
Robust guaranteed-cost preview repetitive control for

polytopic uncertain discrete-time systemsI

Yong-Hong Lan, Jun-Jun Xia

School of Information Engineering, Xiangtan University, Xiangtan, Hunan 411105,
China.

Abstract

A robust guaranteed cost preview repetitive controller is proposed for a class
of polytopic uncertain discrete-time systems. In order to improve the tracking
performance, the repetitive controller combined with preview compensator
is inserted in the forward channel. By using the L-order forward difference
operator, an augmented dynamic system is constructed. Then, the guaran-
teed cost preview repetitive control problem is transformed into the guar-
anteed cost control problem for the augmented dynamic system. For given
performance index, the sufficient condition of asymptotic stability for the
closed-loop system is derived by combining parameter-dependent Lyapunov
function method with linear matrix inequality (LMI) techniques. By incor-
porating the controller obtained into the original system, the guaranteed-cost
preview repetitive controller is derived. A numerical example is also included
to show the effectiveness of the proposed method.

Keywords: robust control; preview control; repetitive control; controller
design; uncertain systems

1. Introduction

In some control systems, it is hoped that the output can track reference
signal without steady-state error, even in the presence of uncertainty and/or
exogenous disturbances. Preview control [1, 2] is one of the many ways for
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solve this kind of control problem. The basic idea of preview control is to use
known future information of the reference or disturbance signals. It was found
that preview control can enhance performance of the closed-loop system [3].
In recent years, the problem of preview control has received considerable
attention and various control structures and algorithms have been proposed
[4, 5, 6, 7].

As a typical regulator method, the linear quadratic regulator (LQR) opti-
mal control is a powerful technique for designing preview controller [6, 7, 8].
In [6], an optimal preview control was investigated for discrete-time Marko-
vian jump linear systems. The optimal semi-active preview control of a car
vehicle model was considered in [7], in which the optimal control with pre-
view minimizes a performance index by solving a multi-objective optimiza-
tion problem. In [8], to track triangular reference, the LQR optimal control
with preview compensation for a dual-stage actuator system was proposed.
In [9], the constrained optimal preview control of dual-stage actuators was
proposed and the problem was solved in terms of quadratic programming pro-
viding an optimal solution with respect to a quadratic criterion. In [10], by
using the reference and disturbance signal’s preview information to calculate
the control input, an optimal feed-forward preview controller was presented
for single-input single-output systems. In order to estimate the unmeasurable
state vector, a state observer-based optimal preview controller was developed
in [11]. Other relevant work may be referred to [12]. As well known, the LQR-
based optimal preview control can not be applied to deal with the uncertain
systems.

For uncertain systems, it will become difficult to design preview con-
troller. In [13], a robust tracking problem for a polytopic uncertain system
subject to a previewable reference signal was considered. The developed
design method in terms of linear matrix inequalities (LMIs) achieved good
robust tracking performance. In [14], an LMI-based solution to the reliable
robust preview tracking problems against actuator faults for discrete LTI
systems with polytopic uncertainties was provided. In [15], the problem of
multi-model adaptive preview control was proposed for discrete-time systems
with unknown piecewise constant coefficients. In [16], the author overviewed
the preview control research achievement and discussed the main problems.
Very recently, for a class of polytopic uncertain discrete systems, by combin-
ing parameter-dependent Lyapunov function method with LMI techniques,
the problem of static output feedback preview tracking control was presented
in [17]. For a class of uncertain discrete-time systems, an LMI-based preview
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controller was proposed in [18]. The proposed method can be extended com-
pletely to other time varying systems for preview control.

Repetitive control (RC), which was first developed in the early 1980s [19],
is a very useful strategy for tracking periodic reference signals [20, 21, 22].
Although repetitive control method was originally proposed in continuous-
time systems, it was realized by digital computer in the actual applications.
The direct design of repetitive controller in discrete time domain is more
practical. In [23], a discrete-time variable-structure repetitive control was
proposed. The presented control scheme ensures robust stability of the re-
sultant quasi-sliding-mode dynamics to parameter variations and exogenous
disturbances. The authors in [24] have investigated a positive realness prob-
lem raised in the discrete repetitive control. The sufficient condition of the
repetitive control stability can be satisfied through constructing a discrete
positive real transfer function. Based on two-dimensional system theory, the
problem of designing discrete-time repetitive-control system were studied in
[25, 26]. By the same argument, the observer-based repetitive controller de-
sign method for discrete-time systems with uncertainties was presented in
[27].

On the other hand, for many control system, when a system is depen-
dent on uncertain parameters, it is desirable to design a control system is
not only asymptotically stable but also guarantees an adequate level of con-
trol performance. This kind of control problem, is called guaranteed-cost
control [28, 29]. For a class of uncertain discrete-time systems, a guaran-
teed cost preview controller was proposed in [18]. For discrete-time linear
systems with uncertainties, a method of designing a guaranteed cost robust
discrete repetitive controller based on two-dimensional model was proposed
in [30]. For continuous-time linear systems, in [31], the design of non-fragile
guaranteed-cost repetitive control was studied. It should be noted that the
guaranteed-cost preview repetitive control problems have not been considered
so far.

In this paper, motivated by the above results, a new configuration of
repetitive control system with preview feedforward compensation, as well as
the guaranteed-cost preview repetitive controller design method is presented.
Using the lift technique, an augmented state-space dynamic system is con-
structed. The robust guaranteed-cost preview repetitive controller design
problem is then transformed into the guaranteed-cost control problem of the
augmented system. By combining parameter-dependent Lyapunov function
method with LMI techniques, the guaranteed-cost preview repetitive con-
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troller is obtained.
The rest of this paper is organized as follows. Section 2 presents problem

formulation and preliminaries. Section 3 describes the construction of an
augmented dynamic system. The design of guaranteed-cost preview repet-
itive controller is explained in Section 4. Section 5 presents a numerical
example that demonstrates the effectiveness of the method. Finally, Section
6 gives some concluding remarks.

Throughout this paper, Rn denotes an n-dimensional Euclidean space,
Rn×m is the set of all n × m real matrices, I means an identity matrix of
appropriate order, 0p×p is the p × p zero matrix (the subscript is omitted if
the dimension is clear.), and ∗ indicates the entries below the main diagonal
of a symmetric block matrix. The notation X > 0 (< 0) means that matrix
X is positive (negative) definite.

2. Problem Formulation and Preliminaries

Consider the following uncertain SISO discrete-time system:{
x(k + 1) = A(θ)x(k) +B(θ)u(k) + Ed(k),
y(k) = Cx(k).

(1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input, d(k) ∈ Rp is
a periodic disturbance, and y(k) ∈ Rq is the output of the plant. E, C are
constant matrices with appropriate dimensions. A(θ), B(θ) are uncertain
matrices with appropriate dimensions and are given by

[A(θ) B(θ)] =
s∑
i=1

θi [Ai Bi] . (2)

where Ai, Bi (i = 1, 2, . . . , s) are constant matrices with appropriate dimen-
sions, and θ = [θ1, θ2, · · · , θs]T is the uncertain constant parameter vector
satisfying

θ ∈ Θ :=

{
θ ∈ Rs| θi ≥ 0, (i = 1, 2, . . . , s),

s∑
i=1

θi = 1

}
. (3)

Let r(k) ∈ Rq be a periodic reference signal to be tracked by y(k) ∈ Rq

and
e(k) = r(k)− y(k) (4)
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be the tracking error.
Throughout this paper, two assumptions are made:
A1: The reference signal r(k) and disturbance signal d(k) are periodic

and both of the period are L.
A2: The preview length of the reference signal r(k) and disturbance

signal d(k) is Mr and Md (Mr, Md are less than L), respectively. That is,
at each time k, the Mr (Md) future values, r(k+ 1), r(k+ 2), . . ., r(k+Mr)
(d(k + 1), d(k + 2), . . ., d(k +Md)) as well as the present and past values of
the reference signal are available.

Remark 2.1. In fact, the disturbance signal and the reference signal are not
necessarily the same period. In this case, the period of the repetitive controller
can be set as the minimum common multiple of the period of reference signal
and interference signal.

Remark 2.2. Clearly, a conventional feedback control system does not take
full advantage of the known future values, i.e., Mr = 0 and Md = 0. Hy-
pothes A2 indicates that the reference signal and the disturbance signals have
impacted performance of the control system significantly only for a certain
time period [17, 32, 33].

The basic configuration of a discrete-time repetitive control system [34]
is shown in Fig. 1, where P (z) is the compensated plant, r(k) is a periodic
reference input with period L, and CR(z) is a repetitive controller. The

Figure 1: Basic discrete-time repetitive-control system.

output of the repetitive controller, v(k), is

CR(z) =
1

1− z−L
(5)

v(k) =

{
v(k − L) + e(k), k ≥ L,
e(k), k < L.

(6)
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Figure 2: Configuration of repetitive-control system with preview compensation.

This paper concerns the repetitive-control system configuration in Fig.
2, where G(z) is the controlled plant as described in system (1). Kr(j)(j =
0, 1, 2, . . . ,Mr) and Kd(j)(j = 0, 1, 2, . . . ,Md) are the gains of the reference
signal and disturbance signal preview compensator, respectively. Ke(j)(j =
0, 1, 2, . . . , L − 1) and Ky are the gains of the repetitive controller and the
output feedback controller.

The objective is to design a guaranteed-cost preview control law with the
form of

u(k) =
L−1∑
j=0

Ke(j)v(k−j)+Kyy(k)+
Mr∑
j=0

Kr(j)r(k+j)+

Md∑
j=0

Kd(j)d(k+j). (7)

Remark 2.3. The preview repetitive controller (7) consists of four parts:
the first part is repetitive control, the second term represents output feedback,
the third and the fourth represent the preview action based on the future value
of the previewable reference signal and the disturbance signal. Besides, con-
sidering that the system states are not measurable, the static output feedback
is used instead of taking the state feedback.

For uncertain discrete-time system (1), we introduce a quadratic cost
function

J =
∞∑
k=0

[
e(k)TQee(k) + ∆u(k)TR∆u(k)

]
, (8)

where ∆u(k) = u(k)− u(k − L), Qe and R are the given symmetric positive
definite weighted matrices.

A guaranteed-cost preview controller is defined as follows.
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Definition 2.4. For the uncertain discrete-time system (1) and the cost
function (8), if there exist a preview repetitive-control law (7) that produces
a control input u∗(k), and a positive constant J∗ such that lim

k→∞
e(k) = 0,

and for all admissible uncertainties the closed-loop system is robustly sta-
ble and the value of the cost function (8) satisfies J ≤ J∗, then J∗ is said
to be a guaranteed cost; and u∗(k) is said to be a guaranteed-cost preview
repetitive-controller for the cost function (8).

To obtain our main results, the following lemmas will be used.

Lemma 2.5. [35] For appropriately dimensioned matrices T , S, R and N ,
and scalar β, T + STRT +RS < 0 if the following condition holds:[

T (βRT +NST )T

βRT +NST −βN − βNT

]
< 0. (9)

Lemma 2.6. [36] For the matrices L ∈ RS×S, H ∈ RS×S and H > 0, one
has

−LTH−1L ≤ −L− LT +H. (10)

3. Construction of Augmented Dynamic System

In this section, by using the L-order forward difference operator, an aug-
mented state-space dynamic system is first presented, which contains pre-
viewed information, error vectors and states of the system. Then, the guar-
anteed cost preview repetitive control problem is transformed into the guar-
anteed cost control problem for the augmented dynamic system.

For all the system variables, define the L-order forward difference operator
as

∆ξ(k) = ξ(k)− ξ(k − L), ξ ∈ {x, y, u, r, d}. (11)

Taking the L-order difference operator on both sides of the state equation
(1) and error equation (4), we derive

e(k + 1) = e(k + 1− L) + ∆r(k + 1)− CA(θ)∆x(k)
− CB(θ)∆u(k)− CE∆d(k),

∆x(k + 1) = A(θ)∆x(k) +B(θ)∆u(k) + E∆d(k),
∆y(k) = C∆x(k).

(12)
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Defining {
xe(k) = [eT (k) eT (k − 1) · · · eT (k − L+ 1)]T ,
x(k) = [xTe (k) ∆xT (k)]T ,

(13)

and combining (12) and (13), we have

x(k + 1) = A(θ)x(k) +B(θ)∆u(k) +Gr∆r(k + 1) +Gd∆d(k), (14)

where

A(θ) =


0 · · · 0 I −CA(θ)
I · · · 0 0 0
...

...
...

...
0 · · · I 0 0
0 · · · 0 0 A(θ)

 ,

B(θ) =


−CB(θ)

0
...
0

B(θ)

 , Gr =


I
0
...
0
0

 , Gd =


−CE

0
...
0
E

 .

From (2), the uncertain matrices A(θ) and B(θ) can be rewritten as

A(θ) =



0 · · · 0 I −C
s∑
i=1

θiAi

I · · · 0 0 0
...

...
...

...
0 · · · I 0 0

0 · · · 0 0
s∑
i=1

θiAi



=
s∑
i=1

θi


0 · · · 0 I −CAi
I · · · 0 0 0
...

...
...

...
0 · · · I 0 0
0 · · · 0 0 Ai

 =
s∑
i=1

θiAi,

(15)
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B(θ) =



−C
s∑
i=1

θiBi

0
...
0

s∑
i=1

θiBi


=

s∑
i=1

θi


−CBi

0
...
0
Bi

 =
s∑
i=1

θiBi. (16)

For uncertain system (14), we specify the observation equation as

e(k) = Cx(k), (17)

where C = [Iq 0(L−1)q+n].
Defining

Xr(k) =


∆r(k)

∆r(k + 1)
...

∆r(k +Mr)

 , Xd(k) =


∆r(k)

∆r(k + 1)
...

∆r(k +Md)

 , (18)

it follows from the assumptions A1 and A2 that Xr(k), Xd(k) satisfy

Xr(k + 1) = ArXr(k), (19)

Xd(k + 1) = AdXd(k), (20)

where Ar ∈ Rq(Mr+1)×q(Mr+1), Ad ∈ Rp(Md+1)×p(Md+1), and

Ar =


0 I 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . 0
0 · · · · · · 0 I
0 · · · · · · 0 0

 , Ad =


0 I 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . 0
0 · · · · · · 0 I
0 · · · · · · 0 0

 .

Now defining the augmented state vector

x̂(k) =

 x(k)
Xr(k)
Xd(k)

 , (21)
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from (14), (19) and (20), we can obtain the augmented system

x̂(k + 1) = Â(θ)x̂(k) + B̂(θ)∆u(k), (22)

where

Â(θ) =


s∑
i=1

θiAi Gxr Gxd

0 Ar 0
0 0 Ad

 =
s∑
i=1

θi

 Ai Gxr Gxd

0 Ar 0
0 0 Ad

 =
s∑
i=1

θiÂi,

(23)

B̂(θ) =


s∑
i=1

θiBi

0
0

 =
s∑
i=1

θi

 Bi

0
0

 =
s∑
i=1

θiB̂i, (24)

Gxr =
(

0 Gr 0 · · · 0
)
, Gxd =

(
Gd 0 0 · · · 0

)
. (25)

For augmented system (22), the observation equation can be written as

Z(k) = CZ x̂(k), (26)

where

CZ =


IL

C
IMr+1

IMd+1

 .

Therefore, by (22) and (26), one can get{
x̂(k + 1) = Â(θ)x̂(k) + B̂(θ)∆u(k),
Z(k) = CZ x̂(k).

(27)

In terms of the augmented state vector x̂(k), the performance index (8)
can be rewritten as

Ĵ =
∞∑
k=0

[
x̂(k)TQx̂x̂(k) + ∆u(k)TR∆u(k)

]
, (28)

where Qx̂ ∈ R[L×q+n+(Mr+1)×q+(Md+1)×p]×[L×q+n+(Mr+1)×q+(Md+1)×p], and

Qx̂ =


Qe

0
. . .

0

 ,

and R is the same as in performance index (8).
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4. Design of Guaranteed-cost Preview Repetitive Controller

Note that the proposed preview repetitive controller (7) can be written
as

∆u(k) =
L−1∑
j=0

Ke(j)e(k − j) +Ky∆y(k)

+
Mr∑
j=0

Kr(j)∆r(k + i) +

Md∑
j=0

Kd(j)∆d(k + j). (29)

Set

Ke(j) =
s∑
i=1

αiKei(j), Ky =
s∑
i=1

αiKyi,

Kr(j) =
s∑
i=1

αiKri(j), Kd(j) =
s∑
i=1

αiKdi(j), (30)

where αi (i = 1, 2, . . . , s) are adjustable variables, and αi ≥ 0,
s∑
i=1

αi = 1.

Furthermore, denoting

Ki = [Kei(0), Kei(1), · · · , Kei(L− 1), Kyi,

Kri(0), Kri(1), · · · , Kri(Mr),

Kdi(0), Kdi(1), · · · , Kdi(Md)], (31)

it follows from (29) to (31), we have

∆u(k) = (
s∑
i=0

αiKi)Z(k). (32)

If we denote α = (α1 α2 . . . αs)
T ∈ Rs and K(α) =

s∑
i=1

αiKi, then

∆u(k) = K(α)Z(k). (33)

Therefore, it is obvious that if one can design a guaranteed cost static output
feedback controller (33) to robustly stabilize the augmented system (27), then
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the preview repetitive controller (7) can also stabilize the original system (1)
and such that lim

k→∞
e(k) = 0.

In the following, we will give the sufficient conditions for the existence of
a guaranteed cost static output feedback controller (33) to robustly stabilize
the augmented system (27).

Theorem 4.1. For the augmented system (27) with the performance index
(28), if there exist positive defined parameter-dependent matrix P (θ) and

reversible matrix G(α) =
s∑
i=1

αiGi such that

 Π11 ∗ ∗[
Â(θ) + B̂(θ)K(α)CZ

]
G(α) −P (θ)−1 ∗

R
1
2K(α)CZG(α) 0 −I

 < 0, (34)

where
Π11 = −G(α)T −G(α) + P (θ)−1 +G(α)TQx̂G(α),

Qx̂ and R are the weighting matrices in performance index (28), then the
static output feedback controller (33) is a guaranteed cost controller and the

performance index satisfies Ĵ ≤ x̂T0 Px̂0, where x̂0 is the initial state of aug-
mented error system (27).

Proof: Based on (27) and (33), the following equation will be obtained:

x̂(k + 1) = [Â(θ) + B̂(θ)K(α)CZ ]x̂(k). (35)

Define a Lyapunov functional as

V (x̂(k)) = x̂(k)TP (θ)x̂(k), (36)

where P (θ) is a positive definitive matrix. The difference of Lyapunov func-
tion (36) can be obtained as

∆V (x̂(k)) = V (x̂(k + 1))− V (x̂(k))
= x̂(k + 1)TP (θ)x̂(k + 1)− x̂(k)TP (θ)x̂(k)

= x̂(k)T [Â(θ) + B̂(θ)K(α)CZ ]TP (θ)[Â(θ)+

B̂(θ)K(α)CZ ]x̂(k)− x̂(k)TP (θ)x̂(k).

(37)
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If the following condition

[Â(θ) + B̂(θ)K(α)CZ ]TP (θ)[Â(θ) + B̂(θ)K(α)CZ ]
−P (θ) +Qx̂ + CT

ZK(α)TRK(α)CZ < 0
(38)

holds, then it follows from (37), one has

∆V (x̂(k)) < −x̂(k)T (Qx̂ + CT
ZK(α)TRK(α)CZ)x̂(k) < 0. (39)

Thus, according to Lyapunov’s stability theory, the closed-loop system (35)
is robust asymptotically stable. Furthermore, from (39), we have

x̂(k)T (Qx̂ + CT
ZK(α)TRK(α)CZ)x̂(k) < −∆V (x̂(k)). (40)

Summing both sides of the above inequality from k = 1 to k =∞, it yields

J̄ =
∞∑
k=1

[x̂(k)TQx̂x̂(k) + ∆u(k)TR∆u(k)] ≤ x̂T0 Px̂0. (41)

On the other hand, applying the Schur complement formula, condition
(38) can be equivalent to −P (θ) +Qx̂ ∗ ∗

Â(θ) + B̂(θ)K(α)CZ −P (θ)−1 ∗
R

1
2K(α)CZ 0 −I

 < 0. (42)

Pre- and post-multiplying inequality (42) by diag
{
G(α)T , I, I

}
and its trans-

pose, respectively, one gets Λ11 ∗ ∗[
Â(θ) + B̂(θ)K(α)CZ

]
G(α) −P (θ)−1 ∗

R
1
2K(α)CZG(α) 0 −I

 < 0, (43)

where Λ11 = −G(α)TP (θ)G(α) +G(α)TQx̂G(α).
From Lemma 2.6, it follows that :

−G(α)TP (θ)G(α) ≤ −G(α)T −G(α) + P (θ)−1. (44)

Therefore, based on (43) and (44), (43) is guaranteed by (34). The proof is
completed.

The following result is equivalent to Theorem 4.1.

13

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2018                   doi:10.20944/preprints201811.0503.v1

http://dx.doi.org/10.20944/preprints201811.0503.v1


Theorem 4.2. For the augmented system (27) with the performance index
(28), if there exist positive defined parameter-dependent matrix X(θ), re-
versible matrices W , U , G(α) and a scalar β such that

Ψ(θ, α) =


Ψ11 ∗ ∗ ∗
Ψ21 −X(θ) ∗ ∗

R
1
2L(α)Qx̂ 0 −I ∗

CzG(α)− UQx̂ Ψ42 βW TL(α)TR
1
2 Ψ44

 < 0, (45)

where

Ψ11 = −G(α)−G(α)T +X(θ) +G(α)TQx̂G(α),

Ψ21 = Â(θ)G(α) + B̂(θ)L(α)Qx̂,

Ψ42 = βW TL(α)T B̂(θ)T ,

Ψ44 = −βUM − βUTMT ,

Qx̂ and R are the weighting matrices in performance index (28), then the
conclusion of Theorem 4.1 holds.

Proof: Denote

Ã =

(
Â
0

)
, B̃ =

(
B̂

R
1
2

)
, Φ(θ) =

(
X(θ) 0

0 I

)
. (46)

Inequality (45) can be written as Ψ11 ∗ ∗
Ã(θ)G(α) + B̃(θ)L(α)Qx̂ −Φ(θ) ∗

CZG(α)− UQx̂ βW TL(α)T B̃(θ)T Ψ44

 < 0, (47)

or  (
Ψ11 ∗

Ã(θ)G(α) + B̃(θ)L(α)Qx̂ −Φ(θ)

)
∗

Ξ31 Ψ44

 < 0, (48)

where

Ξ31 = βW TL(α)T B̃(θ)T
[

0 I
]

+ UWW−1U−1(CZG(α)− UQx̂)
[
I 0

]
.
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We further denote

T =

[
−G(α)−G(α)T +X(θ) +G(α)TQx̂G(α) ∗

Ã(θ)G(α) + B̃(θ)L(α)Qx̂ −Φ(θ)

]
,

N = UM, R =

[
0
I

]
B̃(θ)L(α)W,

S = W−1U−1(CZG(α)− UQx̂)
[
I 0

]
.

By Lemma 2.5, inequality (48) can guarantee that(
−G(α)−G(α)T +X(θ) +G(α)TQx̂G(α) ∗

Ã(θ)G(α) + B̃(θ)L(α)Qx̂ −Φ(θ)

)
+ sym

([
0
I

]
B̃(θ)L(α)WW−1U−1(CZG(α)− UQx̂)

[
I 0

])
=

(
−G(α)−G(α)T +X(θ) +G(α)TQx̂G(α) ∗

Ã(θ)G(α) + B̃(θ)L(α)Qx̂ −Φ(θ)

)
+ sym

([
0
I

]
B̃(θ)L(α)U−1(CZG(α)− UQx̂)

[
I 0

])
=

(
−G(α)−G(α)T +X(θ) +G(α)TQx̂G(α) ∗

Ã(θ)G(α) −Φ(θ)

)
+ sym

([
0
I

]
B̃(θ)L(α)U−1(CZG(α) + UQx̂ − UQx̂)

[
I 0

])
< 0. (49)

Setting K(α) = L(α)U−1, then inequality (49) becomes(
−G(α)−G(α)T +X(θ) +G(α)TQx̂G(α) ∗

Ã(θ)G(α) −Φ(θ)

)
+ sym

([
0
I

]
B̃(θ)K(α)(CZG(α))

[
I 0

])
=

(
−G(α)−G(α)T +X(θ) +G(α)TQx̂G(α) ∗

Ã(θ)G(α) + B̃(θ)K(α)CZG(α) −Φ(θ)

)
< 0.

(50)
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By some calculation, it can be found that(
−G(α)−G(α)T +X(θ) +G(α)TQx̂G(α) ∗

Ã(θ)G(α) + B̃(θ)K(α)CZG(α) −Φ(θ)

)

=

 −G(α)−G(α)T +X(θ) +G(α)TQx̂G(α) ∗ ∗
Â(θ)G(α) + B̂(θ)K(α)CZG(α) −X(θ) ∗

R
1
2K(α)CZG(α) 0 −I

 .

(51)

Setting X(θ) = P (θ)−1, it follows from Theorem 4.1, Theorem 4.2 holds.
It should be pointed out that the condition (45) in Theorem 4.2 is not a

convex problem. The following theorem can translate it into an LMI problem.

Theorem 4.3. Given a scalar β and matrix W , if there exist Xi > 0, U ,
Li, Gi (i = 1, 2, 3 . . . , s) with appropriate dimensions such that

Πij < 0 (i, j ∈ 1, 2, · · · , s), (52)

where

Πij =


−Gj −GT

j +Xi ∗ ∗ ∗ ∗
ÂiGj + B̂iLjQx̂ −Xi ∗ ∗ ∗

R
1
2LjQx̂ 0 −I ∗ ∗

CziGj − UQx̂ βW TLTj B̂
T
i βW TLTj R

1
2 Ψ44 ∗

Q
1
2
x̂Gj 0 0 0 −I

 , (53)

Qx̂ and R are the weighting matrices in performance index (28), then the
augmented system (27) is robustly asymptotically stable under the guaranteed
cost controller (32), and the gain matrix can be obtained by Ki = LiU

−1.

Moreover, the corresponding closed-loop performance index satisfies Ĵ ≤
s∑
i=1

x̂T0X
−1
i x̂0.

Proof: From (23) and take into account the definition of K(α), G(α), one
gets

Π(θ, α) =
s∑
i=1

s∑
j=1

θiαjΠij. (54)

In fact, inequality (52) implies Π(θ, α) < 0. As a result, the condition of
Theorem 4.2 holds. The proof is completed.

Based on Theorem 4.3, the following conclusion can be obtained easily.
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Corollary 4.4. Given a scalar β and matrix W , if there exist X > 0, U , L
and G with appropriate dimensions such that

Ψi < 0 (i ∈ 1, 2, 3, . . . , s), (55)

where

Ψi =


−G−GT +X ∗ ∗ ∗ ∗
ÂiG+ B̂iLQx̂ −X ∗ ∗ ∗

R
1
2LQx̂ 0 −I ∗ ∗

CziG− UQx̂ βW TLT B̂T
i βW TLTR

1
2 Ψ44 ∗

Q
1
2
x̂G 0 0 0 −I

 < 0,

then the augmented system (27) is robustly asymptotically stable under the
guaranteed cost controller

∆u(k) = KZ(k) = LU−1Z(k). (56)

The gain matrix can be obtained by K = LU−1. Moreover, the corresponding
closed-loop performance index satisfies Ĵ ≤ x̂T0X

−1x̂0.

5. Numerical example

Consider the discrete-time system (1) with

A(θ) =

(
0.60 0.10
0.45 0.80

)
θ1 +

(
0.95 0
0.10 0.96

)
θ2,

B(θ) =

(
0.35
0.14

)
θ1 +

(
0.30
0.34

)
θ2, E =

(
0.02
0.05

)
, C =

[
0.9 0.5

]
.

Assume that the reference signal is

r(k) = sin(
2π

10
k) + 0.25sin(

4π

10
k) + 0.5sin(

6π

10
k)

and the disturbance signal is d(k) = sin(2π
10
k).

Take the uncertain parameters θ1 = 0.20, θ2 = 0.80, the adjustable pa-
rameters β = 0.40 and α1 = 0.80, α2 = 0.20, Q = 2CZ , R = 1, W =
0.3CZC

T
Z .

The simulation results are presented for the following three situations,
namely, (i)Mr = 7, Md = 6, (ii)Mr = 5, Md = 4 and (iii)Mr = 2, Md = 1. By
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Figure 3: The reference signal and the output of system

solving LMIs (52) in Theorem 4.3, the feedback gain matrix Ki = LiU
−1(i =

1, 2) can be derived, then the feedback gain K = α1K1 + α2K2 is obtained.
When Mr = 7,Md = 6, the following parameters are obtained:

Ke = [0.0279 − 0.0065 − 0.0013 − 0.0004 − 0.0003 − 0.0007

− 0.0011 0.0001 0.0376 2.3171], Ky = [−2.2477],

Kr = [−0.0037 2.3171 0.0377 − 0.0001

− 0.0014 − 0.0010 − 0.0007 − 0.0009],

Kd = [−0.1006 − 0.0005 0.0006 0.0003 0.0002 0.0001 0.0001].

When Mr = 5,Md = 4, Ke, Ky, Kr and Kd will be:

Ke = [0.0212 − 0.0064 − 0.0013 − 0.0004 − 0.0003 − 0.0007

− 0.0011 0.0002 0.0376 2.3167], Ky = [−2.2477],

Kr = [−0.0029 2.3160 0.0372 − 0.0004 − 0.0018 − 0.0015],

Kd = [−0.1005 − 0.0004 0.0006 0.0004 0.0002].

When Mr = 2,Md = 1, the following will be obtained:

Ke = [0.0445 − 0.0046 − 0.0018 − 0.0008 − 0.0008 − 0.0013

− 0.0018 − 0.0005 0.0397 2.3239], Ky = −2.2532,

Kr = [−0.0008 2.3233 0.0386], Kd = [−0.1005 − 0.0002].

Set the initial value of x(k) be x(0) = [0 0]T . Fig. 3 shows the reference
signal r(k) and the outputs y(k) of system (1). The tracking errors and
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Figure 4: The tracking errors

Figure 5: The control inputs

control input are depicted in Fig. 4 and Fig. 5, respectively. It can be
seen from Fig. 3 and Fig. 4, the outputs can all track the reference signal
accurately. Particularly, the repetitive control with preview compensator
can effectively reduce the tracking error. In addition, the tracking error
peak decrease of the control system is faster with the increase of the preview
length.

For comparison, we let Mr = 0, Md = 0 to design a conventional
guaranteed-cost repetitive-controller [30, 31]. The best results are shown in
Fig. 6 and Fig. 7. From the comparison, we can see that the preview repeti-
tive controller provides better performance than the repetitive controller with
no preview compensation does.
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Figure 6: The reference signal and the output of system with no preview.

Figure 7: The tracking error with no preview.

6. Conclusion

This paper presented a design method of guaranteed cost preview repeti-
tive controller for a class of polytopic uncertain discrete-time systems. Using
the L-order forward difference operator, an augmented dynamic system was
first constructed. Based on that, a guaranteed cost static output feedback
controller was then designed. By incorporating this controller into the orig-
inal system, the guaranteed-cost preview repetitive controller was obtained.
Simulation results verified the proposed method to be very effective.
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