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Abstract: Based on the kinematic approach of the limit analysis and slip-line theories, this paper 

proposes a new 2D analytical model to evaluate the collapse support pressure to ensure the face 

stability of a circular tunnel in purely cohesive soils driven by a shield. The normality conditions, 

the yield criterion and the vertical soil arching effect are considered in the analytical model. Two 

upper bound solutions corresponding to the ratio of the cover to the diameter (C/D) are derived from 

considering the mechanisms based on the motion of rigid multi-blocks. Comparisons are made with 

existing upper and lower bound solutions published in previous articles. The results are close to the 

solutions of practical engineering. The failure mechanisms proposed in this study provide a better 

explanation for the failure process in the heading of the tunnel face. 
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Introduction 

The advanced shield techniques (earth, slurry or air shield) are widely used to construct a shallow 

tunnel in soft ground. Nevertheless, if the support pressure acting on the tunnel face is not sufficient 

to balance the external earth and water pressure, face collapse might occur. Hence, the failure 

mechanisms and the limit support pressures continue to be an important research issue in stability 

analysis of the tunnel face. 

The face stability of shallow circular tunnels driven in cohesive soils has been investigated by 

several authors. Based on laboratory extrusion tests and field observations, Broms and Bennermark 

(1967) first defined a stability ratio N  , which is expressed as 
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[ ( 2)] /s T uN C D c  = − +  + , where s  is the possible surcharge loading on the ground 

surface, T  is the uniform pressure applied to the tunnel face,   is the soil unit weight, C  is 

the depth of cover, D  is the diameter of the circular tunnel, and uc  is the soil undrained cohesion. 

Subsequently, Davis et al.(1980) proposed a more theoretical approach derived from the limit state 

design concept. Schofield(1980) conducted a centrifuge model test and proposed a general 

expression for the stability ratio N  that is dependent on tunnel depth. Kimura and Mair (1981) 

performed a centrifuge test and noted that the limit support pressure depends on the tunnel cover for 

5 10N   . Idinger et al.(2011) investigated the face stability of shallow tunnel using the 

centrifuge model test and reported the arching effects of soil occurring at an overburden ratio of 

C/D=1.0. Based on a limit equilibrium analytical method, Ellstein(1986) presented an analytical 

solution for N  for homogeneous cohesive soils, which verified the results of Kimura and Mair 

(1981). Based on classical plasticity theory, Augarde et al.(2003) derived rigorous bounds on load 

parameters using the finite element limit analysis method and reported that the stability ratio N  

used to analyse the stability of an idealized heading in undrained soil conditions is not rigorous. Lee 

et al.(2006) carried out a series of centrifuge model tests and numerical simulations of these tests to 

study the tunnel stability and arching effects that develop during tunnelling in soft clayey soil and 

proposed the boundaries of the positive and negative arching zones. More recently, the kinematic 

methods in the field of limit analysis using continuous velocity fields have been proposed by 

researchers. Based on an admissible continuous velocity field obtained directly from elasticity 

theory, Klar et al.(2007) investigated the face stability analysis of circular tunnels in purely cohesive 

soils and proposed 2D and 3D upper-bound solutions for this problem. Mollon et al.(2013) proposed 

two new continuous velocity fields to analyse the collapse of tunnel face and noted that these 

velocity fields agreed with the actual failures observed in undrained clay.  

For the face stability analysis of shallow tunnels, the rigid multi-blocks failure mechanisms were 

often adopted to solve the collapse pressure of the tunnel face. Davis et al.(1980) derived upper and 

lower bound stability solutions for collapse under undrained conditions. Leca et al.(1990) obtained 

three upper bound solutions from the consideration mechanisms based on the motion of rigid conical 

blocks in a frictional material. Mollon et al.(2009,2010,2011) improved these mechanisms and 
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obtained solutions relatively close to those of real projects in cohesive and frictional soils. More 

recently, several authors adopted numerical and experimental methods to evaluate the collapse 

pressure and proposed results closer to those of actual situations. Chen et al.(2011,2013) analysed 

the face stability of shallow shield tunnels in dry sands using 3D DEM and 3D FDM and proposed 

a two-stage failure pattern based on the observation of earth pressure. Based on the results of small-

scale model tests under normal gravity (1 g), Kirsch(2010) proposed that the overburden and the 

initial soil density do not influence the required support pressure. Considering the seepage force 

around the tunnel face, Lu et al.(2014) investigated the relationship between the support pressure 

and displacement of the shield tunnel face using a 3D FEM. For layered soils, Senent et al.(2015) 

improved the model proposed by Senent et al.(2013) to analyse the possibility of a partial collapse 

occurring on the tunnel face. Zhang et al.(2013,2015) developed a 2D DEM model to analyse the 

behaviours of cohesive-frictional soils when tunnelling using a slurry shield and proposed a new 3D 

analytical model with four truncated cones on which a distributed force acts based on the results of 

numerical simulations.  

This study aims at a face stability analysis of the purely cohesive soils in the framework of the 

kinematic approach of limit analysis theory. The rigid block failure mechanisms are a simple and 

intuitive approach and are either translational or rotational. Though the shapes of the blocks in the 

failure mechanisms well satisfy the normality condition proposed by Chen(1975), they may conflict 

with the yield criterion of the soils. Many three- dimensional analytical models and numerical 

simulations have also been constructed to analyse this problem using the finite element limit analysis 

method. However, the progressive failure of the tunnel face cannot be explained using these methods. 

While the problem of tunnel face stability is inherently three-dimensional, much can be learned from 

the behaviour of a reasonable two-dimensional model. Therefore, considering the changes in the 

soil pressure state and the influence of the vertical soil arching effect in the failure zone, we proposed 

a new 2D failure mechanism and constructed an admissible continuous velocity field to analyse the 

critical collapse face pressure of purely cohesive soils using the slip-line and limit analysis theories.  

Slip-line and limit analysis theories 

Slip-line theory 

  The yield condition of the soils is often evaluated using the Coulomb criterion. Considering both 
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the equations of equilibrium and the yield condition, a set of solutions of the plastic equilibrium in 

the yielded zone can be developed. Combined with the stress boundary conditions, the stresses in 

the yielded zone in front of the tunnel face can be studied using these solutions. For specific 

problems, the slip-line field can be established using the slip-line method, which means that the 

stress-strain relationship of the soil is ignored, and only the equilibrium and yield conditions are 

considered. Thus, only a partial stress field region is constructed, and occasionally, the solution can 

be invalid outside the partial stress field region. To solve this problem, a reasonable extended stress 

field is constructed in this study. Therefore, considering the theory of limit analysis, accurate 

solutions for the collapse face pressures of the tunnel can be obtained. 

Limit analysis theory 

In the limit analysis, the soil is idealized as a perfectly elastic-plastic material that obeys normality 

conditions (or the associated flow rules). Based on the limit analysis, the associated theorems are 

established. Much experimental evidence validates that this assumption is reasonable for many clays. 

Thus, the critical collapse pressure of a tunnel face can be examined theoretically using the upper-

bound theorems for purely cohesive soils. The upper-bound theorem states that if a kinematically 

admissible velocity field can be found and if uncontained plastic flow previously occurred, then the 

deduced loads will be higher than or equal to those associated with collapse.  

The aim of this study is to use the kinematic method of the limit analysis to study the face stability 

of purely cohesive soils. As the internal friction angle   of purely cohesive soils is zero, plastic 

deformation in a purely cohesive soil develops without any volume change and satisfies the 

normality condition. Thus, the failure surfaces are assumed to follow the stress characteristics, 

which are also the velocity characteristics for purely cohesive soils. The actual sliding surface is 

characterized by a velocity and a stress. 

Admissible continuous translational velocity field 

The yield condition of the soils is often evaluated using the Coulomb criterion. A purely cohesive 

soil can be regarded as a rigid plastic Tresca material, as its internal friction angle   is zero. 

Thus, the Mohr circle of stress of a purely cohesive soil is shown in Figure 1. 
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Fig. 1 Mohr circle of stress of purely cohesive soil 

Based on the slip-line theory, when the material is in the plastic state, two orthogonal shear planes 

exist at each point for plane strain problems, as shown in Figure 2. 

  

Fig. 2 Two possible shear planes at a point 

This study focuses on the reasonable failure mechanism and the collapse critical pressure of the 

shield tunnel under the plane strain heading (as shown in Figure 3) for purely cohesive soils. 

Furthermore, the stress characteristics and the velocity characteristics are assumed to be identical. 

  

Fig. 3 The plane strain heading 
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To construct a reasonable stress field, that is, an admissible continuous velocity field, the 

following assumptions are made.  

(a) There is no shear force on the tunnel face; 

(b) The effect of the Terzaghi level arching effect on the upper soils of the lining in the rear of the 

tunnel face is ignored when 0.5C D   , where C   is the depth of cover, and D   is the 

tunnel diameter; 

(c) The soils at the top of the tunnel face is in the plastic state when tunnelling, that is, 

2s u uc C c +   , where 
s   is the possible surcharge loading acting on the ground 

surface,   is the soil unit weight, C  is the depth of cover, and 
uc  is the soil undrained 

cohesion. 

Based on these assumptions, a new 2D failure mechanism is proposed, as shown in Figure 4. The 

level of soil stress in the front of the tunnel face is analysed.  

  

Fig. 4 A new 2D failure mechanism 

The mechanism consists of four zones, i.e., Zone I, II, III and possibly IV. For failure zone I, when 

the support pressure 
T  acting on the tunnel face is not sufficient to ensure the stability of the 

tunnel face, the tunnel face can be regarded as the moveable vertical surface of failure zone I. The 

soil in zone I is in the limit state of the active earth pressure. Thus, zone I is a Rankine zone. For 

zone II, as the soils in zone II are constrained by the soils in zone I, zone III, and the elastic area in 

front of zone II, the stress principal axis in zone II should deflect to different degrees based on the 

associative flow rule(see.Chevalier,2013). Furthermore, the soils in zone II are in the plastic state 
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and satisfy the Tresca yield criterion. Hence, zone II is a transition zone formed by a circular arc 

with radius 2 2D  and two adjacent boundaries (see Chen, 1975). Due to the assumption that 

the soils behind line EF are stable (i.e., the Terzaghi horizontal arc effect is ignored), deflection of 

the stress principal axis does not occur in zone III, in which the soils are in the plastic state. Therefore, 

zone III is also a Rankine zone. Zone IV is a possible failure zone. When the soils in zone IV are in 

a plastic state, zone IV can be regarded as a Rankine zone but is affected by the vertical soil arching 

effect occurring at the top of zone III. It must be determined whether a failure area appears in zone 

IV.   

Based on the slip-line and limit analysis theories, together with considering the normality 

conditions and Tresca yield criterion, we construct an admissible continuous velocity field, as shown 

in Figure 5. In Figure 5, the line AB and the arc BE represent the maximum shear stress trajectory 

of the soils and are the stress boundaries of the plastic and elastic soil regions. The lines EJ and FK 

are the potential trajectories of the maximum shear stress when the soil in the yielding zone IV. 

Moreover, the stability of soils in zone IV needs to be assessed.  

  

Fig. 5 Admissible velocity field  

In this study, the motion of the soils in failure zones I, II and III is assumed to be translational. 

The fracture zone IV is assumed to respect Terzaghi’s theory of relative soil pressure. Thus, a 

kinematically admissible velocity field is constructed, as shown in Figure 6; the admissible 

displaced pattern is shown in Figure 7.  
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Fig. 6 Kinematically admissible velocity field 

  
Fig. 7 Admissible displaced pattern 

The kinematic velocity magnitude of the possible failure zones, i.e., zone I, II, and III, can be 

expressed as follows: 

1 2 3v v v= = (1) 

The kinematic velocity magnitude at points B, E and F is given by the following: 

1 B E Fv v v v= = =  (2) 

  The kinematic velocity magnitude of the tunnel face can be written as follows: 

  
12 2Tv v=  (3) 

  Therefore, the vertical velocity magnitude of the centroid of zones I, II, and III can be separately 

expressed as follows: 
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and III. In Figure 6, the velocity discontinuity surfaces consist of line AB  , line OF   and the 

circular arc BE . 

Criterion of the limit collapse thickness 

In this study, there are two possible failure patterns in front of the tunnel face, as shown in Figure 

4. The shapes of the failure mechanism depend on the ratio C D . When C D  is 0.5, the failure 

mechanism consists of three zones, i.e., zones I, II and III. When the values of C D  are higher 

than 0.5, zone IV (i.e., the trapezoid EFJK  with height H ) may be the possible failure zone, 

which is subjected to the influence of the vertical soil arching effect, as shown in Figure 8. The 

shape of the fracture mechanism is consistent with that of a test obtained by Schofield (1980). 

 

Fig. 8 Assumed failure mechanism when 0.5C D   

In Figure 8, the weight of the soils in trapezoid EFJK , the soil undrained cohesion uc  and the 

uniform surcharge loading s   on the ground surface play an important role in evaluating the 

stability of the soil mass in trapezoid EFJK . When the soil mass in trapezoid EFJK  (i.e., zone 

IV) is unstable, zone IV becomes a possible fracture zone. In this case, the criterion of the limit 

collapse thickness needs to be defined to obtain the critical collapse pressure. Assuming that the 

collapse of the tunnel face just reaches the ground surface, the soils in zone IV can be regarded as 

loose earth, and the collapse pressure acting on line EF  can be obtained using the Terzaghi’s 

theory of relative soil pressure, which is modified as shown in Figure 9.  
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Fig. 9 Modified Terzaghi’s theory of relative soil pressure 

 The contribution to the collapse pressure caused by the weight of the soils in trapezoid EFJK , 

uniform surcharge loading s  on the ground surface and the soil undrained cohesion uc  can be 

equivalent to a uniformly distributed load pressure Vq  acting on line EF  and expressed as 

follows: 

ln( )
4

v s u

D
q H c

D H
 = + +

+
(5) 

where H  is the possible collapse thickness,   is the soil unit weight, D  is the diameter of the 

circular tunnel, and uc  is the soil undrained cohesion. 

As 
2

D
H C= −  in Figure 8, equation (5) becomes equation (6), as shown below: 

  
1 4

( ) ln( 1)
2

v u s

C C
q D c

D D
 = − − − + (6) 

where C  is the depth of cover. Equation (6) is the criterion of the limit collapse thickness. 

Analysis of the limit collapse thickness 

No uniform surcharge loading s  on the ground surface 

Neglecting the uniform surcharge loading, equation (6) is simplified as follows:  

  
1 4

( ) ln( 1)
2

v u

C C
q D c

D D
= − − − (7) 

When 0Vq  , that is, 4 1ln( 1) ( )
2

u

D C C
D Dc


 − − , the soil mass in trapezoid EFJK  

is stable. Therefore, the fracture areas in front of the tunnel face involve zones I, II and III, and the 
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limit collapse thickness is 0.5 D ; otherwise, it is the depth of cover, C ( H+D/2 ). An intuitive 

design chart to evaluate the limit collapse thickness is shown in Figure 10.  

 

Fig. 10 Design chart for the relationship between uD c  and C D  

  For a certain value of C D , it can be seen from Figure 10 that the soil mass in trapezoid EFJK  

is stable when the value of uD c  is under or on the curve. Therefore, the limit collapse thickness 

is 0.5 D ; otherwise, it is the depth of cover, C ( H+D/2 ).  

Uniform surcharge loading s  on the ground surface 

When considering uniform surcharge loading for 0Vq     that is, 

1 4
( ) ln( 1) 0

2
u s

C C
D c

D D
 − − − +  , the soil mass in trapezoid EFJK  is stable. Therefore, 

the fracture areas in front of the tunnel face involve zones I, II and III, and the limit collapse 

thickness is 0.5 D ; otherwise, it is the depth of cover, C ( H+D/2 ). A design chart is necessary to 

more intuitively evaluate the limit collapse thickness, as shown in Figure 11. 
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Fig. 11 Design chart for the relationship between uD c  and s uc  

For a certain value of C D , Figure 11 shows that the soil mass in trapezoid EFJK  is stable, 

and the contribution of the uniform surcharge loading s  to the critical collapse pressure must be 

considered when the point with coordinates ( uD c , S uc ) is under or on the curve generated 

from equation (6). Therefore, the limit collapse thickness is equal to 0.5 D ; otherwise, it is equal to 

C ( H+D/2 ). 

Critical collapse pressure 

  This paper aims at finding a more accurate critical collapse pressure of a circular tunnel driven 

by a shield in purely cohesive soils. Based on the kinematic approach of the limit analysis, together 

with the slip line theory a multi-zone failure mechanism is proposed. As described in the above 

section, the shape of the failure mechanism depends on the values of C D . As the critical collapse 

pressure depends on the failure mechanism, the critical collapse pressure of the tunnel face is 

calculated as follows. 

C/D equal to 0.5 

Figure 12 shows the fracture mechanism when C/D is 0.5. 
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Fig. 12 Failure mechanism for 0.5C D =  

This fracture mechanism consists of three zones. To obtain the critical collapse pressure using the 

limit analysis method, the rate of external work and that of the internal energy dissipation must be 

determined. The rate of external work is caused by the weight of the three zones, the possible 

uniform surcharge loading on the ground surface and the collapse pressure on the tunnel face. The 

rate of the internal energy dissipation is determined along the different velocity discontinuity 

surfaces. According to the analysis of the admissible continuous velocity field (see Figure 6), the 

rate of external work and that of the internal energy dissipation are calculated as follows. 

The rate of work of the weight of the three zones, i.e., zone I, II and III, is shown below: 

  

3
2

1

1

6 2

32
i i

iV

p vdV vV D v


  

=

+
=  = =  (8) 

The rate of work of the collapse pressure of the tunnel face is shown below: 

 1- 2 2
T

T

T

T n T
A

p v dA Dv  =  = (9) 

As undrained behaviour is assumed, the soil deforms at constant volume, as shown below.  

s T

s T

n n
A A

v dA v dA=             (10) 

Thus, the rate of work of possible uniform surcharge loading on the ground surface is shown below: 

  12 2
S

s T

s T

S n s n s
A A

p v dA v dA Dv   =  = =   (11) 

where iV  is the volume of region i , 
iv  is the vertical velocity of centroid i  in the volume of 
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region i ( i =1,2,3), s

nv is the downwards normal velocity at the ground surface, and T

nv  is the 

outward normal velocity on the tunnel face. TA  and sA  are the deforming areas on the tunnel 

face and at the ground surface, respectively.  

The rate of internal energy dissipation along the different velocity discontinuity surfaces is shown 

below: 

 
1

i

n

S u u i i
S

i

D c vdS c v S
=

=  =   (12) 

where iS  is the lateral surface along line AB , line OF  and arc BE . The rate of the internal 

energy dissipation along the discontinuous surface is given as follows: 

 1

3 2 2

4iS uD c Dv
+

=  (13) 

 The work equation consists of equating the rate of work of the external forces to the rate of internal 

energy dissipation and is given as follows: 

 
1 1 s T

n n
s T

u i i i i S n T n
A A

i i

c v S vV v dA v dA  
= =

 = +  +     (14) 

After simplification, the tunnel collapse pressure can be written as follows: 

 
T u c s sDN c N N  = − + (15) 

where N , cN , and sN  are non-dimensional coefficients that represent, respectively, the effect 

of the soil weight, the cohesion, and the surcharge loading. The expressions of these coefficients are 

given as follows: 

 
12 2

32
N

+
=  (16) 

 
3

2
cN

+
=  (17) 

 1sN =  (18) 

Substituting equations (16), (17) and (18) into equation (15), the critical collapse pressure becomes 

as follows: 
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 0.5138 3.0708T u sD c  = − + (19) 

When T  = 0, equation (19) becomes as follows: 

  0.5138 3.0708s uD c + =  (20) 

C/D greater than 0.5 

 Figure 13 shows the fracture mechanism when C/D is greater than 0.5. 

 

Fig. 13 Failure mechanism for 0.5C D   

This fracture mechanism involves four zones. To obtain the critical collapse pressure of the tunnel 

face, the rate of work of the weight of the four regions, the possible uniform surcharge loading on 

the ground surface and the collapse pressure on the tunnel face must be determined. In addition, the 

rate of internal energy dissipation along the different velocity discontinuity surfaces must be 

obtained. According to the analysis of the admissible continuous velocity field (see Figure 6), the 

rate of external work and that of the internal energy dissipation are given as follows. 

  The equation for the rate of work of the weight of the three zones, i.e., zones I, II and III, is the 

same as in equation (8). The contributions of the weight of the soils in zone IV, the uniform surcharge 

loading s  on the ground surface and the soil undrained cohesion uc   to the critical collapse 

pressure are equivalent to that of the equivalent uniform distribution loads Vq  acting on line EF . 

Therefore, the rate of work of the weight of the soils in zone IV, the possible uniform surcharge 
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loading s  and the soil undrained cohesion 
uc  can be expressed as follows: 

  1

2 1
[ ( ) ln(4 1) ]

2 2v
q

q

q v n u s
A

C C
p q v dA D c Dv

D D
 =  = − − − + (21) 

  where q

nv  is the downwards normal velocity of the equivalent uniform distribution loads Vq  

acting on line EF , and qA  is equal to the length of line EF multiplied by unit thickness. 

 The equation for the rate of work of the collapse pressure of the tunnel face is the same as in 

equation (9). 

  The equation for the rate of internal energy dissipation along the different velocity discontinuity 

surfaces is the same as in equation (13). The work equation is obtained by equating the rate of work 

of the external forces to the rate of internal energy dissipation as follows: 

1 1 T

n

n n
T

u i i i i v T n
A

i i A

c v S vV q vdA v dA 
= =

 = + +     (22) 

  After simplification, it is found that the tunnel collapse pressure is given by 

T u c s sDN c N N  = − +  (23) 

where N  , cN   and sN   are non-dimensional coefficients that represent the effect of the soil 

weight, the cohesion, and the surcharge loading, respectively. The expressions of these coefficients 

are given as follows: 

12 2 1
( )

32 2

C
N N N

D
  

+
 = + = + − (24) 

3 4
ln( 1)

2
c c c

C
N N N

D

+
 = + = + − (25) 

1sN = (26) 

where 
12 2

32
N

+
 =  is the effect of the soil weight of regions I, II and III; 

1
( )

2

C
N

D

 = −  is 

the possible effect of the soil weight of zone IV; 
3

2
cN

+
 =  is the effect of cohesion along line

AB , line OF  and arc BE ; 
4

ln( 1)c

C
N

D
 = −  is the possible effect of cohesion of the soils in 
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zone IV; and 1sN =  is the effect of a possible uniform surcharge loading on the ground surface.  

  Note that in equations (24), (25) and (26), whether to consider the values of N
 , cN   and 

sN  

depends on the dimensionless parameters uD c  , S uc   and C D  . Thus, according to 

equation (6), the critical collapse pressure as a function of C D  is calculated as follows: 

(a) 
1 4

( ) ln( 1) 0
2

s

u u

D C C

c D c D


− + − −   

Under this condition, N
  and cN   are both equal to zero. Thus, equations (24) and (25) are 

reduced, respectively, to the following: 

12 2

32
N

+
= (27) 

3

2
cN

+
= (28) 

In this case, the equivalent uniform distribution load Vq  is less than or equal to zero. Thus, 

equation (26) becomes as follows: 

0sN = (29) 

  Substituting equations (27), (28) and (29) into equation (23), the critical collapse pressure is 

calculated as follows: 

0.5138 3.0708T uD c = −  (30) 

  When T  = 0, equation (30) becomes as follows: 

5.977
u

D

c


= (31) 

  (b)
1 4

( ) ln( 1) 0
2

s

u u

D C C

c D c D


− + − −   

In this case, N
 , cN   and sN  must be considered. Substituting equations (24), (25) and (26) 

into equation (23), the critical collapse pressure is calculated as follows: 
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1 4
0.5138 ( ) 3.0708 ln( 1)

2
T u s

C C
D c

D D
  

   
= + − − + − +   
   

(32) 

  When T  = 0, equation (32) becomes as follows: 

4
(0.0138 ) 3.0708 ln( 1)s u

CC
D c

D D
 
 

+ + = + − 
 

 (33)  

Analytical comparisons 

  In this study, it is assumed that the undrained shear strength uc  of a purely cohesive soil is 

constant with depth. Thus, six variables model of the plane strain heading is formed by the following 

set: T{ , s ,C , D , uc , } . Dimensional analysis is used to solve the problem via the following 

dimensionless sets: T{ uc  , s uc  , C D  , }uD c  . As undrained behaviour is assumed, the 

first two in the dimensionless set are replaced by a single parameter, ( )s T uc −  , which 

becomes the only variable for limiting stability once the values of the independent parameters 

C D  and uD c have been fixed.  

  As the present model in this paper is 2D, the existing classical solutions of two-dimension models 

or some recent three-dimension models, including analytical and numerical solutions, are chosen to 

validate the results of the present model. For the cohesive soils, a traditional approach is to evaluate 

stability of a circular tunnel face in terms of a “load factor”, usually denoted as N  and defined as 

follows:  

[ ( / 1 ] /s T uN D C D+ 2) c  = − +     (34) 

The advantage of using the load factor to assess stability can reduce the complexity of the final 

results. However, several researchers demonstrated that the values of N  are dependent on the 

values of uD c  . Therefore, the analytical comparisons are made under different values of 

uD c , as follows.  
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(a) 0uD c =  

  In this case, equation (34) reduces to the following: 

          ( ) /s T uN c = −                  (35) 

  In this study, the load factor can be expressed as follows: 

3+ 2 ln(4 1)cN N C D= = + −（ ）    (36) 

The analytical comparisons of the load factor of the present model and the existing solutions are 

shown in Figure 14. 

 

Fig. 14 Analytical comparisons of N of the present model and the existing solutions 

Figure 14 shows that the reasonable solutions of the problem should be between the upper-bound 

solutions proposed by Davis et al.(1980) and the lower-bound solutions proposed by Davis et 

al.(1980). In Figure 14, the upper-bound solutions proposed by Sloan et al.(1994) and by Augarde 

et al.(2003) are numerical solutions obtained using finite element limit analysis methods based on 

the improved rigid-blocks mechanism proposed by Davis et al.(1980). The upper-bound solutions 

proposed by Augarde et al.(2003) were derived from updating the upper-bound solutions proposed 

by Sloan et al.(1994) using advanced algorithms of the finite element limit analysis. The upper-

bound solutions proposed by Augarde et al.(2003) are more accurate bounds on stability parameters. 
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Therefore, the range of best solutions of the problem should be reduced to between the upper-bound 

solutions proposed by Augarde et al.(2003) and the lower-bound solutions proposed by Davis et 

al(1980). The comparisons of the upper-bound solutions proposed by Davis et al.(1980), Sloan et 

al.(1994) and Augarde et al.(2003) show that the best upper-bound solutions more closely 

approximate the lower-bound solutions. In the lower-bound solutions shown in Figure 14, the three 

lower-bound solutions proposed by Davis et al.(1980), Augarde et al.(2003), Ewing and Hill(1967) 

and the present model are calculated based on smooth linings. Only the lower-bound solution 

proposed by Gunn(1980) is computed based on rough linings. The lower-bound solutions based on 

rough linings would be appropriate in a purely cohesive soil. Thus, the reasonable upper-bound 

solutions more closely approximate the lower-bound solutions proposed by Gunn(1980). It can be 

seen from Figure 14 that the upper-bound solutions proposed by the present model agree well with 

the lower-bound solutions proposed by Gunn(1980) when 4C D  . The upper-bound solutions 

obtained by the present model are better than other upper-bound solutions. The present upper bound 

mechanism more closely approximates the failure mechanism in the actual project and a safe 

estimate of the tunnel pressure.  

 (b) 0uD c   

For the more general case of a cohesive soil, the traditional method used to assess the critical 

collapse pressure is using the following equation 

T u c s sD N c N N  =   −  +                   (37) 

Since the critical coefficient sN  is equal to 1.0 for purely cohesive soils under undrained 

conditions, equation (37) becomes 

T s u cD N c N  − =   −                       (38) 

The equation (38) can be transformed into  

[( ) ]s T u cD N c N  − +   =                   (39) 
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Adding ( 1 2 ) uD C D N c   + −   on both sides of the equations (39), the equation (39) 

becomes 

[( ) ( 1 2)] [( 1 2) ]s T u c uD C D c N D C D N c   − +   + = +   + −   (40) 

Substituting equation (34) into equation (40), the load factor can be expressed as 

[( 1 2) ]c uN N D C D N c= +   + −              (41) 

The equation (41) shows that the load factor N is dependent of 
uD c  when considering the 

effect of the self weight of the soil.  

 

Fig. 15 Analytical comparisons of N between the present model and the existing solutions 

(γD/cu>0) 

  Figure 15 shows that the upper-bound solutions proposed by Davis et al.(1980), Augarde et al. 

(2003) and Klar et al.(2007) are lower than the experimental and analytical solutions obtained by 

Brom et al.(1967), Kimura et al.(1981) and Ellstein et al.(1986) for values of C/D from 0.5 to 3.0 

when 0uD c  . This illustrates that the upper-bound solutions proposed by Davis et al.(1980), 

Augarde et al. (2003) and Klar et al.(2007) should be safe and conservative. For the present model, 

the values of N corresponding to certain value of C/D increase with increasing the values of 
uD c . 

When the values of 
uD c  is lower than 2.0, the upper-bound solutions proposed by the present 

model is safe and conservative. When the values of 
uD c  is greater than 6.0, the upper-bound 

solutions is unsafe. Therefore, the upper-bound solutions proposed by the present model may be the 

best solutions for the value of 
uD c  equal to 5.0. The upper-bound solutions proposed by Mollon 
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et al.(2013) are greater than these experimental and analytical solutions. It shows that the critical 

collapse pressures obtained by Mollon et al.(2013) should be smaller than the real solutions required 

to ensure the safe of the tunnel face. Meanwhile, the values of N corresponding to certain value of 

C/D decrease with increasing the values of 
uD c . This is in conflict with the real situation in the 

actual project.  

  Based on the research data proposed by Kimura et al.(1981), Ellstein et al.(1986), Augrade et 

al.(2003), Klar et al.(2007), Mollon et al.(2013) and the present model, the fitting equations of the 

critical coefficients Nc versus the ratio of the cover to the depth (C/D) can be expressed as  

ln(4 1)cN A C D B= − +                (42) 

Where A and B are constant coefficients which are showed in Table 1.  

Table 1 Constant coefficients and coefficients of determination of fitting equations 

models A B R2 

Present model  1.0 3.0708 1.0 

Model proposed by 

Kirmura et al.(1981) 

2.5719 2.8647 0.9938 

Model proposed by 

Augarde et al.(2003) 

1.9717 1.9766 0.9925 

Model proposed by 

Ellstein et al.(1986) 

1.2071 5.7504 0.9904 

Model proposed by 

Klar et al.(2007) 

1.1823 1.626 0.9696 

Model proposed by 

Mollon et al.(2013) 

3.0487 4.8467 0.9688 

 

(a) Nc-Nγ-Ns 
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(b) Nγ 

Fig. 16 Comparison of Nc,Nγ and Ns of the existing models and the present model: 

(a) Nc-Nγ-Ns;(b) Nγ 

Figure 16 illustrates the comparisons of critical coefficients, i.e., Nc Nγ and Ns  of the existing 

models and the present model. In Figure 16, the critical coefficient Ns (i.e., the effect of surcharge 

loading) of all models is equal to 1.0, which shows that the effect of surcharge loading to the critical 

collapse pressure does not vary with the values of C/D. The reason is that since these methods for 

cohesive material involves no volume change then the decrease in area of the tunnel must equal the 

area of ground loss at the surface. It can be seen from Figure 16(a) that the values of Nc is greater 

than the values of Nγ when 0.5 3.0C D  , which indicates that the effect of cohesion to the 

critical collapse pressure is more remarkable than that of the soil weight. Figure 16(b) shows that 

the critical coefficient Nγ of all models linearly increases with increasing the values of C/D. The 

critical coefficient Nγ of these models, except for the present model and the M2 model proposed 

by Mollon et al.(2013), is fixed to equal to (C/D+1/2). It can be seen from Figure 16(b) that the 

increase of critical coefficient Nγ with respect to Nγ=(C/D+1/2) by the M2 model proposed by 

Mollon et al.(2013) is smaller than 7.15% when 0.5C D  . However, the maximum decrease of 

critical coefficient Nγ with respect to Nγ=(C/D+1/2) by the present model can attain more than 48% 
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when 0.5C D  . Hence it is reasonable to assume that the load factor N  depends on the values 

of 
uD c  when using a kinematically permissible mechanism.  

Case analysis 

In this study, the diameter D of the circular tunnel in purely cohesive soil is equal to 10m, a unit 

weightγof the soils is 18kN/m3, the undrained cohesions uc of the soils are 20kPa and 30kPa, 

respectively. Meanwhile, it is assumed that the uniform surcharge loading s   on the ground 

surface does not exist. Since the critical collapse pressure depends on the fracture mechanism which 

depends on the values of C/D and 
uD c , the suitable equations to calculate the critical collapse 

pressure need to be chose. When C/D=0.5, the critical collapse pressures T   obtained using 

equation (19) with S  = 0 are equal to 31.07 kPa and 0.36 kPa for the two uc  values (20kPa and 

30kPa). When the values of C/D are greater than 0.5, the equivalent uniform distribution loads Vq  

calculated using equation (7) are greater than zero for the two uc   values. Hence, the critical 

collapse pressure T  can be calculated using equation (32) with S  = 0.  

In this study, the solutions of the critical collapse pressure obtained by Davis et al. (1980), 

Augarde et al.(2003), Klar et al. (2007), Mollon et al. (2013), and the present approach are given in 

Figs. 17(a) and (b). In addition to the numerical solution, note that the rest of these results are based 

on the kinematical approach of the limit analysis. 
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(a) 20uc kPa=  

 

(b) 30uc kPa=  

Fig.17 Comparisons of collapse pressures of various of models 

Figure 17 shows that the solutions proposed by the present model are better than these proposed 

by other 2D models. In Figure 17(a), when uD c  is 9.0, the values of T   provided by the 

present model compares the better with the numerical model for C D 1.5 , whereas the values 

of T  provided by present model compares the worse with the numerical model for C D 1.5 . 

It can be seen from Figure 17(b) that the values of T  provided by the present model are very 

satisfying for the values of C D  from 0.5 to 3.0 for uD c =6.0. The reason is that the increase 

of the soil undrained cohesion weakens an effect to the critical collapse pressure of the tunnel face 

due to three-dimensional equilibrium conditions. Since the yield criterion, normality conditions (e.g. 

associate flow rule), and the vertical soil arching effect are considered in the present model, each 

failure zone in front of the tunnel face has clear physical concept and the present model can explain 

well the failure mechanism of the tunnel face driven by shield.  

Figure 18 compares the failure zones of the present mechanism and that proposed by Davis et al. 

(1980) for various values of C D . 
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(a) C/D=0.5 

  

(b) C/D=1.0 

Fig. 18 Comparisons of failure zones between the present mechanism and that proposed by 

Davis under different C/D values: (a) C/D=0.5; (b) C/D=1.0 

Figure 18 shows that the size of the fracture zone obtained using the present model is much 

smaller than that obtained by Davis et al. (1980). This is because this study considers the influence 

of the vertical soil arching effect and the normality conditions, whereas the fracture mechanism 

proposed by Davis et al. (1980) neglects the normality condition. The fracture mechanism of the 

present model is consistent with the experimental result obtained by Schofield (1980), as shown in 

Figure 18(b). Based on the limit analysis and the slip-line theories and together with considering the 

normality condition and yield criterion, the reasonable size of the fracture zone in front of the tunnel 

face is obtained in this study. The proposed failure mechanism significantly improves the existing 

upper-bound solutions for the face stability of circular tunnels in purely cohesive soils. 

Conclusions 

Based on the kinematic approach of the limit analysis and slip-line theories, a new 2D analytical 
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model to assess the critical collapse pressure of a circular tunnel is proposed. This model considers 

the vertical soil arching effect and the normal condition. The upper-bound solutions proposed by the 

present model are compared with the existing classical solutions of two-dimension or three-

dimension models including analytical and numerical solutions. The main conclusions are presented 

as follows. 

(1) The shape of a new 2D analytical model proposed by this study depends on the values of C D . 

When the value of C D  is 0.5, the new analytical model consists of three zones, i.e., zones I, II 

and III. When the value of C D  is greater than 0.5, it may consist of four zones, i.e., zones I, II, 

III and possibly IV. Whether or not zone IV is considered depends on the values of the dimensionless 

parameters uD c , S uc  and C D .  

(2) The comparisons between the present model and the existing classical solutions of 2D or 3D 

models show that the present model significantly improves the best existing upper-bound solutions 

of the collapse. As the present failure mechanism satisfies the normality conditions and considers 

the vertical soil arching effect at the top of zone III, the size of the fracture zone in front of the tunnel 

face given by the present model is far less than that given by the existing models. Thus, the tunnel 

pressure required to maintain stability obtained by the present model may be lower than those 

obtained by the existing models with increasing values of soil weight parameter D uc . 

(3) The contribution of the cohesion is greater than that of the soil weight and the surcharge loading 

for the critical collapse pressure of the tunnel face when C D  is lower than 3.0; furthermore, the 

effect gradually weakens with increasing C D . The contribution of the surcharge loading on the 

ground surface for the collapse loads is independent of the values of C D . The critical coefficient 

N  (i.e., the effect of the soil weight) increases linearly with increasing C D . The difference in 

the critical coefficient N  between the present model and the classical load factor is 0.4862. This 

shows that the contribution of the soil weight in the tunnel for the critical collapse pressure of the 

tunnel face can’t be ignored in the present model: it is 48.6% of the soil weight contribution when 

C D  is equal to 0.5.  
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(4) In this study, the present model is a 2D analysis model in which certain assumptions are made. 

Therefore, to establish a more accurate 2D analysis model, or even a 3D analysis model, further 

investigations are required for purely cohesive soils. 
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