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Abstract: Bufadienolides-like chemicals, which mostly composed the active ingredient of Chansu, 17 
had been widely discovered to possess anti-inflammatory, tumor-suppressing and antipain 18 
activity, but the mechanisms of action were not clearly illuminated. In this research, in order to 19 
explore the potential mechanism of bufadienolides-like chemicals on breast cancer, a serious of 20 
bioinformatics analysis, included (1) differentially expressed genes identification combined with 21 
gene set variation analysis, (2) tissue specific co-expression network construction, (3) differentially 22 
regulated sub-networks detection with disease phenome, (4) hub gene selection and it’s relation to 23 
survival probability, and (5) similar small molecule detection were performed with gene 24 
expression profiles of bufadienolides-like chemicals. Results indicated bufadienolides-like 25 
chemicals had the most same target with valproic, estradiol and etc, could disturbed the pathways 26 
in RNA splicing, apoptotic process, cell migration, extracellular matrix organization, adherens 27 
junction organization, synaptic transmission, Wnt signaling, AK-STAT signaling, BMP signaling 28 
pathway and unfolded protein response, and had the potential ability to be used as anticancer, 29 
hormones and vasoprotectives agents. 30 

Keywords: Bufadienolides-like chemicals; Molecular mechanism; Anti-cancer; Bioinformatics  31 
 32 

1. Introduction 33 

Despite considerable efforts to the early diagnosis and treatment in the last decade, Breast cancer is still one 34 
of the most common malignancies for female worldwide, representing approximately 22% of women’s 35 
malignancies that pose a threat to women’s health [1-4]. In addition to the improvements of early diagnosis, 36 
new chemotherapeutic agents and more effective therapies for the treatment become an essential task for 37 
improving the mortality of cancer worldwide. Chinese Traditional medicine, had existed and experienced 38 
thousands of years of development, and is one of the important sources for antitumor active components 39 
screening. Chansu was one of the most famous traditional Chinese medicine, it has been used for centuries 40 
in various aspects, such as anaesthesia, antitumor, anti-inflammation and antiarrhythmia [5-8]. The 41 
Chansu , mostly come from the glandular secretion dried product of Bufo gargarizans Cantor or B. 42 
melanostictus Schneider [6], and including with several group of mixture, such as the resibufogenin, bufalin, 43 
arenobufagin, cinobufagin, bufotoxin, telocinobufagin, bufotaline, cinobufotalin, etc [5-7](Figure 1).  44 
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 45 

Figure 1. The structural formula of eight bufadienolides-like chemicals 46 

In the last decade, lots of research focused on the pharmacological activities and antitumor 47 
activity of bufadienolides-like chemicals. For example, Li et al [9] had reported that cinobufagin has 48 
significant cancer-killing capacity for range of cancers, including HCT116 cells, HT29 cells, A431 49 
cells, PC3 cells, A549 cells, and MCF-7 cells, mechanism analysis showed cinobufagin can induced 50 
tumor cells apoptosis is likely modulated by the hypoxia-inducing factor-1 alpha subunit (HIF-1𝛼) .  51 
Yeh et al [10] and Yu et al [11] had reported that the bufalin and cinobufagin has a potent inhibiting 52 
effect on androgen dependent and independent prostate cancer cells, also the same results had been 53 
reported by Dong et al [12], Wang et al [13] and Ko et al [14] through HepG2 cells, T24 cells, HeLa 54 
cells, and other cells.  55 

These results demonstrate that Chansu is a potent anticancer agent for a range of cancers, but 56 
it’s potential anticancer mechanisms has been little reported. The increasing public expression 57 
profile treat with Chinese Traditional medicine, make it possible to extract the most robust 58 
information or potential molecular mechanism from them. In this paper, the gene set variation 59 
analysis (GSVA) algorithm [15] was first used for identifying the differentially expressed genes 60 
(DEGs) and relative enrichment pathways underlying with eight bufadienolides-like chemicals, and 61 
then a serious of bioinformatics analysis, including gene enrichment analysis, tissue specific 62 
co-expression network construction, differentially regulated sub-networks detection relate to breast 63 
cancer phenome, hub gene selection and it’s relation to survival probability, and similar small 64 
molecule detection were conducted with the DEGs in the relative enrichment pathways. This work 65 
may reveal the potential mechanism of bufadienolides-like chemicals on breast cancer, especially 66 
differentially regulated sub-networks relate to breast cancer and hub genes disturbed by 67 
bufadienolides-like chemicals, and this work may highlight the potential application of 68 
bufadienolides-like chemicals on Breast cancer, especially as a novel agent for cancer therapy. 69 

70 
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2. Results 71 

2.1. Identification of DEGs 72 

 73 

Figure. 2 The DEGs disturbed by bufadienolides-like chemicals through gene set variation analysis (GSVA) 74 
algorithm. (A) The differentially expressed gene sets disturbed by bufadienolides-like chemicals (|logFC| ≥ 75 

log2(2) and adjPvalue ＜ 0.001). (B) The differentially expressed genes(DEGs) relate to differentially expressed 76 
gene sets (|logFC| ≥ log2(2) and adjPvalue ＜ 0.001). (C) The heatmap of top 20 DEGs disturbed by 77 

bufadienolides-like chemicals. 78 

Based on the differentially expressed genes analysis associated with gene sets enrichment 79 
variation analysis strategy, a total of 80 differentially expressed genes (DEGs) involved in the 44 80 
MSigDB C2 curated gene sets were identified (Fig. 1A and Fig. 1B) , the top 20 DEGs expression 81 
heatmap is shown in Fig. 1C. Of which, 38 genes involved in the Singh NFE2L2 targets gene sets, 82 
Chang dominant negative gene sets immortalized by HPV31 and Lin silenced gene sets by tumor 83 
microenvironment were up-regulated(Table S1 and Table S2 ), including IF16 (interferon-inducible 84 
protein 6), IRF9 (interferon regulatory factor 9), IFIT1 (IFN-induced protein 1 with tetratricopeptide 85 
repeats), ISG15  (Interferon-stimulated gene 15), BST2 (bone marrow stromal cell antigen 2), OAS3 86 
(2'-5'-oligoadenylate synthetase 3), OAS1 (2'-5'-oligoadenylate synthetase 1), DDX60 (DEAD box 87 
polypeptide 60), CYP1A1 (cytochrome P450 1A1), CEACAM6 (carcinoembryonic antigen-related 88 
cell adhesion molecule 6), keratin genes KRT81, and so on. 89 

Among the differentially expressed genes associated with enrichment gene sets, 42 genes 90 
involved in the 41 gene sets were down-regulated(Table S1 and Table S2), such the genes involved 91 
in Iizuka (Table S1) Liver cancer progression pathway, including PPIF (peptidylprolyl isomerase F), 92 
TMED2  (transmembrane trafficking protein 2 with emp24 domain), SAFB (scaffold attachment 93 
factor B) , SQLE (squalene epoxidase), PICALM (phosphatidylinositol binding clathrin assembly 94 
protein), STIP1 (stress-induced phosphoprotein 1), CYB561 (cytochromes b561) , CCT2 (chaperonin 95 
2β with TCP1 domain), the genes involved Thum systolic heart failure pathway, including CCNG2 96 
(cyclin G2), TMED2 (transmembrane emp24 domain trafficking protein 2), FH (fumarate hydratase), 97 
TAF9B (ATA-box binding protein associated factor 9b), CCT2 (chaperonin-containing t-complex 98 
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polypeptide 1 beta), transmembrane receptor NOTCH2, PICALM (subfamily A (MS4A) and 99 
CCNL2 (cyclin L2) , also Reactome DNA strand elongation, Reactome regulated proteolysis of 100 
P75NTR, and other gene sets were downregulated with logFC form - 0.89 ~ - 0.27. 101 

In order to obtain a biological interpretation of those genes in GO and KEGG pathway 102 
functional groups, GO and KEGG enrichment analysis were performed with clueGO plug [16] in 103 
Cystoscape [17]. Results indicated, those genes with up-regulated were rich in the terms of type I 104 
interferon signaling response to virus, defense to other organism, regulation of viral genome 105 
replication and 2'-5'-oligoadenylate synthetase activity, and those activate may cause by IRF9, IFI6, 106 
IFI27, ISG15, IFIT1, OAS1 and OAS3 (Fig3a ), also the KEGG pathway enrichment analysis those 107 
genes could cause the activate of IFN-induced pathway, type II interferon signaling pathway and 108 
regulation of protein ISGylation by ISG15 deconjugating enzyme USP18 pathway (Fig3B ). Those 109 
genes with down-regulated were rich in the terms of protein kinase complex, transcription factor 110 
TFTC complex-1, SAGA- complex and cargo loading into vesicle (Fig3A), further KEGG pathway 111 
enrichment analysis those may negative the transport of fringe-modified NOTCH to plasma 112 
membrane pathway (Fig3B ). 113 

 114 

Figure 3. The GO and KEGG enrichment result of DEGs disturbed by bufadienolides-like chemicals. (A) 115 
Representative biomolecular network of GO enrichment term, the nodes with red colour and bigger size 116 

means the enrichment GO terms with up-regulated genes, the nodes with blue colour and bigger size means 117 
the enrichment GO terms with down-regulated genes, the nodes with red colour and smaller size means 118 

up-regulated genes, the nodes with blue colour and small size means down-regulated genes, undirected edges 119 
means enrichment, the green directed edges means activate from the evidence generated by String database. 120 

the red directed edges means suppressive from the evidence generated by String database, (B) Representative 121 
biomolecular network of KEGG enrichment term, the nodes and edges also had the same means with Figure 122 

3A.123 
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 124 

2.2. The tissue specific co-expression network and breast cancer associated subnetwork regulated 125 
by bufadienolides-like chemicals 126 

It is clear that most of genes exert their function by collaborating with other genes in network which 127 
represent rigid molecular machines, cellular structures, or dynamic signaling pathways [18]. In this research, in 128 
order to comprehensive understanding the potential function of DEGs involed in Breast cancer, a breast tissue 129 
specific co-expression network with DEGs were generated with TCSBN database [19] through 130 
NetworkAnalyst web serve [20]. Results indicated the co-expression networks were consisted of 743 nodes and 131 
876 edges (Figure 4 and Table1). Furthermore, a functional enrichment analysis with KEGG pathways revealed 132 
that the co-expression networks network with DEGs were enriched in pathways related to tight junction, 133 
PPAR signaling pathway, mTOR signaling pathway, influenza A, tuberculosis, N-Glycan biosynthesis, 134 
terpenoid backbone biosynthesis, Notch signaling pathway, regulation of cyclin-dependent protein kinase 135 
activity and steroid biosynthesis (Table 1). Also the GO BP term enrich analysis, those genes mostly involved 136 
in Establishment or maintenance of cell polarity, triglyceride metabolic process, protein targeting to membrane, 137 
defense response to virus, tuberculosis, post-translational protein modification, coenzyme biosynthetic process, 138 
gamete generation, transcription, DNA-dependent, positive regulation of translation, endoplasmic reticulum 139 
unfolded protein response, regulation of cyclin-dependent protein kinase activity, steroid biosynthetic process, 140 
regulation of the transcription of DNA-dependent, intra-Golgi vesicle-mediated transport term., and other 141 
rigid molecular machines in biological process. 142 
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Table 1. The tissue specific co-expression network regulated by bufadienolides-like chemicals and it’s enrichment with GO and KEGG 143 

Subnetwork 

Number 
Nodes Edges Seeds 

KEGG Enrichment 
 

GO Enrichment 

KEGG Pathway P-value BP term P-value 

A 492 558 13 Tight junction 4.19E-04  Establishment or maintenance of cell polarity 2.83E-04 

B 113 128 3 PPAR signaling pathway 7.75E-06  Triglyceride metabolic process 1.25E-07 

C 46 50 2 mTOR signaling pathway 9.62E-03  Protein targeting to membrane 4.93E-67 

D 27 86 6 Influenza A 3.04E-10  Defense response to virus 1.24E-22 

E 18 17 1 Tuberculosis 2.01E-04  Tuberculosis 2.01E-04 

F 11 10 1 N-Glycan biosynthesis 9.19E-03  Post-translational protein modification 6.33E-03 

G 6 5 1 Terpenoid backbone biosynthesis 1.72E-04  Coenzyme biosynthetic process 1.55E-05 

H 5 4 1 Notch signaling pathway 2.98E-02  Gamete generation 1.34E-02 

I 4 3 1 NA NA  Transcription, DNA-dependent 1.31E-02 

J 4 3 1 NA NA  Positive regulation of translation 1.17E-02 

K 4 3 1 NA NA  Endoplasmic reticulum unfolded protein response 6.51E-03 

L 4 3 1 
Regulation of cyclin-dependent protein kinase 

activity 
1.24E-02  

Regulation of cyclin-dependent protein kinase 

activity 
1.24E-02 

M 3 2 1 Steroid biosynthesis 7.68E-03  Steroid biosynthetic process 2.07E-06 

N 3 2 1 NA NA  Regulation of transcription, DNA-dependent 1.84E-02 

O 3 2 1 NA NA  Intra-Golgi vesicle-mediated transport 4.47E-03 
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 144 

Figure 4. The breast tissue specific co-expression network with DEGs generated by TCSBN database through 145 
NetworkAnalyst web serve. (A) ~ (O), the Subnetworks of co-expression network origin from the seeds of 146 

DEGs. 147 

Based on the novel differentially regulated sub-networks detection tool, PhenomeScape [21], which could 148 
combined the fold changes of genes into the knowledge of networks and disease phenotypes, and then a series 149 
of differentially regulated sub-networks associated with phenotypes were identified with random walk 150 
algorithm. In this research, 7 phenotypes relate to breast cancer were choosed as the seed phenotypes, 151 
subsequently a total of 23 differentially regulated sub-networks enriched in breast cancer phenotype related 152 
subnetwork were identified (Table 2). The Sub-networks distributed by bufadienolides-like chemicals included 153 
RNA splicing (p-value=2.00E-03), apoptotic process (p-value=2.00E-03), extracellular matrix organization 154 
(p-value=1.00E-03), canonical Wnt signaling pathway (p-value=2.20E-02), synaptic transmission 155 
(p-value=1.40E-02), negative regulation of JAK-STAT cascade (p-value=4.20E-02), adherens junction 156 
organization (p-value=3.80E-02), BMP signaling pathway (p-value=4.10E-02) , negative regulation of cell 157 
migration (p-value=1.30E-02), activation of signaling protein activity involved in unfolded protein response 158 
(p-value=1.90E-02) (Fig. 4). The subnetwork A (Fig. 5A), relate to the RNA splicing function, was the first 159 
identified dysregulation subnetwork, it could observe the genes involved in mRNA splicing spliceosome were 160 
down regulated, included the serine and arginine rich splicing factor members SRSF4, SRSF5, SRSF6 and 161 
peroxisome proliferator activated receptor gamma coactivator PPARGC1A. The apoptotic process (Fig. 5B), 162 
also could been dysregulated by bufadienolides-like chemicals, and this dysregulation were performed with 163 
the increase expression of SYT11, PARK2, PYHIN1, APC, RNF40, SERPINB3, TIAM2, ITSN1, SH3GL2, CASP1, 164 
GATA4, ITSN2 and PDE4DIP . Several cancer signaling pathway included Wnt signaling pathway, JAK-STAT 165 
signaling pathway and BMP signaling pathway also could had been dysregulated by bufadienolides-like 166 
chemicals (Fig. 5D, 5F and 5H), this may gave further evidence of bufadienolides-like chemicals could increase 167 
the apoptotic process through a series of pathways or regulation network. The Subnetwork C (Fig. 5C), mostly 168 
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related to the extracellular matrix organization were upregulated, included the genes TIMP4, MMP3, SPARC, 169 
DPT and ACAN, also in this subnetwork the genes referred to the regulation of cell migration were 170 
downregulated, included the genes TNFAIP6, DCN, SPARC, THBS1 and CCL8, this means the increase of 171 
extracellular matrix may hindered the migration of tumor, also the negative of synaptic transmission, adherens 172 
junction organization and regulation of cell migration could find in subnetwork E, G and I (Fig. 5E, 5G and 5I). 173 
Several metabolic process also had been discovered, included the drug metabolic process, xenobiotic metabolic 174 
process, oligosaccharide metabolic process and etc. All other PhenomeScape networks can be found in 175 
Supplementary Fig. 1. 176 

Table 2 Summary of differentially regulated sub-networks disturbed by bufadienolides-like 177 

chemicals 178 

Subnetwork 

number 

No. of 

nodes 
GO-BP 

Empirical 

P-value 

A 21 RNA splicing 2.00E-03 

B 73 apoptotic process 2.00E-03 

C 11 extracellular matrix organization 1.00E-03 

D 6 canonical Wnt signaling pathway 2.20E-02 

E 7 synaptic transmission 1.40E-02 

F 11 negative regulation of JAK-STAT cascade 4.20E-02 

G 9 adherens junction organization 3.80E-02 

H 9 BMP signaling pathway 4.10E-02 

I 6 negative regulation of cell migration 1.30E-02 

J 4 
activation of signaling protein activity involved 

in unfolded protein response 
1.90E-02 

K 12 drug metabolic process 1.20E-02 

L 6 negative regulation of lipid storage 4.50E-02 

M 6 xenobiotic metabolic process 1.70E-02 

N 8 relaxation of cardiac muscle 4.80E-02 

O 5 very long-chain fatty acid metabolic process 1.70E-02 

P 4 oligosaccharide metabolic process 3.10E-02 

Q 4 collagen catabolic process 2.50E-02 

R 4 response to cocaine 2.70E-02 

S 4 behavioral response to nicotine 4.20E-02 

 179 
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Figure 5. The differentially expressed networks regulated by bufadienolides-like chemicals, and generated by 180 
PhenomeScape plug. Sub-networks linked to breast cancer, RNA splicing(2.00E-03)(A), apoptotic 181 

process(2.00E-03)(B), extracellular matrix organization(1.00E-03)(C), canonical Wnt signaling 182 
pathway(2.20E-02)(D), synaptic transmission(1.40E-02)(E), negative regulation of JAK-STAT 183 

cascade(4.20E-02)(F), adherens junction organization(3.80E-02)(G), BMP signaling pathway(4.10E-02) (H) , 184 
negative regulation of cell migration(1.30E-02) (I), activation of signaling protein activity involved in unfolded 185 
protein response(1.90E-02) (J). The fold change of the proteins is shown by the node colour and breast cancer 186 
associated phenotype annotated proteins used to generate the sub-networks are shown with a black border. 187 

Hub genes, mostly the highly connected nodes in network, were identified by node degree and MCC 188 
algorithm with Cytoscape plugin cytoHubba [22]. Based on the threshold of degree (degree > 5) and MCC 189 
algorithm, 10 genes with MCC scores ranged from 126~953 were identified as hub genes (Figure 6A, Figure 6B). 190 
Among the 10 hub genes, included 3 2'-5'-oligoadenylate synthetase genes OAS1, OAS2 and OAS3, included 5 191 
interferon-induced genes ISG15, IFIT1, IFI6, IFI44 and IFIL44L, also two other genes included the kelch-like 192 
family member 35 (KLHL35) and Golgi Membrane Protein 1 (GOLM1) were selected as the hub genes. Further 193 
investigated with TCGA [23] and Kaplan-Meier database [24] indicates, 10 hub genes except KLHL35, were 194 
increased both in treat with bufadienolides-like chemicals and TCGA Breast cancer sample (Figure 6C) , 6 hub 195 
genes, included IFIT1, ISG15, IFI6, GOLM5, KLHL35 and OAS2 were associated the total survival probability 196 
in Breast cancer patients (Figure 6D). Further analyzed with the correlation between the hub genes and total 197 
survival time in Breast cancer, the high expression of GOLM5, KLHL35 and OAS2 were associated with better 198 
survival probability. 199 

 200 

Figure. 6 The 10 hub genes and it’s correlation with total survival probability in Breast cancer. (A) The 10 hub 201 
genes and it’s MCC score. B) The network of hub genes. C) The expression correlation with breast cancer, 202 
validated by TCGA database. D) The total survival probability correlation with breast cancer, validated by 203 

Kaplan-Meier (KM) plotter database. 204 

 205 
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2.3. Similar small molecule detection 206 

Detect the similar small molecule with Comparative Toxicogenomics Database (CTD)  [25] and 207 
connectivity map (CMAP2)  [26, 27] database will provide a better understanding the molecular mechanism 208 
of bufadienolides-like chemicals, and its potential value of novel agent for cancer therapy. Based on the results 209 
with detecting CTD Database, valproic, cyclospoine and estradiol had the most same target with 210 
bufadienolides-like chemicals (Figure 7). Valproic, a histone deacetylase inhibitor, which once had been widely 211 
used as antiepileptic, and recently also had been proved with anti-cancer activity in vitro/vivo model [28] [29]. 212 
Estradiol, a sex hormones with anticancer activity, and also widely used for the treatment of Breast cancer, 213 
especially the postmenopausal women [30-32]. 214 

Based on the results from connectivity map (CMAP2) database (Table2) [26, 27], the type of V03AF, 215 
G03GB, C05AX and C05CX were the top matching drugs with bufadienolides-like chemicals, V03AF, one type 216 
of detoxifying agents for antineoplastic treatment, had an opposing effect on expression of the 217 
bufadienolides-like chemicals, this result indicated the evidence of bufadienolides-like chemicals had an 218 
potential value of novel agent for cancer therapy. G03GB, one type of sex hormones and modulators of the 219 
genial system, had the mostly same expression profile with bufadienolides-like chemicals, this means the 220 
bufadienolides-like chemicals had the same use of estradiol, epimestrol, cyclofenil in Breast cancer. C05AX and 221 
C05CX, two types of vasoprotectives agents, this means the bufadienolides-like chemicals also had the 222 
potential use of vasoprotectives-like drugs.  223 

From the evidence from detecting the similar small molecule with CTD database and CMAP2 database, 224 
indicated bufadienolides-like chemicals were one kinds of steroids with the same physiological activity as 225 
estradiol and G03GB (ATC code), had the potential value for cancer, especially the Breast cancer. 226 

 227 

Figure 7. Chemicals-gene interaction network for the DEGs disturbed by bufadienolides-like chemicals. Square 228 

nodes represent for the DEGs. Circle nodes represent for the chemicals predicted by Comparative 229 

Toxicogenomics Database. The size of nodes represent for the degree. Circle nodes with red represent the 230 

Similar small molecule predicted by degree (degree ≥ 30) 231 

 232 
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Table 3. Top 20 CMAP hits correlated with bufadienolides-like chemicals treatment 233 

Rank ATC code Mean score enrichment p-value specificity 

1 V03AF -0.471 -0.71 4.45E-03 3.82E-02 

2 G03GB 0.449 0.655 3.29E-02 7.47E-02 

3 C05AX 0.41 0.689 1.95E-02 4.76E-02 

4 C05CX 0.41 0.689 1.95E-02 4.76E-02 

5 D07XC -0.372 -0.661 1.44E-03 8.10E-03 

6 N05BE -0.359 -0.719 1.26E-02 1.22E-02 

7 C08EA 0.292 0.539 1.87E-02 1.45E-01 

8 N05AC 0.259 0.365 2.32E-03 3.90E-01 

9 D06BB -0.252 -0.405 9.39E-03 1.44E-01 

10 D06BX -0.249 -0.72 3.74E-03 1.38E-02 

11 N02BB 0.244 0.404 2.71E-03 1.75E-02 

12 N02CX 0.189 0.481 3.16E-02 4.43E-02 

13 A07EA -0.186 -0.343 6.96E-03 2.55E-02 

14 S02BA -0.167 -0.383 5.03E-03 1.31E-02 

15 B01AC 0.152 0.243 2.71E-02 1.19E-01 

16 S03BA -0.144 -0.366 2.02E-02 4.80E-02 

17 R03BA -0.141 -0.29 1.19E-02 4.00E-02 

18 S01CB -0.136 -0.326 1.21E-02 2.61E-02 

19 R01AD -0.113 -0.266 4.30E-03 4.83E-02 

20 C07AA -0.109 -0.262 1.14E-02 2.22E-01 

 234 

3. Discussion 235 

Recently, the gene expression profile technology, included the microarray and RNA-seq, had 236 
been widely to detect the potential mechanism of chemicals, but an central problem still perplex the 237 
researchers on pharmacology and biology, that is the chemicals how to disturb pathways and 238 
phenotypes through gene and its co-expression network. In this research, with use of the 239 
bioinformatics tools, especially the differentially regulated sub-networks detection tools 240 
PhenomeScape [21], comparative toxicogenomics database [25] and connectivity map [26, 27] 241 
database, revealed several differentially regulated sub-networks treat with bufadienolides-like 242 
chemicals, also the hub genes in co-expression network and its relation to survival probability of 243 
breast cancer, similar small molecule detection and other results may highlight the potential 244 
molecular mechanism and application of bufadienolides-like chemicals on cancer, especially as a 245 
novel agent for Breast cancer. 246 
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First, during the process of differentially expressed genes identification, in contrast to use the 247 
conventional method of differentially expressed genes selection with significance in statistics, a 248 
non-parametric unsupervised method of gene set variation analysis were used for differentially 249 
expressed genes identification. Results indicated a total of 80 differentially expressed genes (DEGs) 250 
involved in the 44 MSigDB C2 curated gene sets were identified (Fig. 1A and Fig. 1B). Further 251 
analysis with enrichment of GO and KEGG pathway, we found the genes with up-regulated most 252 
rich in interferon signaling response to virus, defense to other organism, regulation of viral genome 253 
replication and 2'-5'-oligoadenylate synthetase activity, KEGG pathway enrichment analysis showed 254 
those genes could cause the activate of IFN-induced pathway, type II interferon signaling pathway 255 
and regulation of protein ISGylation. But the genes with down-regulated were rich in the terms of 256 
protein kinase complex, transcription factor TFTC complex-1, SAGA- complex and cargo loading 257 
into vesicle, KEGG pathway enrichment analysis showed those genes may involve in negative the 258 
transport of fringe-modified NOTCH to plasma membrane pathway. Compare the method with 259 
statistical significance, those differentially expressed genes in gene set variation maybe much less, 260 
but with more same participate in same pathway or biology function, also the same results had been 261 
proved by the examples of GSVA package [15].  262 

Second, during the process of co-expression network reconstruction and dysregulated 263 
sub-networks detection, a novel plug of PhenomeScape was used, which could combine the data of 264 
gene expression into the knowledge of protein–protein interaction networks and disease phenotype 265 
[21]. During the analysis with damaged osteoarthritic cartilage gene expression profile, several 266 
significant sub-networks related to damaged osteoarthritic cartilage were identified, including 267 
mitotic cell cycle, Wnt signalling, apoptosis and matrix organisation [33, 34]. In this research, with 268 
PhenomeScape tool [21], a total of 23 differentially regulated sub-networks were identified, and 10 269 
sub-networks had been proved to relate to breast cancer by evidence, included RNA splicing, 270 
apoptotic process, cell migration, extracellular matrix organization, adherens junction organization, 271 
synaptic transmission and so on. 272 

Third, during the process of similar small molecule detection, Comparative Toxicogenomics 273 
Database (CTD) [25] and connectivity map (CMAP2) [26, 27] database were used. Results indicated 274 
bufadienolides-like chemicals had the same effect with valproic and estradiol, valproic, a histone 275 
deacetylase inhibitor, it had been proved to inhibit proliferation through Wnt/β catenin signalling 276 
activation. The estradiol, also had been proved to with anticancer activity, especially the 277 
postmenopausal women. Also the evidence form connectivity map database indicated 278 
bufadienolides-like chemicals had the potential ability to be used as anticancer, hormones and 279 
vasoprotectives agents. 280 

During the hub gene selection and it’s relation to survival probability indicated 10 hub genes 281 
except KLHL35, were increased both Breast cancer and samples treat with bufadienolides-like 282 
chemicals, further analysis with relation to total survival probability, 6 hub genes, included IFIT1, 283 
ISG15, IFI6, GOLM5, KLHL35 and OAS2 were associated the total survival time and high expression 284 
of GOLM5, KLHL35 and OAS2 were associated with better survival probability. 285 

4. Materials and Methods  286 

4.1 Microarray data information 287 

The gene expression profiles of GSE85871 (https://www.ncbi.nlm.nih.gov/gds/), which is an 288 
gene expression profile treat with 102 Chinese traditional medicine, and it was based on Affymetrix 289 
GPL571 platform (Affymetrix Human Genome U133A 2.0 Array), was submitted by Lv et al  [35].  290 

In this study, the raw data of 4 controls and 14 samples treat with bufadienolides-like 291 
chemicals, including resibufogenin, bufalin, arenobufagin, cinobufagin, bufotoxin, telocinobufagin, 292 
bufotaline and cinobufotali, were downloaded from GEO database through GEOquery [36] 293 
packages in R3.5.1 [37] environment. 294 

 295 
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4.2 Identification of DEGs associated with relative enrichment pathways 296 

In order to obtain the biological interpretation of differentially expressed genes（DEGs）297 

disturbed by bufadienolides-like chemicals, a novel R package GSVA [15] was employed, which 298 

allows the assessment of the DEGs underlying pathway activity variation by transforming the gene 299 

expression profile into the prior knowledge of gene set. In accordance with MIAME standards [38, 300 

39], the differentially expressed genes (DEGs) disturbed by bufadienolides-like chemicals were 301 

identified by a serious of standard flow with R environment. First, the quality assessments, 302 

background correction and normalization were preprocessed and normalization with affy [40]  and 303 

gcrma [41] packages. Then, the batch effects were examined and removed out with combat and sva 304 

functions in SVA package [42]. Subsequently, an non-specific probes filtering step were carried out 305 

with nsFilter function in the genefilter package [43], the quality control probes of Affymetrix, 306 

probesets without Entrez ID annotation, probesets whose associated Entrez ID is duplicated in the 307 

annotation and the top 20% with smaller variability were removed. Finally, the GSVA [15], 308 

GSEABase [44], limma  [45] package and c2BroadSets from Molecular Signatures Database 309 

(MSigDB) [46, 47] were used for the selection for DEGs with relative enrichment pathways.  310 

During the process of DEGs selection with relative enrichment sets, the gene expression profile 311 

was first transformed into the prior knowledge gene set of c2BroadSets and the enrich gene sets 312 

were selection with the screening criteria of FDR < 0.01. Then the different genes enrichment in the 313 

c2BroadSets gene sets were selected with limma [45] package, and the screening criteria were set 314 

with FDR < 0.01 and |logFC| > 1, and those DEGs associated with relative enrichment pathways 315 

were used for further analyzed and validated  316 

During the process of DEGs identification, the Biobase [48]package and GSVAdata [49] package 317 

were also applied. The results were visualized with ggplot2 [50], ggpubr [51], pheatmap [52]and 318 

cowplot [53] package. 319 

4.3 Gene enrichment analysis 320 

On the bias of the DEGs selection associated with relative enrichment sets, in order to obtain a 321 

comprehensive understanding of those genes involved in the prior knowledge of gene sets, GO and 322 

KEGG enrichment analysis were performed with clueGO plug [16]  in Cystoscape [17]. The 323 

significantly enrich GO terms and KEGG pathways were calculated by the hypergeometric test [54], 324 

and cut-off criteria was set as FDR < 0.05. Another statistical parameter of Kappa Score were set as 325 

middle stringency, its means the terms in network were combined with middle related terms as 326 

based on their overlapping genes. The min percentage and min genes enriched in GO terms or 327 

KEGG pathways were set as 1.0% and 2, also the term fusion was chosen. Other options, including 328 

the statistical options, reference options, grouping options and visual options were set with default 329 

setting. 330 

 331 
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4.4 Gene co-expression network analysis and disease phenotype association 332 

In order to comprehensive understanding the potential mechanism of DEGs in involed in 333 

Breast cancer, co-expression network analysis, phenome association and survival correlation 334 

analysis were investigated with NetworkAnalyst database [20] and PhenomeScape plug [21] in 335 

Cystoscape [17], also other plugs and databases including the cytoHubba [22] , TCSBN database 336 

[19], TCGA database [23] and Kaplan-Meier (KM) plotter database [24] and Phenomiser [55] web 337 

tool were also used for hub genes selection and survival correlation analysis. First, the breast 338 

mammary tissue specific co-expression networks were investigated with TCSBN database through 339 

NetworkAnalyst web server, also the GO and KEGG enrichment terms of networks were also 340 

investigated with NetworkAnalyst web server. Subsequently, the differentially regulated 341 

sub-networks enriched in genes associated with breast cancer phenotype were identified by 342 

random sampling (10,000 sub-networks) methods with PhenomeScape plug and Phenomiser web 343 

tool. First, through the search with Phenomiser web tool and the manual of UberPheno ontology 344 

[55], six phenotypes (Table 4) were chosen as the breast cancer association phenotype, and then 345 

with the parameters of maximum initial sub-network size of 7 and an empirical P-value threshold 346 

of 0.05 were used for filtering the differentially regulated sub-networks enriched in genes associated 347 

with breast cancer phenotype. 348 

Table 4. UberPheno phenotype terms selected for differentially regulated sub-network detection in 349 

co-expression network  350 

Phenotype ID Phenotype Description 

HP:0100783 Breast aplasia 

HP:0100013 Neoplasm of the breast  

HP:0003002 Breast carcionma 

HP:0003187 Breast hypoplasia 

HP:0000769 Abnormality of the breast  

HP:0010619 Fibroma of the breast 

Hub genes, highly interconnected with nodes in network, have been considered functionally 351 

significant in network. In our study, the top 10 hub genes were defined by node degree and MCC 352 

algorithm in Cytoscape plugin cytoHubba [22]. Reference the previously described workflow of 353 

selection the essential proteins from the yeast protein interaction network with MCC algorithm [22]. 354 

First, the degrees of nodes were computed by NetworkAnalyzer [56] in Cytoscape. Then the node 355 

with degree greater than a threshold were choosed as potential candidate Hub genes, and the 356 

threshold is the maximum integer as , where  is the 357 

collection of nodes within the network , Deg(v) is the degree of node  Last, the top 10 hub 358 

genes were ranked by MCC algorithm in cytoHubba plugin. Hub genes common in breast tissue 359 

co-expression networks were chosen as the candidates to be further analyzed and validated with 360 
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TCGA [23] and Kaplan-Meier (KM) plotter database (http://kmplot.com/analysis/) [24].  361 

4.5 Similar small molecule detection 362 

In order to detect the similar small molecule with bufadienolides-like chemicals, the DEGs with 363 

up or down were respectively submitted to the comparative toxicogenomics database (CTD) [25] 364 

and connectivity map (CMAP2, http://www.broadinstitute.org/cMAP/) database [26, 27]. During 365 

the process of detection similar small molecule with CTD Database, the threshold of degree in the 366 

degree filter network was set as 10. During the process of detection similar small molecule with 367 

connectivity map database, the enrichment score and p-value of were choose as similarity index 368 

between the gene expression profile of the query signature and that of chemicals in CMAP2.  369 

Also the potential toxicity same as bufadienolides-like chemicals were also detected by CEBS 370 

database (https://manticore.niehs.nih.gov/cebssearch/) [57], but there is no evidence to prove the 371 

bufadienolides-like chemicals with obvious toxicity. 372 

5. Conclusions 373 

In this research, with a serious of bioinformatics analysis, we take notice the bufadienolides-like 374 
chemicals may perform anticancer activity through RNA splicing, apoptotic process, cell migration, 375 
extracellular matrix organization, adherens junction organization, synaptic transmission, Wnt 376 
signaling, AK-STAT signaling, BMP signaling pathway and unfolded protein response, and those 377 
may highlight the potential molecular mechanism of bufadienolides-like chemicals on Breast cancer, 378 
but still there are several problem had better solution, the toxicity of bufadienolides-like chemicals, 379 
especially the cardiotoxicity, which had been widely observe from clinic. The second problem, the 380 
difference of potential molecular mechanism among bufadienolides-like chemicals also had been 381 
clear illuminated in this research. 382 

Supplementary Materials: The following are available online, Figure S1: Other differentially expressed 383 
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