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Abstract: We provide a very general review of the resonant transmission line method for optical 

fiber problems. The method has been found to work seamlessly for a variety of difficult problems 

including elliptical and eccentric core fibers as well as “holey”, photonic crystal fibers. A latest 

version has been shown to offer great versatility with respect to cases of unconventional, 

inhomogeneous index profiles. 
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1. Introduction 

The method of Resonant Transmission Lines (RTL) has evolved from some original observations 

around the generic theme of transverse resonance in direct association with the standard theory of 

the solutions of the general telegrapher’s equation in transmission lines. It was originally applied in 

simple cases of standard step index and radial index profiles [1]-[6]. Later on, the idea behind the 

method was expanded to include a very general class of so called, Sturm-Liouville problems 

including the canonical form of the standard Schrödinger problem [7],[8],[9]. Lately, it was also 

applied successfully in the case of superlattices with periodic potentials [10] which are similar to the 

general class of photonic crystal fibers (PCF) or Bragg fibers in general [14]. Several other cases of 

unusual refractive index profiles have been successfully treated with the same method [11],[12],[13]. 

In the present work, we expose more recent developments in an effort to expand the validity of the 

RTL method in all unconventional fiber models. 

We shall heretofore refer to all the cylindrical optical fibers as the class of conventional optical 

fibers (COF) for as long as they can be separated in a set of n very thin successive cylindrical layers 

of average radius r of uniform refractive index values ηi. Indices of successive layers will be allowed 

in general to be different for each step as say, η(ri). The resulting, total index profile η(r) variation 

from the centre of the fiber up to the limit outer air medium, completely defines the propagation 

properties inside the fiber.   

We shall also separate another class of unconventional optical fibers (UOF) as the ones in which 

at least in some of its successive thin cylindrical layers present an additional variation of the total 

index profile along its radial coordinate φ in the form η(r,φ). Such cases include elliptic core, non 

symmetric or eccentric core fibers and in general, all cases of not strictly circular core fibers. In these 

cases any discretization into thin cylindrical layers that “cuts” through the core and cladding, results 

in a variation of the refractive index along φ. In figure (1) we show such a case of a thin circular 

cylindrical layer cutting an elliptic core fiber. As is evident in the schematic, the variation is analogous 

to the arc length of the circular sector cut by the ellipse for each discretization step. 
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Fig. 1. Example of the alternating character of the local index value from a thin shell radial 

discretization. 

Additionally, photonic fibers made of silica with a set of small air holes around their centers will 

have many cylindrical layers of varying refractive indexes along θ. In figure 2, we show an example 

of a PCF with a hexagonal lattice of seven rows of air holes. 

 
Fig. 2  Schematic depiction of the alternating step index resulting from radial discretization in 

PCF. 
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Again, radial discretization with thin circular cylindrical layers results in alternatively cutting 

through air holes and silica of a PCF as depicted in the schematic. The main aim in the present 

work, is to develop the original RTL method so as to be able to include all such UOF cases via an 

appropriate transformation to mathematically equivalent COF cases. 

2. Mathematical equivalence of homogeneous circular cylindrical layers to electric transmission 

lines 

The basis for the application of the previously introduced RTL is the radial discretization of all 

cylindrical fibers via a separation into a succession of thin cylindrical layers each one with its own 

constant refractive index η. These layers can be extended outside of the cladding in order to take into 

consideration the effect of the surrounding air (η=1). Each thin cylindrical layer could have thickness 

δr proportional to each average radius r which means that given discrete steps as 𝛿𝑟 = 𝑟2 − 𝑟1     

with    𝑟 =
𝑟1+𝑟2

2
 one has 

𝑟2−𝑟1

𝑟2+𝑟1
=

𝑐

2
  => {

1+𝑐 2⁄

1−𝑐 2⁄
𝑟1 = 𝑟2 (𝑜𝑢𝑡)

1−𝑐 2⁄

1+𝑐 2⁄
𝑟2 =  𝑟1(𝑖𝑛)

                                   (1)         

For any such circular cylindrical layer Maxwell equations (for a constant wavelength i.e. constant 

frequency ‘ω’) can be written in their standard form as 

{
∇𝑋𝐸⃗ = −𝑗𝜔𝜇0𝐻⃗⃗ 

∇𝑋𝐻⃗⃗ = 𝑗𝜔𝜀0𝑛
2(𝑟)𝐸⃗ 

             (2) 

Taking into consideration the relations 𝜔𝜇0 = 𝑘0𝑧0    and  𝜔𝜀0 =
𝑘0

𝑧0
 where  𝑘0 =

𝜔

𝑐
 , 𝑧0 = 120𝜋  

and replacing  𝑧0𝐻⃗⃗  𝑤𝑖𝑡ℎ  𝐻⃗⃗   in order 𝐸⃗  𝑎𝑛𝑑 𝐻⃗⃗   to have the same units (𝑉/𝑚) , Maxwell equations 

become then 

{
∇𝑋𝐸⃗ = −𝑗𝑘0𝐻⃗⃗ 

∇𝑋𝐻⃗⃗ = 𝑗𝑘0𝑛
2(𝑟)𝐸⃗ 

           (3) 

In circular cylindrical geometry of coordinates (r, φ, z) the following set of three partial differential 

equations can be derived by the first vector Maxwell equation as  

{
 
 

 
 

1

𝑟

𝜕𝐸𝑧

𝜕𝜑
−

𝜕𝐸𝜑

𝜕𝑧
= −𝑗𝑘0𝐻𝑟

𝜕𝐸𝑟

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑟
= −𝑗𝑘0𝐻𝜑

1

𝑟

𝜕(𝑟𝐸𝜑)

𝜕𝑟
−

1

𝑟

𝜕𝐸𝑟

𝜕𝜑
= −𝑗𝑘0𝐻𝑧

                        (4) 

Applying a Fourier Transform along ‘z’ and ‘φ’ with wave numbers ‘β’ and ‘’𝑙′ , where 𝑙  is integer 

(because along ‘φ’ we have Fourier series of period 2π), the set (4) becomes:  

 

{
 
 

 
 

𝑗𝑙

𝑟
𝐸𝑧̅̅ ̅ − 𝑗𝛽𝐸𝜑̅̅̅̅ = −𝑗𝑘0𝐻𝑟̅̅̅̅

𝑗𝛽𝐸𝑟̅̅ ̅ −
𝜕𝐸𝑧̅̅̅̅

𝜕𝑟
= −𝑗𝑘0𝐻𝜑̅̅ ̅̅

1

𝑟

𝜕(𝑟𝐸𝜑̅̅ ̅̅ )

𝜕𝑟
−

𝑗𝑙

𝑟
𝐸𝑟̅̅ ̅ = −𝑗𝑘0𝐻𝑧̅̅̅̅

          (5) 

In (5) we use new variables 𝐸𝑟̅̅ ̅, 𝐸𝜑̅̅̅̅ , 𝐸𝑧̅̅ ̅, 𝐻𝑟̅̅̅̅ , 𝐻𝜑̅̅ ̅̅ , 𝐻𝑧̅̅̅̅   to denote the Fourier Transforms of the respective 

Electromagnetic  field components.  Furthermore replacing β and r  by their reduced variables 

according to the following  relations : 
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{

𝛽

𝑘0
=> 𝛽 

𝑟𝑘0 => 𝑟

 

Then (5) takes the form  

 

{
 
 

 
 

𝑗𝑙

𝑟
𝐸𝑧̅̅ ̅ − 𝑗𝛽𝐸𝜑̅̅̅̅ = −𝑗𝐻𝑟̅̅̅̅

𝑗𝛽𝐸𝑟̅̅ ̅ −
𝜕𝐸𝑧̅̅̅̅

𝜕𝑟
= −𝑗𝐻𝜑̅̅ ̅̅

1

𝑟

𝜕(𝑟𝐸𝜑̅̅ ̅̅ )

𝜕𝑟
−

𝑗𝑙

𝑟
𝐸𝑟̅̅ ̅ = −𝑗𝐻𝑧̅̅̅̅

          (6) 

Following a similar approach the second Maxwell vector equation (3) can be written  in the form 

 

{
 
 

 
 

𝑗𝑙

𝑟
𝐻𝑧̅̅̅̅ − 𝑗𝛽𝐻𝜑̅̅ ̅̅ = 𝑗𝑛

2(𝑟)𝐸𝑟̅̅ ̅

𝑗𝛽𝐻𝑟̅̅̅̅ −
𝜕𝐻𝑧̅̅ ̅̅

𝜕𝑟
= 𝑗𝑛2(𝑟)𝐸𝜑̅̅̅̅

1

𝑟

𝜕(𝑟𝐻𝜑̅̅ ̅̅̅)

𝜕𝑟
−

𝑗𝑙

𝑟
𝐻𝑟̅̅̅̅ = 𝑗𝑛2(𝑟) 𝐸𝑧̅̅ ̅̅

           (7) 

Furthermore following a cumbersome analysis, it is possible to prove that the system of equations (6) 

and (7) can be transformed in a set of four differential equations (8), relating the equivalent “voltage’ 

and “current” functions  𝑉𝑀, 𝐼𝑀 , 𝑉𝐸 , 𝐼𝐸   defined as follows: 

𝑉𝑀 =
𝑙𝐻𝜑̅̅ ̅̅ + 𝛽𝑟𝐻𝑧̅̅̅̅

𝑗𝐹
 

𝐼𝑀 =
𝑟𝐻𝑟̅̅̅̅

𝑗
=
𝛽𝑟𝛦𝜑̅̅̅̅
̅̅ ̅̅ ̅̅ − 𝑙𝛦𝑧̅̅ ̅

𝑗
 

𝑉𝐸 =
𝑙𝛦𝜑̅̅̅̅ + 𝛽𝑟𝐸𝑧̅̅ ̅

𝐹
 

𝐼𝐸 = 𝑛
2𝑟𝐸𝑟̅̅ ̅ = 𝑙𝐻𝑧̅̅̅̅ − 𝛽𝑟𝐻𝜑̅̅ ̅̅  

where  we use the notation 𝐹 =
(𝛽𝑟)2+𝑙2

𝑟
 

 

  

{
  
 

  
 

𝜕𝑉𝑀

𝜕𝑟
= −

𝛾2

𝑗𝐹
𝐼𝑀 − 𝑗𝑀𝐼𝐸

𝜕𝐼𝑀

𝜕𝑟
= −𝑗𝐹𝑉𝑀

𝜕𝑉𝐸

𝜕𝑟
= −

𝛾2

𝑗𝑛2𝐹
𝐼𝐸 − 𝑗𝑀𝐼𝑀

𝜕𝐼𝐸

𝜕𝑟
= −𝑗𝑛2𝐹𝑉𝐸

                 (8) 

In (8) we introduced the total propagation factor 𝛾2 =
𝑙2

𝑟2
+ 𝛽2 − 𝑛2 and the auxiliary function  𝑀 =

2𝑙𝛽

[(𝛽𝑟)2+𝑙2]𝐹
. 

At this point it is noticed that 𝑉𝑀, 𝐼𝑀 , 𝑉𝐸 , 𝐼𝐸  are continuous functions at the boundaries because the 

tangential components of electric and magnetic fields  𝐻𝜑⃗⃗ ⃗⃗  ⃗  𝐻𝑧⃗⃗ ⃗⃗  ⃗ and 𝐸𝜑  ⃗⃗ ⃗⃗⃗⃗  ⃗ 𝐸𝑧⃗⃗⃗⃗  on the cylindrical surface 

are continuous functions passing the boundaries’ of the cylindrical layer. Using the previous 

relations, the Fourier Transforms of the Electro-Magnetic field components along (r, 𝑙, β ) can be 
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expressed as functions of their equivalent “voltages” and “currents” functions with the auxiliary 

relations 

𝐻𝑟̅̅̅̅ =
𝑗𝐼𝑀

𝑟⁄ , 𝐸𝑟̅̅ ̅ =
𝐼𝐸
𝑛2𝑟

 

𝐻𝜑̅̅ ̅̅ = 𝑗𝑙𝑉𝑀  /𝑟 −
𝛽

𝐹
𝐼𝐸  

𝐸𝜑̅̅̅̅ = 𝑙𝑉𝐸/𝑟 + 𝑗
𝛽

𝐹
𝐼𝛭 

𝐻𝑧̅̅̅̅ =
𝑙

𝐹𝑟
𝐼𝐸 + 𝑗𝛽𝑉𝑀 

𝛦𝑧̅̅ ̅ = −𝑗
𝑙

𝐹𝑟
𝐼𝑀 + 𝛽𝑉𝐸 

It becomes evident by inspection that the final equations (8) represent two coupled electric 

transmission lines. 

2.1 Decoupling the transmission line equations 

The prescribed set of equations (8) constitutes a homogeneous set of ordinary differential equations 

of r and considering that the all vectors [𝑉𝑀, 𝐼𝑀 , 𝑉𝐸 , 𝐼𝐸] can be turned into exponential functions of r 

given by 𝑉𝑀 = 𝑉𝑀𝑒
𝜉𝑟 , 𝐼𝑀 = 𝐼𝑀𝑒

𝜉𝑟 , 𝑉𝐸 = 𝑉𝐸𝑒
𝜉𝑟 , 𝐼𝐸 = 𝐼𝐸𝑒

𝜉𝑟 ,  where 𝑉𝑀, 𝐼𝑀 , 𝑉𝐸 , 𝐼𝐸   are constants i.e. not 

functions of  r .  Thus the system (8) can be transformed in an algebraic set of the following four 

equations 

{
 
 

 
 𝜉𝑉𝑀 = −

𝛾2

𝑗𝐹
𝐼𝑀 − 𝑗𝑀𝐼𝐸

𝜉𝐼𝑀 = −𝑗𝐹𝑉𝑀

𝜉𝑉𝐸 = −
𝛾2

𝑗𝑛2𝐹
𝐼𝐸 − 𝑗𝑀𝐼𝑀

𝜉𝐼𝐸 = −𝑗𝑛2𝐹𝑉𝐸

          (9) 

Replacing   𝐼𝑀 = −
𝑗𝐹

𝜉
𝑉𝑀, 𝐼𝐸 = −

𝑗𝑛2𝐹

𝜉
𝑉𝐸 , we obtain a set of two homogeneous equations 

{

𝜉𝑉𝑀 =
𝛾2

𝜉
𝑉𝑀 −𝑀

𝑛2𝐹

𝜉
𝑉𝐸

𝜉𝑉𝐸 =
𝛾2

𝑛2𝜉
𝑉𝐸 −𝑀

𝐹

𝜉
𝑉𝑀

 

 or {
𝜉2𝑉𝑀 = 𝛾

2𝑉𝑀 − 𝑛
2𝑀𝐹𝑉𝐸

𝜉2𝑉𝐸 = 𝛾
2𝑉𝐸 −𝑀𝐹
 

 

This then leads to the eigenvalue equations  

{
(𝜉2 − 𝛾2)𝑉𝑀 + 𝑛

2𝑀𝐹𝑉𝐸 = 0

𝑀𝐹𝑉𝛭 + (𝜉
2 − 𝛾2)𝑉𝛦 = 0

 

From the standard form of the eigenvalue problem we obtain through the determinant   differential 

equations as follows 

(𝜉2 − 𝛾2)2 − 𝑛2𝑀2𝐹2 = 0 , or 𝜉2 = 𝛾2 ± 𝑛𝑀𝐹          (10) 

Hence the system has two eigenvalues and two mutually excluded or “normal” eigenvectors.  The 

eigenvectors will be found by replacing 𝜉2 by its value. Thus for  𝜉2 = 𝛾2 − 𝑛𝑀𝐹 ,  𝑛2𝑀𝐹𝑉𝐸 −

𝑛𝑀𝐹𝑉𝑀 = 0 => 𝑉𝑀 = 𝑛𝑉𝐸  and the eigenvector is 𝑉𝑆 = 𝑉𝑀 + 𝑛𝑉𝐸  While for 𝜉2 = 𝛾2 + 𝑛𝑀𝐹 , 𝑉𝑀 =

−𝑛𝑉𝐸  and the eigenvector becomes 𝑉𝑑 = 𝑉𝑀 − 𝑛𝑉𝐸 . Their respective “current” eigenvectors are 

related as 
𝐼𝑀

𝐼𝐸
=

𝑉𝑀

𝑛2𝑉𝐸
=

1

𝑛
 ,  thus 𝐼𝑀 =

𝐼𝐸

𝑛
  and  𝐼𝑠 = 𝐼𝑀  +

𝐼𝐸

𝑛
 , 𝐼𝑑 = 𝐼𝑀  −

𝐼𝐸

𝑛
.  Since the auxiliary M 
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function has the  sign of l , the set (𝑉𝑠 , 𝐼𝑠), for 𝑙 = −𝑙 becomes equal to  the set (𝑉𝑑 , 𝐼𝑑). Thus we can 

consider as a unique solution for the set (𝑉𝑠 , 𝐼𝑠) and the integer ‘𝑙 ’varies −∞ 𝑡𝑜 + ∞ , and of course 

𝜉2 = 𝛾2 − 𝑛𝑀𝐹 :  

{

𝜕𝑉𝑠

𝜕𝑟
= −

𝜉2

𝑗𝐹
𝐼𝑠

𝜕𝐼𝑠

𝜕𝑟
= −𝑗𝐹𝐼𝑠

            (11) 

Furthermore 𝑉𝑠 , 𝐼𝑠  should be continuous functions at their boundaries although n(r) varies from 

layer to layer. This is achieved via the adjustemnt 𝑉𝑠 = 𝑉𝑀 + 𝑛𝑉𝐸 = 2𝑉𝑀   and 𝐼𝑠 = 𝐼𝑀 +
𝐼𝐸

𝑛
= 2𝐼𝑀  , 

which are continuous functions of r by definition. 

{

𝜕𝑉𝑀

𝜕𝑟
= −

𝜉2

𝑗𝐹
𝐼𝑀

𝜕𝐼𝑀

𝜕𝑟
= −𝑗𝐹𝐼𝑀

           (12) 

Another option for achieving continuity is to consider the functions 𝑉𝑠𝑠 =
𝑉𝑀

𝑛
+ 𝑉𝐸  and 𝐼𝑠𝑠 = 𝑛𝐼𝑀 +

𝐼𝐸  . In this case 𝑉𝑠𝑠 = 2𝑉𝐸 and 𝐼𝑠𝑠 = 2𝐼𝐸  that are also continuous. Thus  

{

𝜕𝑉𝐸

𝜕𝑟
= −

𝜉2

𝑗𝑛2𝐹
𝐼𝐸

𝜕𝐼𝐸

𝜕𝑟
= −𝑗𝐹𝑛2𝐼𝐸

              (13) 

Thus the set of two coupled transmission lines (9) is equivalent to two independent transmission lines 

(12) and (13). 

The two waves represented by the equations of transmission lines (12) and (13), are geometrically 

normal because the first is related to Magnetic field and the second to Electric field that are 

geometrically normal for transmitted EM waves. This property is an inherent proprety of EM modes 

in optical fibers related to birefringence phenomena. However the β respective values, for any mode, 

are always found to be very close and can be considered as practically equal. 

2.2 Equivalent circuits for cylindrical layers , boundary conditions  and birefringence 

Taking into consideration the transmission line theory, it can be proved that each layer of 

infinitesimal thickness δr is equivalent to a T-circuit as the one shown in figure 3  

 

Fig. 3. The equivalent quadrupole for each cylindrical sector. 
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{
 
 

 
 𝑍𝐵 =

𝜉

𝑗𝐹
tanh [

(𝜉δ𝑟)
2
⁄ ]

𝑍𝑝 =
𝜉

𝑗𝐹 sinh(𝜉δ𝑟)

 

For 𝜉𝛿𝑟 ≪ 1  the impedances can be approximated by the equivalent relations  

{
𝑍𝐵 =

𝜉2(𝛿𝑟 2⁄ ) 

𝑗𝐹

𝑍𝑝 =
1

𝑗𝐹𝛿𝑟

                         (14) 

If 𝜉2 > 0 , both 𝑍𝐵 , 𝑍𝑝  are “capacitive” reactances, for 𝜉2 < 0  however 𝑍𝐵  becomes “inductive” 

reactance.  For (𝑉𝐸 , 𝐼𝐸) the approximate respective impedances of the T-circuit are given as 

{
𝑍′
𝐵 =

𝜉2(δ𝑟 2⁄ ) 

𝑗𝑛2𝐹

𝑍′
𝑝 =

1

𝑗𝑛2𝐹δ𝑟

              (15) 

As previously stated the functions  (𝑉𝑀, 𝐼𝑀)  of each layer are continuous at the cylindrical 

boundaries of the layer, thus if we divide the fiber (including a sufficient number of air layers) in 

successive thin layers and replace them by their equivalent T-circuits, an overall lossless transmission 

line is formed with only reactive elements. For given ‘𝑙’, the ‘β’’ values that lead to the resonance of 

the overall transmission line are the eigenvalues of the whole optical fiber.  

When a transmission line is in resonance, at any arbitrary point 𝑟0 of the line, the sum of reactive 

impedances arising from the successive T-circuits on the left and right sides of 𝑟0 should be equal to 

zero, thus the equation giving the eigenvalues of the transmission line is the following : 

{𝑍̇𝐿.𝑟0 +  𝑍̇𝑅.𝑟0 = 0             (16) 

Equation (16) provides the eigen-values ‘β ‘ for a given ‘𝑙’ , where 𝑍̇𝐿.𝑟0 ,  𝑍̇𝑅.𝑟0 are the overall reactive 

impedances of successive T-circuits on the left and right of 𝑟0, using (14) or (15). The value of  𝑟0 is 

usually given by the core radius. For the same ‘𝑙’ the equations (14) and (15) give usually slightly 

different values of ‘β’  ,this phenomenon is called “Birefringence”.  For circular step index fibers the 

birefringence is negligible, however for elliptic fibers and fibers of any other non circular cores the 

birefringence phenomenon could be not negligible.  

In order to calculate the overall reactive impedances on the left and right of 𝑟0 we should find the 

impedances for 𝑟 → 0  and for 𝑟 → ∞ .  As we proceed to 0 or to ∞  the remaining piece of 

transmission line becomes “homogeneous” i.e. its overall reactive impedance is equal to its 

characteristic impedance given by 𝑍 =
𝜉

𝑗𝐹
 (𝑜𝑟 

𝜉

𝑗𝑛2𝐹
). Then we must have 

 𝑟 → ∞: 𝐹 → 𝛽2𝑟,𝑀𝐹 → 0, 𝜉 → √𝛽2 − 𝑛2 → 𝑍𝑟→∞ = 0  

 𝑟 → 0: 𝐹 →
𝑙2

𝑟
, 𝜉 →

𝑙

𝑟
 → 𝑍𝑟→0 =

1

𝑗|𝑙|
 (𝑜𝑟 

1

𝑗𝑛2|𝑙|
) 

For l=0  𝑍𝑟→0 = ∞  (open circuit at the center of the equivalent transmission line) It is useful to notice 

that there is an equivalence between our formulation and the classic formulation modes of optical 

fibers. In particular, for 𝑙 =0, the modes (VM,IM)  are the TM modes ,while the modes  (VE,IE)  are 

the TE modes. For 𝑙 >0 , the modes (VM,IM )  are the HE modes ,while the modes  (VE,IE)  are their 

HE  birefringence modes. For 𝑙 <0  the modes (VM,IM )  are the EH modes ,while the modes  (VE,IE)  

are their EH  birefringence modes. 
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For any given  𝑙, using the resonance technique the β  values  of the two birefringence modes can 

be calculated. The equation (16) is given as MATLAB function in Appendix A 

Let us consider for example a step-index fiber of  n1=1.54, n2=1.47 the VM, VE , fundamental modes for 

V=3.3, can be calculated and their β values are respectively  1.518934962534846 and 

1.518340184686295, hence their birefringence is equal to 0.0004947 or 0.0391%.  

The β value for the equivalent mode Veq was also calculated and was equal to 1.518638548412019 (that 

is approximately equal to the mean value of the previous β values), while the β value calculated 

classically by Bessel functions is equal to 1.518642063686336. These β values are very close differing 

only 0.0002315 %. 

In the following fig 4 the birefringences of the step-index fibers of n1=1.54, n2=1.47 and of n1=1.475, 

n2=1.47 as functions of V are shown 

 

Fig 4.  Birefringence of two step index fibers with different refractive indexes as functions of their 

parameters V 

We notice that for any V,  the birefringence is almost proportional to Δη2=(η1-η2)2 , thus the 

birefringence of step index fibers of very small Δη is negligible.  

For example for V=2.4, and Δη=1.54-1.47= 0.07, the birefringence is 0.168X0.0049=0.0008232 or ~0.055 

% on the average β, while for Δη=1.475-1.47= 0.005, the birefringence is 0.168X0.000025=0.000042 or ~ 

0.0028 % on the average β. 

2.3  Calculating “Voltages” VM  , VE  and “Currents” IM , IE  and resulting fields 

For any given  𝑙, using the resonance technique the β  values  of the two birefringence modes can 

be calculated. These β  values are practically the same, thus we can consider them as equal or we can 

consider as the proper value of β  the mean value of the two modes. 
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Taking VM  = 1 at the center point of the fiber(r=0) , the respective value of IM  at the same point can 

be calculated by the respective terminal impedance.  Using the matrix relations between input-

output for the equivalent successive T-circuits, the values of  𝑉𝑀  and 𝐼𝑀  at the rest thin cylindrical 

layers can be calculated. In fact from the general theory of the telegrapher’s equation we know that 

the inputs and outputs are associated via a transfer matrix as follows 

2

cosh( ( ) ) ( ) sinh( ( ) )
[ ]

sinh( ( ) ) / ( ) cosh( ( ) )

1 ( ) ( ( ) )

( ( ) ) / ( ) 1

1 ( ) / ( )

( ) 1

in

out out

in

in

in

in

in

Vr r Z r r r
V I

r r Z r r r I

VZ r r r

r r Z r I

Vr r jF r

IjF r r

   

   

 

 







     
=    

    

    
 =   

   

   
=    

   

 (17) 

In (17), the characteristic impedance should be taken as  𝑍(𝑟) = 𝜉(𝑟)/𝑗𝐹(𝑟) to fit with the previous 

analysis. Using the relations 𝑛𝑉𝐸 = 𝑉𝑀   and 𝑛𝐼𝑀 = 𝐼𝐸  the respective values of their birefringence 

partners can also be calculated for every thin cylindrical layer ri. Finally we obtain the actual fields 

via the relations 

 𝐻𝑟̅̅̅̅ =
𝑗𝐼𝑀

𝑟⁄ , 𝐸𝑟̅̅ ̅ =
𝐼𝐸

𝑛2𝑟
 

𝐻𝜑̅̅ ̅̅ = 𝑗𝑙𝑉𝑀  /𝑟 −
𝛽

𝐹
𝐼𝐸  

𝐸𝜑̅̅̅̅ = 𝑙𝑉𝐸/𝑟 + 𝑗
𝛽

𝐹
𝐼𝛭 

𝐻𝑧̅̅̅̅ =
𝑙

𝐹𝑟
𝐼𝐸 + 𝑗𝛽𝑉𝑀 

𝛦𝑧̅̅ ̅ = −𝑗
𝑙

𝐹𝑟
𝐼𝑀 + 𝛽𝑉𝐸 

A very useful field component for optical fibers is the value of the overall electric field at any thin 

cylindrical layer of average radius r, that can be calculated by the formula: 

2
2 2 2( ) | | | | | |r zE r E E E= + +   

After some algebra this leads to the formula 

2
2 2 2 2 2 2

2 2 2 2

1 1
( ) (( ) ) / | | | |

( )
M ME r r l r V I

r l r
 

 

 
 = + + +   + 

 

In the next section we extend our analysis in certain UOF cases. 

 

3. Unconventional fibers 

The refractive index n(r,φ) of the fiber with a UOF profile in general can be described as a function of  

both r and φ. Each cylindrical layer of an average radius r  is considered to have a local value η (φ)  

for  𝑟 =
𝑟1+𝑟2

2
 . Again, we make use of the generic form of Maxwell equations as in (2) of the previous 
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section. Fourier Transforming the first vector equation gives the same set of equations as in (6), since 

there is no difference with the UOF case, however the second Maxwell vector equation due to 

presence of the general n function should now be written as  

 

{
 
 

 
 

𝑗𝑙

𝑟
𝐻𝑧̅̅̅̅ − 𝑗𝛽𝐻𝜑̅̅ ̅̅ = 𝑗𝑛(𝑙)

2⊗𝐸𝑟̅̅ ̅

𝑗𝛽𝐻𝑟̅̅̅̅ −
𝜕𝐻𝑧̅̅ ̅̅

𝜕𝑟
= 𝑗𝑛(𝑙)2⊗𝐸𝜑̅̅̅̅

1

𝑟

𝜕(𝑟𝐻𝜑̅̅ ̅̅̅)

𝜕𝑟
−

𝑗𝑙

𝑟
𝐻𝑟̅̅̅̅ = 𝑗𝑛(𝑙)2⊗  𝐸𝑧̅̅ ̅̅

         (18) 

The symbol ⊗ means convolution arising by the product of two functions of the variable φ. In the 

following paragraphs it will be shown how to escape this mathematical difficulty for the usual 

unconventional optical fibers. 

3.1 UOF with non circular, non symmetric or eccentric cores 

For unconventional fibers of non circular cores there are a set of circular layers where the refractive 

index varies between the inner and outer core and cladding values respectively. In any such case, the 

function 𝑛(𝜑)2 is a sum of a steady component 𝑛2  and a periodic function of φ of period 2π thus 

can be written as a Fourier series 𝑛(𝜑)2 = 𝑛2 + ∑ 𝑁𝑘
+∞
−∞ exp (𝑗𝑘𝜑). Taking into consideration that the 

convolution of the product of an exponential function  exp (𝑗𝑘𝜑)  with any function A(𝜑)  of a 

Fourier Transform 𝐴(𝑙)  is equal to 𝐴(𝑙 + 𝑘) , i.e. the convolution  generates “harmonics”. The 

function 𝑛(𝜑)2 is in a set of cylindrical thin layers, a sum of step functions alternating between the 

values 𝑛1
2 𝑎𝑛𝑑 𝑛2

2  , where 𝑛1  𝑎𝑛𝑑  𝑛2 are refractive indexes of core and gladding. Consideration that 

in optical fibers the refractive indices of core and cladding are very close, one effectively has 

that (𝑛1 − 𝑛2)/𝑛1 ≪ 1. As a result, any harmonic factors Nk of the function 𝑛(𝜑)2 are negligible in 

comparison to its steady component 𝑛2 and can be omitted.  

As an example, the harmonics become maximal for equal alternation steps. In this case the first 

harmonic, that has the maximum value of all harmonics, is equal to 𝛢1 =
2(𝑛1

2− 𝑛2
2)

𝜋
, while the steady 

component 𝑛2 equals (𝑛1
2 + 𝑛2

2 )/2   and we may make an approximation as  𝛢1/𝑛
2 ≃ (4/𝜋)(𝑛1 −

 𝑛2)/𝑛1 ≪ 1.   

Thus for optical fibers we can always assume that  𝑛(𝑙)2≃𝑛2. Then the system (18) will become 

equivalent to the following 

{
 
 

 
 

𝑗𝑙

𝑟
𝐻𝑧̅̅̅̅ − 𝑗𝛽𝐻𝜑̅̅ ̅̅ = 𝑗𝑛

2𝐸𝑟̅̅ ̅

𝑗𝛽𝐻𝑟̅̅̅̅ −
𝜕𝐻𝑧̅̅ ̅̅

𝜕𝑟
= 𝑗𝑛2𝐸𝜑̅̅̅̅

1

𝑟

𝜕(𝑟𝐻𝜑̅̅ ̅̅̅)

𝜕𝑟
−

𝑗𝑙

𝑟
𝐻𝑟̅̅̅̅ = 𝑗𝑛2 𝐸𝑧̅̅ ̅̅

                   (19) 

We can then follow the analysis that we did with the conventional fibers, where η2  is the average 

value of the η2(φ) of each layer along φ in the [0, 2π] interval. 

3.2 Application to elliptic core fibers 

The method was applied in the calculation of fundamental modes of a fiber of elliptic core of a and b  

major and minor semi-axis respectively with refractive index n1=1.54, and a cladding value of n2=1.47 

(figure 5) for various wavelengths (defined by various V factor values  𝑉 = 𝑏 ∗ 2 ∗ 𝜋√𝑛1
2 − 𝑛2

2 ) and 
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four ratios a/b=1.1,1.3,1.5,2.0. Results are compared with previous results calculated with Mathieu 

functions with the results differing only by 0.01÷ 0.123 %. 

The steady component of the refractive index for the calculations for each radius r is defined as n1 

for r<b, n2 for r>a and as (𝑛1 ∗ 𝜑1+ 𝑛2 ∗ 𝜑2 )/𝜋 when b<r<b, where φ1 ,φ2 are the arcs of the circle of 

radius r, inside and outside the ellipse in the upper semi ellipse.  

 

Fig 5.  Elliptic fiber with three indicative  elliptic thin layers. Inside the ellipse r<b(n=n1), outside 

the ellipse r>a(n=n2) and partly outside b<r<a (n1>n>n2) 

 

COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES  

a/b=1.1 Mathieu TR    

V b11, Nο b11, Νο  DIFF relDIFF(0/00) 

1.5 1,487454917000000 1,487538376725580  -0,000083459725580 0,056109079 

1.7 1,493245000000000 1,493450986151880  -0,000205986151880 0,137945315 

1.9 1,498457700000000 1,498722795582640  -0,000265095582640 0,17691229 

2.1 1,503029750000000 1,503312465850780  -0,000282715850780 0,188097309 

2.3 1,506994250000000 1,507270533663140  -0,000276283663140 0,183334252 

2.5 1,510418500000000 1,510675880979590  -0,000257380979590 0,170403752 

2.7 1,513376830000000 1,513609496242670  -0,000232666242670 0,153739794 

2.9 1,515936970000000 1,516144774928280  -0,000207804928280 0,13708019 

3.1 1,518160870000000 1,518344840727660  -0,000183970727660 0,121179996 

3.3 1,520101500000000 1,520262686679180  -0,000161186679180 0,106036787 

 

COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES  
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a/b=1.3 Mathieu TR    

V b11, Nο b11, Νο  DIFF relDIFF(0/00) 

1.5 1,491188512000000 1,491027765079550  0,000160746920450 0,107797853 

1.7 1,497028990000000 1,496897637511800  0,000131352488200 0,087742114 

1.9 1,502119714000000 1,501986592174880  0,000133121825120 0,088622647 

2.1 1,506471523000000 1,506335918376860  0,000135604623140 0,090014727 

2.3 1,510205927000000 1,510039049600890  0,000166877399110 0,110499764 

2.5 1,513423500000000 1,513196002523000  0,000227497477000 0,150319773 

2.7 1,516170122000000 1,515897403413190  0,000272718586810 0,179873342 

2.9 1,518513480000000 1,518220317018870  0,000293162981130 0,193059189 

3.1 1,520539300000000 1,520228501721160  0,000310798278840 0,204400030 

3.3 1,522298190000000 1,521974104375010  0,000324085624990 0,212892341 

 

COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES  

a/b=1.5 Mathieu TR    

V b11, Nο b11, Νο  DIFF relDIFF(0/00) 

1.5 1,494250610000000 1,493636836360350  0,000613773639650 0,410756827 

1.7 1,499922346000000 1,499340905733040  0,000581440266960 0,387646913 

1.9 1,504818670000000 1,504203108321470  0,000615561678530 0,409060368 

2.1 1,509039170000000 1,508315227121150  0,000723942878850 0,479737633 

2.3 1,512533150000000 1,511793195339390  0,000739954660610 0,489215500 

2.5 1,515493100000000 1,514745797603970  0,000747302396030 0,493108412 

2.7 1,518011570000000 1,517265908951310  0,000745661048690 0,491209068 

2.9 1,520166130000000 1,519429880525980  0,000736249474020 0,48432172 

3.1 1,522019120000000 1,521299532774000  0,000719587226000 0,472784617 

3.3 1,523620800000000 1,522924688766490  0,000696111233510 0,456879582 

 

COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES  

a/b=2 Mathieu TR    

V b11, Nο b11, Νο  DIFF relDIFF(0/00) 

1.5 1,499390500000000 1,497675992184210  0,001714507815790 1,143469840 

1.7 1,504727250000000 1,502885066432660  0,001842183567340 1,224264110 

1.9 1,509110880000000 1,507251064452310  0,001859815547690 1,232391584 

2.1 1,512712190000000 1,510915134944720  0,001797055055280 1,187968913 

2.3 1,515667864000000 1,514006539095880  0,001661324904120 1,096100896 

2.5 1,518085750000000 1,516632675098700  0,001453074901300 0,957175773 

2.7 1,520047200000000 1,518879733445780  0,001167466554220 0,768046252 

2.9 1,521631209000000 1,520816115931370  0,000815093068630 0,535670578 

3.1 1,522869900000000 1,522496060692140  0,000373839307860 0,245483418 

3.3 1,523799100000000 1,523962746538420  -0,000163646538420 0,107393775 
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In the following figure 6 the β diagram of the fundamental even mode of an elliptic fiber with semi 

axis ratio aa/bb=2, n1=1.54 and  n2=1.47   and variable factor  defined by : 𝑉 = 𝑏𝑏 ∙ 𝑘0 ∙ √𝑛1
2 − 𝑛2

2 ) 

is shown  

 

Fig 6.  β-V diagram of the even fundamental mode an elliptic fiber of semi axis ratio aa/bb=2 and 

core refractive index 1.54 and gladding index 1.47 

3.3 Application to rectangular core fiber 

The method was applied also in the calculation of fundamental modes of a fiber with an rectangular 

core (see figure 7 ) of aa and bb semi sides, with refractive  index n1=1.54, and a gladding of refractive 

index n2=1.47, for various wavelengths, defined by various V factor values 𝑉 = 𝑏𝑏 ∙ 𝑘0 ∙ √𝑛1
2 − 𝑛2

2 

and four ratios a/b=1.1,1.3,1.5,2.0.  
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Fig 7. Rectangular core fiber of semi sides aa and bb , for r<bb, n=n1, for r>aa,  n=n2 , for bb<r<aa, 

n2<n<n1 

The birefringence results are compared with the birefringence results of the elliptic core fiber with 

equal semi axis. The steady component of the refractive index for the calculations for each radius r is 

defined as n1 for r<b, n2 for r>a and as (𝑛1 ∗ 𝜑1+ 𝑛2 ∗ 𝜑2 )/𝜋 when b<r<b, where φ1 ,φ2 are the arcs of 

the circle of radius r, inside the orthogonal and outside the orthogonal  in the upper semi orthogonal.  

 

 

 

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS 

 Rectangular core Elliptic core  

a/b=1.1 

                                               

Fundamental Mode 

Values Birefringence (TR) Birefringence (TR)   
V       
1.5 1,492539945916010 0,000346704531850 0,000303585935370   
1.7 1,498357447022790 0,000513384576600 0,000575417316090   
1.9 1,503350570368440 0,000576764589930 0,000712035787010   
2.1 1,507590076049970 0,000580793732230 0,000757892695190   
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2.3 1,511183551577450 0,000554099561380 0,000750121835720   
2.5 1,514237341469060 0,000513428535340 0,000713597265680   
2.7 1,516844499544290 0,000468033918970 0,000663528284040   
2.9 1,519082616576080 0,000422786387590 0,000608733773240   
3.1 1,521015087494710 0,000380083447450 0,000554096605350   
3.3 1,522693317372840 0,000340959781570 0,000502161305990   

 

 

 

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS 

 Rectangular core Elliptic core  

a/b=1.3 

Fundamental Mode 

Values Birefringence (TR) Birefringence (TR)   
V       
1.5 1,495847758922450 0,000344065006270 0,000325722889410   
1.7 1,501459058153440 0,000451639480470 0,000520210503450   
1.9 1,506179273220210 0,000480411129310 0,000601842058430   
2.1 1,510134432440230 0,000468166987430 0,000615857816190   
2.3 1,513456882268610 0,000436878544030 0,000593498171210   
2.5 1,516262818410440 0,000398422704380 0,000553682765940   
2.7 1,518648025192190 0,000358904227450 0,000507155757960   
2.9 1,520689537973830 0,000321272665480 0,000459732120240   
3.1 1,522448794667530 0,000286796641510 0,000414381305640   
3.3 1,523974761485380 0,000255871394240 0,000372472456950   

 

 

 

 

 

 

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS 

 Rectangular core Elliptic core  

a/b=1.5 

Fundamental Mode 

Values Birefringence  Birefringence (TR)   
V       
1.5 1,498120450723510 0,000278361237480 0,000295449461120   
1.7 1,503463400911670 0,000357573590440 0,000442306154260   
1.9 1,507908503417930 0,000376605061620 0,000497613358440   
2.1 1,511610102671980 0,000365648210230 0,000501375052490   
2.3 1,514709614765410 0,000341283334480 0,000478771792790   
2.5 1,517324041962060 0,000312143747180 0,000444266137270   
2.7 1,519546684126380 0,000282536889750 0,000405759261530   
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2.9 1,521451022056960 0,000254483058070 0,000367378187930   
3.1 1,523094834995030 0,000228815613970 0,000331142666700   
3.3 1,524523718254910 0,000205765806060 0,000297919827130   

 

 

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS 

 Rectangular core Elliptic core 

a/b=2 

Fundamental  Mode 

Values Birefringence (TR) Birefringence (TR)  
V      
1.5 1,501154370588750 0,000115100455570 0.00017851280204  
1.7 1,505905455821760 0,000185956233950 0.00028097261437  
1.9 1,509839664490200 0,000217496051150 0.00032331073887  
2.1 1,513123501262850 0,000227441962700 0.00033221109868  
2.3 1,515890438928040 0,000225620967080 0.00033221109868  
2.5 1,518243818452060 0,000217498908240 0.00030589412246  
2.7 1,520263082984900 0,000206163759050 0.00028459934024  
2.9 1,522009559228890 0,000193389032200 0.00026227629912  
3.1 1,523531014266760 0,000180203858540 0.00024038749997  
3.3 1,524865056067340 0,000167204354840 0.00021967555642  
     

For comparison reasons  the average refractive indexes as functions of r, for an elliptic core fiber 

and for a rectangular core fiber of  the same aa and bb and aa/bb=2,  are shown in figure 8.  

In appendix B the MATLAB codes for the average refractive indexes of an elliptic and a rectangular 

core fiber are given  
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Fig 8. Average refractive indexes of circular thin layers of elliptic and rectangular core fibers 

 

3.4 The PCF case 

Ιn case of a holey fiber, we separate the whole fiber circular cross-section into a set of thin cylindrical 

layers variable η along φ extending beyond the cladding to take into account the surrounding air 

with η=1. Each layer’s thickness is δr = r1 - r2. We can then approximate n(r,φ) as n(φ) for the average 

r <r> =r+ δr/2. The refractive index can be written as a Fourier series i.e. as  𝑛(𝜑)2 =< 𝑛 >2+

∑ 𝑁𝑘
+∞
−∞ exp (𝑗𝑙𝜑) .  Taking into account the properties of the Fourier transform we see that 

(exp( ) ( )) ( )FT jl f f l l   = +  so that the expressions in the second terms of equation (18) 

spread around a spectrum of harmonics. This is also to be understood as a result of successive 

scatterings from the bored air holes. We can now use the natural geometry of the usual hexagonal 

lattice to see that for each set of holes we can have either 6k harmonics. For the fundamental harmonic 

of l  =1 the derived harmonics passing through a layer of 6k holes should be 6k+1. Thus the 

fundamental wave crossing the successive layers it “sees” a different set of periodic rectangle 

functions that will be shown rigorously to contribute a different number of harmonics (7,13,19, …).  

For a common harmonic to pass through one must then take an integer product which leads to higher 

and higher harmonics thus cutting out the entire spectrum apart from the last highest frequency. We 

conclude that for holey optical fibers the approximation for any of its cylindrical thin layers, 

2 2 2( , ) ( )r l r   = suffices for further analysis of the resulting equations. Thus the original system 

(18) becomes 
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{
 
 

 
 

𝑗𝑙

𝑟
𝐻𝑧̅̅̅̅ − 𝑗𝛽𝐻𝜑̅̅ ̅̅ = 𝑗𝑛

2𝐸𝑟̅̅ ̅

𝑗𝛽𝐻𝑟̅̅̅̅ −
𝜕𝐻𝑧̅̅ ̅̅

𝜕𝑟
= 𝑗𝑛2𝐸𝜑̅̅̅̅

1

𝑟

𝜕(𝑟𝐻𝜑̅̅ ̅̅̅)

𝜕𝑟
−

𝑗𝑙

𝑟
𝐻𝑟̅̅̅̅ = 𝑗𝑛2 𝐸𝑧̅̅ ̅̅

          (20) 

For the usual hexagonal pattern of holes we may utilize elementary analytical geometry to derive the 

two separate regions where the refractive index alternates between the air refractive index η=1 value 

and the higher value of the crystal material. We assume that along each separate layer a large circle 

corresponding to each cylindrical shell of radius r from the center of the fiber to the center of a smaller 

hole of radius r << r0 is cut while moving clockwise along the large circle.   

Presribing a set of circles of successive radii r  for each of which we can find the air holes (in 1/6 angle 

of the PCF) which are cut by the particular radius each time. Each arc is computed inside its respective 

air hole and the total sum of them divided by π/3 expresses the average squared refractive index. As 

a matter of fact, the square of the refractive index in this sum is equal to one, while the refractive 

index in the rest arc is the square of the silica refractive index. Hence the average refractive index can 

be easily calculated along r. In figures 7, 8 and 9, we show the average refractive index and the Electric 

field of a hexagonal PCF, of η=1.46 with a twelve layers lattice,  as functions of the reduced distance 

from the center of the fiber for the fundamental mode. The figures were generated by a MATLAB 

code for air-hole diameter equal to 0.8 of the air-hole distance and the air hole diameter was 3.87 

times the transmitted wave length. We also notice the parametrization used as = (𝛬 − 𝑑/2) ∗ 2 ∗

𝜋√𝑛1
2 − 𝑛2

2 ), n1 for the silica refractive index , n2 ≃minimum refractive index=1.123, Λ for the reduced 

air hole distance, d for the reduced air hole diameter and,  𝛬 − 𝑑/2=reduced inner core of PCF. 

In Appendix B the MATLAB code for the average refractive index of a hexagonal photonic crystal 

fiber is also given. 

 

 

Fig. 7 Fundamental mode β= 1.343357214454637 
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Fig. 8 

 

 

 

Fig. 9 
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4. Conclusion 

The  presented resonance technique can be used for the study of unconventional fibers i.e. fibers 

with  cores of any shape, as long as the difference between core and cladding refractive indices is 

sufficiently small which holds true for almost all the monomode and holey fibers . The unconventional 

case is proven reducible to the same technique of conventional fibers, where for each l    we can 

approximate by a set of two, independent and non homogeneous, Resonant  Transmission Lines 

(RTLs), each one representing one mode of the birefringence.  

The simulation of unconventional fibers with RTLs, gives a new, simple and effective method for 

computing the eigenvalues of the RTLs representing the various modes of the holey fibers. 

Furthermore for each eigenvalue, the average values of E.M. fields for every thin cylindrical layer of 

radius r of the unconventional fiber is directly computable from the relevant eigenfunctions of the 

RTLs. 
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Appendix A 

function f=stepindexfun(b) 

  

% function f=Zleft(b)+Zright(b)for step index fiber  

% n1 n2 the refractive indexes of core and gladding 

% tm=0 for even modes (TM), tm=2 for odd modes (TE), tm=1 for average eqivalent modes 

% l wave number  

% V factor of the fiber 

% r0=core radius X wave number   

  

global  n1 n2 tm l V  

  

r0=V/sqrt(n1^2-n2^2); 

  

N=200; 

  

qq=20;% ratio of outer radius to core radius 

qq0=200;%ratio of core radius to minimun core radius 

  

wq=qq^(1/N); 

wq0=qq0^(1/N); 

  

w(1)=2*(wq0-1)/(wq0+1); 

w(2)=2*(wq-1)/(wq+1); 

  

  

rn0=n1; 

  

zs(1)=-j/(rn0^tm*(abs(l)+10^-10)); 

zs(2)=0; 

  

  

for n=1:N 

   jj=N+1-n; 

   r1(n,1)=r0*(1/wq0^jj+1/wq0^(jj-1))/2; 

   r1(n,2)=r0*(wq^jj+wq^(jj-1))/2;   

end 

  

   j1=1; 

    for n=1:N 

    r=r1(n,j1); 

    rn=n1; 

    dr=w(j1)*r; 

    aa1=b^2+(l/r)^2; 
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    F=aa1*r; 

    cs=aa1-rn^2-2*rn*b*l/(aa1*r^2); 

    zp=1/dr/j/F/rn^tm; 

    zb=cs*dr/2/j/F/rn^tm; 

    zs(j1)=(zs(j1)+zb)*zp/(zs(j1)+zb+zp)+zb; 

    end 

    

    j1=2; 

    for n=1:N    

    r=r1(n,j1); 

    rn=n2; 

    dr=w(j1)*r; 

    aa1=b^2+(l/r)^2; 

    F=aa1*r; 

    cs=aa1-rn^2-2*rn*b*l/(aa1*r^2); 

    zp=1/dr/j/F/rn^tm; 

    zb=cs*dr/2/j/F/rn^tm; 

    zs(j1)=(zs(j1)+zb)*zp/(zs(j1)+zb+zp)+zb; 

    end 

    

f=imag(zs(1)+zs(2)); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B 

Average refractive index of an elliptic core optical fiber 
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function fn=elliptic(r) 

 % n1 n2 refractive indexes for core and gladding 

 % bb minor semi axis, aa=major semi axis 

global n1 n2 bb aa  

if r<=bb;  

  fn=n1; 

elseif r>bb && r<aa; 

    c1=(1/r^2-1/aa^2)/(1/bb^2-1/r^2); 

    cc=2*atan(sqrt(c1)); 

  fn=sqrt((n2^2*(pi-cc)+cc*n1^2)/pi) ; 

else fn=n2; 

end 

 

Average refractive index of a rectangular core optical fiber 

function fn=rectangular(r) 

 % n1 n2 refractive indexes for core and gladding 

 % bb minor semi axis, aa=major semi axis 

global n1 n2 bb aa  

cc=sqrt(aa^2+bb^2); 

if r<=bb;  

  fn=n1; 

elseif r>bb && r<aa; 

    c=2*asin(bb/r); 

  fn=sqrt((n2^2*(pi-c)+c*n1^2)/pi) ; 

else fn=n2;  

end  

if r>=aa & r<cc;c=2*(asin(bb/r)-acos(aa/r)); 

    fn=sqrt((n2^2*(pi-c)+c*n1^2)/pi); 

end 

 

 

 

 

 

 

 

 

 

 

 

 

Average refractive index of a photonic crystal holey core optical fiber 
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function ref=holey(r) 

  

%PCF hexagonal 

% n1=silica refractive index 

% m=number of lattice rows of air holes  

% d=reduced value of the distance of air hole centers 

% ro=reduced radius of air holes r0<0.5*d 

% R=external radius of the fiber gladding R> m*d 

% If not given R=d*(m+2), after R there is considered air 

  

global n1 m d r0 R  

 

if r<=d-r0;  

  ref=n1; 

elseif r>d-r0 && r<m*d+r0; 

 for nn=1:m ; 

 for n=1:nn;rr(nn,n)=nn*d*exp(j*2*pi/3)+(n-1)*d; 

         rt(nn,n)=abs(rr(nn,n)); 

 end 

 end 

 f=0; 

 for nn=1:m; 

 for n=1:nn;rrr=rt(nn,n);drt=abs(rrr-r); 

 if drt<r0; ff=2*acos((r^2+rrr^2-r0^2)/2/r/rrr);f=ff+f;end 

 end 

 end 

 ref=sqrt((f+(pi/3-f)*n1^2)/(pi/3)); 

else ref=n1; 

end 

if r>=R;ref=1; 

end 
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