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REPRESENTING SUMS OF FINITE PRODUCTS OF
CHEBYSHEV POLYNOMIALS OF THE FIRST KIND AND
LUCAS POLYNOMIALS BY CHEBYSHEV POLYNOMIALS

TAEKYUN KIM!, DAE SAN KIM2, DMITRY V. DOLGY3, AND JONGKYUM KWON*

ABSTRACT. In this paper, we study sums of finite products of Chebyshev poly-
nomials of the first kind and Lucas polynomials and represent each of them in
terms of Chebyshev polynomials of all kinds. Here the coefficients involve ter-
minating hypergeometric functions 2 F; and these representations are obtained
by explicit computations.

1. INTRODUCTION AND PRELIMINARIES

In this section, after fixing some notations, we will recall some basic facts that
are needed in this paper and state our results.

For any nonnegative integer n, the falling factorial polynomials (), and the
rising factorial polynomials < x >,, are respectively given by

(@) =2(z—1)---(x—n+1), (n>1), () =1, (1.1)
<z>p=z(z+1)---(z4+n-1), (n>1), <z >p=1. (1.2)
The two factorial polynomials are related by
(—D)™(x)n =< =2 >p, (1) <z >,=(—2)p. (1.3)
The hypergeometric function ,Fy(a1, - ,ap;b1,--- ,bg;x) is defined by
oFy(ar, - ap;by, - bgi )
_i<a1>n--~<ap>nﬁ (1.4)
= <y >n e <bg >ponl”

In below, we are going to recall some very basic facts about Chebyshev poly-
nomials of the first, second, third and fourth kinds, and Lucas polynomials. The
Chebyshev polynomials belong to the family of classical orthogonal polynomials.
For full accounts of this fascinating area of mathematics, we let the reader refer to
[2,3,17].
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2 Sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials

In terms of generating functions, the Lucas polynomials and Chebyshev polyno-
mials of the first, second, third and fourth kinds are respectively given by

2 _

Fitr) = ——* ZL (1.5)
Gt >—i—ZT<>t" (1.6)
T ot 2 A ’
1-— 2:z:t+t2 ZU (1.7)

1—t .
T o ;VHW ’ (18)
L+t - n

They are also given by the following explicit expressions:

(5]
. 1 (n—l 2 ()
b =n 3 (") ez (1.10)
Tn(x) = 2F1(_n7n7 %7 1_73:)
(5]
n 1 (n-1 ne
2l_0(1)ln_l< l )<2x) 2 o(n=1), (1.11)
Un(z) = (n+1)2F1(— nn+2,2,—)
(5]
. 1\l n—1 mn72l n .
=3 1)( l >(2) L (n>0), (1.12)
Vn((E) = 2F1(—n,n—|— 17 57 171)
" /on—1
= 2"z — 1)L (n > 0), (1.13)
> (")

W(z) = (2n+ 1)oFi (—n,n + 1; 3; 15%)

n

n—I n —
:(2n+1);2n32l+1(2 z l)(x—l)"_l, (n>0). (1.14)

The Chebyshev polynomials of the first, second, third and fourth kinds are given
by Rodrigues’ formulas.

_ (=12l 2\1 _ . 2\n—1%
Tofa) = g (L= a9} g1 -, (1.15)
U, (z) = Wu _ a2t d‘fn (1= a?)mt3, (1.16)
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s s —1)r2nn) dn . o
1 1 —1)"2"n! d» el n1l

As is well known, the Chebyshev polynomials satisfy orthogonalities with respect
to various weight functions as in the following.

1

/ (1= ) L) Ton(2) d = T, (1.19)
—1 n

where 8, m = 0,?fn7ém, &, = 1’Tfn:07 (1.20)

’ 1,if n =m, 2,if n>1,

1

/ (1- $2)%Un($)Um($) dx = gémm, (1.21)
-1
1

1 1

/ ( +x)§Vn(w)Vm dx = Tp,m, (1.22)
11—z

/1(1”)%W( YW, da = 76 (1.23)
Sy (X)W de = w0y, .- :

For convenience, let us put

=Y ¥ (T nene T

=0 i1 +ig+-+ipp1=m—I

2 - 1.24
- Z Z ( :l)xlTﬁ(x)Tiz(x)"'Tir+1(x)a ( )
1=0 iy4ig+-+ipp1=m—1—2
(m>2r>1),
=Y X ()G @i L
[=0 iy +ig+-+ipp1=m—I
m=—2 r T 1.25
+ > (e e,

1=0 i1 4ig+-tip1=m—1—2
(m>2,r>1).

We observe here that both a, (x) and By, () are polynomials of degree m.

Here we are going to investigate the sums of finite products of Chebyshev poly-
nomials of the first kind in (1.24) and those of Lucas polynomials in (1.25). Then
we will represent o, »(x) and B, () in terms of Chebyshev polynomials of the
four kinds T}, (x), Uy (), Vi (z), and W, (z). These will be done by explicit com-
putations, using the general formulas in Proposition 2.1 and Proposition 2.2.
We note here that the results in Proposition 2.1 can be derived by making use
of orthogonalities, Rodrigues’ formulas and integration by parts.

The next two theorems are the main results of this paper.
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4 Sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials

Theorem 1.1. Let m,r be any integers with m > 2,r > 1. Then we have the
following.

> ¥ (")) 1)

=0 i1 +ig+-+ipp1=m—I

m—2
r+1
> 2 (T @) 7o)
1=0 i1+ig+Fipp1=m—1-2

[ m

- (””’”) _ (7 )em-waficd = mit = m = s )Ty (a) (1.26)

= f] (m;r 1) —2j+ 1) F1(=j,j —m—11—m—r; 1)Uy, _2;(x)
(1.27)

- (mj ) i ()2 g1 =t == V) (1.29)

(" i(l)j(?ﬁ)m([;], D omilem W @), (129)

=0 2

Here [x] denotes the greatest integer < x.

Theorem 1.2. Let m,r be integers with m > 2, r > 1. Then we have the following
identities.

i > <T j l> (g)lLil (x)Liy(2) - Ly, ,, (z)

1=0 i1 +ig+--Firp1=m—I

3> 2 (r N l) (3)' L (@) Lin(a) -+ L, ()

=0 1;1+’L-2+~--+’L'7-+1:Tn7l72

T
(5]
 ordlem m+4r m ‘
() B (e
=0

J
X oF1(=j,j —m;1l —m —r; —4)T,, _o;(x) (1.30)
%]
r+l—m 2 1
_2 <m+17"> (m 2j+1)<m+ >
T T — =0 7
X oF1(=j,j —m—1;1—m —r;—4)Up_2; () (1.31)
+7r\ e [/ m
= 27"+1—m (m ) ( . )
)2\
X 2F1(—[%]7[%] —m;l—m—r;—4)V,_;(x) (1.32)


http://dx.doi.org/10.20944/preprints201811.0540.v1
http://dx.doi.org/10.3390/math7010026

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2018 d0i:10.20944/preprints201811.0540.v1

T. Kim, D. S. Kim, G. -W. Jang, J. Kwon 5
m
— 2'r‘+17m m+r (_1)] m
r ; (7]
7=0
X 2Py (—[Z],[5] = mi1 = m = 5 —4) W (2). (1.33)

Along the same line as the present paper, sums of finite products of several spe-
cial polynomials, namely Chebyshev polynomials of the second, third and fourth
kinds and Fibonacci, Legendre, Laguerre polynomials had been represented by
Chebyshev polynomials of all kinds (see [7,11,14]). For sums of finite products of
Chebyshev polynomials of the second kind and of Fibonacci polynomials, they are
also represented by Hermite, generalized Laguerre, Legendre, Gegenbauer and Ja-
cobi polynomials in [15].

In [1,12], sums of finite products of Bernoulli and Euler polynomials were studied.
Consequently, those sums of finite products of such polynomials are expressed as
linear combinations of Bernoulli polynomials. These were done by deriving Fourier
series expansions for functions closely related to those sums of finite products. The
same had been done also for quite a few non-Appell polynomials in [8-10,13], namely
Chebyshev polynomials of the first, second, third and fourth kinds, and Legendre,
Laguerre, Fibonacci and Lucas polynomials. For related papers on Chebyshev
polynomials, we let the reader refer to [4,16].

2. PrROOF OF THEOREM 1.1

Here we will prove only (1.26) and (1.28) in Theorem 1.1, leaving (1.27) and
(1.29) as an exercise for the reader. For this purpose, we first state two results that
are needed in showing Theorem 1.1 and Theorem 1.2.

The formulas (a) and (b) in Proposition 2.1 are respectively from the equations
(24) and (36) of [6], while (c) and (d) are respectively from (23) and (38) of [5].
All of them follow easily from the Rodrigues’ formulas (1.15) - (1.18), and the
orthogonalities in (1.19) and (1.21) - (1.23).

Proposition 2.1. Let ¢(z) € R[z] be a polynomial of degree n. Then we have the
following.

(a) q(z)= chJTk(l‘), where

(1)’“2’“k!8k/ d* o1
=7 - — (1 — 2
Ok,l (2k)' o q(z)dl'k( € ) dl?,
(b) ZC’“ oUk(z), where

k=0

CHBRE e
Ok,? (2]{?—’-1)'71’ 71‘]('17) (1 € ) dﬂf,
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6 Sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials

NE

() qz)= Cr,3Vi(z), where

0

—1)kk12k ! d* ool kil
~ L —(1—-2)fF 201 t2
/_ 1q(ﬂﬁ) (L= 2)" 2 (L+a)" 2 d,

—_

Crs = (2k)r

(d) q(z) = Z CraWg(z), where
k=0
_(=1)kg12k ! d* il 1
Cnt = e |, 10 g (1= 2T H (L4 )"
The next Proposition is stated and proved in [7].

Proposition 2.2. Let m, k be nonnegative integers. Then we have the following.

! 0, if m=1 (mod 2),
(a) / (1- x2)k*%xmd:ﬂ = ml(2k)lr =0 ( d 2)
—1 FrAT (2R (Ey R L= (mod 2),

! 0, if m=1 (mod 2),
® [ et - e =1 (mod 2
1 TR e ()T if m =0 (mod 2),

1
(©) /,1(1 — )2 (1+2) e da

m~+1)!(2k)!m . _
_ 2m+2k+(1(—2*)15rk))!(fm;1)!k!v if m=1 (mod 2),
- m! I .
2m+2k(%(%fk)!(%)!k!, if m =0 (mod 2),

(d) /_11(1 — )1 4 2) e e

DI(2k)!m . _
_ _2m+2k+(17?—’t;)1 Erk))l(—’”f)!ku if m =1 (mod 2),
- m! I .
2m+2k(%(%:2)!(%)!k!’ fm=0 (mod 2)

The following lemma was stated and proved in [13].

Lemma 2.3. Let m,r be integers with m > 2, > 1. Then we have the following
identity.

> oy (7T @ o) T o)

=0 i1 +ia+-+irp1=m—I

N

_ )3 (r + l> 2Ty, (@) Ty () - T, (2) (2.1)

r
=0 i1+i2+---+ir+1:mfl72

L
= 9r—1gp] m+r( )7

where the first and second inner sums on the left hand side are respectively over all
nonnegative integers i1, %2, - - tp41, with 41 + i+ - + 4,41 = m — 1 and i1 + 42 +
et iy =m—1— 2.
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From (1.11), the rth derivative of T, (x) is given by

T7(lr) (.T) _ g Z (_1)IL (’I’L l— l) 2n_21(n _ QZ)Txn—Ql—T. (22)

Thus, in particular, we have

r+k
T&Iﬁ(x)
_m + T m+r—1 m—+r—21 m—k—2l
= m ( ; >2 (m+7r—20), 1z .
(2.3)
With ay, (2) as in (1.24), we let
i ( Z CraTy(x (2.4)

Then, from (a) of Proposition 2.1, (2.1), (2.3), and integration by parts k
times, we have

(—1)F2FklE, [T d* ok 1
Crq = —/_1 am7r(x)w(1 —x)" " 2dx

' (2k)!m
G -
= it [ TP @0 - 25)
_ 2FE1E), m—i—r[m;k](_l)l;(m—i—r—l)
(2k)\m2r—1pl 2 — m+r—1 l

1

x 2mET =2 (g o — 20) / i - ﬂ)’“‘%dx_
-1

We note from (a) in Proposition 2.2 that

1
m k— 2l(1 $2>k_%d$
1
{ if k% m (mod 2),

(m—k—20)!(2k)!m . _
om+k— 21(M+k l)(,(m) E kL ifk=m (mod 2),
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8 Sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials

From (2.4) - (2.6), and after some simplifications, we get

'm k
Ex(m+r) (=D m +r —1)!
() = Z < — Te(z)
< = rlm+r = DU = DI =)
k=m ( 2)
22: m2Jm+ zJ: —1)! m—i—r—l—l)
Um—=1—=G =)
=0 D (2.7)
Z m2j m2]m+ Z j>l<j_m>l
= rl(m — j)!j! — l<l—m-—r>
m-+r %] m
= ( > ( ‘)Em—2j2F1(_j7j —m; 1L —m —7r; 1) T, o;(x).
r , J
7=0
This completes the proof for (1.26) in Theorem 1.1.
Next, we let
m
() = ZC’thk(x). (2.8)

Then, from (c) of Proposition 2.1, (2.1), (2.3) and integration by parts k times ,

we obtain
[5"]
K12k m—+r < . 1 m+r—1
Crs = (2k)lm2r—1pl 2 (=1 m+r—I l
’ ’ 1=0 (2.9)
1
x 22y o — 21,y / O :c)k_%(l + :c)k+%dx.
~1
From (c) of Proposition 2.2, we observe that
1 1 1
/ R )kt (1 4 )R e de
~1
—k—20+1)!(2k)! . 2.10
- 2m+k_2l-5—71n(m+2k%rl—i__l? !(Qm)7}+1 —l)!k!’ lf 7k 5—'5 m (mOd 2)7 ( )
- m—k—20)!(2k)!m : _
2m+k7(21(m7+’“—)z)(!(@—l)!k!’ if k=m (mod 2).


http://dx.doi.org/10.20944/preprints201811.0540.v1
http://dx.doi.org/10.3390/math7010026

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2018 d0i:10.20944/preprints201811.0540.v1

T. Kim, D. S. Kim, G. -W. Jang, J. Kwon 9

By (2.8)-(2.10), and after some simplifications, we get

m— k;]
am)r(x) I Vk m m
s 0<;m Z l'( il —z)!( L )
k#m (mod 2)
[252]
(m+r) (_1)l(m+7”_1—l)!
+ Vie(z) — —
" Oﬁém ; Nt = ni(mgt - 1)
k=m (mod 2)
_(m+T)[ =1 j . ()( 1)(m+7:_1_l)
o m—2j—1
A m— — DIG 1)
(z] 4
(m+r) _ (— 1)(m+7n_1_l)
+ r! g:ogvmim(m) l!(m —i=DYj - l)

(2.11)

Further modifications of (2.11) give us

7n—1]

i 1 v ,(x)<*j>l<j*m>l
(m — )t N<l—m—r>

J . .
1 < =) ><)—m >

N ror — Vo
* r! ; Z(mfj)!j! 24/(7) N<l—m—r>

(754

O <?>2F1(j,j —mil—m = DWinogoa(z) (212
I (m: T) (T;)zﬂ(—j,j —m;1—m—r;1)Vp_gj(2)

This finishes up the proof for (1.28) in Theorem 1.1.

3. PROOF OF THEOREM 1.2

Here we will show only (1.31) and (1.33) in Theorem 1.2, leaving the proofs
for (1.30) and (1.32) as an exercise to the reader. The following lemma is crucial to
our discussion in this section. As it is stated in [13] but not proved, we are going
to show this.

Lemma 3.1 Let m,r be integers with m > 2,7 > 1. Then the following identity
holds.
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10 Sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials

> 0 (e e

1=0 i1 +io+ - Fipp1=m—1

m—2

r+1\, x

+ > (et 6D
1=0 i1+is+-+ipp1=m—1—2

27‘+1

L (@),

where the first and second inner sums on the left hand side are respectively over all

nonnegative integers 41,42, - - 441, with ¢; + 49 +--- + 4,41 = m — 1 and 41 +i2 +
ot il =m—1—2.

Proof. By differentiating (1.5) r times, we have

T

o Fha) =1+ )11 —at —t2)~ D (r > 1), (3.2)
Z L) Z Ly (@)™ (3.3)
Equating (3.2) and (3.3), we obtain
1 r+1 1 [e%s} ")
— T m
(1 ztt2) D) ;)Lm+r($>t : (3.4)

On the other hand, from (1.5) and (3.4) we note that

S Y L@ L, (@)

1=0 i1 +ig+-+ipqp1=l

— ( g Ll(m)tl)TH

=(2 —at)" ! (1 >r+l

1 — at — 2
=@2—at)" (1 +1%)" Z

Thus, from (3.5), we have
(r) +m
i Z Liir(@

— o=+ (] 4 ¢2)(1 = Ty-0rD) i > Liy(2) Ly (x) -+ - Li, . (2)t!

1=0 i1 +ig+-+irp1=l

91 4 g2) (TH> Y Y L@k L @,

7=0 1=0 i1 +ig+-+iprp1=I
(3.6)
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In turn, from (3.6), we get

S WA

X Z o Z Lil (‘r)le ((E) T Lir+1 (x)tl

S(TTNE Y @@ Lo
=0

i1 +igttip 1=l

0o m—2
> <r+m—l_2><§>m‘l‘2 > Lu@Li(@)-- Loy, (@)t

i1tigttip 1=l

Z (r :— l) (g)l Z Lil (x)le ($) T Lir+1 (x)tm
=0

i1+ i1 =m—1

m—2
(M) ¥ @@L

i1tigtFirp1=m—1-2
(3.7)

Comparing the coefficients on both sides of (3.7), we get the desired result. O
From (1.10), we note that the rth derivative of L, (z) is given by

-y 1 (n-1
- — 91 n72l7r' 3.8
2 o ( / )(n ) (3.8)
In particular, we have
(r+k) 2] 1 m4r—1
T m—k—
Lm-l—r (x) - (m + 7") =0 m < l > (m +r - 21)T+k$ k 2l~ (3‘9)
With 5, -(z) as in (1.25), we put
ﬁm 7‘ § Ck 2Uk (310)

Then, from (b) of Proposition 2.2, (3.1), (3.9), and integration by parts k
times, we have
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12 Sums of finite products of Chebyshev polynomials of the first kind and Lucas polynomials

( 1)k2k+1 k‘+1

dk
¢ - m'r 1-— kit d
"2 2k + 1)z / p dk( 33) 2dx
DR
B (2k + D)lr! Lm+?“( )W(l — )" 2dx
21 (f 4+ 1)12r+1 1 . .
S [ B e -
[m—k]
Lk + 1127 (m 4 1) G 1 1
B —20),
(2k + 1)l7r! m+rl( ! )(m—i—r Vot

1
x/ zm’k’zl(l—xz)’”%d:ﬁ.
-1

(3.11)
We observe from (b) in Proposition 2.2 that

1
/ xm—k—2l(1 _ x2)k+%dx

—1
0, if k £ m (mod 2), (3.12)

= (m—k—=20)!(2k+2)!m . —
{2m+k2z+2(m2+k_l+1)!(m2k_l)!(k+1)!, ifk=m (mod 2),

Now, from (3.10) - (3.12), and after some simplifications, we get
B (@)

[=55)

(k+ )4 (m+r—1— 1)
I ]

D > Uk(x)

_ ) | A(m+r—1-1D)
T m i) (m—2j 4+ 1)Up—2j(x )l'(m J=1+ DG =1

_2rtEm(m 4! Zi (m =25+ D)Up—zj(z) () < —j ><j—m—1>
B (m —j+ 14! N<l—m—r1r>

w77

X oFyi(—j,j —m—1;1—=m—r;—4)Up_2; ().

(3.13)
This completes the proof for (1.31) in Theorem 1.2.

Next, we let
Brn,r (T ch Wy (z (3.14)

Then, from (d) of Proposition 2.1, (3.1), (3.9) and integration by parts k times,
we have
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m—k
K12F+r+1(m 4 1) ey 1 m+r—1
k4= "1 — —
(2k)!7r! = omtr =l l (3.15)
1

X (m+r— 2l)r+k/ e € x)k+%(1 + x)k_%dx.

From (d) of Proposition 2.2, we note that

1
e k— 2l )k+%(1+x)k—%dx
—1

{ (m—k—21+1)!(2k)!7

. 3.16
omtk— 2H.1(m+k+1 l)'(m 2k+1 l)'k' 1f7k‘7‘ém (mod 2)’ ( )

2
m—k—20)1(2k)!7 . o
om+k (Zl(m-l-k l)((m) I3 l)'k" ifk=m (mod 2)

By (3.14)-(3.16), and after some simplifications, we obtain

5m,r(x)

2™ (m 4 1) Am+r—1-D(m—k—-20+1)
S E—— Wi(z peey pre
rl O<;m Z l' +k+1 l)!( 2]€+1 _ l)!
k#m (mod 2)

e

3

2r+1—m(m+r) (7571
7l

W) Am4r—1-1)!

m+k m—k
0<k<m  1=0 “(T+ - DY("5E =)
k=m (mod 2)

_|_

(]

2™ (m + 1) ‘&
r!

dm+r—1-0D125 —20+2)
Nm—3—DI(G—1+1)

Win—2j-1(x)

J
0 1=0

J l
4(m+r—1—l)
lZWm il l'm VR

.
I

@

N 2T+1*m(m +7)

k}

(3.17)

After further modifications of (3.17), we get

Bm,r(x)

m

2 () Wm 251 ( ZJ: b —j>i<j—m >

r! = m — j)lj! — l'<1— m—1r >
(

J

w3

+

7l — (m — j)ij! N<l—m—r>

21 (4 1)) G Won—25(2) i (—)! < —j><j—m>
|
7 =0

l
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(751

rtl—m M T m o
= -2t ( ) > (j>Wm_zj_1(x)2F1(—J,J—m;l—m—r;—4)

r

(2]
N + .
4 2rtimm (mT T) (?) Win—2j(x)2F1(—j,j —m;1 —m —r; —4)

— (M) >y ((5)e L = mid = =W,

2

(3.18)

This finishes up the proof for (1.33) in Theorem 1.2.

4. FURTHER REMARK

It is well known that the Lucas polynomials L, (z) and the Chebyshev polyno-
mials of the first kind T, (x) are related by

T

Lu(x) = 2" T(5)-

(4.1)

Then it is immediate to see from (1.24),(1.25) and (4.1) that the following identity
holds.

2T+1i_mam,7’(%) = ﬁm,’r‘(‘r)~ (42)

Now, the following Theorem follows from Theorem 1.1, Theorem 1.2, and
(4.2).

Theorem 4.1. Let m,r be integers with m > 2,7 > 1. Then the following identities
hold true.

w3

(%] )
i—mortt (m:T> <m> Em—nj2Fi(—4,§ —m; 1 —m — 13 1) T a; (5
§=0

J 2)
(mj.Ll)(m—QjJrl)

(%]
J

w3

— i—m2r+l (m + T')'
|

m+ 1)! =

X 2P (=g, j —m =11 —m =1 )Un—2i(5)

= j~mortl (m: T) Em: ([T]>2F1(_[;]7 [%] —mil—m—r; 1)mej(%c)

j=0 \'2

m

=it (M) S ([ e L g - it W

r )&=\
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[

oF

™

Il
=]

e

e [T m P4
=2t ( T > (j )6m_2j2F1<_.77] —m;l—m =15 —4) Ty o;(x)
J

27‘+17m 1
_ (m”> (m—2j+1)(m—.i_ )
r r—1 p 7

X oy (=j,j—m—1;1—m —r;—4)Up_o;(x)

=t (M) S (e R g ) i == Vo)

=z (M) S (e - o)

J
j= 2

(4.3)

5. CONCLUSION

The classical connection problem concerns with determining the coefficients
Cnm (k) in the expansion of the product of two polynomials a,(x) and b,,(x) in
terms of an arbitrary polynomial sequence {qx()},~,. Namely,

n+m

an (2)by (z) = Z cnm (k) qr ().
k=0

In the present paper, we considered the sums of finite products of Chebyshev
polynomials of the first kind in (1.24) and of Lucas polynomials in (1.25), and
expanded each of them in terms of all kinds of Chebyshev polynomials to find that
all the coefficients involve terminating hypergeometric functions o ;. Consequently,
we were able to discover the amusing identities in (4.3) among all kinds of Chebyshev
polynomials. Clearly, this may be viewed as a generalization of the above-mentioned
connection problem.
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