

1 Preparation and characterization of hydrophobic groups grafted 2 starches by in-situ solid phase polymerization

3 Yingfeng Zuo, Xiaoyu He, Ping Li, Wenhao Li, Yiqiang Wu*

4 College of Materials Science and Engineering, Central South University of Forestry and
5 Technology, Changsha, Hunan 410004, PR China

6 *Corresponding author

7 Yiqiang Wu (Y. Wu)

8 Affiliation: College of Materials Science and Engineering, Central South University of Forestry
9 and Technology, Changsha, Hunan 410004, PR China

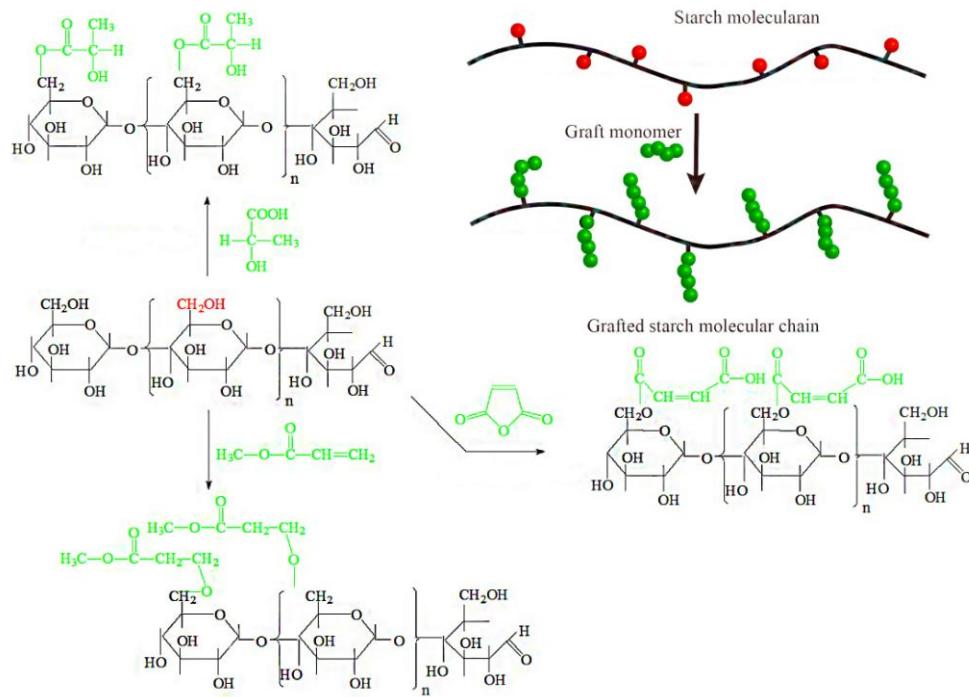
10 Email address: wuyq0506@126.com

11 Phone number: +86 731 85623898

12 Fax: +86 731 85623898

13 **Abstract:** Three kinds of hydrophobic groups grafted starches of maleic anhydride grafted starch
14 (MAH-g-starch), lactic acid grafted starch (LA-g-starch), and methyl acrylate grafted starch
15 (MA-g-starch) were prepared by in-situ solid phase polymerization. The results of Fourier
16 transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were
17 confirmed successful grafting. The grafting ratios of MAH-g-starch, LA-g-starch and MA-g-starch
18 were 6.50%, 12.45%, and 0.57%, respectively. Influenced by the grafting ratio, LA-g-starch had
19 the best hydrophobic properties and the largest molecular weight, and those for MA-g-starch was
20 the worst. The surfaces of grafted starches were covered with graft polymer, with obvious surface
21 roughness and bond degree of MAH-g-starch and LA-g-starch. The crystalline structure of grafted
22 starches showed some damage, with LA-g-starch exhibiting the greatest decrease in crystallinity,
23 and less of a change for MA-g-starch. Overall, the grafting reaction improved thermoplasticity,
24 with LA-g-starch the most improved, followed by MAH-g-starch, and then MA-g-starch.

25 **Keywords:** Corn starch; Maleic anhydride; Lactic acid; Methyl acrylate; Hydrophobically
26 modified; In-situ solid phase polymerization


27 1. Introduction

28 In recent years, with increasing environmental awareness and the gradual consumption of
29 fossil resources, there is significant interest in the development of green and renewable biomass
30 resources as a substitute for petrochemical products and as alternate energy sources. Starch is a
31 natural polymer material with many advantages such as a wide variety of sources, a low price,
32 biodegradability, and renewability [1-3]. Thus, starch has received increased interest and is used in
33 the production of thermoplastic starch plastics and starch/polymer blend composites [4,5].
34 However, starch is a hydrophilic polymer due to its large number of hydrophilic hydroxyl groups,
35 making thermoplastic starch plastics susceptible to moisture attacks and significant changes in
36 dimensional stability and mechanical properties [6]. This hydrophilicity also leads to poor
37 interfacial compatibility between starch and the hydrophobic polymer, causing poor properties of
38 the starch/polymer blend composites [7]. Reaction of the hydrophilic hydroxyl groups on starch to
39 decrease their number or replacement of the hydroxyl groups with hydrophobic groups can
40 significantly improve the hydrophobicity of starch, allowing a more compatible interface with the
41 polymer.

42 One strategy for modification is the use of hydrophobic groups to replace hydrophilic

43 hydroxy groups on the starch molecules chain [8,9]. To do this, most strategies have focused on
 44 the grafting of highly reactive hydrophobic functional groups onto the starch polymeric backbone
 45 [10-12]. The grafted functional groups could react with the hydroxyl groups of starch
 46 macromolecules to form covalent bonds, providing better control of phase size and improved
 47 interfacial adhesion. Additionally, Sagar [13] believed that modification of starch could increase
 48 the length of the starch side chain, which enhanced thermoplastic and hydrophobic characteristics,
 49 and that the hydrophobic function group in the starch structure could play the role of
 50 plasticization.

51 Hydrophobic groups graft starches were usually produced by wet method, organic solvent
 52 method [14], reactive extrusion method [15] and microwave-assisted method [16,17]. The wet
 53 method is performed in an aqueous solution, so the reaction is homogeneous and environmentally
 54 friendly. However, the hydrolytic side reaction of anhydride cannot be ignored in this process. The
 55 organic solvent method offers homogeneous reaction, but has a low degree of substitution of
 56 products, high output cost, and causes environmental pollution. The reactive extrusion method
 57 requires the addition of a plasticizer, and this will make the starch undergo plasticization, changing
 58 the granular structure of the starch. The microwave-assisted method is not suitable for large-scale
 59 industrial production, as the process is relatively complex and requires significant energy
 60 consumption.

61
 62 **Fig.1 In-situ solid phase polymerization of corn starch and hydrophobic groups**

63 Considering the limitations of the current technological methods used to graft hydrophobic
 64 groups to starch, the objective of this investigation was to produce hydrophobic groups grafted to
 65 starches by an in-situ solid phase polymerization method. In this process, dry starch, reaction
 66 monomers, and a catalyst are mixed in a closed hydrothermal reactor, and in-situ polymerization
 67 of the starch and reaction monomers is initiated under pressure at 80 °C (Fig.1). This approach is a
 68 promising green production method with many advantages. First, this process uses a reaction
 69 temperature that is lower than traditional methods and produces less by-products and degradation
 70 products. Second, the reacting monomer is in complete contact with the starch, so that the reaction

71 is efficient. Third, the polycondensation reaction was stable and could be scaled to the industrial
72 level. Four, the reaction is performed in the presence of solvents, for a more environmentally
73 friendly condensation process. Furthermore, the pressure will be generated automatically in the
74 reactor when the temperature reaches a certain range, to accelerate the reaction rate. Therefore, the
75 proposed process of in-situ solid phase polymerization of starch and reaction monomers is a new,
76 facile, and effective way to improve the interfacial compatibility of hydrophilic starch and
77 hydrophobic polymer. Anhydrides, carboxylic acids and acrylate compounds were commonly used
78 in hydrophobic modification of starch and interfacial modification of starch/polymer matrix
79 composites [18-21]. Among them, maleic anhydride (MAH), lactic acid (LA) and methyl acrylate
80 (MA) were most commonly used. This was mainly due to that MAH and LA has carboxyl groups
81 and MA contains free radical polymerization of C=C, which can react with hydroxyl groups in
82 starch. Therefore, to test this in-situ solid phase polymerization method, maleic anhydride, lactic
83 acid, and methyl acrylate were used as graft monomers to prepare hydrophobically-modified
84 starch. The grafting effect and hydrophobicity modification were then compared for the three
85 kinds of grafting monomers. So, as to improve the application range of starch in the field of
86 thermoplastic starch and starch/polymer composites.

87 **2. Materials and methods**

88 **2.1 Materials**

89 Corn starch was obtained from Dacheng Corn Development Co. Ltd (Changchun, Jilin,
90 China), and dried in a vacuum drying oven of 50 °C for 48 h to eliminate moisture before use.
91 Methyl acrylate was obtained from Tianjin Kwangfu Fine Chemical Industry Research Institute
92 (Tianjin, China). Lactic acid and stannous octoate were supplied by Sinopharm Chemical Reagent
93 Co., Ltd. Maleic anhydride, acetone, and ammonium persulfate were purchased from Tianjin
94 Kemiou Chemical Reagent Co., Ltd. (Tianjin, China). All chemicals were AR grade.

95 **2.2 Preparation of hydrophobically modified starch**

96 30 g corn starch was added into a hydrothermal reactor, together with 4.5 g grafting monomer
97 and 0.9 g stannous octanoate catalyst, mixed, and ground evenly. The hydrothermal reactor was
98 sealed and placed in an oven at 80 °C for in-situ solid phase polymerization. Heating was stopped
99 after 2 h. When the reacted starches were cooled to room temperature, acetone was added to the
100 mixture. The mixture was stirred and then subjected to suction filtration. Finally, the mixture was
101 washed three times with acetone and dried in an oven at 55 °C until constant weight was achieved.

102 At the same time, in order to compare the grafting effect of in-situ solid phase polymerization,
103 the graft copolymerization of starch was carried out by aqueous phase polymerization method and
104 organic solvent polymerization method. Deionized water as a solvent in aqueous phase
105 polymerization, and tetrahydrofuran was selected by organic solvent polymerization. Starch and
106 solvents were mixed into starch emulsion according to the mass of 1/9, and protection of nitrogen
107 in the reaction system. The reaction temperature, reaction time, catalyst and the treatment of
108 grafted starches were consistent with in-situ solid phase polymerization.

109 **2.3 Properties and characterization**

110 **2.3.1 Fourier transforms infrared spectroscopy (FT-IR) analysis**

111 In order to characterize the chemical changes in the grafted starch, the samples were tabletted
112 with KBr and subjected to FTIR (IRAffinity-1, Shimadzu). To completely remove the moisture,
113 the native starch and hydrophobic group grafted starch materials were further dried in a muffle
114 oven (at 50 °C) for 48 h. The tested samples were obtained after grinding fully using a weight

115 ratio of sample: KBr of 1:100. The FTIR curves for the samples were obtained in a range of
 116 400-4000 cm⁻¹.

117 **2.3.2 X-ray photoelectron spectroscopy (XPS) analysis**

118 XPS measurements were performed at room temperature with monochromatic AlK α
 119 radiation (1486.6eV) using a K-Alpha X-ray photoelectron spectrometer (supplied by Thermo
 120 Fisher Scientific Co., Ltd). The X-ray beam was a 100 W, 200 mm-diameter beam raster over a 2
 121 mm by 0.4 mm area on the sample. A high-energy photoemission spectrum was collected using
 122 pass energy of 50 eV and resolution of 0.1 eV. For the Ag₃d_{5/2} line, these conditions produced an
 123 FWHM of 0.80 eV.

124 **2.3.3 Determination of grafting ratio**

125 First, 1.00 g of dry grafted starch was weighed and placed in a 250 mL conical flask. Next,
 126 10 mL of 75% ethanol solution in deionized water was added into the flask, followed by the
 127 addition of 10mL of 0.5mol/L aqueous sodium hydroxide solution. The stoppered conical flask
 128 was agitated, warmed to 30 °C, and stirred for 1 h. The excess alkali was then back-titrated with a
 129 standard 0.5 mol/L aqueous hydrochloric acid solution. A blank titration was performed using
 130 native, un-modified starch. The grafting ratio (GR) was calculated as follows:

$$131 \quad W = \frac{Mc(V_0 - V_1)}{1000 \times nm} \times 100\%$$

$$132 \quad GR = \frac{162W}{M \times (100 - W)} \times 100\%$$

133 Where W is the substitution degree of the hydrophobic group, %; M is the molecular weight
 134 of the graft monomer; c is the concentration of the aqueous hydrochloric acid solution, mol/L; V_0
 135 is the consumed volume of aqueous hydrochloric acid solution by the blank sample, mL; V_1 is the
 136 consumed volume of aqueous hydrochloric acid solution by the grafted starch sample, mL; n is the
 137 number of hydrophobic groups from the grafted monomer; m is the mass of the sample, g.

138 **2.3.4 Contact angle measurement**

139 The native starch and grafted starches were weighed, mixed and pressed into a pie sample of
 140 1.5cm diameter with a press machine which pressure was 20 MPa. An optical contact angle
 141 measurement instrument (Data Physics OCA20) was used to measure the contact angle of samples,
 142 using distilled water as the test solution. For each measurement, 4 uL liquid in a microsyringe was
 143 dripped on to the surface of the samples, and the contact angle values were measured until 0 °.

144 **2.3.5 Determination of water absorption**

145 To determine the water absorption of the grafted starches, 4.0 g native starch and grafted
 146 starches (dry base) were separately placed in glass dishes that contained a set amount of water.
 147 Over the test period the weight of each sample was measured every 12 h. The water absorption
 148 was calculated as follows:

$$149 \quad \text{water absorption} = \frac{W_t - W_0}{W_0} \times 100\%$$

150 Where W_t was the weight of the sample after water absorption for t hours and W_0 was the
 151 weight of sample when it reached drying constant weight.

152 **2.3.6 Gel Permeation Chromatography (GPC) measurement**

153 The molecular weight of native starch, MAH-g-starch, LA-g-starch and MA-g-starch were
 154 tested with a gel permeation chromatograph system (Viscotek TDA305max, Malvern Co., Ltd).

155 The solvent was dimethyl sulfoxide (DMSO)+20 mmol LiBr, the column set was IGuard + 1 x I-H,
156 the flow rate was 0.500 mL/min, the injection volume was 100 μ L, and the detector and column
157 temperature were 50 °C.

158 **2.3.7 Hot paste viscosity testing**

159 The hot paste viscosities of the native starch and grafted starches were measured with a
160 Rotational Viscometer (Shanghai Pingxuan Scientific Instrument Co. Ltd, China). Starch slurry
161 with a mass percentage of 6% was prepared by dispersing starch (4.2 g dry basis) in 65.8 g
162 distilled water and then heating in a 95 °C constant-temperature water bath. The rotational
163 viscometer was connected to the thermostat and gradually increased to 95 °C, and then maintained
164 for 15 min. The viscosity value was recorded when the viscometer became stable.

165 **2.3.8 Scanning electron microscope (SEM) analysis**

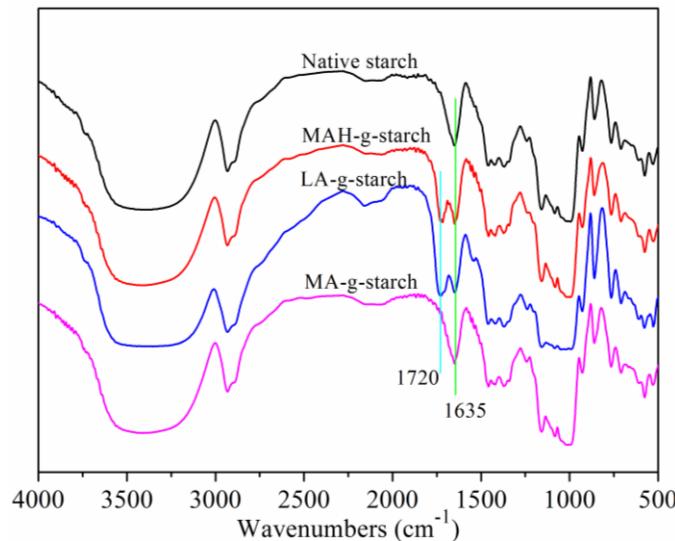
166 The morphology of the native starch and grafted starches was determined with a scanning
167 electron microscope (QUANTA 200, FEI), operating at an acceleration voltage of 20 kV. Starch
168 granules were mounted on circular aluminum stubs with double-sided adhesive tape and coated
169 with gold before testing.

170 **2.3.9 X-ray diffraction (XRD) analysis**

171 The native starch and grafted starches samples were further dried in a vacuum oven at 50 °C
172 for 48 h to remove the remaining moisture. The crystallinity index of the samples was measured
173 by an X-ray diffractometer (XD-2, Beijing's General Instrument Co., LTD) with Cu target at 36
174 Kv and 20 mA. Samples were tested in the angular range of $2\theta= 5^{\circ}$ – 40° with a scanning rate of
175 4 °/min.

176 **2.3.10 Thermogravimetric (TGA) analysis**

177 TGA measurements of native starch and grafted starch samples were made with a 209 F3
178 TGA instrument (NETZSCH Co., Germany). About 5 mg of dried sample powders were placed in
179 a platinum crucible and heated from 25 °C to 800 °C at the rate of 10 °C/min. Dynamic carrier
180 nitrogen gas flowed at a rate of 30 mL/min. Thermogravimetric (TG) and derivative
181 thermogravimetric (DTG) data were obtained for each sample.

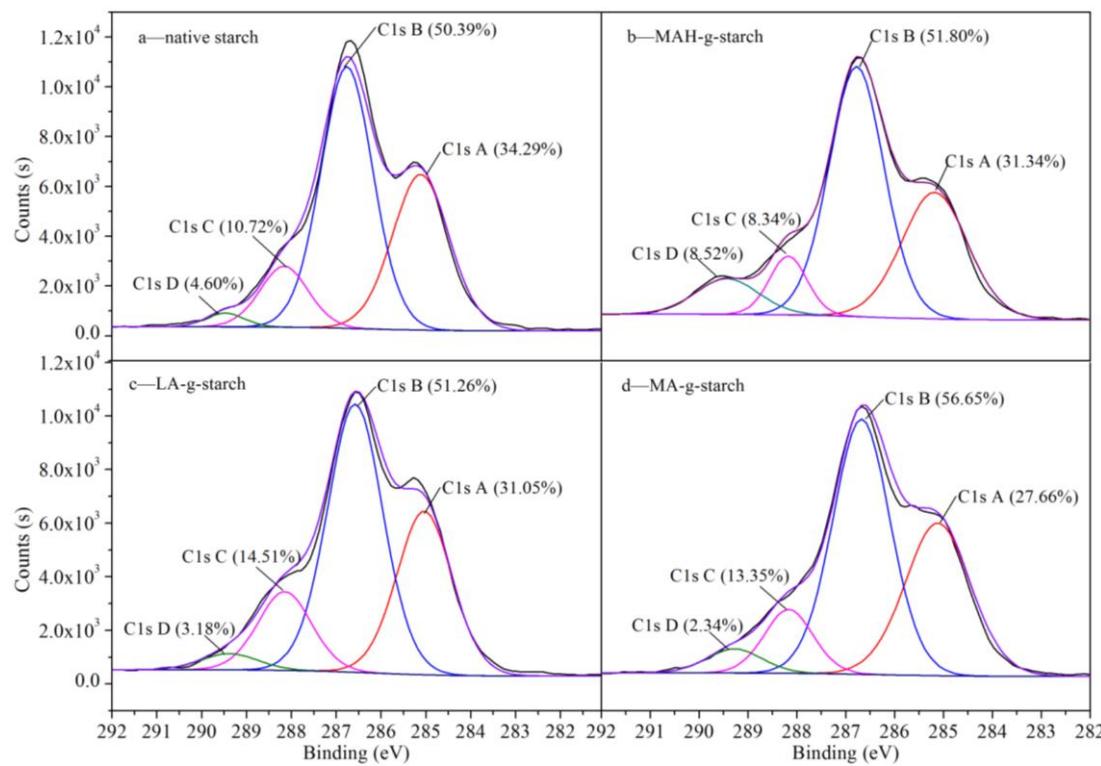

182 **2.3.11 Differential scanning calorimeter (DSC)**

183 The gelatinization temperature of NS, DS and ATDS were studied by using a Differential
184 Scanning Calorimeter (NETZSCH D204, Germany) as described by Sandhu and Singh [22].
185 Starch (3.5 mg, dry weight) was loaded into an aluminum pan and distilled water was added with
186 a microsyringe to achieve a starch-water suspension containing 70 g/100 g water. Samples were
187 hermetically sealed and allowed to stand for 1 h at room temperature before heating in DSC. The
188 DSC analyzer was calibrated using indium and an empty aluminum pan was used as reference.
189 Sample pans were heated at a rate of 5 °C/min from 30 to 200 °C.

190 **3. Results and Discussion**

191 **3.1 Graft reaction confirmation**

192 Fig.1 depicts the graft reaction between hydrophobic monomers and native corn starch. As
193 showing, successful reaction adds a new functional group (C=O) to the starch molecule. FTIR
194 analysis of native starch and grafted starches was performed to verify that the graft reaction
195 occurred and to investigate the resulting chemical changes. The results of this analysis are shown
196 in Fig.2.


197

198 **Fig.2 Infrared spectrum of native starch and grafted starches**

199 The basic compositional unit of native corn starch is D-anhydroglucose, with C2 and
 200 C3-linked secondary hydroxyls as the main characteristic functional groups, a C6-linked primary
 201 hydroxyl, and D-pyranose ring structure [23]. The position of the absorption peaks in the infrared
 202 spectrum for these main structures are shown in Fig.2: the characteristic peak centered at 3310
 203 cm^{-1} corresponds to O-H stretching and vibration of the hydrogen bond association, 2930 cm^{-1}
 204 corresponds to C-H asymmetrical stretching and vibration, 1635 cm^{-1} arises from the water that is
 205 tightly bound to the starch, 1152 cm^{-1} is from C-O-C asymmetrical stretching and vibration, 1080
 206 cm^{-1} corresponds to D-glucopyranose and hydroxyl-linked C-O stretching and vibration, and 925
 207 cm^{-1} is due to glucosidic bond vibration [24]. The infrared spectra for the grafted starches include
 208 all of the above characteristic absorption peaks, but also contain a C=O absorption peak at 1720
 209 cm^{-1} [25,26]. Following the reaction of the starch with hydrophobic monomers, the un-reacted
 210 hydrophobic monomers and homopolymer was removed by the acetone wash. It could be
 211 confirmed that the C=O came from grafted starches according to the positions which appeared,
 212 which verified that the graft reaction had occurred between the native starch and grafting
 213 monomer.

214 To further validate that the grafting reaction had occurred, the samples were subjected to
 215 X-ray photoelectron spectroscopy (XPS) to establish the binding modes of C in the samples, the
 216 results are shown in Fig.3 and Table 1. Compared with native starch, the relative concentration of
 217 C-containing groups with binding energy between 284.9 eV and 289.0 eV was significantly
 218 different in the grafted starch samples. Comparing the XPS spectrum of native starch (Fig.3a) to
 219 the spectra of MAH-g-starch (Fig.3b), LA-g-starch (Fig.3c) and MA-g-starch (Fig.3d) shows that
 220 the intensity of peak at 284.9 eV was decreased, which was attributed to the presence of more
 221 C-C/C-H groups. At the same time, the intensity of the peak at 286.1 eV was decreased, which
 222 represented the presence of C-O groups. And seeing from the results in Fig.3, the amount of C-O
 223 in the grafted starches was higher than that in the native starch, which was attributed to the high
 224 incidence of grafted molecular chains in the grafted starch material. The intensity of the 287.6 eV
 225 peak was also changed, which represented the presence of C-C=O groups. In addition, the
 226 intensity of the 289.0 eV peak for the modified starch was also changed, which was attributed to
 227 the abundance of O=C-O groups. The chemical environmental changes indicated that the corn

228 starch had reacted with the hydrophobic monomer through in-situ solid phase polymerization, in
 229 which the C-O(H) bond was broken and carbonyl groups (C=O) were generated. The results of the
 230 relative content of each chemical structure indicated that there was a different in the content of
 231 C=O in three kinds of grafted starches. The content of C=O in native starch was 15.32%, after the
 232 treatment, the C=O content increased to 16.86% in MAH-g-starch, 17.69% for LA-g-starch, and
 233 15.69% for MA-g-starch. This difference in the three treated starches may be due to different
 234 reaction efficiencies, resulting in differences in the grafting ratio. To verify these differences, the
 235 grafting ratio was tested for the three kinds of graft starches.

236

237 **Fig.3 The binding modes of C in native starch and grafted starches**

238 **3.2 The grafting ratio for different hydrophobic monomers**

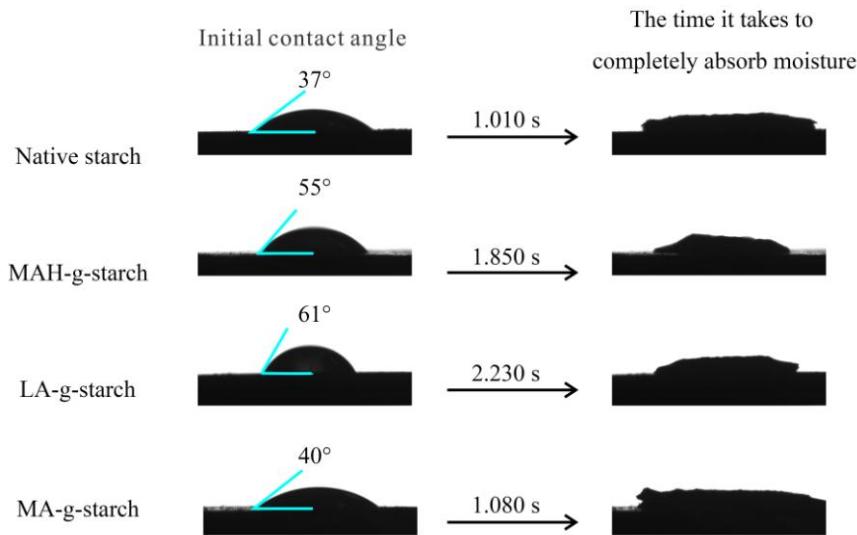
239 The reaction variable of the in-situ solid polymerization reaction between native starch and
 240 hydrophobic monomer was directly related to the variety of hydrophobic monomer, and inevitably
 241 leads to the difference in the grafting ratio. At the same time, the graft copolymerization of starch
 242 was carried out by aqueous phase polymerization method and organic solvent polymerization
 243 method, and the grafting ratio has been tested, the results are shown in Table 1.

244

Table 1 Grafting ratio of three kinds of grafted starches

Grafted starches	In-situ solid phase polymerization		Aqueous phase polymerization		Organic solvent polymerization	
	W (%)	GR (%)	W (%)	GR (%)	W (%)	GR (%)
MAH-g-starch	3.79	6.50	1.27	2.13	3.58	6.14
LA-g-starch	6.47	12.45	3.06	5.68	5.91	11.31
MA-g-starch	0.33	0.57	0.12	0.23	0.32	0.60

245


246 As shown in Table 1, compared with in-situ solid phase polymerization, the degree of
 247 substitution and grafting ratio of aqueous phase polymerization were relatively small. This was
 due to the presence of hydrolytic side reactions in aqueous phase, resulting in smaller grafting

248 ratio. The degree of substitution and grafting ratio of grafted starches prepared by organic solvent
249 polymerization was also smaller than those of in-situ solid phase polymerization. It was indicated
250 that starch and graft monomers had the highest reaction efficiency through in-situ solid phase
251 polymerization. The reaction efficiency of different graft monomers was also different. Moreover,
252 the change trend of degree of substitution and grafting ratio of the grafted starches prepared by
253 different grafting methods were the same.

254 With the in-situ solid phase polymerization, the grafting ratio of MAH-g-starch was 6.50%,
255 that of LA-g-starch was 12.45%, and MA-g-starch was 0.57%. The results show that the
256 efficiency of in-situ solid phase polymerization for lactic acid and starch was the highest under
257 these conditions. The XPS analysis showed that the C=O content of LA-g-starch was the highest
258 and that of MA-g-starch was the smallest. The in-situ solid phase polymerization of lactic acid and
259 maleic anhydride with starch occurred as esterification, while methyl acrylate occurred as radical
260 polymerization. The reaction conditions required for radical polymerization are more stringent,
261 resulting in the lowest grafting ratio for MA-g-starch. Lactic acid is a liquid that can penetrate into
262 the starch well before the reaction, increasing the chance of contact with hydroxyl groups on the
263 starch. In contrast, maleic anhydride is solid, and does not penetrate into the starch to react with
264 hydroxyl until the temperature exceeds its melting point (52.8 °C). Additionally, maleic anhydride
265 needs to open the acid anhydride to react with hydroxyl groups. These two reasons cause the
266 grafting ratio of the LA-g-starch to be significantly greater than that of the MAH-g-starch.

267 **3.3 Hydrophobic property of grafted starches**

268 The molecular chain of the native starch contains many hydrophilic hydroxyl groups, and the
269 grafting of hydrophobic groups onto the native starch would improve the hydrophobicity of the
270 starch. The contact angle (CA) of water on a surface is the angle formed by a tangent line from the
271 water droplet to the solid surface, and is an indication of the relative hydrophobic character of the
272 sample surface. Generally speaking, the larger the CA, the higher the hydrophobicity of the
273 material [27]. The surface contact angles of the native starch and the modified starches were
274 measured with a contact angle tester to determine the relative hydrophobicity, and the results are
275 shown in Fig.4. As shown by the data presented in Fig.4, the initial contact angle of the native
276 starch was only 37 ° and full absorption of water droplets required only 1.010 s. After the
277 modification of in-situ solid phase polymerization, the initial contact angle was increased and the
278 full absorption time of water droplets was prolonged for all grafted starches. The results suggested
279 better hydrophobicity of the grafted starches compared to native starch, due to the replacement of
280 the hydrophilic hydroxyl groups on the bamboo fiber with hydrophobic carbonyl groups. The
281 contact angle and the time of full absorption varied for the three kinds of grafted starches. The
282 LA-g-starch had the largest contact angle and the longest absorption time and the MA-g-starch
283 had the smallest contact angle and the shortest absorption time, indicating that the hydrophobicity
284 of LA-g-starch was the best and that of MA-g-starch was the worst. The hydrophobicity of the
285 grafted starches was directly related to the number of hydrophobic groups grafted into the starch,
286 and more hydrophobic groups resulted in better hydrophobicity. Thus, the measured contact angles
287 were consistent with the grafting ratios.

288

289 **Fig.4 Initial surface contact angle for the native starch and grafted starches**

290 To further confirm that graft modification can improve the hydrophobic properties of native
 291 starch, the water absorption of the materials was determined based on their relative weight change
 292 after exposure to water. The results are shown in [Table2](#). After incubation of the samples in a wet
 293 environment for 144 hours, the weight gain rate of the samples became stable, as saturation was
 294 reached. The water absorption of the grafted starches was lower than that of native starch for the
 295 144 hours of measurement. Again, the results indicated that reaction between the hydrophobic
 296 monomer and native starch enhanced the hydrophobicity of the starch. Comparison of the water
 297 absorption for the three kinds of grafted starches revealed that LA-g-starch was the lowest and
 298 MA-g-starch was the highest. Thus, the LA-g-starch had the best hydrophobicity, and the
 299 MA-g-starch had the worst. The results were in agreement with the contact angle test results.

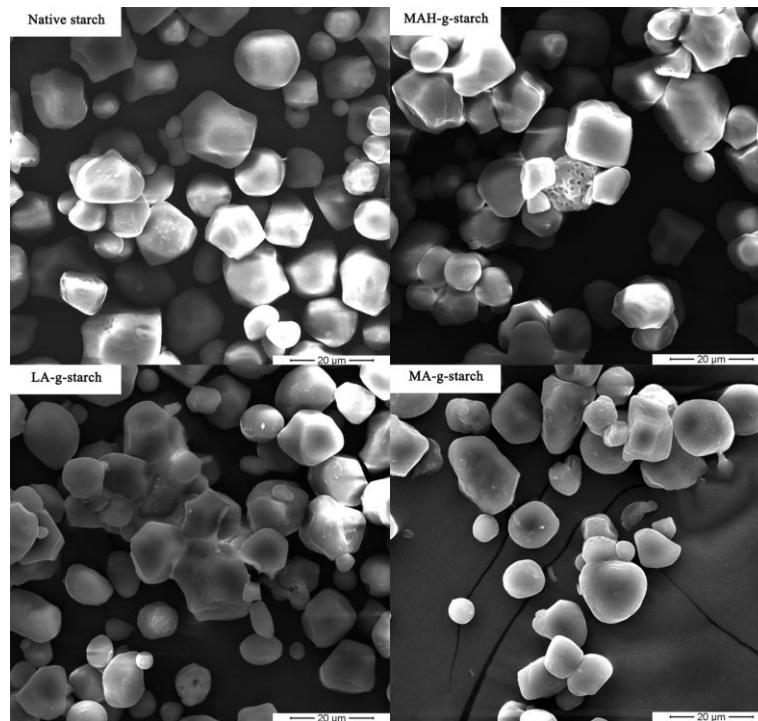
300 **3.4 Molecular weight change of grafted starches**

301 As shown in [Fig.1](#), the graft copolymerization can increase the molecular weight of native
 302 starch. To verify the feasibility of the in-situ solid polymerization reaction, native starch,
 303 MAH-g-starch, LA-g-starch and MA-g-starch were characterized by gel permeation
 304 chromatography (GPC) and the results are shown in [Table 2](#).

305 **Table2 water absorption change and molecular weight of native starch and grafted starches**

Starch species	Water absorption (%)						Molecular weight		
	24h	48h	72h	96h	120h	144h	M_n (D)	M_w (D)	DI
Native starch	20.175	22.679	24.649	26.680	27.556	27.584	7.869×10^4	4.325×10^5	5.496
MAH-g-starch	16.487	19.060	20.932	22.973	23.992	24.389	8.422×10^4	7.528×10^5	8.938
LA-g-starch	12.981	15.288	17.112	18.856	19.369	19.554	1.726×10^5	2.141×10^6	12.405
MA-g-starch	17.423	20.320	22.823	25.069	26.486	26.717	8.014×10^4	4.812×10^5	6.004

306


307 It can be seen from [Table 2](#), the number-average molecular weight (M_n) of native starch was
 308 7.869×10^4 D, the weight average molecular weight (M_w) was 4.325×10^5 D, and the distribution index
 309 (DI) was 5.496. Compared with native starch, the M_n and M_w of grafted starches increased and the
 310 DI increased also. It was also proved that the grafting monomers were successfully grafted onto
 311 the starch molecular chain. However, the M_n , M_w and DI of grafted starches obtained by different
 312 grafting monomers was different. The M_n and M_w of from large to small was LA-g-starch,

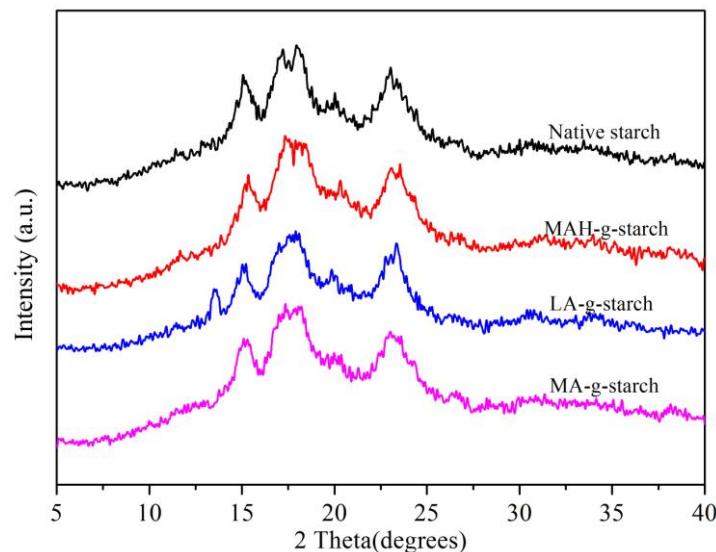
313 MAH-g-starch, MA-g-starch. The molecular weight distribution index also showed the same trend.
 314 This phenomenon was closely related to the grafting ratio of grafted starches. In [Table1](#), the
 315 grafting ratio of LA-g-starch was the largest, the polylactic acid molecular chain grafted on the
 316 starch molecular chain was the most. But the grafting ratio of MA-g-starch was only 0.57%, which
 317 leads to the minimum molecular weight and distribution index.

318 For polymers, viscosity was proportional to molecular weight. In order to further verify the
 319 effect of the in-situ solid phase polymerization on the molecular weight of modified starches, the
 320 pasting viscosity of the native starch and grafted starches were tested. The pasting viscosity of the
 321 native starch was 16500 mPa.s. Compared with the native starch, the pasting viscosity of all
 322 grafted starches were increased. The pasting viscosity of MAH-g-starch, LA-g-starch and
 323 MA-g-starch were 23600 mPa.s, 27100 mPa.s and 17200 mPa.s, respectively. It was proved that
 324 the molecular weight of starches increased after graft copolymerization. The pasting viscosity of
 325 LA-g-starch was the largest and MA-g-starch was the smallest, which indicated that the average
 326 molecular weight of LA-g-starch was the largest and that of MA-g-starch was the smallest. This
 327 also validates the results of the GPC test.

328 **3.5 Morphology change of grafted starches**

329 Scanning electron microscopy, in principle, was to use a very fine focused high-energy
 330 electron beam to scan the sample and stimulate a variety of physical information, by accepting,
 331 amplifying and displaying this information, the surface morphology of the test specimen was
 332 observed. The various samples of test materials were subjected to SEM analysis to determine the
 333 extent of any changes in surface morphology of the material as a result of the grafting reaction.

334

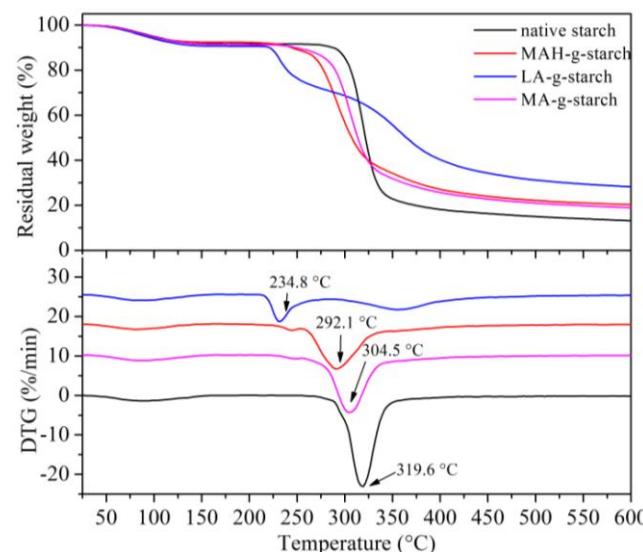

335 **Fig.5 SEM images of native starch and grafted starches**

336 [Fig.5](#) shows the SEM micrographs of the grafted starch, where it can be seen that the native
 337 starch granules were solid circles with smooth surface and edges. Comparison with the native
 338 starch, the in-situ solid phase polymerization did not destroy the granule structure of the starch.
 339 This may be because solid phase reaction process was conducted under anhydrous conditions, and

340 there was no starch gelatinization. There were morphological changes in the grafted starches, as
341 the surface became rough and the granule surface was destroyed. This was because the graft
342 polymer was grown on the starch granules, and the granules were bonded together. However, there
343 was no obvious change in granule size, indicating that in-situ solid phase polymerization mainly
344 occurred on the surface of the starch granule. The SEM micrographs showed that the surface
345 roughness and bond degree of MAH-g-starch and LA-g-starch were more obvious, especially for
346 the LA-g-starch. The results indicate that the surface roughness of the grafted starch was
347 positively correlated with the grafting ratio.

348 3.6 Crystalline structure change of grafted starches

349 The FTIR, XPS, and SEM analysis of grafted starches all verified that a grafting reaction
350 occurred as a result of the in-situ solid phase polymerization method. Therefore, it was
351 reasonable to assume that the crystalline structure of the reactants had also changed. We next
352 analyzed the crystalline structure of the native starch and the grafted starches to further verify
353 this conclusion. The XRD method was used to determine if there was any change in the
354 crystal structure of the native starch as a result of the grafting reaction, and the results are
355 shown in [Fig.6](#).


356
357 **Fig.6 XRD diffraction patterns of native starch and grafted starches**

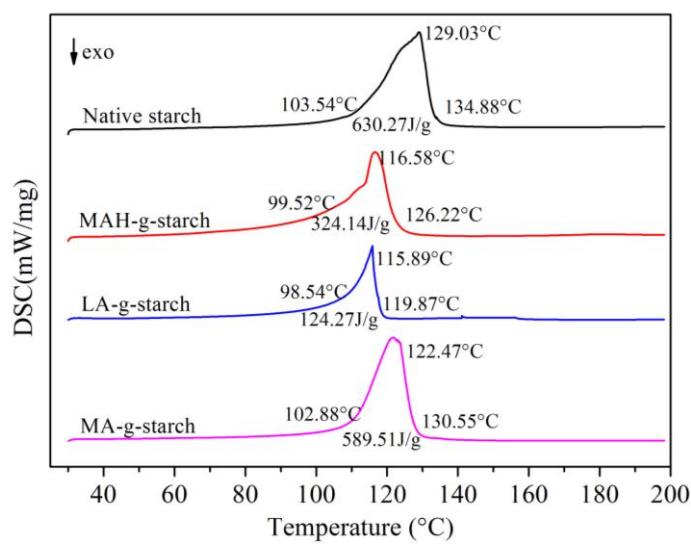
358 The XRD diffraction peaks for native starch were typical of an A-type crystalline structure,
359 with 2θ values of 15° , 17° , 18° and 23° [28]. After the grafting reaction, the crystallization type of
360 grafted starches did not change, suggesting that the reaction mainly occurred in the amorphous
361 areas of the starch. The intensity of the XRD diffraction peaks in the hydrophobically modified
362 starch was clearly weaker compared to those of the native starch. According to the report [29], it
363 can be calculated that the degree of crystallinity of native starch was 27.93%, and after
364 modification, the crystallinity of the grafted starches was reduced to varying degrees. This
365 suggested that in-situ solid phase polymerization could destroy the crystalline structure of starch
366 to some extent. In other words, the hydrogen bonds between molecules were weakened, thus the
367 thermoplasticity of grafted starches increased [30]. This phenomenon was due to infiltration of the
368 hydrophobic monomers into the crystalline area to destroy the hydrogen bonding between the
369 molecules in this region. At the same time, the hydroxyl groups on the starch chain reacted with
370 the hydrophobic monomers, and the molecular chains gradually grew and crosslinked, which

371 further destroyed the crystallinity of the starch. The decrease in the crystallinity of the grafted
 372 starches varied, as the MAH-g-starch decreased to 23.47%, LA-g-starch decreased to 22.29%, and
 373 MA-g-starch decreased to 24.69%. The grafting ratio of LA-g-starch was the highest and more
 374 hydroxyl groups on the chain of starch reacted, with the most serious destruction of hydrogen
 375 bonds. The grafting ratio of MA-g-starch was the lowest and the destruction of its crystalline
 376 structure was the smallest. More graft polymer molecular chains attached to the starch molecular
 377 chain resulted in a more loose structure.

378 **3.7 Thermal performance analysis**

379 The thermal behavior of the native starch and grafted starch were analyzed by TGA, and the
 380 results are shown in Fig.7. The thermogravimetric curves in Fig.7 show three stages at 50~120 °C,
 381 200~350 °C, and 400~600 °C. The first stage (50~120 °C) represented the evaporation of water
 382 from the starch. In the second stage (200~350 °C), native starch and grafted starches thermally
 383 decomposed, and the fastest rate of decomposition was observed in this stage. However, in the
 384 presence of the different hydrophobic monomers grafted on the starch, the rate of heat loss was
 385 also different. In the third stage (above 400 °C), the remaining material was decomposed to carbon
 386 by pyrolysis. The heat loss rate of the grafted starches was greater than that of native starch, and
 387 there was less decomposed residue. Comparing the residual weight, it appeared that the grafted
 388 starch materials had an increased weight loss rate (residual reduction), but the initial temperature
 389 for thermal decomposition and heat loss was reduced. This result also suggested an increase in the
 390 plasticity of the starch as a result of the grafting reaction. The XRD results showed that
 391 modification destroyed the starch crystallization and the density degree of the starch molecules
 392 decreased, so the grafted starch decomposed easily when heated. Of the grafted starch materials,
 393 the initial temperature of LA-g-starch was the lowest and the decomposition residual rate was the
 394 highest, and the MA-g-starch showed the opposite trends. The LA-g-starch was most easily
 395 decomposed, indicating the best thermoplasticity in the melting process. The most serious damage
 396 was evident for the crystalline structure of the LA-g-starch, and the MA-g-starch crystallinity was
 397 the lowest.

398


399 **Fig.7 TGA and DTG curves of native starch and grafted starches**

400 The DTG results in Fig.7 show a heat loss rate-accelerated peak for several kinds of starch
 401 that represents the maximum decomposition rate temperature. The maximum decomposition rate

402 temperature of the native starch was 319.6 °C, but the grafted starches showed obviously lower
 403 values. This was due to the destruction of the crystalline structure of the starch by the modification
 404 of the in-situ solid phase polymerization, reducing the decomposition temperature of the grafted
 405 starches. The results agreed with the results of TG analysis, and the maximum decomposition rate
 406 temperature of the LA-g-starch was the lowest and that of MA-g-starch was the highest.

407 **3.8 Thermoplasticity change of grafted starches**

408 DSC is a common method for researching melting properties [31]. The starch melting can
 409 also be used to characterize the degree of difficulty for starch plasticization. By comparing the
 410 DSC endothermic peak area, the change of melting enthalpy after grafting modification by
 411 different monomers. The degree of gelatinization of native starch, MAH-g-starch, LA-g-starch and
 412 MA-g-starch were tested by DSC, and the results are presented in Fig.8. The thermal transitions
 413 temperature of the samples were defined as T_o (onset), T_p (peak) and T_c (conclusion), and the
 414 enthalpy of melting was referred to as ΔH .

415
 416 **Fig.8 DSC curves of native starch and grafted starches**

417 As can see in Fig.8, native starch showed T_o and T_p between 103.54 and 134.88 °C, T_p was
 418 129.03 °C, and ΔH was 630.27J/g. After in-situ solid phase grafting modification of MAH, LA and
 419 MA, the T_o , T_p , T_c of grafted starches all shifted to lower temperature, and ΔH was decreased to
 420 varying degrees. It was indicated that the grafted starches was easier to gelatinization and lower in
 421 enthalpy of gelatinization. This was mainly attributable to the decrease of crystallinity and
 422 intermolecular loosening after graft modification. There were differences in gelatinization
 423 temperature and gelatinization enthalpy of three grafted starches. The all T_o , T_p , T_c and ΔH of
 424 LA-g-starch were the lowest, and MA-g-starch was the highest. The reason for this difference was
 425 that the degree of crystallinity of the three kind of grafted starches varies with different grafting
 426 ratio. At the same time, this indicates that LA-g-starch had the best thermoplasticity and MA-g-
 427 starch was the worst.

428 **4. Conclusion**

429 This study demonstrated the successful preparation of three grafted starches using an in-situ
 430 solid phase polymerization reaction. The grafting ratios of the MAH-g-starch, LA-g-starch, and
 431 MA-g-starch were 6.50%, 12.45%, and 0.57%, respectively. The grafted reaction resulted from
 432 replacement of the hydroxyl groups on D-anhydroglucose moieties of the starch with hydrophobic
 433 carbonyl groups form the graft monomer, which resulted in improved hydrophobic characteristics

434 of the starch. With the influence of the grafting ratio, LA-g-starch had the best hydrophobic
435 properties, and MA-g-starch had the worst. The M_n , M_w and DI of LA-g-starch was the largest and
436 MA-g-starch was the smallest. The surface of the grafted starches was covered with graft polymer,
437 and the surface roughness and the bond degree of the MAH-g-starch and LA-g-starch were more
438 obvious. The starch crystalline structure was destroyed by the grafting reaction, the degree of
439 crystallinity was decreased, and the hydrogen bonding between the starch molecules was
440 weakened, resulting in improved thermoplasticity in the grafted starches. For the degree of
441 crystallinity of grafted starches, MAH-g-starch decreased to 23.47%, LA-g-starch was 22.29%,
442 and MA-g-starch was 24.69%. The degree of thermoplasticity improvement from large to small
443 was LA-g-starch, MAH-g-starch, and MA-g-starch.

444 The grafted starches produced by in-situ solid phase polymerization exhibited increased
445 overall hydrophobicity with increased interface compatibility, allowed expanded application of
446 thermoplastic starch and starch/plastic composites. This work comparing the influence of three
447 grafting monomers on the grafting ratio and hydrophobic modification of starch provides
448 reference data for the preparation of blended composites of starch and different polymers.

449 Acknowledgments

450 This work was financially supported by the Key Laboratory of Bio-based Material Science &
451 Technology (Northeast Forestry University), Ministry of Education (SWZCL2016-04), and the
452 Scientific Research Project of Hunan Provincial Education Department (15C1428).

453 References

- 454 [1] Ma X., Chang P.R., Yu J. Properties of biodegradable thermoplastic pea starch/carboxymethyl
455 cellulose and pea starch/microcrystalline cellulose composites. *Carbohyd. Polym.* **2008**, 72,
456 369-375.
- 457 [2] Raquez J.M., Nabar Y., Srinivasan M., Shin B.Y., Narayan R., Dubois P. Maleated
458 thermoplastic starch by reactive extrusion. *Carbohyd. Polym.* 2008, 74, 159-169.
- 459 [3] Rodríguez-Castellanos W., Martínez-Bustos F., Jiménez-Arévalo O., González-Núñez R.,
460 Rodriguez-Gonzalez F.J., Ramsay B.A., Favis B.D. Rheological and thermal properties of
461 thermoplastic starch with high glycerol content. *Carbohyd. Polym.* 2004, 58, 139-147.
- 462 [4] Gross R.A., Kalra B. Biodegradable polymers for the environment. *Science*. 2002, 297,
463 803-807.
- 464 [5] Willett J.L. Mechanical properties of LDPE/granular starch composites. *J. Appl. Polym. Sci.*
465 2005, 54, 1685-1695.
- 466 [6] Wang X.L., Zhang Y.R., Wang Y.Z. Recent progress in starch-based polymeric materials. *Acta*
467 *Polym. Sin.* 2011, 28, 24-37.
- 468 [7] Zuo Y.F., Gu J.Y., Yang L., Qiao Z.B., Tan H.Y., Zhang Y.F. Preparation and characterization of
469 dry method esterified starch/polylactic acid composite materials. *Int. J. Biol. Macromol.* 2014,
470 64, 174-180.
- 471 [8] Kaur B., Ariffin F., Bhat R., Karim A. Progress in starch modification in the last decade. *Food*
472 *Hydrocolloid*. 2012, 26, 398-404.
- 473 [9] Xiong Z., Ma S.Q., Fan L.B., Tang Z.B., Zhang R.Y., Na H.N., Zhu J. Surface hydrophobic
474 modification of starch with bio-based epoxy resins to fabricate high-performance polylactide
475 composite materials. *Compos. Sci. Technol.* 2014, 94, 16-22.
- 476 [10] Mani R., Bhattacharya M., Tang J. Functionalization of polyesters with maleic anhydride by
477 reactive extrusion. *J. Polym. Sci. Polym. Chem.* 1999, 37, 1693-1702.

478 [11] Shi D.A., Yang J.H., Yao Z.H., Wang Y., Huang H.L., Jing W., Yin J.H., Costa G.
479 Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion:
480 mechanism of melt grafting. *Polymer*. 2001, 42, 5549-5557.

481 [12] Xie F.W., Yu L., Liu H.S., Chen L. Starch modification using reactive extrusion.
482 *Starch-Starke*. 2006, 58, 131-139.

483 [13] Sagar D.A., Merril E.W. Properties of fatty-acid esters of starch. *J. Appl. Polym. Sci.* 1995, 58,
484 1647-1656.

485 [14] Huang L., Xiao C.M., Chen B.X. A novel starch-based adsorbent for removing toxic Hg (II)
486 and Pb (II) ions from aqueous solution. *J. Hazard. Mater.* 2011, 192, 832-836.

487 [15] Woothikanokkhan J., Wongta N., Sombatsompop N., Kositchaiyong A., Wong-On J.,
488 Isarankura na Ayutthaya S., Kaabbuathong N. Effect of blending conditions on mechanical,
489 thermal, and rheological properties of plasticized poly (lactic acid)/maleated thermoplastic
490 starch blends. *J. Appl. Polym. Sci.* 2012, 124, 1012-1019.

491 [16] Xing G.X., Zhang S.F., Ju B.Z., Yang J.Z. Microwave assisted Synthesis of Starch Maleate
492 by Dry Method. *Starch-Starke*. 2006, 58, 464-467.

493 [17] Lukasiewicz M., Kowalsk S. Low power microwave - assisted enzymatic esterification of
494 starch. *Starch-Starke*. 2012, 64, 188-197.

495 [18] Biswas A., Shogren R.L., Kim S., Willett J.L. Rapid preparation of starch maleate half-esters.
496 *Carbohydr. Polym.* 2006, 64, 484-487.

497 [19] Olivato J.B., Grossmann M.V.E., Yamashita F., Eiras D., Pessan L.A. Citric acid and maleic
498 anhydride as compatibilizers in starch/poly (butylene adipate-co-terephthalate) blends by
499 one-step reactive extrusion. *Carbohydr. Polym.* 2012, 87, 2614-2618.

500 [20] Yu T., Jiang N., Li Y. Study on short ramie fiber/poly (lactic acid) composites compatibilized
501 by maleic anhydride. *Compos. Part. A. Appl. S.* 2014, 64, 139-146.

502 [21] Ge X.C., Xu Y., Meng Y.Z., Li R.K.Y. Thermal and mechanical properties of biodegradable
503 composites of poly (propylene carbonate) and starch-poly (methyl acrylate) graft copolymer.
504 *Compos. Sci. technol.* 2005 65, 2219-2225.

505 [22] Sandhu, K.S., Singh, N. Some properties of corn starches II: Physicochemical, gelatinization,
506 retrogradation, pasting and gel textural properties. *Food. Chem.* 2007, 101, 1499-1507.

507 [23] Zuo Y.F., Liu W.J., Xiao J.H., Zhao X., Zhu Y., Wu Y.Q. (2017). Preparation and
508 characterization of dialdehyde starch by one-step acid hydrolysis and oxidation. International
509 Journal of Biological Macromolecules, 103, 1257-1264.

510 [24] Zuo Y.F., Gu J.Y., Yan, L., Qiao Z.B., Tan H.Y., Zhang Y.H. Synthesis and characterization of
511 maleic anhydride esterified corn starch by the dry method. *Int. J. Biol. Macromol.* 2013, 62,
512 241-247.

513 [25] Dontulwar J.R., Borikar D.K., Gogte B.B. An esteric polymer synthesis and its
514 characterization using starch, glycerol and maleic anhydride as precursor. *Carbohydr. Polym.*
515 2006, 65, 207-210.

516 [26] Ma X.F., Chang P.R., Yu J.G., Wang N. Preparation and properties of biodegradable poly
517 (propylene carbonate)/thermoplastic dried starch composites. *Carbohydr. Polym.* 2008, 71,
518 229-234.

519 [27] Zeng J.B., Jiao L., Li Y.D., Srinivasan M., Li T., Wang Y.Z. Bio-based blends of starch and
520 poly (butylene succinate)with improved miscibility, mechanical properties, and reduced
521 water absorption. *Carbohydr. Polym.* 2011, 83, 762-768.

522 [28] Zuo Y.F., Gu J.Y., Tan H.Y., Qiao Z.B., Xie Y.H., Zhang Y.H. The characterization of granule
523 structural changes in acid-thinning starches by new methods and its effect on other properties.
524 *J. Adhes. Sci. Technol.* 2014, 28, 479-489.

525 [29] Singh V., Ali S.Z., Somashekhar R., Mukherjee P.S. Nature of crystallinity in native and acid
526 modified starches. *Int. J. Food. Prop.* 2006, 9, 845-854.

527 [30] Jiang W.B., Qiao X.Y., Tang Z.Z., Sun K. Preparation and properties of thermoplastic
528 acetylated starch. *Acta. Polymer. Sin.* 2006, 23, 97-101.

529 [31] Maaruf A.G., Che Man Y.B., Asbi B.A., Junainah A.H., Kennedy J.F. Effect of water content
530 on the gelatinisation temperature of sago starch. *Carbohyd. Polym.* 2001, 46, 331-337.