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Abstract: The continuous and precise mapping of glacier calving fronts is essential for monitoring
and understanding rapid glacier changes in Antarctica and Greenland, which have the potential for
significant sea level rise within the current century. This effort has been mostly restricted to the slow
and painstaking manual digitalization of the calving front positions in thousands of satellite imagery
products. Here, we have developed a machine learning toolkit to robustly and automatically
detect glacier calving front margins in satellite imagery. The toolkit is based on semantic image
segmentation using Convolutional Neural Networks (CNN) with a modified U-Net architecture to
isolate the calving fronts from satellite images after having been trained with a dataset of images
and their corresponding manually-determined calving fronts. As a case study we train our neural
network on a varied set Landsat images with lowered resolutions from Jakobshavn, Sverdrup,
and Kangerlussuaq glaciers, Greenland and test the results on novel images from Helheim glacier,
Greenland to evaluate the performance of the approach. The neural network is able to identify
the calving front in new images with a mean deviation of 96.3 m from the true fronts, equivalent
to 1.97 pixels on average, while the corresponding error for manually-determined fronts on the
same resolution images is 92.5 m. We find that the trained neural network significantly outperforms
common edge detection techniques, and can be used to continuously map out calving-ice fronts
with a variety of data products.
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1. Introduction

In recent decades, tidewater glaciers discharging ice from the Greenland Ice Sheet have been
thinning, speeding up and retreating inland [1–6]. The position of glacier ice fronts reflects a delicate
balance of advection and ablation processes [7] and hence is an important proxy for the impacts of
regional changes in climate and ocean state on the mass balance in the Greenland Ice Sheet. To assess
records of ice front retreat over time, ice front positions are typically manually digitized from aerial
imagery [4] or satellite imagery [2,5] using geographic information software. Since the launch of
Landsat 5 in 1984, the Landsat fleet has captured images of the Greenland Ice Sheet with a repeat cycle
of 16 days. However, because the manual ice front digitization process requires a considerable time
investment, most current records of calving front retreat are limited to only a few ice front positions
per glacier per year, if any. This shortage of data has limited assessments of ice front retreat to an
annual basis, yet seasonal factors may be critical to understanding the pattern of long term retreat of
Greenland’s glaciers [8] or to understand for instance the level above which a glacier may be pushed
out of balance compared to its state of seasonal, natural variability [6]. In effect, an automated system
to rapidly delineate calving front positions would provide a foundation for understanding regional
changes on the periphery of the ice sheet over the past several decades, especially with the emergence
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of a new generation of satellites with high data volume, a high number of acquisitions and higher
resolution (e.g. [9], [10], [11], [12].)

Detecting glacier calving fronts in images falls under a more general category of problems that
deal with image segmentation. Generally, image segmentation techniques focus on either dividing
an image into different regions (e.g. clustering, classification, region extraction) or finding the
boundaries between regions (i.e. detection of discontinuities, edge detection). A detailed overview of
these categories and techniques is given by Fu and Mui [13]. Various techniques have been developed
in the past for this class of problems. One of the most prominent of these analytical techniques is
the Sobel filter, which uses gradients with a given threshold to detect edges [14]. Other approaches
include the "Scale-Space" technique, which, first developed by Witkin et al. [15], detects the desired
feature at a coarser scale and tracks it continuously at a higher resolution. This approach was further
improved by Perona and Malik [16] by using an anisotropic diffusion process to keep the spatial
accuracy of the features and detect edges. Applying these techniques to geophysical images such as
ice-covered fjords and geologic formations is challenging due to the noisy nature of the data, variable
atmospheric conditions (particularly clouds) and temporal changes on the ground. Seale et al. [3]
analyzed the evolution of calving fronts for 32 glaciers in Greenland using a Sobel filter as well as
a brightness profiling technique applied to MODIS data. While achieving reasonable results below
the resolution of MODIS (0.25km), this approach relies on the proper selection of subregions around
the calving front and heavy use of quality assurance and post-removal of anomalies. Furthermore,
analytical techniques relying on brightness gradients in images are dependent on the particular
nature of the data. For example, the same gradient thresholds may not be applicable to other
instruments and spectral bands. They would also not be applicable to other data types such as radar
interferometry (see Massonnet and Feigl [17]). Finally, while this process provides an approximation
of overall glacier retreat, it does not yield a digitized-front product which can be used by the
glaciological community.

An alternative approach for overcoming these problems is the use of deep neural networks (see
LeCun et al. [18]) that can be trained on any data type to detect glacier fronts. Image segmentation
techniques have improved rapidly in recent years due to the progress in deep learning and semantic
image segmentation with convolutional neural networks (e.g. see Krizhevsky et al. [19]). Large neural
networks with thousands or millions of parameters have allowed much more accurate classification
and segmentation of images. In fact, deep neural networks with rectified activation units have already
surprised human performance in some visual recognition tasks (see He et al. [20]).

The issue with such deep neural networks for image segmentation is the need for very large
training datasets where the desired features (in this case calving fronts) have already been determined
for thousands of images. For many fields of research the shortage of vast training data limits the
use of such tools. However, a recent deep neural network architecture developed for biomedical
image segmentation, U-Net [21], has been shown to provide highly accurate image segmentation with
minimal training data through the use of data augmentation in a deep convolutional neural network.
Here we develop a modified version of the U-Net architecture that can robustly identify and extract
glacier calving fronts from optical satellite imagery. We discuss our results for a set of glaciers on
the Greenland ice sheet. We compare our trained network with the Sobel filter. We conclude on the
application of CNN technology to the detection of ice sheet calving margins.

2. Materials and Methods

We detect and reconstruct glacier calving fronts from Landsat imagery with the use of an image
segmentation technique that relies on a deep convolutional neural network using a modified U-Net
architecture [21]. The methodology is divided into three overarching areas:

1. Discussion of raw satellite images, production of training data, and pre-processing of images
before training

2. Semantic image segmentation and the architecture of the neural network
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3. Reconstruction of new calving fronts on new data and the post-processing of the outputs of the
neural network

Figure 1 summarizes the steps required to pre-process the data, train the network, make
predictions, and get the glacier front positions after post-processing. Each of these steps are discussed
in the following sections.

Geocoded Landsat Rotated Tile Pre-processed Convolutional Neural Network (CNN)

CNN OutputPost-processedGeocoded Result

240×152×1
240×152×32

120×76×32
120×76×64

60×38×64

60×38×128

30×19×128

30×19×256

Input Layer

60×38×256

60×38×128

120×76×128

120×76×64
240×152×64

240×152×32
240×152×3
240×152×1
36480×1

Figure 1. The outline of our methodology: Geocoded Landsat images are trimmed and rotated so
that glacier flow is in the y-direction. The images are pre-processed and fed into to a Convolutional
Neural Network (CNN) for training (refer to Figure 2 for a zoomed- in version of the CNN panel). The
CNN is used to predict new calving front positions, which are post-processed and converted back to
geocoded images.

2.1. Data and Pre-Processing

We retrieve Level 1 Landsat Data from the USGS Earth Explorer portal for Landsat 5, Landsat
7, and Landsat 8. For Landsat 5, we utilize the “green” band (0.52-0.60 µm) with a resolution of 30
m, while for Landsat 7 and 8 we utilize the “panchromatic” band (0.52-0.90 µm and 0.503 - 0.676 µm
respectively) with a resolution of 15 m. The scenes are delivered in the UTM projection corresponding
to their longitude and latitude to maintain linear and areal distances. We splice the images to the
region around the glacier ice front with a buffer of 300 m, an area we define using ice fronts that have
previously been digitized manually.

In order to make it easier for the Neural Network (NN) to detect glacier fronts, we perform a
series of pre-processing steps on the input images. Firstly, the spliced input images are processed to
be of uniform size (200 x 300 pixels) and oriented such that the glacier ice flow is in the y-direction
for consistency, in order to improve the performance of the NN across a variety of images. Because
the total retreat distance varies between glaciers, the scale of the 200 x 300 pixel images will also vary.
In effect, the resolution of the image subsets are different for each glacier and the approach described
herein does not operate on the native resolution of the Landsat products, but rather provides a
benchmark for evaluating the performance of different neural network configurations compared to
the analytical filter and manual results. The lower resolution images reduce computational resource
and training time requirements for our case study. The pixel resolution varies per fjord based on the
span of the retreat distance of each glacier over time. The pixel resolutions are as follows: 61.4 m

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 November 2018                   doi:10.20944/preprints201811.0529.v1

Peer-reviewed version available at Remote Sens. 2019, 11, 74; doi:10.3390/rs11010074

http://dx.doi.org/10.20944/preprints201811.0529.v1
http://dx.doi.org/10.3390/rs11010074


4 of 12

for Sverdrup, 57.7 m for Kangerlussuaq, and 88.1 m for Jakobshavn. The pixel resolution of the test
images on Helheim glacier is 49.0 m. Note that the test data has the highest resolution, allowing us
to test the ability of the NN to be tested on slightly higher resolution images after being trained on
a range of various lower resolutions. The corresponding calving front targets, hereinafter referred
to as "labels", are rasterized as single-pixel-thick lines for maximal spatial precision. We also further
crop the input images to a size of 150x240 pixels with the aim of improving the training time and
performance of the neural network while keeping all the calving fronts within the image frame.
In addition, the architecture of the NN requires the dimensions to be divisible by the number of
downsampling steps. With three downsampling layers, the images are padded to be divisible by 8
(see Figure 2), resulting in 240× 152 images.

Furthermore, we apply a series of alterations to the images to make the input more suitable
for training the neural network. After a series of experiments with high-pass and low-pass filters,
changes of contrast, and application of preliminary edge-detection algorithms, we find the optimal
pre-processing steps to be as follows: First, we normalize the image contrasts such that the darkest
and lightest points in every image are black and white, respectively. Next we equalize the gray-scale
intensities to create a uniform distribution, followed by smoothing and edge-enhancement of the
images.

2.2. Semantic Image Segmentation

We develop a Convolutional Neural Network (CNN) [22] with a U-Net architecture [21] with
custom sample weights for the segmentation of glacier fronts. U-Net has been very successful
for semantic segmentation of biomedical images. It is built based on the architecture of Fully
Convolutional Networks (FCN) [23]. The challenge in semantic segmentation is resolving desired
features ("what") and their contextual location ("where"). The idea of FCN is to combine fine,
detailed features with coarse, contextual information. U-Net is a modification of such an architecture,
which can be conceptualized as having two main components: 1) A "down" component that uses
convolutional layers to detect desired features in images in progressively smaller layers with higher
numbers of filters or "feature channels", and 2) An "up" component that has up-sampling layers to
convey contextual information to higher resolution layers and reconstruct output images through
convolutional layers. Convolutional layers consist of a series of kernels that are convolved across
the input, mapping each group of pixels into single values in a new layer. These kernels act as
filters that map out particular features from the image (such as features associated with glacier
fronts). See LeCun et al. [18] for a discussion of convolutional neural networks. During the "down"
component, pooling layers are applied to downsample the output of each set of convolutional layers
[18]. This dimensionality reduction is a way of introducing location-invariance by combining similar
features and coarsening the output of the convolutional kernels. In our neural network we use 2× 2
max-pooling layers, which take the maximum value between each group of 4 pixels, resulting in
location invariance within local batches and faster convergence of the network [24]. In the second
stage, the images are upsampled by doubling the rows and columns of the previous layer (by
repeating the rows and columns) and concatenated with the last convolutional layer with the same
dimensions as the upsampled image. Thus, the detailed global features in the last convolutional layer
are combined with the contextual information of the previous layer. This combined upsampled layer
is then fed to convolutional layers, as before. The reconstructed image by the last convolutional layer
will have the same size as the input images and contain the desired segmented features.

The architecture of our neural network is depicted in Figure 2. Our network is composed of
29 total layers, with 3 downsampling steps and 4 sets of convolutional layers going from 32 to 256
feature channels and the corresponding upsampling steps. We apply 3 × 3 convolutional layers
with padding (such that the output of each convolutional layer has the same image size as the
input) and a stride of 1. We use Rectified Linear Units (ReLU) [25] as our non-linear activation
function, which has been shown to be very successful in convolutional neural networks [18]. In
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order to apply regularization and avoid over-fitting to training data, we use Dropout layers [26]
between convolutional layers with an elimination fraction of 0.2. This randomly drops some units
at each iteration from the neural network in order to minimize over-fitting and excessive reliance
on individual units. We find that increasing the dropout fraction significantly increases the “noise”
(number of false-positives) in our results. Our downsampling is performed by 2 × 2 MaxPooling
layers with no padding and strides of 2. Therefore, at every step the height and width of the layer is
reduced by half while the number of convolutional kernels (also known as feature channels) doubles.
The same convolution→dropout→convolution architecture is used in the upsampling stage, where
the number of feature channels is halved in each iteration. The 2× 2 upsampling is done by repeating
the rows of and columns of the previous layer, and concatenating the resulting matrix with the
corresponding higher-resolution layer. We get performance improvements by also adding a final
3 × 3 ReLU convolution to go from the final 32 channels to 3, followed by a Sigmoid convolution
layer to get the final reconstructed image. The architecture of the network is also summarized in
Table S1.

We use a binary cross-entropy loss function (see Mannor et al. [27]) with custom sample weights
for each input image. Note that images of glacier fronts pose a severe class imbalance problem, since
the vast majority of pixels are not calving fronts. As a result, the NN learns to obtain high accuracy
by simply classifying every pixel as not being part of the calving front. To avoid this false-negative
classification artifact, we develop custom sample weights such that for every training example the
pixels containing calving fronts have much higher penalties in the loss function if misidentified.
In order to have an equal contribution from each class of pixels, the weight is determined as the
average ratio of the number of non-boundary pixels to pixels including glacier front boundaries,
which is 241.15 in our training set with 123 240 × 152 input images. We also take advantage of
data augmentation by mirroring the horizontal orientation of glaciers and inverting the grayscale
intensities to mimic different shadows. However, we get accurate results even without the use of
augmentation, which speeds up the training process (discussed in the next section).

240×152×1
240×152×32

120×76×32
120×76×64

60×38×64

60×38×128

30×19×128

30×19×256

Input Layer

60×38×256

60×38×128

120×76×128

120×76×64
240×152×64

240×152×32
240×152×3
240×152×1
36480×1

Convolution (3×3 – ReLU)
+ Dropout (0.2) 
+ Convolution (3×3 – ReLU)
Max Pool (2×2)
Up Sampling (2×2)
Copy & Concatenate
Convolution (3×3 – ReLU)
Convolution (1×1 – Sigmoid)
Flatten

Figure 2. Architecture of the neural network.

2.3. Post-Processing

To retrieve the geo-located ice front position from the output of the NN, we restore the images to
the original 200 x 300 pixel size and identify the ocean/glacier area using pre-defined polygons which
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delineate the fjord walls. Note that these polygons only need to be defined once per glacier and may
be used for all additional fronts obtained via the NN. We iterate through pairs of pixels on the fjord
boundaries to find a least-cost path through the array, where the weights of each “step” are given by
the output of the NN. A 500 m buffer is used from the fjord walls. The extracted path of pixels with
the least weight is identified as the ice front, and converted to the geographical coordinates of the
original spliced Landsat scene used to generate the subset. The geographical coordinates are stored
as both arrays and shapefiles which may be used in geographical information systems.

3. Results

We train the neural network on a set of 123 preprocessed 240 × 152 input images from
Jakobshavn, Sverdrup, and Kangerlussuaq glaciers. Note that while this may seem like a limited
number of training instances, one of the advantages of the utilized network architecture used in
this study is its ability to perform well with an extremely limited set of training data. In fact, the
U-Net architecture used by Ronneberger et al. [21] used a training set that consisted of 30 512× 512
pixel images. Training success with few training images is in part enabled by data augmentation,
which plays an important role in reducing our output errors, as discussed below. We leave aside
10% of the images for cross-validation during training. The validation dataset is used to prevent
overfitting. The training is halted when the validation loss starts to increase as a result of overfitting.
In addition, in order to test the ability of the neural network to predict calving fronts beyond the
training set for different glacier geometries, we test the trained network on images of Helheim
glacier, whose geometry is unknown to the NN during training. Note that this test dataset is in
addition to the cross-validation data used during training. We minimize the custom-weighted binary
cross-entropy loss function discussed in Section 2 using the Adam optimizer [28] with batches of 10
images at a time. Furthermore, we use a variable learning rate, which is reduced by half after every
5 epochs without any improvements to the accuracy. We test the performance of a variety of NN
configurations (discussed in the next section) and find that training the NN described in Figure 2 with
horizontal mirroring augmentation with batches sizes of 10 leads to excellent agreement between the
“generated” and “true” fronts. Training the network for 54 epochs leads to an accuracy of 92.4% in
the training set and 93.6% in the validation set, after which the validation loss starts to increase as a
result of over-fitting. Figure 3 shows the result of the NN network on a particularly noisy test image.
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Figure 3. The output of the neural network shown for a sample test image of Helheim Glacier from
Landsat 5. The pre-processed input image is shown in Panel (a). Panels (b) and (c) show the raw
outputs of the neural network and the Sobel filter, respectively. Panel (d) depicts the corresponding
extracted calving fronts compared to the true front, with the addition of the manually-determined
front on the same resolution rasterized image used for the NN and Sobel filter. Note that the output of
the NN shows remarkable agreement with the true front. Panels (e), (f), and (g) show the distribution
of differences between the generated and true fronts across all test images, with the corresponding
mean differences with the true fronts for the NN, Sobel, and manual results, respectively.

Panel (a) shows the pre-processed input image. Note that we pick this example as an instance
of an image that can mislead analytical edge detection filters, but the reported results and errors
are drawn from the complete test dataset. The raw output of the NN is shown in Panel (b). It is
evident that the neural network is able to extract the calving front from the input image. Figure 3
also compares the output of the NN to the Sobel filter, a common analytic edge detection algorithm
that has been used in previous studies (e.g. see Seale et al. [3]). It is clear from Panel (c) that the Sobel
filter is very sensitive to noise and identifies many gradients in the texture of the glacier, the icebergs,
and the surrounding topography as calving boundaries, which could lead to a false identification of
the position of the calving front. Panel (d) shows the extracted fronts in post-processing (as discussed
in Section 2.3). Note that we have also included a manually-determined front in addition to the
“true” front. While the true front has also been determined manually on high resolution geocoded
data, the “manual” comparison in Figure 3 refers to hand-drawn fronts on the pre-processed lower
resolution rasterized images that are also used for the NN and Sobel processing for an equal
comparison of the performances. The neural network performs remarkably well compared with the
true boundary. However it is evident that the Sobel filter is not able to extract the calving front as
accurately as the NN. Furthermore, the performance of the neural network appears to be comparable
to manually-determined front. Results for other test images are provided in the Supplementary
Material.

While Panels (a)-(d) of Figure 3 showcase the output of one image, Panels (e) and (f) show the
error analysis obtained from the complete set of test images for the NN, Sobel filter, and manual
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results. We quantify the errors by breaking the extracted calving fronts of Helheim glacier (which
was not used during training) into 1000 smaller line segments and calculating the mean difference
between the corresponding segments of the generated and true fronts. Figure 3 shows the distribution
of the differences for the NN (e) the Sobel filter (f), and manual results (g). We calculate the total error
in the glacier fronts as the mean deviation between all of the line segments in the outputted and true
glacier front boundaries. The NN has a mean difference of 96.3 m, equivalent to 1.97 pixels, which is
more than 8 times smaller than that of the Sobel filter. The manual output has a mean error of 92.5
m, only slightly below the error of the NN. Most of the error in the NN output is attributed to the
edges of the calving front, as can be seen in the Supplementary Material. Furthermore, it appears
that the Sobel errors have a multimodal distribution. In other words, when the Sobel filter identifies
the correct gradient as the calving front, it is in good agreement with the NN results. However, the
filter can be easily mislead by other gradients in the image, resulting in a complete mis-identification
and large errors for some images, leading to additional peaks in the histogram and larger overall
errors. The manual error histogram shows a more narrow distribution of errors, similar to the NN.
The results from the NN, Sobel filter, and the manual technique for individual test images, along with
the corresponding errors, can be viewed in the Supplementary Material.

Note that the errors are dependent on the resolution of the input images. As noted before, the
resolution of our inputs are less than that of the native Landsat images in order to account for the
possible span of ice fronts while minimizing image sizes and training time. However, the errors
could be improved further by increasing the resolution and the areal extent of the input images,
requiring more computational resources and increased training time. Thus, our benchmark analysis
shown above is conducted on the same glacier to limit the influence of resolution and image size on
the performance comparison of NN configurations and analytical filter and manual results.

4. Discussion

Images of glacier calving fronts are inherently noisy, with a variety of surfaces and boundaries.
Therefore, the application of analytical edge detection schemes such as the Sobel filter [14] results
in many false-positive predictions, where any sharp gradients on the surface of the glacier, icebergs,
valley walls, and surrounding topography are likely to labeled as glacier calving fronts. In contrast, a
convolutional neural network is able to learn the desired features in the images in order to correctly
identify the calving front and mostly ignore other boundaries and sharp gradients. As discussed in
Figure 3, the glacier fronts extracted from the output of the NN are in very close agreement to the true
front and have similar errors as manually-determined fronts on the same resolution. The analytical
filter, however, appears to be very sensitive to noise. It returns noisy images of sharp gradients from
which the calving front cannot be correctly extracted in some cases. While customized analytical
edge-detection schemes may be able to achieve reasonable results (see Seale et al. [3]), they often
rely on dataset-specific parameterizations and thresholds that are not readily applicable to various
imagery solutions. The application of neural networks, on the other hand, does not require analytical
customization for different datasets. The NN can be trained on any imagery product with the proper
training labels. The applicability of NNs for the detection of calving fronts goes beyond optical
imagery, and can be potentially applied to other forms of data such as radar, which will be explored
in future studies.
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b) Augmented:
Mirrored
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c) Augmented:
Mirrored & Inverted
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d) 3-pixel Label
(No Augmentation)

= 152 m

e) batch-size 3
(No Augmentation)

= 112 m

f) 37 Layers
Max Channels 512
(No Augmentation)

Figure 4. A comparison of raw outputs for various architecture and training configurations of the
NN. ε represents the mean deviation from the true front for each case. Note the best results presented
in the Results section correspond to Panel (b).

The proper configuration and training of the NN can have a significant effect on the accuracy
of the generated calving fronts. Figure 4 showcases various alterations to the NN on the same
image used in Figure 3. Panels (a)-(c) use the architecture of the NN shown in Figure 2 without
any data augmentation (a), horizontally mirroring the images (b), and horizontally mirroring and
inverting the colors of the images (c) during training. We find that data augmentation results in more
continuous calving fronts while generally reducing the “noise” (number of false-positives). However,
color inversion does not seem to contribute further to the performance of the network. In fact, while
horizontal mirroring produces a mean deviation error of 96 m, the addition of inversion increases the
error to 138 m. Furthermore, note that data augmentation increases the training time by several fold,
depending on the number of alterations. As a result, it is desirable to use minimal augmentation
while maintaining a low error. Therefore, we restrict the augmentation to horizontal mirroring.
Furthermore, Panel (d) shows the effect of increasing the width of the glacier front lines in the training
labels from 1 pixel to 3 pixels. While the mean error increases due to the loss of spatial precision, it
is interesting to note that the noise, or number of false-positives, also decreases noticeably. This may
be a result of the smaller class imbalance and weight ratio in the loss function (which decreases from
241.15 to 82.22), reducing the relative cost for a false classification of the calving fronts compared to
background pixels. Therefore, if more pronounced calving front lines with minimal noise are required
in post-processing, thicker labels may be desired.

We also find that the number of batches used during training has a significant effect on the
results. We use batch sizes of 10 in the chosen NN. On the one hand, using larger batch sizes
increases the noise in the output of the neural network, significantly decreasing the accuracy metric
in the validation dataset. On the other hand, while using smaller batch sizes reduces the background
noise, it also decreases the accuracy, with the mean error changing from 107 m (10 batches) to 152
m (3 batches), as shown in Panel (e). However, smaller batch sizes might be desirable if fewer
false-negatives (at the cost of less continuous calving fronts) are required. Note that while smaller
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batch sizes increase training time per epoch, fewer iterations are required before overfitting in
validation loss becomes evident.

Lastly, we also examine the effect of the depth and size of the neural network on the test results.
While increasing the depth leads to smaller errors compared to increasing the width or the number
of units in each layer (not shown), there are no improvements with respect to the 29-layer NN, as
shown in Panel (f). This may be due to the limited availability of training data for a deeper NN. The
37-layer NN (with one more downsample/upsamppling step compared to Figure 2) shows a more
noisy output with a mean error of 112 m, slightly larger than the mean error of the corresponding
29-layer output in Panel (a). Note that the same relationship is true with the addition of augmentation.
However, in the case of a larger and more varied training dataset, a deeper NN could potentially lead
to further improvements.

5. Conclusions

We have used a Convolutional Neural Network (CNN) with a U-Net architecture [21] to
automatically detect glacier calving fronts in images obtained from Landsat 5 (“green” band) and
Landsat 7 and 8 (“panchromatic” band). After exploring different network architectures and training
and augmentation configurations, we find remarkable agreements between the true hand-drawn
calving fronts and those obtained by a 29-layer deep neural network with 3× 3 ReLU convolutional
layers [25], regularization with 0.2 Dropout layers [26], 2 × 2 downsamplinig (MaxPooling [24])
and upsampling layers, a sample-weighted loss function based on the ratio of calving-front vs.
non-calving-front pixels, and the utilization of data augmentation. We test the performance of the
network not only on new images in the validation dataset, but also on an entirely new glacier with
higher spatial resolution to test the effect of different fjord geometries and spatial resolutions on the
trained network. After training the NN on Jakobshavn, Sverdrup, and Kangerlussuaq glaciers, we
test it on Helheim glacier and obtain a mean deviation error of 96.3 m, equivalent to 1.97 pixels on
average, which is comparable to the mean error of 92.5 m obtained from hand-drawn results on the
same resolution. As a comparison, the Sobel filter [14], a commonly used analytical edge-detection
method (e.g. see Seale et al. [3]) results in a mean error of 836.3 m on the same dataset.

The success of the neural network (NN) in automatically detecting calving fronts, along with the
need for a relatively small training set and short training times, makes this approach highly desirable
for the continuous monitoring of numerous glaciers around the globe with the ever-growing wealth of
remote-sensing data. The use of more spectral bands from various satellites can potentially improve
the performance of the NN in the future. Furthermore, unlike analytical edge-detection techniques,
the use of neural networks is not limited to optical imagery and can potentially be extended to many
data forms such as radar. Therefore, the use of convolutional neural networks in the detection of
calving fronts can be a widely applicable and powerful approach for future studies in order to monitor
the retreat of numerous glaciers in real time.

Supplementary Materials: The architecture of the Neural Network (NN), as well as the generated fronts and the
associated errors from the NN, Sobel filter, and manual results for sample test images of Helheim Glacier can be
found in the Supplementary Material.
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