

Growth of the entire or meromorphic solutions of Differential- difference equations

RAJ SHREE DHAR

Higher Education Department, J and K Government
Jammu and Kashmir, INDIA
dhar.rajshree@jk.gov.in

November 24, 2018

Abstract

In this paper, we study the entire or meromorphic solutions for differential-difference equations in $f(z)$, its shifts, its derivatives and derivatives of its shifts. and study some Hayman's results for differential-difference polynomials .

Mathematics Subject Classification:
2010 : Primary 30D35. Secondary 30D30,39A05.

Keywords : Entire and Meromorphic functions, Differential- difference polynomial, Shared value, Nevanlinna theory.

INTRODUCTION AND MAIN RESULTS:

It is assumed that the reader is familiar with the basic concepts of Nevanlinna Theory, see e.g. ([1],[2]), such as the characteristic function $T(r, f)$, proximity function $m(r, f)$, counting function $N(r, f)$ and so on. In addition, $S(r, f)$ denotes any quantity that satisfies the condition that $S(r, f) = o(T(r, f))$ as r tends to infinity outside of a possible exceptional set of finite logarithmic measure. In the sequel, a meromorphic function $a(z)$ is called a small function with respect to f if and only if $T[r, a(z)] = o(T(r, f))$ as r tends to infinity outside of a possible exceptional set of finite logarithmic measure. We denote by $S(f)$, the family of all such small meromorphic functions.

We say that two meromorphic functions f and g share the value a (belonging to extended complex plane) CM (IM)

provided that

$$f(z) \equiv a$$

if and only if

$$g(z) \equiv a,$$

counting multiplicity (ignoring multiplicity).

DEFINITION 1 :

Let c be a non-zero complex constant then for a meromorphic function $f(z)$, we define its shift by $f(z+c)$ and its difference operator by

$$\Delta_c f(z) = f(z+c) - f(z),$$

$$\Delta_{mc} f(z) = f(z+mc) - f(z),$$

where m is a positive integer

$$\Delta_c^n f(z) = \Delta_c^{n-1}(\Delta_c f(z)),$$

$n \in \mathbf{N}, n \geq 2$,

$$= \sum_{k=0}^n \frac{(-1)^k \cdot n!}{k! \cdot (n-k)!} f(z + \overline{n-k} \cdot c).$$

In particular,

$$\Delta_c^n f(z) = \Delta^n f(z)$$

for $c=1$.

We define **Differential - difference Monomial** as

$$M[f] = \prod_{i=0}^k \prod_{j=0}^m [f^{(j)}(z + c_{ij})]^{n_{ij}} i j$$

where c_{ij} are complex constants, and n_{ij} are natural numbers, $i = 0, 1, \dots, k$ and $j = 0, 1, \dots, m$.

Then the **degree of $M[f]$** will be the sum of all the powers in the product on the right hand side. Let us define the **weight of $M[f]$** as Γ_M = sum of powers of $f + 2 \cdot \text{sum of powers of } f' + 3 \cdot \text{sum of powers of } f'' + \dots$

DEFINITION 2 :

Let

$$M_1[f], M_2[f], \dots$$

denote the distinct monomials in f , and

$$a_1(z), a_2(z), \dots$$

be the small meromorphic functions including complex numbers then

$$P[f] = P[z, f] = \sum_{j \in \Delta} a_j(z) \cdot M_j[f]$$

where Δ is a finite set of multi- indices, $a_j(z)$ are small functions of f , $M_j[f]$ are differential- difference monomials, will be called a differential- difference polynomial in f , which is a finite sum of products of f , derivatives of f , their shifts, and derivatives of its shifts. Let us define the total degree d and weight Γ of $P[z, f]$ in f as

$$d = \underbrace{\max}_{j \in \Delta} d_{M_j; \Gamma} = \underbrace{\max}_{j \in \Delta} \Gamma_{M_j}.$$

If all the terms in the summation of $P[f]$ have same degrees, then $P[f]$ is known as homogeneous differential- difference polynomial. Usually, we take $P[f]$ such that $T(r, P) \neq S(r, f)$.

A finite value a is called the Picard exceptional value of f , if $f - a$ has no zeros. The Picard theorem shows that a transcendental entire function has at most one Picard exceptional value, a transcendental meromorphic functions has at most two picard exceptional values.

SECTION 1:

W. K.Hayman[1] proved the following theorem:

THEOREM A[1]: If $f(z)$ is meromorphic and transcendental in the plane and has only a finite number of zeros and poles, then every non-constant function

$$\varphi(z) = \sum a_j(z) \cdot f^j(z), j = 0, \dots, l$$

assumes every finite value except possibly zero infinitely often.

We will consider the differential- difference polynomial as in definition 2 and prove Theorem A for such polynomials as the following results:

MAIN RESULTS:

THEOREM 1.1: Let f be a transcendental entire function with finite order and as in definition 2, $P[f]$ be a differential- difference polynomial of degree d defined as

$$P[f] = \sum_{j \in \Delta} a_j(z) \cdot M_j[f]; T(r, P[f]) \neq S(r, f),$$

where Δ is a finite set of multi- indices, $a_j(z)$ are small functions of f , $M_j[f]$ are differential- difference monomials, then $P[f] = a(z)$ ($a(z) = \text{small function or complex value, } a(z) \neq 0, \infty$) has infinitely many solutions provided $N(r, 0, f) = S(r, f)$.

THEOREM 1.2: Let f be a transcendental meromorphic function with finite order and as in definition 2, $P[f]$ be a differential- difference polynomial of degree d defined as

$$P[f] = \sum_{j \in \Delta} a_j(z) \cdot M_j[f]; T(r, P[f]) \neq S(r, f),$$

where Δ is a finite set of multi- indices, $a_j(z)$ are small functions of f , $M_j[f]$ are differential- difference monomials, then $P[f] = a(z)$ ($a(z)$ = small function or complex value, $a(z) \neq 0, \infty$) has infinitely many solutions provided $N(r, 0, f) + N(r, f) = S(r, f)$.

The classical problem of value distributions of differential polynomials is Hayman conjecture [3],i.e. if f is a transcendental meromorphic function and $n \in N$, then $f^n f'$ takes every finite non-zero value infinitely often which means that the Picard exceptional value of $f^n f'$ may only be zero. This conjecture has been proved by many authors. e.g., Hayman [3] proved that if f is a transcendental meromorphic function and $n \geq 3$,then $f^n f'$ takes every finite non-zero complex value infinitely often. The case $n=2$ was proved by Mues[4], and Bergweiler et. al[5] proved the case for $n=1$.

Then many authors started to investigate the uniqueness of meromorphic functions sharing values with their shifts/ q-shifts or difference operators see e.g. ([6]-[9]).

We shall prove the above conjecture for general differential difference polynomials with some condition on power of f .

THEOREM 1.3: Let f be a transcendental meromorphic function with finite order and as in definition 2, $P[f]$ be a differential- difference polynomial of degree d and weight Γ defined as

$$P[f] = P[z, f] = \sum_{j \in \Delta} a_j(z) \cdot M_j[f]$$

$$T(r, P[f]) \neq S(r, f),$$

where Δ is a finite set of multi- indices, $a_j(z)$ are small functions of f , $M_j[f]$ are differential- difference monomials,

then $f^l(f-1)P[f] - a(z), a(z) \neq 0, \infty$ has infinitely many zeros provided $l > 2(\Gamma + 1)$.

For the proof of the results we need the following lemmas:

LEMMA 1[7]: Let f be a non- constant meromorphic function of finite order and c be a non- zero complex constant, then

$$m(r, \frac{f(z+c)}{f(z)}) = S(r, f),$$

for all r outside a possible exceptional set of finite logarithmic measure.

LEMMA 2[7]: Let c be a non-zero complex constant, and let f be a meromorphic function of finite order then

$$T(r, f(z+c)) = T(r, f) + S(r, f)$$

$$N(r, f(z+c)) = N(r, f) + S(r, f)$$

$$N(r, 0, f(z+c)) = N(r, 0, f) + S(r, f)$$

LEMMA 3(Clunie type lemma[6]): Let $f(z)$ be a non- constant meromorphic function of finite order such that

$$f^n P[z, f] = Q[z, f],$$

where $P[z, f]$, $Q[z, f]$ are differential-difference polynomials in f . If the degree of $Q[z, f]$ as a polynomial in f and its shifts is at most n , then

$$m(r, P[z, f]) = S(r, f).$$

LEMMA 4([11]): Let f be a nonconstant meromorphic function. If $Q[f]$ is a differential polynomial in f with arbitrary meromorphic coefficients, then

$$(i) m(r, Q[f]) \leq \gamma_Q m(r, f) + S(r, f)$$

$$(ii) N(r, Q[f]) \leq \Gamma_Q N(r, f) + S(r, f)$$

Remark: We can obtain Lemma 4 for differential difference polynomials in f of finite order using lemma 2 and definition of weight as in definition 2.

PROOF OF THEOREM 1.1:

Let $P[f] = a(z)$, $a(z) \neq 0, \infty$ has finitely many solutions.

. Then we get by using Lemma 2, Lemma 3 and given condition:

$$\begin{aligned} T(r, P[f]) &= T(r, \sum_{j \in \Delta} a_j(z) \cdot M_j[f]) \\ &= T(r, f^d [a_1 \frac{M_1}{f^d} + a_2 \frac{M_2}{f^d} + \dots + a_n \frac{M_n}{f^d}]) \\ &\geq d T(r, f) - T(r, [a_1 \frac{M_1}{f^d} + a_2 \frac{M_2}{f^d} + \dots + a_n \frac{M_n}{f^d}]) \\ \text{But } T(r, [a_1 \frac{M_1}{f^d} + a_2 \frac{M_2}{f^d} + \dots + a_n \frac{M_n}{f^d}]) \\ &\leq T(r, \frac{M_1}{f^d}) + T(r, \frac{M_2}{f^d}) + \dots + T(r, \frac{M_n}{f^d}) + S(r, f) \end{aligned}$$

$$\begin{aligned}
&= N(r, \frac{M_1}{f^d}) + N(r, \frac{M_2}{f^d}) + \dots + N(r, \frac{M_n}{f^d}) + S(r, f) \\
&= S(r, f)
\end{aligned}$$

Therefore, we have

$$\begin{aligned}
&T(r, P[f]) \\
&\geq d T(r, f) + S(r, f)
\end{aligned}$$

Since f is entire, therefore, by using Nevanlinna's second main theorem, we get

$$\begin{aligned}
d T(r, f) &\leq T(r, P[f]) \leq \bar{N}(r, \frac{1}{P[f]}) + \bar{N}(r, P[f]) + \bar{N}(r, \frac{1}{P[f]-a(z)}) + S(r, f) \\
&= S(r, f)
\end{aligned}$$

which is a contradiction as $d \geq 1$. Thus our supposition is wrong and hence, $P[f] = a(z)$ (small function or complex value), $a(z) \neq 0, \infty$ has infinitely many solutions.

PROOF OF THEOREM 1.2:

Let $P[f] = a(z)$ (small function or complex value), $a(z) \neq 0, \infty$ has finitely many solutions.

Then we get by using Lemma 2, Lemma 3 and given condition:

$$\begin{aligned}
T(r, P[f]) &= T(r, \sum_{j \in \Delta} a_j(z) \cdot M_j[f]) \\
&= T(r, f^d [a_1 \frac{M_1}{f^d} + a_2 \frac{M_2}{f^d} + \dots + a_n \frac{M_n}{f^d}]) \\
&\geq d T(r, f) - T(r, [a_1 \frac{M_1}{f^d} + a_2 \frac{M_2}{f^d} + \dots + a_n \frac{M_n}{f^d}]) \\
&\text{But } T(r, [a_1 \frac{M_1}{f^d} + a_2 \frac{M_2}{f^d} + \dots + a_n \frac{M_n}{f^d}]) \\
&\leq T(r, \frac{M_1}{f^d}) + T(r, \frac{M_2}{f^d}) + \dots + T(r, \frac{M_n}{f^d}) + S(r, f) \\
&= N(r, \frac{M_1}{f^d}) + N(r, \frac{M_2}{f^d}) + \dots + N(r, \frac{M_n}{f^d}) + S(r, f) \\
&= S(r, f)
\end{aligned}$$

Therefore, we have

$$\begin{aligned}
&T(r, P[f]) \\
&\geq d T(r, f) + S(r, f)
\end{aligned}$$

Since f is meromorphic and by using $N(r, 0, f) + N(r, f) = S(r, f)$ and Nevanlinna's second main theorem, we get

$$\begin{aligned} d T(r, f) &\leq T(r, P[f]) \leq \bar{N}(r, \frac{1}{P[f]}) + \bar{N}(r, P[f]) + \bar{N}(r, \frac{1}{P[f]-a(z)}) + S(r, f) \\ &= S(r, f) \end{aligned}$$

which is a contradiction as $d \geq 1$. Thus our supposition is wrong and hence, $P[f] = a(z)$ (small function or complex value), $a(z) \neq 0, \infty$ has infinitely many solutions.

PROOF OF THEOREM 1.3:

Let $G[z] = f^l(f-1)P[z, f]$ where f is a meromorphic function and suppose $G[z]$ - $a(z)$, $a(z) \neq 0, \infty$ has finitely many zeros. Then we get by using Lemma 4 for differential difference polynomials

$$\begin{aligned} T(r, G[z]) &= T(r, f^l(f-1) \sum_{j \in \Delta} a_j(z) M_j[f]) \\ &\geq (l+1) T(r, f) - \Gamma T(r, f) \end{aligned}$$

Therefore, we have

$$\begin{aligned} T(r, G[z]) \\ \geq (l+1 - \Gamma) T(r, f) + S(r, f) \end{aligned}$$

Since f is meromorphic, therefore, by using Nevanlinna's second main theorem and lemma 4 for differential difference polynomials, we get

$$\begin{aligned} (l+1 - \Gamma) T(r, f) &\leq T(r, G[z]) \leq \bar{N}(r, \frac{1}{G(z)}) + \bar{N}(r, G(z)) + \bar{N}(r, \frac{1}{G(z)-a(z)}) \\ &+ S(r, G) \\ &= \bar{N}(r, \frac{1}{G(z)}) + \bar{N}(r, G(z)) + S(r, f) \\ &\leq (\Gamma + 2) T(r, f) + \bar{N}(r, f) + S(r, f) \\ &= (\Gamma + 3) T(r, f) + S(r, f) \end{aligned}$$

So we get

$$1 T(r, f) \leq 2(\Gamma + 1) T(r, f) + S(r, f)$$

which is a contradiction as $1 > 2(\Gamma + 1)$. Thus our supposition is wrong and hence the result.

SECTION 2

Hayman[3] proved that a differential polynomial $f^n + af' - b$ with constant coefficients a, b admits infinitely many zeros provided that f is transcendental entire and $n \geq 3$. K. Liu and I. Laine in 2010 proved that:

THEOREM B[12]: Let f be a transcendental entire function of finite order not of period c , then for small non-zero function $s(z)$, the difference polynomial $f^n + f(z+c) - f(z) - s(z)$ has infinitely many zeros in the complex plane provided that $n \geq 3$.

We prove the above results for general difference polynomials (shifts and difference operators as in definition 1 are part of these) as following:

THEOREM 2.1: Let f be a transcendental entire function with finite order and as in definition 2, $P[f]$ be a linear difference polynomial defined as $P[f] = c_0f(z) + c_1f(z+c) + c_2f(z+2c) + \dots + c_nf(z+nc)$; $T(r, P[f]) \neq S(r, f)$, where $c \neq 0$ and $c_j, j = 0, 1, \dots, n$, are complex constants then $f^l + P[f] - a(z), a(z) \neq 0, \infty$ has infinitely many zeros provided $l > 2n + 1$.

THEOREM 2.2: Let f be a transcendental meromorphic function with finite order and as in definition 2, $P[f]$ be a linear difference polynomial defined as $P[f] = c_0f(z) + c_1f(z+c) + c_2f(z+2c) + \dots + c_nf(z+nc)$; $T(r, P[f]) \neq S(r, f)$, where $c \neq 0$ and $c_j, j = 0, 1, \dots, n$, are complex constants then $f^l + P[f] - a(z), a(z) \neq 0, \infty$ has infinitely many zeros provided $l > 3n + 3$.

PROOF OF THEOREM 2.1:

Let $G[z] = f^l + P[f]$ where f is an entire function and suppose $G[z] - a(z), a(z) \neq 0, \infty$ has finitely many zeros. Then we get by using Lemma 1 and Lemma 2

$$\begin{aligned} T(r, G[z]) &= T(r, f^l + [c_0f(z) + c_1f(z+c) + c_2f(z+2c) + \dots + c_nf(z+nc)]) \\ &\geq (l+1) T(r, f) - T(r, [c_1f(z+c) + c_2f(z+2c) + \dots + c_nf(z+nc)]) \end{aligned}$$

Therefore, we have

$$\begin{aligned} T(r, G[z]) \\ \geq (l-n+1)T(r, f) + S(r, f) \dots (1) \end{aligned}$$

Since f is entire, therefore, by using Nevanlinna's second main theorem, we get

$$\begin{aligned} [l+1-n] T(r, f) &\leq T(r, G[z]) \leq \bar{N}(r, \frac{1}{G(z)}) + \bar{N}(r, \frac{1}{G(z)-a(z)}) + S(r, G) \\ &= \bar{N}(r, \frac{1}{G(z)}) + S(r, f) \end{aligned}$$

$$\leq (n + 2) N(r, 0, f) + S(r, f)$$

$$\leq (n + 2) T(r, f) + S(r, f)$$

So we get

$$1 T(r, f) \leq (2n + 1) T(r, f) + S(r, f)$$

which is a contradiction as $1 > 2n + 1$. Thus our supposition is wrong and hence, $f^l P[f] - a(z), a(z) \neq 0, \infty$ has infinitely many zeros.

PROOF OF THEOREM 2.2:

Let $G[z] = f^l + P[f]$ where f is a meromorphic function and suppose $G[z]$ - $a(z)$, $a(z) \neq 0, \infty$ has finitely many zeros. Then we have

$$\begin{aligned} T(r, G[z]) &= T(r, f^l + [c_0 f(z) + c_1 f(z + c) + c_2 f(z + 2c) + \dots + c_n f(z + nc)]) \\ &\geq (l+1) T(r, f) - T(r, [c_1 f(z + c) + c_2 f(z + 2c) + \dots + c_n f(z + nc)]) \end{aligned}$$

Therefore, we have

$$\begin{aligned} &T(r, G[z]) \\ &\geq (l - n + 1) T(r, f) + S(r, f) \end{aligned}$$

Since f is meromorphic, therefore, by using Nevanlinna's second main theorem and lemma , we get

$$\begin{aligned} [1 - n + 1] T(r, f) &\leq T(r, G[z]) \leq \bar{N}(r, \frac{1}{G(z)}) + \bar{N}(r, G(z)) + \bar{N}(r, \frac{1}{G(z) - a(z)}) \\ &+ S(r, G) \\ &= \bar{N}(r, \frac{1}{G(z)}) + \bar{N}(r, G(z)) + S(r, f) \\ &\leq (2n + 4) T(r, f) + S(r, f) \end{aligned}$$

So we get

$$1 T(r, f) \leq (3n + 3) T(r, f) + S(r, f)$$

which is a contradiction as $1 > 3n + 3$. Thus our supposition is wrong and hence, $f^l + P[f] - a(z), a(z) \neq 0, \infty$ has infinitely many zeros.

REFERENCES:

1. Hayman, W.K.: Meromorphic functions- Clarenden Press, Oxford, 1964.

2. Yi, H.X., Yang, C.C.: Uniqueness Theory of Meromorphic Functions- Kluwer Academic, Dordrecht (2003).[Chinese original: Science Press, Beijing (1995)].
3. Hayman, W.K.: Picard values of meromorphic functions and their derivatives- Ann. of Math. (2), 70 (1959), pp.9-42.
4. Mues E, ber ein: Problem von Hayman- Math. Z. 164 (1979), pp.239-259.
5. Bergweiler, W. and Eremenko, A.: On the singularities of the inverse to a meromorphic function of finite order- Revista Matemtica Iberoamericana, 11 (1995), pp.355-373.
6. Laine, I., Yang, C.C.: Value distribution and uniqueness of difference polynomials -Proc. Japan Acad. Ser. A, 83(2007), pp.148-151.
7. Zhang, J. and Korhonen,R.: On the Nevanlinna characteristic of $f(qz)$ and its applications- Journal of Mathematical Anal. and Appl., vol. 369, no. 2, 2010, pp.537-544.
8. Barnett,D., Halburd,R.J., Korhonen, Morgan: Applications of Nevanlinna theory to q -difference equations- Proc. Roy. Soc. Edinburgh Sect. A 137(2007), pp.457-474.
9. Liu, K., Liu, X., Cao, T.B. : Value distribution of the difference operator, Advances in Difference equations, Vol.2011, Art ID 234215,12 pages.
10. Yang, C.C., Hua, X.H.: Uniqueness and value sharing of meromorphic functions, Ann. Acad.Sci. Fenn. Math. 22(1997), pp.395-406.
11. Doeringer, W.: Exceptional values of Differential Polynomials, Pacific J. of Math., 98(no. 1) 1982, pp.55-62.
12. Liu, K., Laine, I.: A note on value distributionof difference polynomials, Bull. Aust. Math. Soc. 81(2010), 353-360.