

1 Original Research Article

2

3 **Spatial Distribution of Zika in Honduras during 2016-2017 using Geographic Information
4 Systems (GIS) – Implications in Public Health and Travel Medicine[◊]**

5

6 Lysien I. Zambrano,^{1,2,3} Walter O. Vasquez-Bonilla,⁴ Itzel Carolina Fuentes-Barahona,^{4,5} José
7 Cláudio da Silva,^{6,7} Jorge Alberto Valle-Reconco,⁸ Marco Tulio Medina,^{3,4,9} John D. England,^{9,10}
8 Jorge A. Sánchez-Duque,¹¹ Alfonso J. Rodríguez-Morales.^{3,11,12,13,*}

9

10 ¹*Department of Morphological Sciences, School of Medical Sciences, Universidad Nacional
11 Autónoma de Honduras, Tegucigalpa, Honduras.*

12 ²*Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina (UNIFESP-
13 EPM), Universidade Federal de São Paulo, São Paulo, Brazil.*

14 ³*Colombian Collaborative Network of Zika (RECOLZIKA), Pereira, Risaralda, Colombia*

15 ⁴*School of Medical Sciences, Universidad Nacional Autónoma de Honduras, Tegucigalpa,
16 Honduras.*

17 ⁵*Department of Gynecology and Obstetrics, Hospital Escuela, Tegucigalpa, Honduras.*

18 ⁶*Centro Universitário CESMAC, Maceió, Alagoas, Brazil.*

19 ⁷*State University of Health Sciences of Alagoas - UNCISAL, Alagoas, Brazil.*

20 ⁸*Deanship, School of Medical Sciences, Universidad Nacional Autónoma de Honduras,
21 Tegucigalpa, Honduras.*

22 ⁹*World Federation of Neurology Zika Working Group, London SW6 3JA, United Kingdom.*

23 ¹⁰*Department of Neurology, Louisiana State University Health Sciences, New Orleans, Louisiana,
24 United States of America.*

25 ¹¹*Public Health and Infection Research Group, Faculty of Health Sciences, Universidad
26 Tecnológica de Pereira (UTP), Pereira, Risaralda, Colombia.*

27 ¹²Committee on Travel Medicine, Asociación Panamericana de Infectología, Panama, Panama

28 ¹³Medical School, Faculty of Health Sciences, UniFranz, Cochabamba, Bolivia.

29

30 Corresponding author email: arodriguezm@utp.edu.co

31

32 [◊]This study was partially presented at the 18th International Congress of Infectious Diseases (18th ICID),
33 Buenos Aires, Argentina, March 1-4, 2018 (Poster UMP.125) and at the XI National Meeting of Research
34 in Infectious Diseases and I Andean Meeting of Research in Infectious Diseases (Asociación Colombiana
35 de Infectología, ACIN), Pereira, Risaralda, Colombia, August 2-4, 2018 (Oral Presentation #139).

36

37 Study design: AJRM, Data collection: LIZ, WOVB, ICFB, JAVR, Data analysis: AJRM, JASD, JCDS, MTM, JDE,
38 Writing: All authors. All authors contributed to and approved of the final version submitted.

39

40 Competing interests: None of the authors has any conflict of interest to declare.

41

42 Words Count:

43 Abstract: 224; Text body: 3068 (limit 5000 – Guide to Authors TMAID – Original Articles).

44 References: 61.

45 Tables: 2.

46 Supplemental Tables: 1.

47 Figures: 4.

48

49 **Abstract**

50 *Background:* Zika virus (ZIKV) infection has significantly affected Latin America in 2015-2017.
51 Most studies have been reported from Brazil and Colombia, and only a few from Central America.
52 For these reasons we analyzed the incidence, incidence rates and evolution of cases in Honduras
53 from 2016-2017.

54 *Methods:* Using epidemiological weeks (EW) surveillance data on the ZIKV epidemics in
55 Honduras, we estimated incidence rates (cases/100,000 population), and developed maps at
56 national, departmental and municipal levels.

57 *Results:* From 1 January 2016 to 31 December 2017, a total of 32,607 cases of ZIKV were
58 reported (98.5% in 2016 for an incidence rate of 36.85 cases/100,000 pop; 1% confirmed by RT-
59 PCR). The highest peak was reached on the EW 6°, 2016 (2,559 cases; 29.34 cases/100,000
60 pop). The department with the highest number of cases and incidence rate was Cortés (13,128
61 cases, 791.08 cases/100,000 pop in 2016).

62 *Discussion:* The pattern and evolution of ZIKV infection in Honduras has been similar to that which
63 occurred for chikungunya in 2015. As previously reported, infection with chikungunya involved
64 predominantly the central and capital area of the country, reaching incidences there >750
65 cases/100,000 pop. Studies using geographical information systems linked with clinical disease
66 characteristics are necessary to attain accurate epidemiological data for public health systems.
67 Such information is also useful for assessment of risk for travelers who visit specific areas in a
68 destination country.

69

70 **Keywords**

71 Zika virus (ZIKV); geographical information systems (GIS); public health; travelers; arboviruses;
72 infectious diseases epidemiology; Honduras.

73

74

75 **Introduction**

76

77 During the past several years, a significant number of tropical and subtropical geographic areas
78 have been threatened by an unprecedented occurrence of emerging arboviral outbreaks [1].
79 Factors such as climate change [2, 3], international travel, foreign trade [4, 5], geographical
80 susceptibility, and other factors are associated with these outbreaks [6-10]. In December 2013,
81 chikungunya virus (CHIKV) arrived in the Americas [11], and this was followed shortly by Zika
82 virus (ZIKV) in 2013-2015 [12]. These viruses spread within a population that had already
83 experienced previous endemo-epidemic seasons of urban dengue virus (DENV) and sylvatic
84 yellow fever virus (YFV) [2, 4, 5, 13, 14].

85

86 According to the Pan-American Health Organization (PAHO) [15], in Central America 71,316
87 cases of ZIKV were reported between 2015-2017 (11% confirmed by RT-PCR), with >45% of
88 them occurring within Honduras (Figure 1), making it the country with the highest number of cases
89 in the region. In general, there are not many other studies about ZIKV in Honduras [16-20].
90 Previous publications worth mentioning are a multi-country surveillance from 1 April 2015 to 31
91 March 2016 of ZIKV-associated Guillain-Barre Syndrome (GBS) [21] and case reports about
92 neurological complications of ZIKV such as sensory polyneuropathy [22]. Other publications have
93 highlighted Honduras as a potential point source of ZIKV cases to other countries given the
94 attraction of tourist destinations such as Roatán and the Bay Islands [17-19].

95

96 ZIKV was first detected in Honduras in late December 2015 [23, 24]. After that, mandatory
97 reporting surveillance of ZIKV cases was established in the country, and the World Federation of
98 Neurology (WFN) established a Zika Working Group to help understand the ZIKV epidemic [25].
99 Coinciding with the beginning of the epidemics in the country (Figure 1), the World Health
100 Organization (WHO) declared a Public Health Emergency of International Concern (PHEIC) in

101 February 2016. As of this time, ZIKV has spread to more than 148 countries around the world,
102 mostly in Latin America, and its complications have challenged the existing response capacities
103 of local health systems [5, 7, 16, 26].

104
105 The ZIKV epidemics in countries such as Brazil and Colombia stimulated multiple studies,
106 including entomological assessments since the control of the *Aedes aegypti* mosquito is critical
107 to curb the spread of the virus [18, 24, 26, 27]. Previous assessments for DENV and CHIKV in
108 Honduras performed by our group demonstrated the importance of *A. aegypti* populations for
109 informing public health decisions and travel advice [6]. This has also been shown in other Latin
110 American countries [6, 8, 9, 13, 28, 29]. In addition to *A. aegypti*, the presence of *A. albopictus*
111 was confirmed in the Mountain Park Juana Lainez at Tegucigalpa in 2013 [30].

112
113 In the past decade, the near real-time availability of novel and disparate internet-based data
114 sources has motivated the development of complementary methodologies to track the incidence
115 and spread of disease. PAHO currently streamlines reports from ministries of health and reports
116 weekly confirmed and suspected cases of ZIKV by country [26, 29, 31-35]. These reports provide
117 up-to-date data about the epidemiology of ZIKV in affected global regions [6]. However, there is
118 no detailed information about specific places, departments or municipalities, which is necessary
119 to make more specific recommendations to travelers as well for public health prioritization and
120 policies [31, 33, 36, 37].

121
122 Understanding the impact of arboviruses, especially ZIKV, in terms of clinical complications,
123 disability and costs to health systems requires a greater number of investigations involving
124 multiple medical specialties, mainly in susceptible countries such as Honduras. This information
125 is essential to develop and prepare for possible future epidemics of new arboviruses [10, 13].

126

127 As part of the enhanced efforts in control and risk assessment for ZIKV in Latin America, the
128 Universidad Tecnológica de Pereira, the Ministry of Health of Honduras and the Universidad
129 Nacional Autónoma de Honduras, are working together in the analysis of epidemiological
130 information of infectious diseases in regional and national scales [6, 38], including diseases such
131 as ZIKV, DENV and CHIKV [3, 6, 29, 31-33, 36]. In this setting, this study aimed to estimate
132 incidence rates of ZIKV in 2016-2017 for Honduras and its departments and municipalities and to
133 develop GIS-based epidemiological maps for this arboviral disease.

134

135 **Methods**

136

137 Honduras is a Central American country constituted by 18 departments (main administrative level)
138 (Figure 2) and 298 municipalities (second administrative level) (Figures 3 and 4). The Honduran
139 territory presents climatic, geographic and epidemiological conditions suitable for transmission of
140 many vector-borne diseases. *Aedes aegypti*, the main vector of ZIKV, is widely distributed over
141 all the territories [6, 39], constituting large areas where environmental factors such as
142 temperature, humidity, precipitation, latitude and altitude, as well as social, cultural, economic and
143 political factors are suitable for sustained vector-transmission [6].

144

145 For this observational, retrospective and cross-sectional study, the epidemiological data were
146 collected from the national surveillance system, obtaining the number of cases for each
147 department and each municipality of the country by year 2016-2017 (detailed by weeks). Data
148 were constituted from clinically confirmed cases (suspected cases by clinical criteria definition)
149 and confirmed by RT-PCR, which have been revised in terms of data quality. Data analyzed for
150 this study came from 298 primary municipal notification units, collected at the 18 department
151 notification units, and consolidated in Tegucigalpa (Francisco Morazán department, Capital
152 District, CD) [6]. Determination of ZIKV infection included syndromic and/or laboratory

153 surveillance (clinical definition of fever, rash, conjunctivitis and arthralgias in a place with
154 previously ZIKV circulation; at least one case confirmed by RT-PCR). This clinical definition has
155 been recommended by the WHO, PAHO, and the US Centers for Disease Control (CDC).

156

157 Using official reference population data (National Institute of Statistics, INE), estimates of the
158 annual incidence rates for all the departments and municipalities of the country were calculated
159 (cases/100,000 pop) to provide estimates of ZIKV incidence by department and municipalities [6].

160

161 In addition, national GIS-based maps, by departments and municipalities with the distribution of
162 ZIKV were generated. Microsoft Access® was used to design the spatial databases to import
163 incidence rates by departments, municipalities and disease to the GIS software. The Client GIS
164 software Open source used was Kosmo Desktop 3.0 RC1®. The shapefiles of departments (.shp)
165 were linked to data table database through spatial join operation, in order to produce digital maps
166 of annual incidence rates by departments and municipalities [6, 31, 34].

167

168 **Results**

169

170 From 1 January 2016 to 31 December 2017, a total of 32,607 cases of ZIKV were reported (1%
171 confirmed by RT-PCR for ZIKV), 98.5% of them in 2016, for an incidence rate of 36.85
172 cases/100,000 pop.

173

174 The highest peak was reached on the epidemiological week (EW) 6°, 2016 (2,559 cases; 29.34
175 cases/100,000 pop) (Figure 1). During the first 10 EW, a total of 16,415 cases were reported (50%
176 of the 2016-2017 period). Number of cases decreased at EW 12° to 93 cases (1.07 cases/100,000
177 pop). A second peak of cases occurred during EW 24° reaching 988 cases (11.33 cases/100,000
178 pop) (Figure 1). By EW 35° more than 95% of the cases of the period were reported.

179
180 Of the 18 departments of Honduras, all except Gracias a Dios reported cases during the study
181 period. Rates ranged from 0 to 791.08 cases/100,000 (Cortés, 2016), followed by Francisco
182 Morazán (663.53 cases/100,000, 2016) and Yoro (350.93 cases/100,000, 2016), Santa Barbara
183 (308.64 cases/100,000, 2016), and Olancho (265.65 cases/100,000, 2016) (Figure 2, Table 1).
184 These 5 departments, which are located in the central and northwestern areas of Honduras (figure
185 2), reported more than 88% of the ZIKV cases of the country (Table 1).
186
187 When comparing Cortés and Francisco Morazán incidence over time, clear differences were
188 evident. At Cortés a high number of cases was reported during the first 12 EWs of 2016 reaching
189 up to 109.8 cases/100,000 pop (1815 cases) during that week, for a total of 11,514 cases in the
190 three first months (35% of the cases reported in Honduras during 2016-2017) (Figure 1). In
191 contrast, there was a low incidence in Francisco Morazán (below 20 cases/100,000 or <300 cases
192 per week) during the same period. Thereafter, there was a low reported number of cases in Cortés
193 (<10 cases/100,000 pop) and a significant increase in Francisco Morazán, which reached its peak
194 during the EW 23° with 50.3 cases/100,000 (793 cases that week) for a total of 5,453 cases (17%
195 of the cases reported in Honduras during 2016-2017) (Figure 1). Until EW 23° more than 52% of
196 the cases of the 2016-2017 epidemic were reported from these two departments, documenting a
197 concentrated occurrence in the most populated departments containing the capital (Tegucigalpa,
198 Francisco Morazán) and second largest city of the country (San Pedro Sula, Cortés) (Table 1).
199
200 From the total number of municipalities (298) of Honduras, 69.4% of them reported cases of ZIKV
201 (Table 2). Rates ranged from 0 to 2,495.79 cases/100,000 (Ceguapa, Santa Barbara department,
202 2016), followed by Cane (La Paz department, 1,648.91 cases/100,000, 2016) and San Vicente
203 Centenario (Santa Bárbara department, 1,565,18 cases/100,000, 2016) (Figure 3, Table 2).

204 Tegucigalpa, at the Capital District, reported 10,386 cases in 2016 for a rate of 860,03
205 cases/100,000 pop. (Figure 3).

206

207 At Francisco Morazán department, areas closer to Tegucigalpa presented high incidence
208 numbers. For instance, Santa Lucia reported 193.13 cases/100,000pop and San Buenaventura
209 reported 101.25 cases/100,000pop (Figure 4). Similarly, at Cortés department, municipalities
210 such as Villanueva, Choloma, Puerto Cortes, San Manuel, which surround the department capital
211 of San Pedro Sula, demonstrated incidence rates >100 cases/100,000 pop (Figure 4) (Table 2)
212 (Supplemental Table 1 shows all the municipalities of Honduras by incidence rates).

213

214 **Discussion**

215

216 As expected, after the arrival of ZIKV to Brazil and other countries in Latin America [12, 31],
217 Honduras was significantly affected by ZIKV cases. As occurred with DENV and CHIKV in 2015
218 [6], Francisco Morazán and Cortés, the most populated departments, were the most affected.
219 ZIKV has followed the path of dengue and chikungunya in Honduras. Those areas with high
220 incidence rates of these infections also exhibited the highest risk for ZIKV [6]. Although more than
221 32,000 cases were reported in the country, only 1% of cases have been confirmed by RT-PCR.
222 This is directly related to the financial limitations that preclude assessment of all patients by
223 laboratory confirmation and to a lack of readily available and reliable serological tests.
224 Nonetheless, we used the PAHO case definition which is based upon a clinical definition of ZIKV
225 infection for surveillance data.

226

227 Social and eco-epidemiological conditions in Honduras make the whole country susceptible to
228 spread of arboviral diseases such as DENV, CHIKV and ZIKV [3, 6]; therefore, analyses such as
229 the one presented herein are relevant for understanding future emerging arboviral diseases in the

230 region and the country. Other relevant viral diseases to consider include Mayaro (MAYV),
231 Oropouche (OROV), Venezuelan Equine Encephalitis (VEEV), West Nile virus (WNV), among
232 others [1, 13, 40, 41]. Recent social and political movements such as migration of large numbers
233 of people from Central America through Mexico toward the United States of America present the
234 potential for spread of ZIKV and other arboviruses into other regions and countries. Although the
235 last case of ZIKV in Honduras was officially reported in mid-December 2017, transmission is still
236 occurring, albeit with a lower number of incident cases (between 0 and 13 cases/week during first
237 38 EW of 2018). However, as seen in other countries [7, 31-34], marked variation occurred in
238 reported incidence in areas within countries and between 2016 and 2017. This can be explained
239 in part due to previous high attack rates and a decrease in the number of susceptible populations
240 due to herd immunity. As has been recently hypothesized for dengue [42], but also for Zika and
241 chikungunya, this decline is unlikely due to changes in epidemiological surveillance systems, as
242 similar designs of surveillance systems exist across the region. However, future studies should
243 address the effect of prior DENV infection on ZIKV incidence and severity, the epidemiological
244 effect of prior ZIKV infection on dengue incidence and severity, immune correlates based on new-
245 generation ELISA assays, and the impact of prior DENV/other arbovirus infection on ZIKV
246 immune response in relation to number of infections and the duration of antibodies in relation to
247 interval of protection [42]. Also, in 2015-2016, environmental conditions in the Americas were ripe
248 for ZIKV transmission [43].

249

250 As mentioned previously, in Central America Honduras was the country with the highest number
251 of ZIKV cases [15]. But, some small countries such as Belize actually had a higher incidence rate
252 (636 cases/100,000pop), with more than 2.000 cases during 2015-2017 [44-46]. One also has to
253 keep in mind that exact numbers of ZIKV cases are difficult to obtain from many of the other
254 countries in Central America [47, 48]. Adding the ZIKV cases from Central America which are
255 known to the rest of the continent, more than 800,000 cases have been reported [15].

256

257 So far, in Honduras only 8 cases of congenital Zika syndrome (CSZ) have been reported. But,
258 this figure may not be accurate and may be an underestimate. Further studies are necessary to
259 determine the true frequency of ZIKV infection during pregnancy in Honduras and the association
260 of microcephaly and other birth defects with ZIKV infection [20], as has been reported in Brazil
261 and Colombia, among other countries in Latin America [49-52]. Abortion is currently illegal under
262 any circumstances in Honduras.

263

264 In this setting, public health tools for detailed analyses, such as the use of GIS-epidemiological
265 maps [6, 34, 36], are of high relevance for any affected country. In the case of Central American
266 territories, there is a clear lack of studies developing such maps for arboviral and other infectious
267 diseases. In Honduras, a previous assessment using GIS mapped DENV and CHIKV during 2015
268 found a similar spatial distribution as has been found for ZIKV in 2016. In 2016, according to the
269 Ministry of Health of Honduras, 22,961 cases of DENV and 15,896 cases of CHIKV were reported.
270 Combining the three arboviral diseases, almost 71,000 cases were reported. In spite of the fact
271 that Honduras has been especially affected by DENV, CHIKV and ZIKV, there is a great lack of
272 scientific and public health studies dealing with these arboviruses [53].

273

274 In this study, we estimated the incidence rates of ZIKV, and generated epidemiological maps in
275 two geographical levels (departments and municipalities). ZIKV appears to followed the patterns
276 of other arboviral diseases in the country [6]. Further studies are clearly essential to understand
277 the epidemiological and medical characteristics of this and other arboviruses in Honduras.
278 Although this may not provide all the answers, such information is particularly useful for public
279 health evidenced-based decisions [54]. Developed maps would provide baseline epidemiological
280 information for assessment of the differentiated risk related to acquiring such diseases in certain

281 areas (departments and municipalities) of Honduras. Similar recommendations have previously
282 been made for DENV and CHIKV [3, 6].

283
284 Use of GIS-based epidemiological maps are very useful to develop preventative/control strategies
285 and public health policies for joint control of these vector-borne diseases in Honduras [6, 31-33,
286 36, 37], as well as other countries in Central America. These tools such as GIS-based maps can
287 also be developed and used for making public health decisions about other emerging diseases in
288 Honduras.

289
290 These maps can also provide relevant information concerning the risk to individuals traveling to
291 specific regions of the world [6, 31-33, 36, 37, 55]. A correlated and very important role is using
292 the data to help prevent further spread of viruses such as DENV, CHIKV and ZIKV from other
293 countries (imported cases) to Honduras and other countries in Latin America. According to the
294 Secretary of Tourism of Honduras (*Instituto Hondureño de Turismo*), just in 2014, the country
295 received 1.133 million international tourists (51.3% from Europe and 23.2% from Asia-Pacific
296 region); 107,710 visited the archaeological site of Copán, and 20,118 the fortress of Santa
297 Barbara, both located in Zika-endemic areas).

298
299 In the case of ZIKV, previous studies at the department of Islas de la Bahía (Bay Islands), which
300 include Roatan, indicate that this is a highly visited tourist destination during all seasons. This
301 area has a considerable occurrence of DENV and CHIKV [6], highlighting the need for increased
302 measures to prevent arbovirus infection in these areas. A recent study specifically at Roatán
303 found by molecular diagnosis the co-circulation of ZIKV, DENV and CHIKV [18].

304
305 Roatan is constantly receiving international cruise ships, with the consequent epidemiological
306 implications, as described [6]. Now, in the department of Colon (with 47.39 cases/100,000 pop

307 of ZIKV in 2016), which includes Trujillo (3.14 cases/100,000 pop of ZIKV in 2016) with its port
308 Puerto Castilla, there is large industrial development and an international hub for cruise ships.
309 This area should also be a focus of concern for travel medicine and public health for ZIKV and
310 other arboviral diseases in Honduras. Such tourist destinations are epidemiologically suitable for
311 acquisition of ZIKV by international travelers in Honduras. In fact, such acquisition of infection
312 with both ZIKV and CHIKV has been reported in a young woman who returned to Madrid, Spain
313 after visiting Tegucigalpa and Chouteca [19].

314

315 In the near future, other eco-epidemiological assessments should be performed in Honduras for
316 these arboviral diseases. With warm temperatures during the whole year, susceptible individuals,
317 and high density of mosquito vectors, many municipalities have become endemic regions for ZIKV
318 in addition to CHIKV and DENV [6].

319

320 **Limitations**

321 Only 1% of cases of ZIKV infection were laboratory confirmed. We used the PAHO case definition
322 in surveillance to be as accurate as possible in obtaining the epidemiological data [37]. This
323 situation is similar to other countries and published reports about GIS-mapping of Zika and other
324 arboviral diseases in the Americas [31-34, 36]. But certainly, in Honduras, as in other areas of the
325 tropical Americas, DENV and CHIKV also circulate with ZIKV, and there is overlap in their clinical
326 features. All three viruses have similar clinical presentations, and coinfections may be more
327 common than previously known [4, 5, 40, 56-59]. In addition, there is probably under-reporting of
328 cases in certain areas as compared with more accurate reporting in certain municipalities.

329

330 **Conclusions**

331 GIS-based maps provide relevant information to assess the risk to individuals travelling to specific
332 destinations in endemo-epidemic areas allowing detailed prevention advice [37]. Such maps allow

333 integration of prevention and control strategies, as well as public health policies, for joint control
334 of this vector-borne disease in this and other countries of the region [60]. Simultaneous or
335 sequential arboviral infections occur and should be assessed and mapped as a subject of
336 surveillance [57-59]. Preparedness in this setting should also consider the potential arrival of
337 Mayaro [13, 41], Oropouche and yellow fever viruses in *Aedes* infested areas [61].

338

339 **Acknowledgments**

340 This study was partially presented at the 18th International Congress of Infectious Diseases (18th
341 ICID), Buenos Aires, Argentina, March 1-4, 2018 (Poster UMP.125) and at the XI National
342 Meeting of Research in Infectious Diseases and I Andean Meeting of Research in Infectious
343 Diseases (Asociación Colombiana de Infectología, ACIN), Pereira, Risaralda, Colombia, August
344 2-4, 2018 (Oral Presentation #139). The Faculty of Health Sciences of the Universidad
345 Tecnologica de Pereira, the Colombian Association of Infectious Diseases (ACIN) (Coffee-
346 Triangle Region chapter), and the International Society for Infectious Diseases, USA; supported
347 A. J. Rodriguez-Morales, for his participation at the ICID and ACIN meetings where this study was
348 presented. Authors thanks the Unit of Health Surveillance (Unidad de Vigilancia en Salud, UVS),
349 of the Secretary of Health (Secretaria de Salud, SESAL), Honduras, for providing the data. Finally,
350 also thanks to the World Federation of Neurology Zika Working Group.

351

352 **Funding:** Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia. This study is part
353 of the project “Desarrollo de Mapas Epidemiológicos a través de Sistemas de Información
354 Geográfica para la Caracterización Geográfica de Enfermedades Infecciosas y Tropicales en el
355 Eje Cafetero de Colombia” (Code 5-15-5 [2015-2017]), Universidad Tecnológica de Pereira,
356 Pereira, Risaralda, Colombia. Training on GIS for A. J. Rodriguez-Morales was funded by
357 Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia.

358

359 **Ethical Approval:** Not required.

360

361 **Conflicts of Interest:** The authors have no conflict of interest to disclose.

362

363 **Data availability**

364 Raw data for is available and will be provided on request.

365

366 **References**

- 367 1. Musso D, Rodriguez-Morales AJ, Levi JE, Cao-Lormeau VM, Gubler DJ. Unexpected outbreaks of arbovirus infections: lessons learned from the Pacific and tropical America. *Lancet Infect Dis*. 2018.
- 368 2. Quintero-Herrera LL, Ramirez-Jaramillo V, Bernal-Gutierrez S, Cardenas-Giraldo EV, Guerrero-Matituy EA, Molina-Delgado AH, et al. Potential impact of climatic variability on the epidemiology of dengue in Risaralda, Colombia, 2010-2011. *J Infect Public Health*. 2015;8:291-7.
- 369 3. Zambrano LI, Sevilla C, Reyes-Garcia SZ, Sierra M, Kafati R, Rodriguez-Morales AJ, et al. Potential impacts of 370 climate variability on dengue hemorrhagic fever in Honduras, 2010. *Tropical biomedicine*. 2012;29:499-507.
- 370 4. Rodriguez-Morales AJ, Villamil-Gomez WE, Franco-Paredes C. The arboviral burden of disease caused by co- 371 circulation and co-infection of dengue, chikungunya and Zika in the Americas. *Travel medicine and infectious disease*. 2016;14:177-9.
- 372 5. Sánchez-Duque JA, Rodríguez-Morales AJ, Trujillo AM, Cardona-Ospina JA, Villamil-Gomez WE. Cocirculation and 373 coinfection associated to Zika virus in the Americas. *Current Topics in Zika*: InTech; 2018.
- 374 6. Zambrano LI, Sierra M, Lara B, Rodríguez-Núñez I, Medina MT, Lozada-Riascos CO, et al. Estimating and mapping 375 the incidence of dengue and chikungunya in Honduras during 2015 using Geographic Information Systems (GIS). 376 *Journal of infection and public health*. 2017;10:446-56.
- 377 7. Rodríguez-Morales AJ, Trujillo AM, Sánchez-Duque JA, Cardona-Ospina JA, Villamil-Gomez WE, Jimenez- 378 Canizales CE, et al. Introductory Chapter: Clinical and epidemiological implications of Zika Virus Infection: The 379 experience of RECOLZIKA in Colombia. *Current Topics in Zika*: InTech; 2018.
- 380 8. Noor R, Ahmed T. Zika virus: Epidemiological study and its association with public health risk. *Journal of infection 381 and public health*. 2018.
- 382 9. Wikan N, Smith DR. Zika virus: history of a newly emerging arbovirus. *Lancet Infect Dis*. 2016;16:e119-e26.
- 383 10. Younger DS. Epidemiology of Zika virus. *Neurologic clinics*. 2016;34:1049-56.
- 384 11. Alfaro-Tolosa P, Clouet-Huerta DE, Rodriguez-Morales AJ. Chikungunya, the emerging migratory rheumatism. 385 *Lancet Infect Dis*. 2015;15:510-2.
- 386 12. Faria NR, Azevedo R, Kraemer MUG, Souza R, Cunha MS, Hill SC, et al. Zika virus in the Americas: Early 387 epidemiological and genetic findings. *Science*. 2016;352:345-49.
- 388 13. Rodríguez-Morales AJ, Sánchez-Duque JA. Preparing for next arboviral epidemics in Latin America; who can it be 389 now?—Mayaro, Oropouche, West Nile or Venezuelan Equine Encephalitis viruses. *Journal of Preventive Epidemiology*. 390 2017;3.
- 391 14. Martinez-Vega RA, Rodriguez-Morales AJ, Bracho-Churio YT, Castro-Salas ME, Galvis-Ovallos F, Diaz-Quijano 392 RG, et al. A prospective cohort study to assess seroprevalence, incidence, knowledge, attitudes and practices, 393 willingness to pay for vaccine and related risk factors in dengue in a high incidence setting. *BMC Infect Dis*. 394 2016;16:705.
- 395 15. Pan American Health Organization; Zika cases and congenital syndrome associated with Zika virus reported by 396 countries and territories in the Americas, 2015 - 2018 - Cumulative cases. 2018.
- 397 16. Basile K, Kok J, Dwyer DE. Zika virus: what, where from and where to? *Pathology*. 2017;49:698-706.
- 398 17. Brissett DI, Tuholske C, Allen IE, Larios NS, Mendoza DJ, Murillo AG, et al. Zika Virus: Knowledge Assessment of 399 Residents and Health-Care Providers in Roatan, Honduras, following an Outbreak. *The American journal of tropical 400 medicine and hygiene*. 2018;99:211-15.
- 401 18. Brooks T, Roy-Burman A, Tuholske C, Busch MP, Bakkour S, Stone M, et al. Real-Time Evolution of Zika Virus 402 Disease Outbreak, Roatan, Honduras. *Emerg Infect Dis*. 2017;23:1360-63.

408 19. Norman FF, Chamorro S, Vazquez A, Sanchez-Seco MP, Perez-Molina JA, Monge-Maillo B, et al. Sequential
409 Chikungunya and Zika Virus Infections in a Traveler from Honduras. *The American journal of tropical medicine and*
410 *hygiene*. 2016;95:1166-68.

411 20. Buekens P, Alger J, Althabe F, Bergel E, Berrueta AM, Bustillo C, et al. Zika virus infection in pregnant women in
412 Honduras: study protocol. *Reproductive health*. 2016;13:82.

413 21. Dos Santos T, Rodriguez A, Almiron M, Sanhueza A, Ramon P, de Oliveira WK, et al. Zika Virus and the Guillain-
414 Barre Syndrome - Case Series from Seven Countries. *N Engl J Med*. 2016;375:1598-601.

415 22. Medina MT, England JD, Lorenzana I, Medina-Montoya M, Alvarado D, De Bastos M, et al. Zika virus associated
416 with sensory polyneuropathy. *J Neurol Sci*. 2016;369:271-72.

417 23. Zhang Q, Sun K, Chinazzi M, y Piontti AP, Dean NE, Rojas DP, et al. Spread of Zika virus in the Americas.
418 *Proceedings of the National Academy of Sciences*. 2017;114:E4334-E43.

419 24. Rosales A, Yepes-Mayorga A, Arias A, Franz F, Thomas J, Huddle J, et al. A cross-sectional survey on ZIKV in
420 Honduras: Implications for governance and risk communication approaches. *International Journal of Health
421 Governance*. 2017;22:83-92.

422 25. England JD. Zika Virus Update: Report of the WFN Task Force. *World Neurology (Newsletter)*. 2017;32:13.

423 26. McGough SF, Brownstein JS, Hawkins JB, Santillana M. Forecasting Zika incidence in the 2016 Latin America
424 outbreak combining traditional disease surveillance with search, social media, and news report data. *PLoS neglected
425 tropical diseases*. 2017;11:e0005295.

426 27. Long D, Long B, Koyfman A. Zika virus: what do emergency physicians need to know? *Journal of Emergency
427 Medicine*. 2016;50:832-38.

428 28. Bangert M, Molyneux DH, Lindsay SW, Fitzpatrick C, Engels D. The cross-cutting contribution of the end of
429 neglected tropical diseases to the sustainable development goals. *Infectious diseases of poverty*. 2017;6:73.

430 29. Martinez-Pulgarin DF, Acevedo-Mendoza WF, Cardona-Ospina JA, Rodriguez-Morales AJ, Paniz-Mondolfi AE. A
431 bibliometric analysis of global Zika research. *Travel medicine and infectious disease*. 2016;14:55-7.

432 30. Mesa Despaigne A, Alvarado Padilla G, Alberto Maradiaga J, Ramos Rosales RA. Primer hallazgo de Aedes
433 albopictus en el área metropolitana de Honduras. *MEDISAN*. 2013;17:3001-09.

434 31. Rodriguez-Morales AJ, Ruiz P, Tabares J, Ossa CA, Yepes-Echeverry MC, Ramirez-Jaramillo V, et al. Mapping
435 the ecoepidemiology of Zika virus infection in urban and rural areas of Pereira, Risaralda, Colombia, 2015–2016:
436 Implications for public health and travel medicine. *Travel medicine and infectious disease*. 2017;18:57-66.

437 32. Rodriguez-Morales AJ, Galindo-Marquez ML, Garcia-Loaiza CJ, Sabogal-Roman JA, Marin-Loaiza S, Ayala AF, et
438 al. Mapping Zika virus infection using geographical information systems in Tolima, Colombia, 2015-2016.
439 *F1000Research*. 2016;5:568.

440 33. Rodriguez-Morales AJ, Patino-Cadavid LJ, Lozada-Riascos CO, Villamil-Gomez WE. Mapping Zika in
441 municipalities of one coastal department of Colombia (Sucre) using geographic information systems during the 2015-
442 2016 outbreak: implications for public health and travel advice. *International journal of infectious diseases : IJID : official
443 publication of the International Society for Infectious Diseases*. 2016;48:70-2.

444 34. Rodriguez-Morales AJ, Garcia-Loaiza CJ, Galindo-Marquez ML, Sabogal-Roman JA, Marin-Loaiza S, Lozada-
445 Riascos CO, et al. Zika infection GIS-based mapping suggest high transmission activity in the border area of La Guajira,
446 Colombia, a northeastern coast Caribbean department, 2015-2016: Implications for public health, migration and travel.
447 *Travel medicine and infectious disease*. 2016;14:286-8.

448 35. Jaramillo-Martinez GA, Vasquez-Serna H, Chavarro-Ordoñez R, Rojas-Gomez OF, Jimenez-Canizales CE,
449 Rodriguez-Morales AJ. Ibagué Saludable: a novel tool of Information and Communication Technologies for
450 surveillance, prevention and control of dengue, chikungunya, Zika and other vector-borne diseases in Colombia.
451 *Journal of infection and public health*. 2018;11:145-46.

452 36. Rodriguez-Morales AJ, Bedoya-Arias JE, Ramirez-Jaramillo V, Montoya-Arias CP, Guerrero-Matituy EA, Cardenas-
453 Giraldo EV. Using geographic information system (GIS) to mapping and assess changes in transmission patterns of
454 chikungunya fever in municipalities of the Coffee-Triangle region of Colombia during 2014-2015 outbreak: Implications
455 for travel advice. *Travel medicine and infectious disease*. 2016;14:62-5.

456 37. Rodriguez-Morales AJ, Galindo-Marquez ML, Garcia-Loaiza CJ, Sabogal-Roman JA, Marin-Loaiza S, Ayala AF, et
457 al. Mapping Zika virus disease incidence in Valle del Cauca. *Infection*. 2017;45:93-102.

458 38. Rodriguez-Morales AJ, Calvache-Benavides CE, Giraldo-Gomez J, Hurtado-Hurtado N, Yepes-Echeverri MC,
459 Garcia-Loaiza CJ, et al. Post-chikungunya chronic arthralgia: Results from a retrospective follow-up study of 131 cases
460 in Tolima, Colombia. *Travel medicine and infectious disease*. 2016;14:58-9.

461 39. Perich MJ, Sherman C, Burge R, Gill E, Quintana M, Wirtz RA. Evaluation of the efficacy of lambda-cyhalothrin
462 applied as ultra-low volume and thermal fog for emergency control of Aedes aegypti in Honduras. *Journal of the
463 American Mosquito Control Association*. 2001;17:221-4.

464 40. Paniz-Mondolfi AE, Rodriguez-Morales AJ, Blohm G, Marquez M, Villamil-Gomez WE. ChikDenMaZika Syndrome:
465 the challenge of diagnosing arboviral infections in the midst of concurrent epidemics. *Ann Clin Microbiol Antimicrob*.
466 2016;15:42.

467 41. Rodriguez-Morales AJ, Paniz-Mondolfi AE, Villamil-Gomez WE, Navarro JC. Mayaro, Oropouche and Venezuelan
468 Equine Encephalitis viruses: Following in the footsteps of Zika? *Travel medicine and infectious disease*. 2017;15:72-
469 73.

470 42. Ault S, Bezerra H, Barbiratto SB, de Resende MC, Castellanos LG, Cerezo L, et al. The Decline of Dengue in the
471 Americas in 2017: Discussion of Multiple Hypotheses. *Trop Med Int Health*. 2019.

472 43. Watts AG, Miniota J, Joseph HA, Brady OJ, Kraemer MUG, Grills AW, et al. Elevation as a proxy for mosquito-
473 borne Zika virus transmission in the Americas. *PLoS one*. 2017;12:e0178211.

474 44. De Pijper CA, Koen G, Schinkel J, Grobusch MP, Goorhuis A, Stijnis C. No detection of Zika virus infection in
475 asymptomatic Dutch military personnel after deployment in high endemic areas (Belize, Curacao, Saint Martin) from
476 December 2016 to December 2017. *Travel medicine and infectious disease*. 2018. doi 10.1016/j.tmaid.2018.09.009

477 45. Duman-Scheel M, Eggleson KK, Achee NL, Grieco JP, Hapairai LK. Mosquito control practices and perceptions:
478 An analysis of economic stakeholders during the Zika epidemic in Belize, Central America. *PLoS one*.
479 2018;13:e0201075.

480 46. Gray D, Mishtal J. Managing an epidemic: Zika interventions and community responses in Belize. *Global public
481 health*. 2018;1:14.

482 47. Arauz D, De Urriola L, Jones J, Castillo M, Martinez A, Murillo E, et al. Febrile or Exanthematous Illness Associated
483 with Zika, Dengue, and Chikungunya Viruses, Panama. *Emerg Infect Dis*. 2016;22:1515-7.

484 48. Pachar MR, Arauz D, Gundacker ND, Suarez M, Suarez JA, Moreno B, et al. Zika Virus-Associated Cerebellitis
485 with Complete Clinical Recovery. *The American journal of tropical medicine and hygiene*. 2018;99:1318-20.

486 49. Rodriguez-Morales AJ, Cardona-Ospina JA, Ramirez-Jaramillo V, Gaviria JA, Gonzalez-Moreno GM, Castrillon-
487 Spitia JD, et al. Diagnosis and outcomes of pregnant women with Zika virus infection in two municipalities of Risaralda,
488 Colombia: Second report of the ZIKERNCOL study. *Travel medicine and infectious disease*. 2018;25:20-25.

489 50. Rodriguez-Morales AJ. Zika and microcephaly in Latin America: An emerging threat for pregnant travelers? *Travel
490 medicine and infectious disease*. 2016;14:5-6.

491 51. Alvarado-Arnez LE, Escalera-Antezana JP. Zika infection in pregnancy: Follow up and outcomes, where are all the
492 data? *Travel medicine and infectious disease*. 2018;25:1-2.

493 52. Magalhaes-Barbosa MC, Prata-Barbosa A, Robaina JR, Raymundo CE, Lima-Setta F, Cunha A. New trends of the
494 microcephaly and Zika virus outbreak in Brazil, July 2016-December 2016. *Travel medicine and infectious disease*.
495 2017;16:52-57.

496 53. Figueira M, Pereira R, Gutierrez H, de Mejia C, Padilla N. Dengue epidemic in Honduras, 1978-1980. *Bulletin of
497 the Pan American Health Organization*. 1982;16:130-7.

498 54. Christofferson RC. Zika Virus Emergence and Expansion: Lessons Learned from Dengue and Chikungunya May
499 Not Provide All the Answers. *The American journal of tropical medicine and hygiene*. 2016;95:15-8.

500 55. Nicoletti L, Ciccozzi M, Marchi A, Fiorentini C, Martucci P, D'Ancona F, et al. Chikungunya and dengue viruses in
501 travelers. *Emerg Infect Dis*. 2008;14:177-8.

502 56. Waggoner JJ, Gresh L, Vargas MJ, Ballesteros G, Tellez Y, Soda KJ, et al. Viremia and Clinical Presentation in
503 Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus. *Clin Infect Dis*. 2016;63:1584-
504 90.

505 57. Villamil-Gomez WE, Gonzalez-Camargo O, Rodriguez-Ayubi J, Zapata-Serpa D, Rodriguez-Morales AJ. Dengue,
506 chikungunya and Zika co-infection in a patient from Colombia. *J Infect Public Health*. 2016;9:684-6.

507 58. Villamil-Gomez WE, Rodriguez-Morales AJ. Reply: Dengue RT-PCR-positive, Chikungunya IgM-positive and Zika
508 RT-PCR-positive co-infection in a patient from Colombia. *J Infect Public Health*. 2017;10:133-34.

509 59. Villamil-Gomez WE, Rodriguez-Morales AJ, Uribe-Garcia AM, Gonzalez-Arismendi E, Castellanos JE, Calvo EP,
510 et al. Zika, dengue, and chikungunya co-infection in a pregnant woman from Colombia. *International journal of infectious
511 diseases : IJID : official publication of the International Society for Infectious Diseases*. 2016;51:135-38.

512 60. Tami A, Grillet ME, Grobusch MP. Applying geographical information systems (GIS) to arboviral disease
513 surveillance and control: A powerful tool. *Travel medicine and infectious disease*. 2016;14:9-10.

514 61. Chaves T, Orduna T, Lepetic A, Macchi A, Verbanaz S, Risquez A, et al. Yellow fever in Brazil: Epidemiological
515 aspects and implications for travelers. *Travel medicine and infectious disease*. 2018;23:1-3.

516

517

518

519

Table 1. ZIKV incidence rates (cases/100,000pop) by departments, Honduras, 2016-2017.

Department	Cases		Population		Rates*	
	2016	2017	2016	2017	2016	2017
Cortés	13,082	90	1,653,699	1,686,094	791.08	5.34
Francisco Morazán	10,465	189	1,577,178	1,601,291	663.53	11.80
Yoro	2,092	58	596,138	604,844	350.93	9.59
Santa Bárbara	1,364	13	441,939	448,942	308.64	2.90
Olancho	1,450	12	545,835	554,282	265.65	2.16
Choluteca	1,037	3	453,360	458,871	228.74	0.65
El Paraíso	905	13	465,864	473,277	194.26	2.75
Copán	361	6	388,810	394,890	92.85	1.52
La Paz	181	3	209,783	213,499	86.28	1.41
Atlántida	373	19	457,031	464,288	81.61	4.09
Islas de la Bahía	51	0	67,704	69,493	75.33	0.00
Comayagua	392	22	521,748	531,676	75.13	4.14
Valle	101	1	180,772	182,996	55.87	0.55
Colón	154	19	324,950	330,105	47.39	5.76
Ocotepeque	58	25	154,251	157,018	37.60	15.92
Intibucá	45	1	246,258	250,959	18.27	0.40
Lempira	21	1	339,310	345,489	6.19	0.29
Gracias a Dios	0	0	96,384	98,337	0.00	0.00
Total	32,132	475	8,721,014	8,866,351	368.44	0.54

*Cases per 100,000 pop.

520

521

522

523 **Table 2.** Top ten risky municipalities by ZIKV incidence rates (cases/100,000pop), Honduras,

524 2016-2017.

Departments	Municipalities	Cases		Population		Rates*	
		2016	2017	2016	2017	2016	2017
Santa Bárbara	Ceguapa	131	5	5,249	5,353	2,495.79	93.41
La Paz	Cáne	66	1	4,003	4,150	1,648.91	24.10
Santa Bárbara	San Vicente Centenario	58	0	3,706	3,736	1,565.18	0.00
Cortés	Villanueva	1,765	14	161,609	165,602	1,092.14	8.45
Copán	San Pedro Sula	8,022	29	754,061	765,999	1,063.84	3.79
Santa Bárbara	Quimistán	474	0	52,884	54,638	896.30	0.00
El Paraíso	Jacaleapa	36	1	4,126	4,186	872.55	23.89
Yoro	El Progreso	1,678	52	193,567	195,247	866.88	26.63
Francisco Morazán	Tegucigalpa M.D.C.	10,386	189	1,207,635	1,225,043	860.03	15.43
Cortés	Choloma	2,100	14	249,217	255,625	842.64	5.48
Olancho	Silca	65	0	8,087	8,135	803.73	0.00
Santa Bárbara	La Arada	79	1	10,220	10,433	773.00	9.58
Olancho	Juticalpa	821	9	132,484	135,076	619.70	6.66
Santa Bárbara	Nuevo Celilac	49	0	8,166	8,185	600.04	0.00
Islas de la Bahía	Utila	24	0	4,277	4,400	561.08	0.00
Copán	Santa Rosa	354	6	65,233	66,629	542.67	9.01
Santa Bárbara	San José de Colinas	104	2	19,266	19,407	539.82	10.31
Santa Bárbara	Trinidad	101	0	20,325	20,563	496.93	0.00
Choluteca	San Antonio de Flores	27	1	5,463	5,470	494.25	18.28
Olancho	Guayape	60	0	13,027	13,152	460.60	0.00

525 *Cases per 100,000 pop.

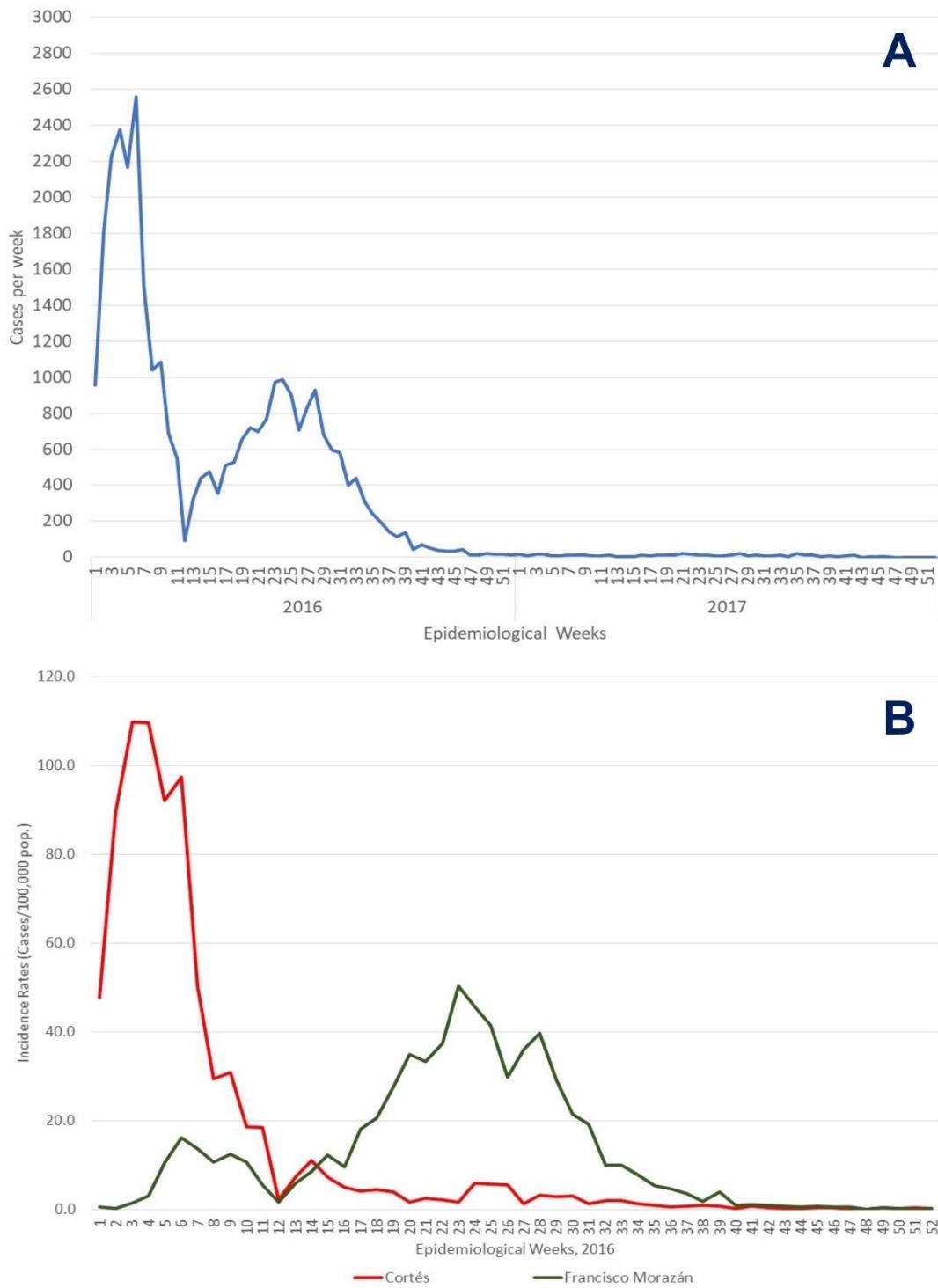
526

527

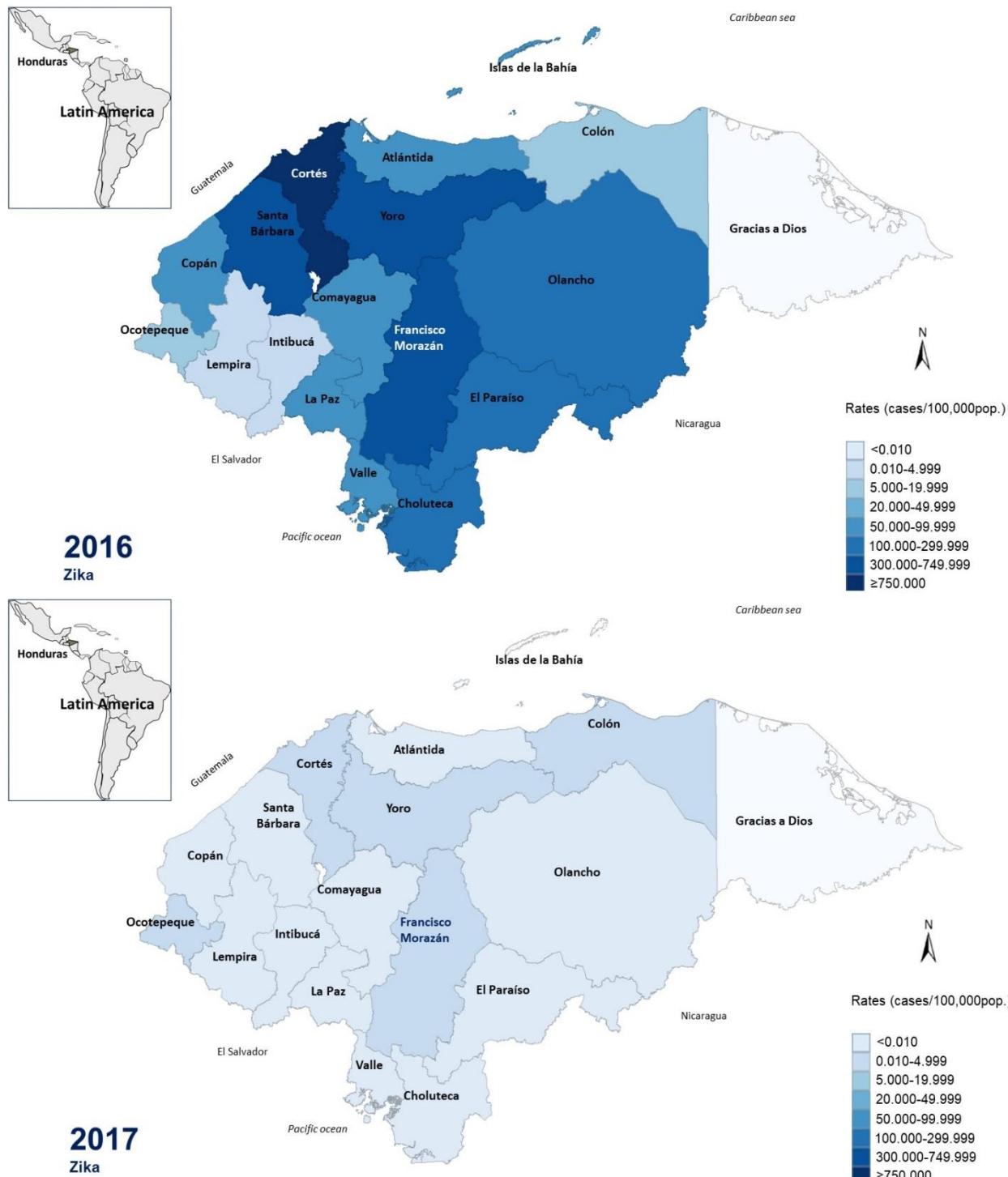
528

529

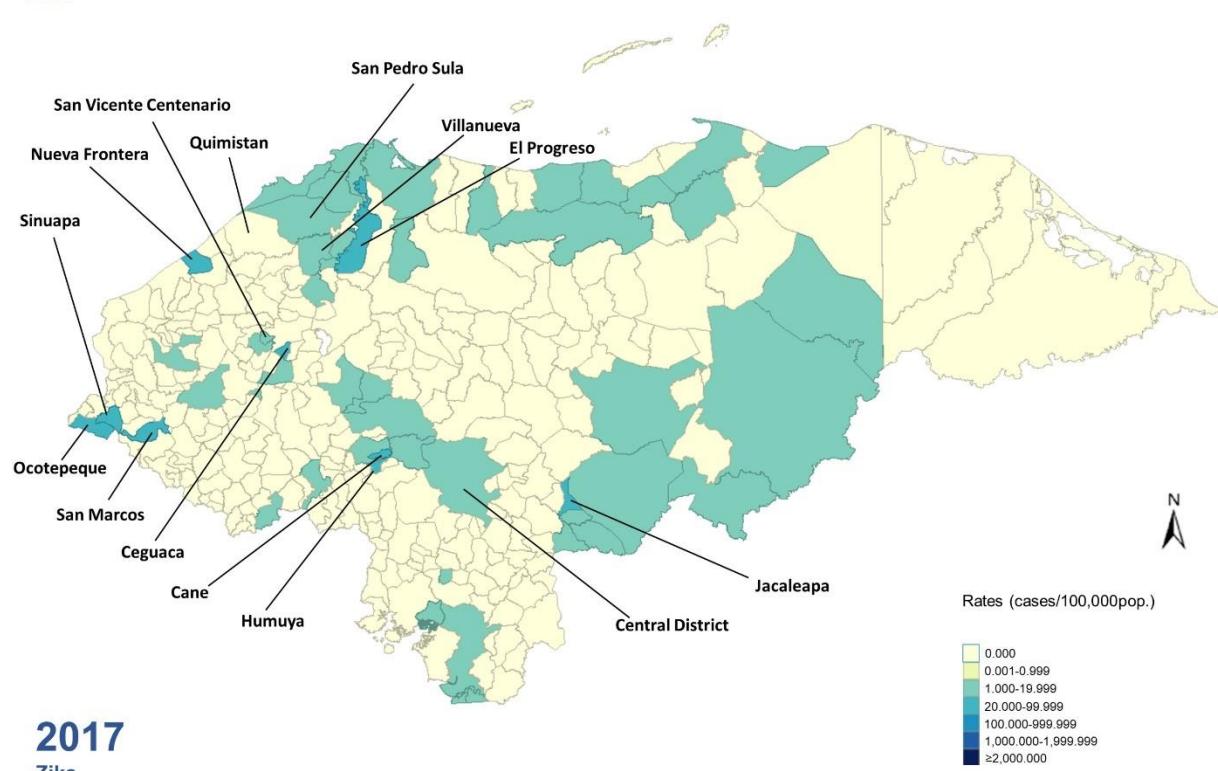
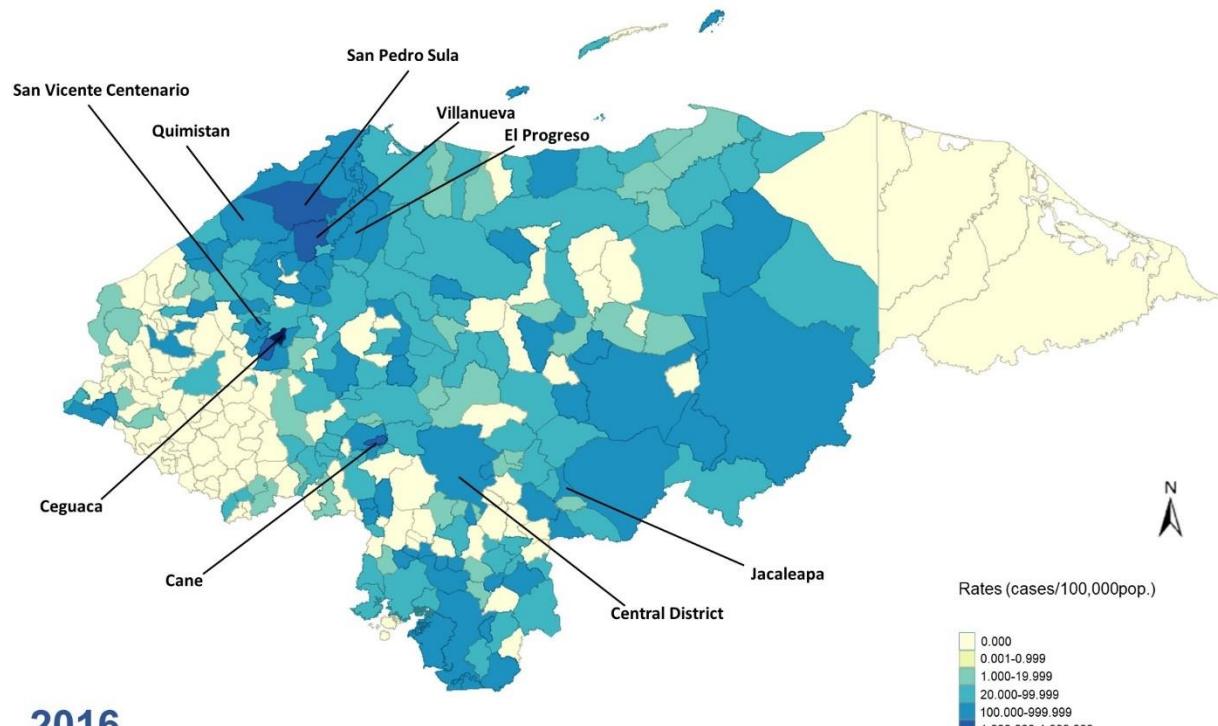
530


531

532


533

534



Figure 1. Temporal distribution by epidemiological weeks of number of cases of Zika in Honduras, 2015-2016 (A), and the comparison between the evolution during 2016 at Cortés and Francisco Morazán departments (B).

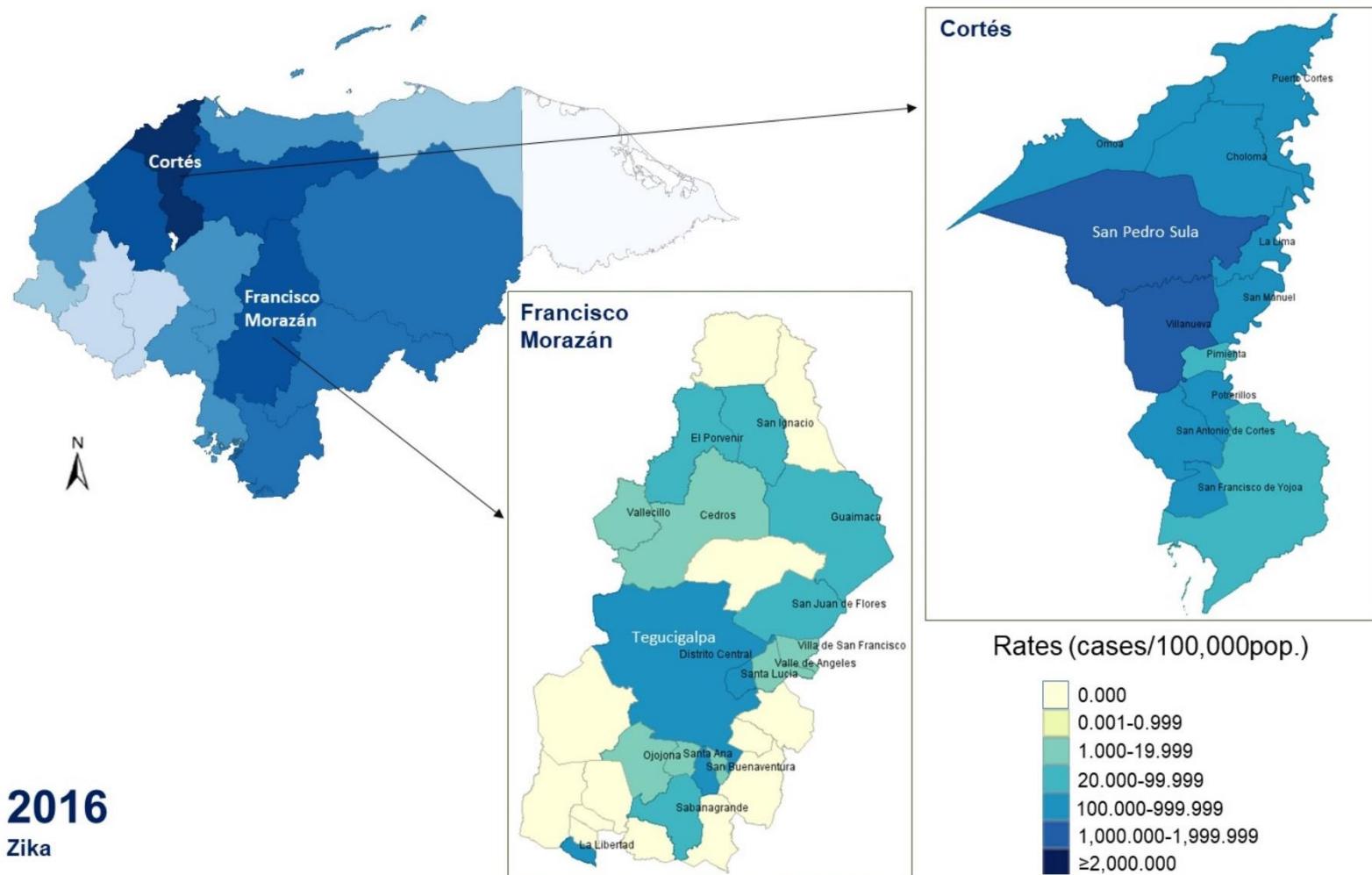

Figure 2. Geographic distribution by GIS-based map of the calculated incidence rates for Zika in Honduras, 2016-2017 by departments.

Figure 3. Geographic distribution by GIS-based map of the calculated incidence rates for Zika in Honduras, 2016-2017 by municipalities.

Figure 4. Geographic distribution by GIS-based map of the calculated incidence rates for Zika in municipalities of Cortés and Francisco Morazán departments, Honduras, 2016.

