
that there is an equivalence between our formulation and the classic formulation modes of optical
fibers. In particular, for [ =0, the modes (Vm,Im) are the TM modes ,while the modes (V&Ie) are
the TE modes. For [ >0, the modes (Vm,Im) are the HE modes ,while the modes (VEIr) are their
HE birefringence modes. For | <0 the modes (Vu,Im) are the EH modes ,while the modes (V& Ik)

are their EH birefringence modes.
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For any given [, using the resonance technique the f values of the two birefringence modes can
be calculated. The equation (16) is given as MATLAB function in Appendix A

Let us consider for example a step-index fiber of 7:=1.54, n=1.47 the Vv, Vg, fundamental modes for
V=33, can be calculated and their [ values are respectively  1.518934962534846 and
1.518340184686295, hence their birefringence is equal to 0.0004947 or 0.0391%.

The 3 value for the equivalent mode Veq was also calculated and was equal to 1.518638548412019 (that
is approximately equal to the mean value of the previous (3 values), while the 3 value calculated
classically by Bessel functions is equal to 1.518642063686336. These [3 values are very close differing
only 0.0002315 %.

In the following fig 4 the birefringences of the step-index fibers of n:=1.54, n:=1.47 and of n1=1.475,

n2=1.47 as functions of V are shown

Birefringences of the fundamentals of step index fibers

0.18¢

0.17 =
n1=1.54,n2=1.47

0.16

0.15

AB/(n1-n2¢

0.14

0.13

0.12
nN1=1.475, n2=1.47

0.11° - " .
2 2.5 3 35
\Y
Fig4. Birefringence of two step index fibers with different refractive indexes as functions of their
parameters V

We notice that for any V, the birefringence is almost proportional to An?=(1-12)?, thus the
birefringence of step index fibers of very small Ar is negligible.
For example for V=2.4, and An=1.54-1.47=0.07, the birefringence is 0.168X0.0049=0.0008232 or ~0.055
% on the average [3, while for An=1.475-1.47=0.005, the birefringence is 0.168X0.000025=0.000042 or ~
0.0028 % on the average 3.

2.3 Calculating “Voltages” Vm , Ve and “Currents” Im, It and resulting fields

For any given [, using the resonance technique the § values of the two birefringence modes can
be calculated. These § values are practically the same, thus we can consider them as equal or we can

consider as the proper value of § the mean value of the two modes.
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Taking Vm =1 at the center point of the fiber(r=0) , the respective value of In at the same point can
be calculated by the respective terminal impedance. Using the matrix relations between input-
output for the equivalent successive T-circuits, the values of V), and Iy at the rest thin cylindrical
layers can be calculated. In fact from the general theory of the telegrapher’s equation we know that

the inputs and outputs are associated via a transfer matrix as follows

L1 cosh(&(r)-or) Z(r)-sinh(&(r)-or) )| Vi, N
Vou Toul= sinh(&(r)-or)/ Z(r) cosh(&(r)-or) |-

N( 1 Z<r)-(§(r)-a‘r)j{vm} _

in

(17)

(&(r)-or)l Z(r) 1 I
_ 1 & (r)-or/ jF(r) {Vin}
JE(r)-or 1 I,

in

in

In (17), the characteristic impedance should be taken as Z(r) = &(r)/jF(r) to fit with the previous
analysis. Using the relations nV; =V, and nly = I; the respective values of their birefringence
partners can also be calculated for every thin cylindrical layer ri. Finally we obtain the actual fields

via the relations

— il —
Hr =] M/T" Er =I_E

n2r

. B

Iy

— B
o =Wg/r +]FIM

I R
H, = EIE +jBVu

o
E, = _JEIM + BVg

A very useful field component for optical fibers is the value of the overall electric field at any thin

cylindrical layer of average radius r, that can be calculated by the formula:
— 2 — — —
2 2 2
E (| =IE [ +IE, P +|E,|

After some algebra this leads to the formula

Em[ =[(Br* +1) 12 |V, F +

1 N 1
(Br)’ +1°  nr

In the next section we extend our analysis in certain UOF cases.

2
7 ([l

3. Unconventional fibers

The refractive index n(r,@) of the fiber with a UOF profile in general can be described as a function of

both r and ¢. Each cylindrical layer of an average radius r is considered to have a local value 7 (¢)

for r= % . Again, we make use of the generic form of Maxwell equations as in (2) of the previous
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section. Fourier Transforming the first vector equation gives the same set of equations as in (6), since
there is no difference with the UOF case, however the second Maxwell vector equation due to

presence of the general n function should now be written as

6HZ

-2 - in(1)’ ®E, (18)

19(rHyp) }l
r or

J LH, - jpH, = jn()? ®F,
JBH,

=jn(1)* ® E,

The symbol ® means convolution arising by the product of two functions of the variable ¢. In the
following paragraphs it will be shown how to escape this mathematical difficulty for the usual
unconventional optical fibers.

3.1 UOF with non circular, non symmetric or eccentric cores

For unconventional fibers of non circular cores there are a set of circular layers where the refractive
index varies between the inner and outer core and cladding values respectively. In any such case, the
function n(¢)? is a sum of a steady component n® and a periodic function of ¢ of period 27 thus
can be written as a Fourier series n(¢)? = n* + %*Z N, exp(jk¢). Taking into consideration that the
convolution of the product of an exponential function exp(jke) with any function A(gp) of a
Fourier Transform A(l) is equal to A(l +k), i.e. the convolution generates “harmonics”. The
function n(¢)? is in a set of cylindrical thin layers, a sum of step functions alternating between the
values nf and nj , where n; and n, are refractive indexes of core and gladding. Consideration that
in optical fibers the refractive indices of core and cladding are very close, one effectively has
that (n, — n,)/n; « 1. As a result, any harmonic factors N« of the function n(¢)? are negligible in
comparison to its steady component n? and can be omitted.

As an example, the harmonics become maximal for equal alternation steps. In this case the first

2("1 n3)

harmonic, that has the maximum value of all harmonics, is equal to A4; = , while the steady

component n® equals (nf + n3)/2 and we may make an approximation as A4,/n* = (4/m)(n, —
ny)/mn; K1
Thus for optical fibers we can always assume that n(l)?=n?. Then the system (18) will become

equivalent to the following

( LH, - jpH, = jn’E;

aHZ =
JBH —-—%=jn’E, (19)
19(rHy) e 2T
=5 7Hr = jn*E.

We can then follow the analysis that we did with the conventional fibers, where n? is the average

value of the 7?(p) of each layer along ¢ in the [0, 2n] interval.

3.2 Application to elliptic core fibers

The method was applied in the calculation of fundamental modes of a fiber of elliptic core of a and b
major and minor semi-axis respectively with refractive index n1=1.54, and a cladding value of n2=1.47

(figure 5) for various wavelengths (defined by various V factor values V = b * 2 * my/n? —n3 ) and
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four ratios a/b=1.1,1.3,1.5,2.0. Results are compared with previous results calculated with Mathieu

functions with the results differing only by 0.01+ 0.123 %.

The steady component of the refractive index for the calculations for each radius r is defined as nl

for r<b, n2 for r>a and as (n, * ¢+ n, * ¢, )/m when b<r<b, where @1,¢: are the arcs of the circle of

radius r, inside and outside the ellipse in the upper semi ellipse.

n2

Fig 5. Elliptic fiber with three indicative elliptic thin layers. Inside the ellipse r<b(n=n1), outside

the ellipse r>a(n=n2) and partly outside b<r<a (ni>n>n2)

COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES
a/b=1.1 Mathieu TR
\Y% b1, No b1, No DIFF relDIFF(0/00)
1.5 1,487454917000000 1,487538376725580 -0,000083459725580 0,056109079
1.7 1,493245000000000 1,493450986151880 -0,000205986151880 0,137945315
1.9 1,498457700000000 1,498722795582640 -0,000265095582640 0,17691229
21 1,503029750000000 1,503312465850780 -0,000282715850780 0,188097309
2.3 1,506994250000000 1,507270533663140 -0,000276283663140 0,183334252
25 1,510418500000000 1,510675880979590 -0,000257380979590 0,170403752
2.7 1,513376830000000 1,513609496242670 -0,000232666242670 0,153739794
2.9 1,515936970000000 1,516144774928280 -0,000207804928280 0,13708019
31 1,518160870000000 1,518344840727660 -0,000183970727660 0,121179996
3.3 1,520101500000000 1,520262686679180 -0,000161186679180 0,106036787

COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES
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a/b=1.3 Mathieu TR

\Y% b1, No b11, No DIFF relDIFF(0/00)
1.5 1,491188512000000 1,491027765079550 0,000160746920450 0,107797853
1.7 1,497028990000000 1,496897637511800 0,000131352488200 0,087742114
1.9 1,502119714000000 1,501986592174880 0,000133121825120 0,088622647
2.1 1,506471523000000 1,506335918376860 0,000135604623140 0,090014727
2.3 1,510205927000000 1,510039049600890 0,000166877399110 0,110499764
2.5 1,513423500000000 1,513196002523000 0,000227497477000 0,150319773
2.7 1,516170122000000 1,515897403413190 0,000272718586810 0,179873342
2.9 1,518513480000000 1,518220317018870 0,000293162981130 0,193059189
3.1 1,520539300000000 1,520228501721160 0,000310798278840 0,204400030
3.3 1,522298190000000 1,521974104375010 0,000324085624990 0,212892341

COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES

a/b=1.5 Mathieu TR

A% b1, No b1, No DIFF rel DIFF(0/00)
1.5 1,494250610000000 1,493636836360350 0,000613773639650 0,410756827
1.7 1,499922346000000 1,499340905733040 0,000581440266960 0,387646913
1.9 1,504818670000000 1,504203108321470 0,000615561678530 0,409060368
2.1 1,509039170000000 1,508315227121150 0,000723942878850 0,479737633
2.3 1,512533150000000 1,511793195339390 0,000739954660610 0,489215500
2.5 1,515493100000000 1,514745797603970 0,000747302396030 0,493108412
2.7 1,518011570000000 1,517265908951310 0,000745661048690 0,491209068
2.9 1,520166130000000 1,519429880525980 0,000736249474020 0,48432172
3.1 1,522019120000000 1,521299532774000 0,000719587226000 0,472784617
3.3 1,523620800000000 1,522924688766490 0,000696111233510 0,456879582

COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES

a/b=2 | Mathieu TR

A% b1, No b1, No DIFF rel DIFF(0/00)
1.5 1,499390500000000 1,497675992184210 0,001714507815790 1,143469840
1.7 1,504727250000000 1,502885066432660 0,001842183567340 1,224264110
1.9 1,509110880000000 1,507251064452310 0,001859815547690 1,232391584
2.1 1,512712190000000 1,510915134944720 0,001797055055280 1,187968913
2.3 1,515667864000000 1,514006539095880 0,001661324904120 1,096100896
2.5 1,518085750000000 1,516632675098700 0,001453074901300 0,957175773
2.7 1,520047200000000 1,518879733445780 0,001167466554220 0,768046252
2.9 1,521631209000000 1,520816115931370 0,000815093068630 0,535670578
3.1 1,522869900000000 1,522496060692140 0,000373839307860 0,245483418
3.3 1,523799100000000 1,523962746538420 -0,000163646538420 0,107393775
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In the following figure 6 the (3 diagram of the fundamental even mode of an elliptic fiber with semi

axis ratio aa/bb=2, ni=1.54 and n2=1.47 and variable factor defined by : V = bb - ky-{/nZ —n3 )
is shown

Elliptic core fiber, aa/bb=2; n1=1.54,n2=1.47, fundamental mode (I=1)
1.55¢ r r r r

1.54

1.53

1.52

1.51

b=p/K0

1.5

1.49

1.48

1.47° - - - - - .
0 1 2 3 4 5 6 7 8 9 10
\%

Fig 6. (3-V diagram of the even fundamental mode an elliptic fiber of semi axis ratio aa/bb=2 and

core refractive index 1.54 and gladding index 1.47

3.3 Application to rectangular core fiber

The method was applied also in the calculation of fundamental modes of a fiber with an rectangular
core (see figure 7 ) of aa and bb semi sides, with refractive indexnl1=1.54, and a gladding of refractive

index n2=1.47, for various wavelengths, defined by various V factor values V = bb - ky *\/nf —n3
and four ratios a/b=1.1,1.3,1.5,2.0.
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a/b=1.1
A%

1.5

1.7

1.9

21

n2

Fig 7. Rectangular core fiber of semi sides aa and bb , for r<bb, n=ni, for r>aa, n=n:, for bb<r<aa,

n2<n<ni

The birefringence results are compared with the birefringence results of the elliptic core fiber with

equal semi axis. The steady component of the refractive index for the calculations for each radius r is

defined as n1 for r<b, n2 for r>a and as (n; * ¢;+ n, * ¢, )/m when b<r<b, where @1,@:are the arcs of

the circle of radius r, inside the orthogonal and outside the orthogonal in the upper semi orthogonal.

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS

Rectangular core

Elliptic core

Fundamental

Values

Mode

1,492539945916010
1,498357447022790
1,503350570368440
1,507590076049970

Birefringence (TR)

0,000346704531850
0,000513384576600
0,000576764589930
0,000580793732230

Birefringence (TR)

0,000303585935370
0,000575417316090
0,000712035787010
0,000757892695190
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2.3
25
2.7
2.9
3.1
3.3

a/b=1.3
A%
1.5
1.7
1.9
21
2.3
2.5
2.7
2.9
3.1
3.3

a/b=1.5
A%

1.5

1.7

1.9

2.1

2.3

2.5

2.7

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS

1,511183551577450
1,514237341469060
1,516844499544290
1,519082616576080
1,521015087494710
1,522693317372840

0,000554099561380
0,000513428535340
0,000468033918970
0,000422786387590
0,000380083447450
0,000340959781570

Rectangular core

0,000750121835720
0,000713597265680
0,000663528284040
0,000608733773240
0,000554096605350
0,000502161305990

Elliptic core

Fundamental

Values

Mode

1,495847758922450
1,501459058153440
1,506179273220210
1,510134432440230
1,513456882268610
1,516262818410440
1,518648025192190
1,520689537973830
1,522448794667530
1,523974761485380

Birefringence (TR)

0,000344065006270
0,000451639480470
0,000480411129310
0,000468166987430
0,000436878544030
0,000398422704380
0,000358904227450
0,000321272665480
0,000286796641510
0,000255871394240

Birefringence (TR)

0,000325722889410
0,000520210503450
0,000601842058430
0,000615857816190
0,000593498171210
0,000553682765940
0,000507155757960
0,000459732120240
0,000414381305640
0,000372472456950

d0i:10.20944/preprints201812.0033.v1

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS

Rectangular core

Elliptic core

Fundamental

Values

Mode

1,498120450723510
1,503463400911670
1,507908503417930
1,511610102671980
1,514709614765410
1,517324041962060
1,519546684126380

Birefringence

Birefringence (TR)

0,000278361237480
0,000357573590440
0,000376605061620
0,000365648210230
0,000341283334480
0,000312143747180
0,000282536889750

0,000295449461120
0,000442306154260
0,000497613358440
0,000501375052490
0,000478771792790
0,000444266137270
0,000405759261530
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2.9 1,521451022056960 0,000254483058070 0,000367378187930
3.1 1,523094834995030 0,000228815613970 0,000331142666700
3.3 1,524523718254910 0,000205765806060 0,000297919827130

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS

Rectangular core Elliptic core
Fundamental Mode

a/b=2 Values Birefringence (TR) Birefringence (TR)
\%

1.5 1,501154370588750 0,000115100455570 |  0.00017851280204
1.7 1,505905455821760 0,000185956233950 |  0.00028097261437
1.9 1,509839664490200 0,000217496051150 |  0.00032331073887
21 1,513123501262850 0,000227441962700 |  0.00033221109868
2.3 1,515890438928040 0,000225620967080 |  0.00033221109868
2.5 1,518243818452060 0,000217498908240 |  0.00030589412246
2.7 1,520263082984900 0,000206163759050 |  0.00028459934024
2.9 1,522009559228890 0,000193389032200 |  0.00026227629912
31 1,523531014266760 0,000180203858540 |  0.00024038749997
3.3 1,524865056067340 0,000167204354840 | 0.00021967555642

For comparison reasons the average refractive indexes as functions of 1, for an elliptic core fiber
and for a rectangular core fiber of the same aa and bb and aa/bb=2, are shown in figure 8.
In appendix B the MATLAB codes for the average refractive indexes of an elliptic and a rectangular

core fiber are given
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Fibers with elliptic and rectangular cores aa/bb=2
1.56

1.55

1.54 \

1.53

\ Rectangular

1.52

151 /

15 >

Elliptic M
1.49 ‘,

1.48 \
1.47
0 2 4 6 8 10 12 14 16
Reduced distance from the center of the fiber

Average refractive index

Fig 8. Average refractive indexes of circular thin layers of elliptic and rectangular core fibers

3.4 The PCF case

In case of a holey fiber, we separate the whole fiber circular cross-section into a set of thin cylindrical
layers variable i along ¢ extending beyond the cladding to take into account the surrounding air
with n=1. Each layer’s thickness is dr = r1 - r2. We can then approximate n(r,¢) as n(¢) for the average
r <r> =r+ 0r/2. The refractive index can be written as a Fourier series i.e. as n(¢)? =<n >+

Y 2Ny exp(jlp). Taking into account the properties of the Fourier transform we see that

FT (exp(1|¢) f ((D)) = f(I+1l") so that the expressions in the second terms of equation (18)

spread around a spectrum of harmonics. This is also to be understood as a result of successive
scatterings from the bored air holes. We can now use the natural geometry of the usual hexagonal
lattice to see that for each set of holes we can have either 6k harmonics. For the fundamental harmonic
of |I"=1 the derived harmonics passing through a layer of 6k holes should be 6k+1. Thus the
fundamental wave crossing the successive layers it “sees” a different set of periodic rectangle
functions that will be shown rigorously to contribute a different number of harmonics (7,13,19, ...).

For a common harmonic to pass through one must then take an integer product which leads to higher
and higher harmonics thus cutting out the entire spectrum apart from the last highest frequency. We

conclude that for holey optical fibers the approximation for any of its cylindrical thin layers,

n(r, 1)? ~ 772 (r)= 772 suffices for further analysis of the resulting equations. Thus the original system

(18) becomes
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For the usual hexagonal pattern of holes we may utilize elementary analytical geometry to derive the
two separate regions where the refractive index alternates between the air refractive index n=1 value
and the higher value of the crystal material. We assume that along each separate layer a large circle
corresponding to each cylindrical shell of radius r from the center of the fiber to the center of a smaller

hole of radius r << 10 is cut while moving clockwise along the large circle.

Presribing a set of circles of successive radii » for each of which we can find the air holes (in 1/6 angle
of the PCF) which are cut by the particular radius each time. Each arc is computed inside its respective
air hole and the total sum of them divided by m/3 expresses the average squared refractive index. As
a matter of fact, the square of the refractive index in this sum is equal to one, while the refractive
index in the rest arc is the square of the silica refractive index. Hence the average refractive index can
be easily calculated along r. In figures 7, 8 and 9, we show the average refractive index and the Electric
field of a hexagonal PCF, of n=1.46 with a twelve layers lattice, as functions of the reduced distance
from the center of the fiber for the fundamental mode. The figures were generated by a MATLAB
code for air-hole diameter equal to 0.8 of the air-hole distance and the air hole diameter was 3.87
times the transmitted wave length. We also notice the parametrization used as = (A — d/2) * 2 *
nm ), M1 for the silica refractive index , n2 @minimum refractive index=1.123, A for the reduced
air hole distance, d for the reduced air hole diameter and, A — d/2=reduced inner core of PCF.

In Appendix B the MATLAB code for the average refractive index of a hexagonal photonic crystal
fiber is also given.

Hexagonal PCF fiber of 12 rows with air holes 80% of their distance

15

1.45

1.4

1.3

1.25

|
|
1.35 ~
|
|

Average refractive index

11

1.05

0 2 4 6 8 10 12 14
PCF fiber reduced distance from its center

Fig. 7 Fundamental mode (3= 1.343357214454637
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Hexagonal PCF of 12 rows, Electric field of fundamental mode
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4. Conclusion

The presented resonance technique can be used for the study of unconventional fibers i.e. fibers
with cores of any shape, as long as the difference between core and cladding refractive indices is
sufficiently small which holds true for almost all the monomode and holey fibers . The unconventional
case is proven reducible to the same technique of conventional fibers, where for each |  we can
approximate by a set of two, independent and non homogeneous, Resonant Transmission Lines

(RTLs), each one representing one mode of the birefringence.

The simulation of unconventional fibers with RTLs, gives a new, simple and effective method for
computing the eigenvalues of the RTLs representing the various modes of the holey fibers.
Furthermore for each eigenvalue, the average values of E.M. fields for every thin cylindrical layer of
radius r of the unconventional fiber is directly computable from the relevant eigenfunctions of the
RTLs.


http://dx.doi.org/10.20944/preprints201812.0033.v1
http://dx.doi.org/10.3390/app9020270

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2018 d0i:10.20944/preprints201812.0033.v1

Appendix A
function f=stepindexfun(b)

% function f=Zleft(b)+Zright(b)for step index fiber

% n1 n2 the refractive indexes of core and gladding

% tm=0 for even modes (TM), tm=2 for odd modes (TE), tm=1 for average eqivalent modes
% 1 wave number

% V factor of the fiber

% r0=core radius X wave number

global nIn2tmlV

r0=V/sqrt(n1"2-n2"2);

N=200;

qq=20;% ratio of outer radius to core radius

qq0=200;%ratio of core radius to minimun core radius

wa=qq"(1/N);
wq0=qq0™(1/N);

w(1)=2*(wq0-1)/(wq0+1);
w(2)=2*(wg-1)/(wq+1);

rn0=n1;

zs(1)=-j/(xn0*tm*(abs(1)+10"-10));
zs(2)=0;

for n=1:N
jj=N+1-n;
r1(n,1)=r0*(1/wq0"jj+1/wq0”(jj-1))/2;
r1(n,2)=r0*(wq"jj+wq"(jj-1))/2;

end

j1=1;
for n=1:N
r=r1(n,j1);
rm=nl;
dr=w(jl)*r;
aal=b"2+(1/r)"2;
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F=aal*r;
cs=aal-r”2-2*r*b*1/(aal*r"2);
zp=1/dr/j/F/rntm;
zb=cs*dr/2/j/F/rntm;
zs(j1)=(zs(j1)+zb)*zp/(zs(j1)+zb+zp)+zb;

end

j1=2;

for n=1:N

r=rl(n,j1);

rn=n2;

dr=w(jl)*r;

aal=b"2+(1/r)"2;

F=aal*r;
cs=aal-rn"2-2*rn*b*1/(aal*r"2);
zp=1/dr/j/F/rn™m;
zb=cs*dr/2/j/F/rntm;
zs(j1)=(zs(j1)+zb)*zp/(zs(j1)+zb+zp)+zb;

end

f=imag(zs(1)+zs(2));

Appendix B

Average refractive index of an elliptic core optical fiber
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function fn=elliptic(r)
% n1 n2 refractive indexes for core and gladding
% bb minor semi axis, aa=major semi axis
global n1 n2 bb aa
if r<=bb;
fn=nl;
elseif r>bb && r<aa;
cl=(1/r"2-1/aa"2)/(1/bb"2-1/1"2);
cc=2*atan(sqrt(cl));
fn=sqrt((n2"2*(pi-cc)+cc*nl”2)/pi) ;
else fn=n2;

end

Average refractive index of a rectangular core optical fiber
function fn=rectangular(r)

% n1 n2 refractive indexes for core and gladding
% bb minor semi axis, aa=major semi axis
global n1 n2 bb aa
cc=sqrt(aa’2+bb"2);
if r<=bb;
fn=nl;
elseif r>bb && r<aa;
c=2*asin(bb/r);
fn=sqrt((n2"2*(pi-c)+c*nl"2)/pi) ;
else fn=n2;
end
if r>=aa & r<cc;c=2*(asin(bb/r)-acos(aa/r));
fn=sqrt((n2"2*(pi-c)+c*nl"2)/pi);

end

Average refractive index of a photonic crystal holey core optical fiber
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function ref=holey(r)

%PCF hexagonal

% nl=silica refractive index

% m=number of lattice rows of air holes

% d=reduced value of the distance of air hole centers
% ro=reduced radius of air holes r0<0.5*d

% R=external radius of the fiber gladding R> m*d

% If not given R=d*(m+2), after R there is considered air

globalnl mdr0R

if r<=d-r0;
ref=nl;
elseif r>d-r0 && r<m*d+r0;
for nn=1:m ;
for n=1:nn;rr(nn,n)=nn*d*exp(j*2*pi/3)+(n-1)*d;
rt(nn,n)=abs(rr(nn,n));
end
end
f=0;
for nn=1:m;
for n=1L:nn;rrr=rt(nn,n);drt=abs(rrr-r);
if drt<r0; ff=2*acos((r"2+rrr"2-r0"2)/2/r/rrr);f=ff+f;end
end
end
ref=sqrt((f+(pi/3-f)*n1"2)/(pi/3));
else ref=nl;
end
if r>=R;ref=1;

end
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