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Abstract: The detection of seismic events at regional and teleseismic distances is critical to Nuclear1

Treaty Monitoring. Traditionally, detecting regional and teleseismic events has required the use of2

an expensive multi-instrument seismic array; however in this work, we present DeepPick, a novel3

seismic detection algorithm capable of array-like performance from a single trace. We achieve this4

directly, by training our single-trace detector against labeled events from an array catalog, and by5

utilizing a deep temporal convolutional neural network. The training data consists of all arrivals in6

the International Seismological Centre Catalog for seven seismic arrays over a five year window from7

1 Jan 2010 to 1 Jan 2015, yielding a total training set of 608,362 detections. The test set consists of8

the same seven arrays over a one year window from 1 Jan 2015 to 1 Jan 2016. We report our results9

by training the algorithm on six of the arrays and testing it on the seventh, so as to demonstrate the10

transportability and generalization of the technique to new stations. Detection performance against11

this test set is outstanding. Fixing a type-I error rate of 1%, the algorithm achieves an overall recall12

rate of 73% on the 141,095 array beam picks in the test set, yielding 102,394 correct detections. This is13

more than 4 times the 23,259 detections found in the analyst-reviewed single-trace catalogs over the14

same period, and represents an 8dB improvement in detector sensitivity over current methods. These15

results demonstrate the potential of our algorithm to significantly enhance the effectiveness of the16

global treaty monitoring network.17

Keywords: Geophysical signal processing; pattern recognition; temporal convolutional neural18

networks; seismology; deep learning; nuclear treaty monitoring19

1. Introduction20

Adherence to the comprehensive nuclear test ban treaty is currently verified by the detection,21

location and identification of seismic events, often at regional (>500km) and teleseismic distances22

(>1000km). Seismic detection is the critical first step in this process, and it is imperative that the events23

be detected by multiple stations, as this increases the overall accuracy of the final location estimate. As24

such, maintaining a large network of highly-sensitive seismic detectors is key to the treaty monitoring25

community [1] [2].26

Traditionally, sensitive teleseismic detection has required the use of a multi-instrument seismic27

array, a strategy which dates back to the Geneva Conference of Experts in 1958 [3]. The sensitivity28

is achieved through beamforming [4], a spacial filtering technique that relies on a tuned network29

of interconnected seismometers which form a single station. This technique is extremely effective,30

however it is quite expensive to implement due to the additional sensors and processing required, and31

unfortunately, beamforming is inapplicable to single-instrument stations. As such, the vast majority of32

seismic stations around the globe are simply unable to detect weak regional and teleseismic events.33

In this work, we seek to remedy this situation, by creating a detector with array-like performance34

from a single trace. Building on several recent efforts which apply the power of deep neural networks35

to the detection of local events [5] [6] [7], we seek to apply similar techniques to the detection of regional36

and teleseismic events, traditionally only detectable from a seismic array. Specifically, we seek to answer37
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the following research question: Using the analyst reviewed catalog of events from an array beam as38

ground truth, what is the maximum recall we can achieve from a single-trace detector with an alpha of39

0.01?40

To answer this question, we present DeepPick, a single-trace detection algorithm capable of41

detecting 73% of the events in an array beam catalog. The algorithm is based on a deep Temporal42

Convolutional Neural Network (TCN), and it is trained against more than five billion raw seismic43

samples and 608,362 labeled seismic arrivals from seven array beam catalogs in the International44

Monitoring System (IMS) network: TXAR, PDAR, ILAR, BURAR, ABKAR, MKAR and ASAR45

located in Lajitas Texas, Pinedale Wyoming, Eielson Alaska, Bucovina Romania, Akbulak Kazakhstan,46

Makanchi Kazakhstan and Alice Springs Australia, respectively. Performance is reported by training47

the algorithm against five years of data from six of the arrays, and testing it against a full year of data48

from the seventh, remaining array. All seven arrays are tested in this manner, resulting in a overall49

recall of 72.6% at an alpha of 0.01. This represents a marked improvement over the 16.5% detection50

rate found in the traditional single-trace catalogs over the same time period.51

Within this work, we present three major contributions to the literature:52

• We present our unique high-fidelity dataset, which combines single-trace waveforms with array53

catalog labels to create a seismic detection training set suitable for deep learning54

• We present exponential sequence tagging, the novel labeling schema we use to offset the extreme55

class imbalance inherent in the teleseismic detection task56

• We present DeepPick, a single-trace detection algorithm capable of achieving array-level57

performance from a single sensor58

In the remainder of this work, we explore these contributions in detail by first reviewing the59

related literature, then outlining our methodology, and finally detailing and discussing our results.60

2. Related Work61

Figure 1. Top: Example seismic waveform, annotated to show the STA and LTA windows. Bottom:
Diagram detailing the operation of the STA\LTA algorithm.

The most common seismic signal detector is the short-term average, long-term average (STA/LTA)62

detector [8], first described by Allen in [9]. This detector is a binary classifier, best suited for local63

events. The basic operation of this detector is detailed in Figure 1. This simple technique enjoys64

widespread use due to its extreme computational advantage, however its performance is reduced for65

weaker regional and teleseismic events [10].66

To date, one of the most successful techniques for regional and teleseismic signal detection67

is Beamforming [1] [11], introduced in 1988 [4]. Beamforming gains its effectiveness by linearly68

combining signals from multiple sensors according to the estimated arrival direction, also known as the69
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back-azimuth, allowing it to pick out signals beneath the noise floor of a single sensor. Unfortunately,70

beamforming is also quite expensive, requiring an interconnected array of seismometers, spread71

out across a large geographical area. An example array layout is detailed in Figure 2, along with a72

demonstration of the beamforming technique.73

Figure 2. Top: Layout of the 10 element Makanchi Seismic Array, MKAR, in eastern Kazakhstan.
The dashed lines illustrate an incoming teleseismic wave with calculated back-azimuth, θ. Bottom:
Seismic waveforms from an arriving teleseismic event. Beamforming aligns these waveforms via
the back-azimuth and wavefront velocity, and then linearly combines them to yield a higher SNR,
improving the detection threshold significantly.

Another outstanding technique for the detection of weak teleseismic events is the correlation74

detector first introduced by [12] and [13] in the early 1990s. Correlation Detectors are a type of75

Empirical Signal Detector, that work by comparing incoming seismic waveforms to canonical examples76

in the extant seismic record [14] [15]. This technique is particularly effective for the detection of highly77

correlated repeating events, even for very weak magnitudes [16]. Unfortunately, to date, this technique78

is not generally applicable, as only 18% of all global events possess sufficient similarity to be detected79

with this technique [17].80

In [18], the authors demonstrate the power of a richly-featured machine learning based detector.81

Training a Support Vector Machine against a series of 30 features in the time-frequency plane, they82

achieved a recall of 97.7% at a type-I error rate of less than 1.3%, for an overall accuracy of 98.2%.83
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These results compare favorably with STA/LTA. Their work is quite promising, with excellent results,84

however, the signals investigated were once again limited to strong, local signals; the furthest signals85

detected had epicenters no more than 5 degrees (∼550km) from the recording sensor.86

Recently, several efforts have been made to apply Deep Neural Networks to seismic signal87

detection. In [5], the researchers utilize a convolutional neural network architecture to perform88

detection on local seismic signals, formulating the task as a binary classification problem. Their dataset89

was obtained from two seismic stations in the Oklahoma Geological Survey, consisting of 10s windows90

with binary class labels: Positive windows were centered around seismic arrival times obtained from91

an analyst-reviewed arrival catalog, and negative windows were carefully selected to contain no92

arrival. Against their hold-out test set, they report 100% recall with a high type-I error rate of 1.4%, but93

by applying a correlation detector to their reported false positives, they determined that a substantial94

portion of these were actually real detections of very weak events. This work highlights the danger95

of using conventional catalogs to train such a sensitive detector. Additionally, two major limitations96

exist in this work. First, because of the extreme care taken to produce ‘clean’ noise windows in the97

test set, their reported type-I error rate is not realistic for operational use. Second, their algorithm is98

applicable only to local events. The short time windows used (10 seconds) prevent the algorithm from99

being extended to longer-period teleseismic signals.100

In [6], the researchers also utilize a deep CNN to perform seismic signal detection on local events.101

Their dataset consisted of 4.5 million 4 second windows of waveform data recorded and classified102

by the Southern California Seismic Network. Their task was formulated as a classification problem,103

assigning one of three classes to each window, P-wave, S-wave and noise. This resulted in 1.5 million104

windows containing a P-wave arrival, 1.5 million windows containing an S-wave arrival and 1.5105

million windows including no arrival. Their validation set consisted of a randomly sampled 25% of106

the overall data, resulting in 1.1 million seismograms evenly split between the three classes. On the107

validation set, they report a recall of 96% at a type-I error rate of less than 1%. These results are very108

impressive, and show that the convolutional neural network is capable of achieving state-of-the-art109

performance on the seismic signal detection task. Once again, a limitation of this work is that it is110

applicable only to local signals, and the researchers limited their scope to signals originating within111

100km of the recording station. Additionally, due to the fact that only a quarter of a million events112

were considered, while 1.5 million records were used, it is unclear whether or not there was some113

leakage from the training set into the validation set.114

In [19], the same research team as above considers arrival time estimation. Here they formulate115

the task as a regression problem, and consider only 4 second windows of data, centered around an116

arrival, with up to half a second of variance in the arrival time from the center of the window. For this117

task, they report a mean average error of less than .02 seconds from the analyst recorded picks. Once118

again, these signals are limited to local events.119

Seismic signal detection is an active area of research, with new, improved algorithms being120

developed capable of achieving near-perfect accuracy for local events. Despite this, little effort has121

been made to extend detection to regional and teleseismic events without the use of a seismic array.122

This is exactly the research objective our work shall address.123

3. Materials and Methods124

Our stated objective is to build a single-trace detection algorithm capable of detecting weak125

regional and teleseismic signals with array-like performance. We know that such detections are126

possible using a full seismic array and we have seen the potential for achieving such detections using127

a deep neural network. With this knowledge as our guide, our approach is to employ a deep TCN128

model, feed it a single-trace input sequence, and train it to produce an output sequence based on an129

array beam catalog. In this section, we explore this approach in detail, first defining our dataset, and130

then describing our modeling strategy.131
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3.1. Data Collection132

The success of any deep neural network algorithm lies largely in the careful collection and133

construction of the training data. In this subsection, we present a dataset suitable for training a134

deep seismic detection algorithm. In particular, we detail two of our major contributions: First, we135

describe a novel method for obtaining a high-fidelity dataset of single-trace waveforms with labeled136

arrival times below the noise floor. Second, we present exponential sequence tagging, the unique137

sequence-to-sequence modeling schema we used to offset the extreme class imbalance inherent in the138

teleseismic detection task. We conclude this subsection with the details of our finalized training, test139

and validation datasets.140

Figure 3. Normalized histograms showing the SNR distributions of detected signals from two seismic
arrival catalogs. Both catalogs contain detections for the exact same location, MK31, which is the
nominal element of the MKAR seismic array. The MK31 catalog is based on a single-trace detection
algorithm applied to the MK31 instrument alone, while the MKAR catalog is based on beam-formed
picks from the entire 10-instrument array. The mean SNR detected by the array beam is 8 dB lower
than that of the single-trace. This lower detection threshold results in nearly an order of magnitude
more detections in the MKAR catalog compared to the MK31 catalog.

3.1.1. High Fidelity Arrival Catalog141

At first glance, obtaining a dataset for training a seismic detector would appear to be trivial, as142

analyst-reviewed arrival catalogs are freely available for millions of seismic events. Unfortunately,143

despite the rigorous review process and the extensive cross-referencing, each single-trace arrival144

catalog only contains picks for signals with sufficient strength to be conventionally detectable from145

within that trace. This is a significant limitation when the goal is to train a detector more sensitive than146

the conventional one. Fortunately, there are certain sensors for which we do have accurate cataloged147

arrival times for regional and teleseismic signals below the noise floor; namely, the nominal element148

(usually a broadband 3-channel instrument) of any regional seismic array. Using conventional methods,149

the nominal element alone is unable to make accurate detections for sub-noise floor events, however150

the array beam as a whole can make these detections very accurately [11], and the beam arrivals are151

conveniently aligned to the nominal sensor element of the array. Thus, by obtaining our singe-trace152

input data from the nominal sensor, and by obtaining our labeled arrivals times from the array beam,153

we can create a labeled single-trace dataset with signals buried below the noise floor. As an example,154

Figure 3 demonstrates the significant improvement in detector threshold provided by the Makanchi155

Array beam in eastern Kazakstan.156
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3.1.2. Exponential Sequence Tagging157

Now that we have established high-fidelity sources for both our waveforms and arrival times,158

we must formulate them into input/output pairs for training our seismic detector. Typically, seismic159

detection is formulated as a binary classification task; the input data is partitioned into fixed length160

windows, each paired with a single Boolean class label: positive class labels are assigned to windows161

where a signal is present and negative class labels are assigned to windows where signal is absent.162

This traditional formulation is convenient, as the classes can easily be balanced at training time and it163

is the common method employed in most recent works in the literature [6], [5], and [18]. However, this164

method is not well adapted for the detection of regional and teleseismic signals. Teleseismic signals165

are characterized by long-period features with frequency components as low as 0.01 Hz [20], and the166

detection of these features necessitates windows that are several minutes in length; unfortunately, this167

resolution is far too coarse for classification, and often covers multiple arrivals in a single window. As168

such, there are two conflicting requirements for creating binary classification windows in a teleseismic169

detection dataset:170

• Input windows must contain many samples to capture long-period teleseismic features171

• Output labels must cover few samples to allow meaningful temporal resolution for the detection172

windows173

Figure 4. (a): Input Sequence containing two arrivals (b): Labeled output sequence using the
exponential function. (c): Predicted output sequence from the model. (d): Cross-correlation of the
predicted output sequence with the exponential function.

To resolve this conflict, we reformulate the task. Instead of performing binary classification174

on each window, we perform regression on each sample, which is known as sequence-to-sequence175

modeling [21]. Quite simply, the training windows are no longer labeled with a single output Boolean,176

but instead with an entire output sequence of real-valued numbers; each sample in the input sequence177

is assigned a corresponding label in the output sequence. But what labels should we assign? A naive178

formulation is to simply assign a ‘one’ at each cataloged arrival time and assign a ‘zero’ everywhere179

else. This formulation is called sequence tagging [22], and it works well for relatively balanced classes180

[23]. Unfortunately, binary sequence tagging does not work well for teleseismic detection, as it results181

in an extreme class imbalance of several orders of magnitude, which hinders learning. For this work,182

we instead present a novel formulation which we call exponential sequence tagging. This formulation183

simply builds output sequences that consist of an exponential function applied at each cataloged arrival184

time, as shown in Figure 4 (b). To be precise, the labels in the output sequence are nominally zero up185

until a cataloged arrival time, at which point they increase and decrease exponentially, according to186

the mirrored exponential decay function given in Eq. (1), where λ is the decay rate.187
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y(t) = e−λ|t|
(1)

Because each leg of the mirrored exponential decay function is both monotonic and deterministic,188

the value at each non-zero label can be used to directly infer the precise arrival time. And because189

the algorithm learns to match these labels with its output, every non-zero sample in the output is190

effectively an arrival time estimation. With this in mind, we assign one additional computation to191

our algorithm at run-time: a cross-correlation of the predicted output sequence with the original192

exponential decay function. This filters the output and effectively aggregates the arrival time estimates193

for an even more precise arrival time pick. Figure 4 (c) and (d) shows an example of the predicted194

output, both before and after this cross-correlation is applied.195

3.1.3. Training, Validation and Test Sets196

Using this approach to build our training dataset, we obtained a catalog of all local, regional and197

near-teleseismic arrivals for the seven array beams during a five year period from 1 Jan 2010 to 1 Jan198

2015. We generated this catalog through a web query of the International Seismological Centre (ISC)199

Bulletin for seismic arrivals which can be accessed here: http://www.isc.ac.uk/iscbulletin/search/200

arrivals/. The corresponding waveforms were then windowed around each arrival (the windows were201

6 minutes in total length, sampled at 40Hz for a total of 14400 samples per window), and the raw traces202

were pulled from the Incorporated Research Institutions for Seismology (IRIS) Database, for the vertical203

channel of the nominal seismometer for each array (PD31_BHZ, TX31_BHZ, IL31_BHZ, MK31_BHZ,204

ABK31_BHZ, BUR31_BHZ and AS31_BHZ). This was accomplished via a custom Python script based205

on ObsPy-1.1.0, and yielded a dataset of 608,362 picks, and a total training size of more than five206

billion samples. The only pre-processing applied to the raw data was a normalization, detrending and207

bandpass filtering between 0.02Hz and 10Hz.208

From this training dataset, we selected one month of data from each array (1 Jan 2010 to 1 Feb209

2010), as a validation set. This validation set was used to tune the models, with final model selection210

based on validation set performance.211

To build our testing dataset, we also obtained a catalog of all local, regional and near-teleseismic212

arrivals for the seven array beams, in this case during a one year period from 1 Jan 2015 to 1 Jan 2016.213

This test set is inclusive of 141,095 arrivals in the seven array beam catalogs and 23,259 arrivals in214

the seven single-trace catalogs. This test set data was not used to train or tune the models, only to215

report performance against each array. Additionally, to ensure that our reported performance figures216

are indicative of the expected performance against novel stations, we actually trained seven separate217

models, each on a different partition of six arrays and tested against the seventh, such that performance218

for all seven arrays is reported using a model that did not have access to any training data from that219

array, demonstrating the transportability of our algorithm.220

3.2. Modeling221

Now that we have defined our dataset, we turn to a precise description of our modeling222

methodology, detailing the model architecture, hyper-parameter search vectors, and evaluation metrics.223

3.2.1. Model Architecture224

Our model architecture is based on the Temporal Convolutional Network. TCNs are deep225

convolutional architectures characterized by layered stacks of dilated causal convolutions and residual226

connections [24]. These characteristics offer several distinct advantages for a seismic detection227

algorithm, which we briefly summarize:228

• Residual connections allow the model to have high-capacity and stable training229

• Causal convolutions allow the model to make predictions on continuous streaming trace data230
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• Dilated convolutions allow precise control over the receptive field231

The receptive field is of primary importance for time-series modeling, as it explicitly limits the232

learn-able feature periodicity at a given layer. As such, one of our key design parameters was to ensure233

adequate receptive field for our algorithm. The equation for calculating the receptive field for a given234

convolutional layer, l, and dilation rate, d is given in (2):235

rField(l) = rField(l − 1) + [kernelSize− 1] ∗ d (2)

Table 1. Layer Parameters for our TCN architecture.

l k d Pad Input Output Receptive Field
1 16 2 30 14400 14400 31
2 16 4 60 14400 14400 91
3 16 16 240 14400 14400 331
4 16 256 3840 14400 14400 4171

Using this equation, we designed our network to have a receptive field of roughly 100 seconds,236

allowing it to learn long-period features down to 0.01 Hz. We achieved this in just 4 layers, as shown237

in Table 1. Another key design parameter was to ensure that the dilation rate in each layer remained238

less than the receptive field in the previous layer, thereby avoiding any gaps in coverage. Notice that239

this constraint is maintained even for our final layer with a dilation rate of 256, as the previous layer240

had a receptive field of 331. Our final model architecture is shown in Figure 5.241

Figure 5. One stack of our chosen TCN architecture.

This basic structure was presented with good results in [24] and proved a good fit for the picking242

task as well. As such, this basic structure was maintained throughout our formal hyper-parameter243

search.244
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3.2.2. Hyper-parameter Search Vectors245

Fixing this basic architecture, we engage in a limited hyper-parameter search over two general246

vectors: the optimal shape for the exponential function, and the optimal capacity for the neural247

network.248

Optimization over the decay rate of the exponential was varied across 3 choices, {0.015, 0.02, 0.04},249

selected based on visual inspection. Optimization over model capacity was conducted across two250

parameters, number of stacks and number of filters. Each parameter was varied across 4 choices, {2, 5, 9,251

12} and {5, 10, 15, 20} respectively, ranging from a minimal capacity network (2 stacks with 5 filters and252

only 3,517 parameters) to a high capacity network (12 stacks with 20 filters and 328,681 parameters).253

Because these two parameters are highly interrelated, the search was conducted exhaustively, for a254

total of 16 models. The final hyper-parameter selections were based on validation loss curves.255

3.3. Evaluation Criteria256

Our stated research objective is to determine the maximum achievable recall of our single-trace257

detection algorithm against the array beam catalogs. Because recall is a classification metric, and258

because we have formulated our task as a regression problem, we now carefully proceed to define our259

methodology for calculating recall:260

First, we define our detection window to be 4 seconds, which is identical to the window length261

used in [19]. Using this, we define the number of Total Positives to be the number of labeled arrivals in262

the dataset, and we define the number of Total Negatives to be the length of the dataset divided by263

4 minus the number of Total Positives, which is a conservative estimate. We next define a predicted264

arrival to be any peak in the output sequence above a certain threshold, and using this definition,265

we further define a True Positive to be any predicted arrival within 2 seconds (plus or minus) of a266

labeled arrival, and a False Positive to be any predicted arrival not within 2 seconds of a labeled arrival.267

Likewise we define a False Negative to be any labeled arrival not within 2 seconds of a predicted268

arrival, and a True Negative to be the Total Negatives minus False Negatives. From these definitions,269

standard equations are used (3) to calculate recall and alpha:270

Recall =
True Positives
Total Positives

alpha =
False Positives
Total Negatives

(3)

Using these definitions, and treating the analyst-reviewed array beam catalogs as ground truth,271

we report performance in terms of both receiver operating characteristic (ROC) curves and recall.272

When reporting recall, we use an alpha of 1%, as this is consistent with the results reported in [5],273

[6] and [18]. Because our primary interest is toward weak-signal detections, we also report recall as274

a function of signal to noise ratio (SNR). To do so, we define SNR to be the log ratio between the275

short-term and long-term average power, as given in Eq. (4), with a short-term window consisting276

of 5 seconds after the arrival, a long-term window consisting of 40 seconds before the arrival, and a277

bandpass filter applied from 1.8 to 4.2 Hz.278

SNR = 10 ∗ log10

(
PWRSTA
PWRLTA

)
(4)

Additionally, in order to asses the value of our algorithm over existing single-trace methods,279

we compare our performance directly against the analyst-reviewed single-trace catalogs, noting280

particularly the increase in detector sensitivity in terms of SNR. And finally, we report our performance281

for the arrival time estimation task, detailing our mean absolute error across all detected arrivals.282
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4. Results283

In order to define a final model, we explored two hyper-parameter search vectors: exponential284

decay and model capacity. We varied the decay rate between 0.015 and 0.040, and the results are given285

in Table 2, which shows 0.020 to be the optimal rate, with optimal recall on the validation set.286

Table 2. Decay Rate Optimization.

λ Recall MAE
0.015 0.622 0.640
0.020 0.721 0.560
0.040 0.713 0.476

Fixing the decay rate at 0.020, we next varied the overall capacity of the model by increasing both287

the number of residual stacks, s, and the number of 1D convolutional filters, f . The resultant training288

curves are given in Figure 6 which shows that model capacity is optimized with 12 stacks and 15 filters,289

as increasing capacity beyond this point appears to have marginal value. This yields a final model with290

12 residual stacks as shown in Figure 5, with 15 filters on each 1D convolution, for a total of 185,311291

fully convolutional parameters.292

Figure 6. Validation Loss Curves during training. Each curve is labeled according to two
hyper-parameters, s: number of residual stacks, and f: number of filters. The number of training
epochs for each model were based on early stopping with a patience of 10. Total training time was
approximately 200 hrs on an Nvidia GTX 1080 Ti.

Evaluating our final model against the hold out test set, we report our results in Table 3. The293

results of our algorithm here are ground-breaking. Across the seven arrays, the detector is able to294

correctly classify 72.57% of the 141,095 array beam picks, yielding 102,394 correct detections. This is295

more than 4 times the 23,259 detections found in the analyst-reviewed single-trace catalogs for the same296

period. The ROC curves shown in Figure 7 further illustrate the success of the algorithm. The elbow of297
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the curves are quite tight, with most curves flattening out at an alpha of only 0.3%. In Appendix A,298

we further explore the performance of our algorithm by plotting several example waveforms for both299

correct detections and missed detections.300

Table 3. Algorithm Performance by Station.

Array Catalog Single-Trace Catalog DeepPick Catalog

STA
Cataloged

Events
Cataloged

Events
Detect
Rate

Detected
Events

Recall
(α=1%)

BURAR 4,645 0 0.00% 4,274 92.01%
ABKAR 8,072 0 0.00% 7,136 88.40%
TXAR 16,451 2,228 13.54% 12,884 78.32%
MKAR 40,583 10,493 25.86% 31,253 77.01%
PDAR 12,980 1,657 12.77% 9,512 73.28%
ILAR 20,769 2,563 12.34% 13,386 64.45%
ASAR 37,595 6,318 16.81% 23,948 63.70%

TOTAL 141,095 23,259 16.48% 102,393 72.57%

Figure 7. Receiver Operating Characteristic Curves for each of the seven arrays in the hold-out test set.
A dashed line is shown in grey, indicating an alpha of 1%.

The primary purpose of our algorithm is to enable detections of weak, distant events. This301

requires a detector with enough sensitivity to pick out signals near the noise floor. In order to explore302

our alogorithms performance at this task, we next proceed to examine the ability of our algorithm to303

detect signals with very low signal to noise ratio. Using the array beam catalog as a baseline, we plot304

recall as a function of SNR in Figure 8. This demonstrates that DeepPick maintains a more than 95%305

recall for signals with an SNR of at least 10dB for each of the seven arrays in the test set. The real test,306

however occurs for signals with an SNR of 10dB or below. These signals are quite difficult to detect307

from a single trace, as evidenced by the dashed lines in the plot, which represent the detections in the308

analyst-reviewed single-trace catalogs. Impressively, DeepPick maintains at least an 8dB advantage in309

sensitivity over the single trace catalogs across all seven test sets arrays.310
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Figure 8. Test-set Recall, reported as a function of SNR, at a fixed alpha of 0.01. Results are compared
directly to the detections in the corresponding single-trace catalogs. Note: The ISC database does not
contain single-trace catalogs for BURAR or ABKAR, however we expect that results would be similar to those
depicted in the other five plots.

Finally, we report the algorithm’s performance for the arrival time estimation task1. Here, the311

algorithm achieves a mean average error of 0.61 seconds from the analyst picked arrival times, with312

a distribution detailed in Figure 9. This plot shows that while the most common histogram bin313

corresponds to an absolute error of less than 0.025 seconds, the weakest signals are frequently missed314

by more than a second. This error is high when compared to the accuracy of a dedicated arrival315

time estimation algorithm, however it should be noted that these estimates are obtained directly316

from the output of our detection algorithm. As such, the 0.61 seconds is excellent when compared to317

the multi-second classification windows employed by most detectors [5] [6], and is well within the318

tolerance of a dedicated arrival time algorithm such as that given in [19].319

1 We report arrival time error only against true positives, as arrival estimation is distinct from detection for most seismic
picking algorithms.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2018                   doi:10.20944/preprints201811.0612.v1

Peer-reviewed version available at Sensors 2019, 19, 597; doi:10.3390/s19030597

http://dx.doi.org/10.20944/preprints201811.0612.v1
http://dx.doi.org/10.3390/s19030597


13

Figure 9. Residual analysis on the errors for the arrival time estimation task. left: Histogram showing
the distribution of arrival time errors made by the algorithm against the test set, with a bin width of
0.025 seconds. right: Scatter-plot showing the distribution of errors with respect to SNR.

5. Discussion320

The results in Table 3 demonstrate that the Deep Pick algorithm is capable of achieving a recall of321

between 64 and 92% against the analyst-reviewed picks from seven array-beam catalogs. The low end322

of this range, at 64%, still represents a significant improvement over the performance of existing single323

trace algorithms. However, the spread in our results is quite large, and we now attempt to examine the324

underlying cause of this performance variance.325

The two stations with the worst performance are ILAR and ASAR. Interestingly, these two stations326

also utilize a different sensor, the Guralp CMG-3TB, from the other five stations, which all use the327

Geotech KS54000. This shows the importance of training the algorithm on stations with the same328

instrument type as the stations for which the algorithm is intended to be deployed against operationally.329

The two stations with the best results are ABKAR and BURAR. Interestingly, due to higher noise levels330

at these sites, the array catalogs for these two stations contain relatively fewer events with relatively331

larger magnitudes. This makes the detection of these events a simpler proposition, and the recall rates332

of 90% and 88% reflect this fact. The final three stations are PDAR, TXAR, and MKAR. These stations333

utilize a common instrumentation, share similar geology and have similar noise levels; as expected,334

they also share similar recall rates of 73%, 78% and 77% respectively.335

These results show that the primary determinant of algorithm success lies in the degree of336

similarity between the training stations and the testing station. As such, when deploying this algorithm337

for operational use it is important to find suitable arrays to train on in order to maximize performance.338

In any case, the algorithm shows decent performance even when trained across different geographical339

areas and sensor types.340

6. Conclusion341

Weak teleseismic event detection is normally only possible using an array of seismic instruments342

and sophisticated processing techniques. Even recent works in the literature make little attempt to343

extend single-trace detection algorithms beyond local events. This is primarily due to the lack of344

available training data, an issue which we address by mining the seismic catalogs in a unique way,345

building our catalog for an array beam while taking our event waveforms from a single array element.346

With this training data at our disposal, we find that the combination of temporal convolutions and347

our unique exponential sequence tagging function forms a powerful tool for weak signal teleseismic348

detection. In fact, the Deep Pick algorithm is able to accurately detect four times the number of events349

in the single-trace catalogs in our hold-out test set with an alpha of just 1%.350

The findings in this work represent an important step forward in the field of teleseismic detection,351

and demonstrate that accurate teleseismic event detection is possible from a single seismic instrument.352

As such, the Deep Pick algorithm has the potential to open up thousands of additional automatic353
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detections to single-instrument seismic stations each year, without the need for additional sensors and354

equipment.355

There is still potential for much improvement on our results. In this work, we develop a356

single-trace detector, applied only to a single channel of data from a three channel instrument; future357

work could extend our results to include data from all three channels of the instrument. Furthermore,358

an application of the same technique to an entire array of channels could also prove interesting, and359

the potential exists to improve our results significantly by simply incorporating more channels of360

data. Additionally, the focus of this work has been primarily centered on producing a detector with361

increased sensitivity and recall, whereas future work could focus on using similar techniques to362

produce a detector with an even lower false positive rate.363

There are also several obvious limitations in our work. Particularly, while we have made a364

comparison between the detection performance of our algorithm and the analyst-reviewed single-trace365

catalogs, these catalogs are only an approximation of the performance of the underlying algorithms on366

which those catalogs were based. It would be quite interesting to directly compare the performance of367

our algorithm to at least the STA/LTA algorithm across this same year of data in our hold-out test set.368
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Appendix Waveform Examples380

In order to more fully represent the capabilities of DeepPick, we now proceed to detail several381

waveform examples for events that were both missed and detected by the algorithm. To this end we382

present three groups of signals:383

• Missed Detections: These waveforms represent cataloged events that were not detected by384

DeepPick, but were included in the single-trace catalog. As such, they demonstrate some of the385

limitations of our algorithm.386

• Added Detections: These waveforms represent cataloged events that were detected by DeepPick387

but were missed by the single-trace catalog. These Added Detections are verified by the fact that388

they are included in the Array-Beam catalog, and thus demonstrate the considerable sensitivity389

of our algorithm to detect weak signals, previously only detectable with an array beam.390

• Unknown Detections: These waveforms represent detections made by DeepPick that do not391

correspond to any published events in either the single-trace or array-beam catalogs. More392

work by a human analyst is required to determine if they are real events or spurious detections;393

however in this work, we have treated them all as False Positives.394

For each waveform in this Appendix, we first plot the raw data (shown on the left) annotated by395

its cataloged arrival time and instrument channel, along with the ISC eventid, phase, magnitude and396

distance. We then plot a filtered version of the same waveform (shown on the right), so as to be more397

easily readable by a human.398

We hope that the inclusion of this waveform Appendix will help the reader to better understand399

the potential limitations of the algorithm, as well as its considerable ability to detect very faint signals400

from a single trace.401
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Figure A.1. Three events missed by the DeepPick algorithm; all three events were included in both
the single-trace and array-beam catalogs. (a) For this event, DeepPick did make a detection, however
DeepPick’s estimated arrival time was just outside the 2 second margin used by our classifier. (b) and
(c) DeepPick’s output was just below the detection threshold for an alpha of 1%.

Figure A.2. Three events detected by the DeepPick algorithm; all three events were missing from the
single-trace catalog, but included in the array-beam catalog. These examples represent the type of
detections previously achievable only with a seismic array, but now possible using a deep single-trace
algorithm.
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Figure A.3. Three events detected by the DeepPick algorithm; all three events were missing from both
the single-trace and array-beam catalogs. These detections require additional work to be either rejected,
or added to the seismic record.
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