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Abstract. By generalizing the notion of pointwise 1-type Gauss map, the gener-
alized 1-type Gauss map has been recently introduced. Without any assumption,
we classified all possible ruled surfaces with generalized 1-type Gauss map in a 3-
dimensional Minkowski space. In particular, null scrolls do not have the proper
generalized 1-type Gauss map. In fact, it is harmonic.

1. Introduction

A Riemannian manifold can be imbedded in a Euclidean space by Nash’s imbed-
ding theorem. That enables us to study Riemannian manifolds as submanifolds of a
Euclidean space. In the late 1970’s, B.-Y. Chen introduced the notion of finite-type
immersion of Riemannian manifolds into Euclidean space by generalizing the eigen-
value problem of the immersion ([1]). An isometric immersion x of a Riemannian
manifold M into a Euclidean space Em is said to be of finite-type if it has the spectral
decomposition as

x = x0 + x1 + · · ·+ xk,

where x0 is a constant vector and ∆xi = λixi for some positive integer k and λi ∈ R,
i = 1, . . . , k. Here, ∆ denotes the Laplacian operator defined on M . If λ1, . . . , λk are
mutually different, M is said to be of k-type. By putting together the eigenvectors of
the same eigenvalue, we may assume that a finite-type immersion x of a Riemannian
manifold into a Euclidean space is of k-type for some positive integer k.

The notion of finite-type immersion of submanifold into Euclidean space was ex-
tended to the study of finite-type immersion or smooth maps defined on submanifolds
of a pseudo-Euclidean space Em

s with the indefinite metric of index s ≥ 1. In this
sense, it is very natural for geometers to have interest in finite-type Gauss map of
submanifolds of a pseudo-Euclidean space ([9, 11, 12]).

We now focus on surfaces of the Minkowski space E3
1. Let M be a surface in the

3-dimensional Minkowski space E3
1 with non-degenerate induced metric. From now on,
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a surface M in E3
1 means non-degenerate, i.e., its induced metric is non-degenerate

without otherwise stated. The map G : M → Q2(ε) ⊂ E3
1 which maps each point of

M to a unit normal vector to M at the point is called the Gauss map of M , where
ε (= ±1) denotes the sign of the vector field G and Q2(ε) is a 2-dimensional space form
with constant sectional curvature ε. A helicoid or a right cone in E3 has the unique
form of Gauss map G which looks like 1-type Gauss map in the usual sense. However,
it is quite different and thus the authors et al. defined the following definition.

Definition 1.1. ([2]) A surface M in E3
1 is said to have pointwise 1-type Gauss map

G or the Gauss map G is of pointwise 1-type if the Gauss map G of M satisfies

∆G = f(G+ C)

for some non-zero smooth function f and a constant vector C. In particular, if C is
zero, then the Gauss map is said to be of pointwise 1-type of the first kind. Otherwise,
it is said to be of pointwise 1-type of the second kind.

Some other surfaces of E3 such as conical surfaces have an interesting type of Gauss
map. A surface in E3

1 parameterized by

x(s, t) = p+ tβ(s),

where p is a point and β(s) a unit speed curve is called a conical surface. The typical
conical surfaces are a right (circular) cone and a plane.

Example 1.2. ([13]) Let M be a surface in E3 parameterized by

x(s, t) = (t cos2 s, t sin s cos s, t sin s).

Then, the Gauss map G can be obtained by

G =
1√

1 + cos2 s
(− sin3 s, (2− cos2 s) cos s,− cos2 s).

Its Laplacian turns out to be
∆G = fG+ gC

for some non-zero smooth functions f, g and a constant vector C. The surface M is a
kind of conical surfaces generated by a spherical curve β(s) = (cos2 s, sin s cos s, sin s)
on the unit sphere S2(1) centered at the origin.

Based on such an example, by generalizing the notion of pointwise 1-type Gauss
map, the so-called generalized 1-type Gauss map was introduced.

Definition 1.3. ([13]) A surface M in E3
1 is said to have generalized 1-type Gauss map

G or the Gauss map G is of generalized 1-type if the Gauss map G of M satisfies

∆G = fG+ gC (1.1)

for some non-zero smooth functions f, g and a constant vector C. In particular, If the
generalized 1-type Gauss map G is not of pointwise 1-type, it is said to be proper.
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Definition 1.4. A conical surface with generalized 1-type Gauss map is called a conical
surface of G-type.

Remark 1.5. ([13]) A conical surface of G-type can be constructed by the functions
f , g and the constant vector C by solving the differential equations generated by (1.1).

Here, we provide an example of a cylindrical ruled surface in the 3-dimensional
Minkowski space E3

1 with generalized 1-type Gauss map.

Example 1.6. Let M be a ruled surface in the Minkowski 3-space E3
1 parameterized

by

x(s, t) =

(
1

2

(
s
√
s2 − 1− ln(s+

√
s2 − 1)

)
,
1

2
s2, t

)
, s ≥ 1.

Then, the Gauss map G is given by

G = (−s,−
√
s2 − 1, 0).

By a direct computation, we see that its Laplacian satisfies

∆G =
s−
√
s2 − 1

(s2 − 1)
3
2

G+
s(s−

√
s2 − 1)

(s2 − 1)
3
2

(1,−1, 0),

which indicates that M has generalized 1-type Gauss map.

2. Preliminaries

Let E3
1 be a Minkowski 3-space with the Lorentz metric ds2 = −dx21+dx22+dx23, where

(x1, x2, x3) denotes the standard coordinate system in E3
1. Let M be a non-degenerate

surface in E3
1. A curve in E3

1 is said to be space-like, time-like or null if its tangent
vector field is space-like, time-like or null, respectively. It is well known that in terms
of the local coordinates {x̄i} of M the Laplacian ∆ is given by

∆ = − 1√
|G|

2∑
i,j=1

∂

∂x̄i
(
√
|G|gij ∂

∂x̄j
),

where (gij) = (gij)
−1 and G is the determinant of the matrix (gij) consisting of the

components of the first fundamental form.
Now, we define a ruled surface M in the Minkowski 3-space E3

1. Let I and J be
some open intervals in the real line R. Let α = α(s) be a curve in E3

1 defined on I
and β = β(s) a transversal vector field with α′(s) along α. From now on, ′ denotes
the differentiation with respect to the parameter s unless otherwise stated. Then, a
parametrization of a ruled surface M is given by

x(s, t) = α(s) + tβ(s), s ∈ I, t ∈ J.
The curve α = α(s) is called a base curve and β = β(s) a director vector field or a
ruling. In particular, if β is constant, M is said to be cylindrical. Otherwise, it is said
to be non-cylindrical.
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Ruled surfaces in E3
1 with non-null base curve may have different types according to

their causal character of the base curve and the director vector field. If the base curve
α is space-like or time-like, the director vector field β can be chosen to be orthogonal to
α that is normalized. The ruled surface M is said to be of type M+ or M−, respectively
if α is spacelike or timelike, respectively. Also, the ruled surface of type M+ can be
divided into three types. If β is space-like, it is said to be of type M1

+ or M2
+ if β′

is non-null or null, respectively. When β is time-like, β′ is space-like because of the
character of the causal vectors, which is said to be of type M3

+. On the other hand,
when α is time-like, β is always space-like. Accordingly, it is also said to be of type
M1
− or M2

− if β′ is non-null or null, respectively. The ruled surface of type M1
+ or M2

+

(resp. M3
+, M

1
− or M2

−) is clearly space-like (resp. time-like).
If the base curve α is null, the director vector field β along α must be chosen to

be null since the ruled surface is non-degenerate. Such a ruled surface M is called a
null scroll . One of such is a B-scroll ([7], [9]). Other cases such as α is non-null and
β is null, or α is null and β is non-null are reduced to one of the types M1

±, M
2
± and

M3
+, or a null scroll by an appropriate change of the base curve ([10]). Among null

scrolls, a B-scroll has an interesting geometric property such as it has constant mean
curvature and constant Gaussian curvature. Let α = α(s) be a null curve in E3

1 with
Cartan frame {A,B,C}, that is, A,B,C are vector fields along α in E3

1 satisfying the
following conditions:

〈A,A〉 = 〈B,B〉 = 0, 〈A,B〉 = 1, 〈A,C〉 = 〈B,C〉 = 0, 〈C,C〉 = 1,

α′ = A, C ′ = −aA− k(s)B,

where a is a constant and k(s) a nowhere vanishing function. A null scroll parametrized
by x = x(s, t) = α(s) + tB(s) is called a B-scroll which has mean curvature H = a
and Gaussian curvature K = a2. Furthermore, its Laplacian ∆G of the Gauss map G
is given by

∆G = −2a2G,

from which, we see that a B-scroll is minimal if and only if it is flat.
Throughout the paper, all surfaces in E3

1 are smooth and connected unless otherwise
stated.

3. Cylindrical ruled surfaces in E3
1 with generalized 1-type Gauss map

In this section, we study the cylindrical ruled surfaces with generalized 1-type Gauss
map in the Minkowski 3-space E3

1.
Let M be a cylindrical ruled surface of type M1

+, M
1
− or M3

+ in E3
1. Then M is

parameterized by a base curve α and a unit constant vector β such that

x(s, t) = α(s) + tβ

satisfying 〈α′, α′〉 = ε1 (= ±1), 〈α′, β〉 = 0 and 〈β, β〉 = ε2 (= ±1).
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We now suppose that M has generalized 1-type Gauss map G. Then the Gauss map
G satisfies the condition (1.1). We put the constant vector C = (c1, c2, c3) in (1.1) for
some constants c1, c2 and c3.

Suppose that f = g. Then the Gauss map G is nothing but of pointwise 1-type. A
classification of cylindrical ruled surfaces with pointwise 1-type Gauss map in E3

1 was
described in [5].

If M is of type M1
+, then M is an open part of a Euclidean plane or a cylinder over

a curve of infinite-type satisfying

c2f−
1
3 − ln |c2f−

1
3 + 1| = ±c3(s+ k) (3.1)

if C is null, or√(
c2f−

1
3 + 1

)2
+ (−c21 + c22)− ln

(
c2f−

1
3 + 1 +

√(
c2f−

1
3 + 1

)2
+ (−c21 + c22)

)
+ ln

√
| − c21 + c22| = ±c3(s+ k)

(3.2)
if C is non-null, where c is some non-zero constant and k is a constant.

If M is of type M1
−, M is an open part of a Minkowski plane or a cylinder over a

curve of infinite-type satisfying

c2f−
1
3 + ln |c2f−

1
3 − 1| = ±c3(s+ k) (3.3)

or √(
c2f−

1
3 − 1

)2
− (−c21 + c22) + ln

(
c2f−

1
3 − 1 +

√(
c2f−

1
3 − 1

)2
+ | − c21 + c22|

)
− ln

√
| − c21 + c22| = ±c3(s+ k)

(3.4)
depending on the constant vector C is null or non-null, respectively, for some non-zero
constant c and some constant k.

If M is of type M3
+, M is an open part of either a Minkowski plane or a cylinder

over a curve of infinite-type satisfying√
c22 + c23 −

(
c2f−

1
3 − 1

)2
− sin−1

(
c2f−

1
3 − 1√

c22 + c23

)
= ±c3(s+ k), (3.5)

where c is a non-zero constant and k a constant.
We now assume that f 6= g. Here, we consider two cases.

Case 1. Let M be a cylindrical ruled surface of type M1
+ or M1

−, i.e., ε2 = 1.
Without loss of generality, we may assume that α(s) = (α1(s), α2(s), 0) is a plane
curve parameterized by an arc length s and β is chosen as β = (0, 0, 1). Then the
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Gauss map G of M and the Laplacian ∆G of the Gauss map are respectively obtained
by

G = (−α′2(s),−α′1(s), 0) and ∆G = (ε1α
′′′

2 (s), ε1α
′′′

1 (s), 0). (3.6)

With the help of (1.1) and (3.6), it immediately follows

C = (c1, c2, 0)

for some constants c1 and c2. And we also have

ε1α
′′′

2 = −fα′2 + gc1,

ε1α
′′′

1 = −fα′1 + gc2.
(3.7)

Firstly, we consider the case that M is of type M1
+. Since α is space-like, we may put

α′1(s) = sinh θ(s) and α′2(s) = cosh θ(s)

for some function θ(s) of s. Then (3.7) can be written in the form

(θ′)2 cosh θ + θ′′ sinh θ = −f cosh θ + gc1,

(θ′)2 sinh θ + θ′′ cosh θ = −f sinh θ + gc2.

It implies that

(θ′)2 = −f + g(c1 cosh θ − c2 sinh θ) (3.8)

and

θ′′ = g(−c1 sinh θ + c2 cosh θ). (3.9)

In fact, θ′ is the signed curvature of the base curve α = α(s).
Suppose θ is a constant, i.e., θ′ = 0. Then α is part of a straight line. In this case,

M is an open part of a Euclidean plane.
Now we suppose that θ′ 6= 0. From (3.7), we see that the functions f and g depend

only on the parameter s, i.e., f(s, t) = f(s) and g(s, t) = g(s). Taking the derivative
of equation (3.8) and using (3.9), we get

3θ′θ′′ = −f ′ + g′(c1 cosh θ − c2 sinh θ).

With the help of (3.8), it follows that

3

2

(
(θ′)2

)′
= −f ′ + g′

g

(
(θ′)2 + f

)
.

Solving the above differential equation, we have

θ′(s)2 = k1g
2
3 +

2

3
g

2
3

∫
g−

2
3f

(
−f

′

f
+
g′

g

)
ds, k1 ( 6= 0) ∈ R. (3.10)

We put

θ′(s) = ±
√
p(s),
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where p(s) = |k1g
2
3 + 2

3
g

2
3

∫
g−

2
3f
(
−f ′

f
+ g′

g

)
ds|. It means that the function θ is

determined by the functions f, g and a constant vector satisfying (1.1). Therefore, the
cylindrical ruled surface M satisfying (1.1) is determined by a base curve α such that

α(s) =

(∫
sinh θ(s)ds,

∫
cosh θ(s)ds, 0

)
and the director vector field β(s) = (0, 0, 1).

In this case, if f and g are constant, the signed curvature θ′ of a base curve α is
non-zero constant and the Gauss map G is of usual 1-type. Hence, M is an open part
of a hyperbolic cylinder or a circular cylinder ([6]).

Suppose that one of the functions f and g is not constant. Then M is an open
part of a cylinder over the base curve of infinite-type satisfying (3.10). For a curve of
finite-type in a plane of E3

1, see [6] in details.
Next we consider the case that M is of type M1

−. Since α is time-like, we may put

α′1(s) = cosh θ(s) and α′2(s) = sinh θ(s)

for some function θ(s) of s.
As was given in the previous case of type M1

+, if the signed curvature θ′ of the base
curve α is zero, M is part of a Minkowski plane.

We now assume that θ′ 6= 0. Quite similarly as above, we have

θ′(s)2 = k2g
2
3 +

2

3
g

2
3

∫
g−

2
3f

(
f ′

f
− g′

g

)
ds, k2 ( 6= 0) ∈ R, (3.11)

or, we put

θ′(s) = ±
√
q(s),

where q(s) = |k2g
2
3 + 2

3
g

2
3

∫
g−

2
3f
(

f ′

f
− g′

g

)
ds|.

Case 2. Let M be a cylindrical ruled surface of type M3
+. In this case, without loss of

generality we may assume that α(s) = (0, α2(s), α3(s)) is a plane curve parameterized
by the arc length s and β is chosen as β = (1, 0, 0). Then the Gauss map G of M and
the Laplacian ∆G of the Gauss map are obtained by

G = (0, α′3,−α′2) and ∆G = (0,−α′′′

3 , α
′′′

2 ). (3.12)

The relationship (3.12) and the condition (1.1) imply that the constant vector C has
the form

C = (0, c2, c3)

for some constants c2 and c3.
If f and g are both constant, the Gauss map is of 1-type in the usual sense and thus

M is an open part of a circular cylinder ([1]).
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We now assume that the functions f and g are not both constant. Then, with the
help of (1.1) and (3.12), we get

−α′′′

3 = fα′3 + gc2,

α
′′′

2 = −fα′2 + gc3.
(3.13)

Since α is parameterized by the arc length s, we may put

α′2(s) = cos θ(s) and α′3(s) = sin θ(s)

for some function θ(s) of s. Hence, (3.13) can be expressed as

(θ′)2 sin θ − θ′′ cos θ = f sin θ + gc2,

(θ′)2 cos θ + θ′′ sin θ = f cos θ − gc3.

It follows

(θ′)2 = f + g(c2 sin θ − c3 cos θ). (3.14)

Thus, M is a cylinder over the base curve α given by

α(s) =

(
0,

∫
cos

(∫ √
r(s)ds

)
ds,

∫
sin

(∫ √
r(s)ds

)
ds

)
and the ruling β(s) = (1, 0, 0), where r(s) = |f(s) + g(s) (c2 sin θ(s)− c3 cos θ(s)) |.

Consequently, we have

Theorem 3.1 (Classification of cylindrical ruled surfaces in E3
1). Let M be a cylindrical

ruled surface with generalized 1-type Gauss map in the Minkowski 3-space E3
1. Then,

M is an open part of a Euclidean plane, a Minkowski plane, a circular cylinder, a
hyperbolic cylinder or a cylinder over a base curve of infinite-type satisfying (3.1),
(3.2), (3.3), (3.4), (3.5), (3.10), (3.11) or (3.14).

4. Non-cylindrical ruled surfaces with generalized 1-type Gauss map

In this section, we classify the non-cylindrical ruled surfaces with generalized 1-type
Gauss map in E3

1.

Case 1. Let M be a non-cylindrical ruled surface of type M1
+, M

3
+ or M1

−. Then M
is parameterized by, up to a rigid motion,

x(s, t) = α(s) + tβ(s)

such that 〈α′, β〉 = 0, 〈β, β〉 = ε2 (= ±1) and 〈β′, β′〉 = ε3 (= ±1). Then, {β, β′, β×β′}
is an orthonormal frame along the base curve α. For later use, we define the smooth
functions q, u,Q and R as follows:

q = ‖xs‖2 = ε4〈xs, xs〉, u = 〈α′, β′〉, Q = 〈α′, β × β′〉, R = 〈β′′, β × β′〉,
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where ε4 is the sign of the coordinate vector field xs = ∂x/∂s. The vector fields α′, β′′,
α′ × β and β × β′′ are represented in terms of the orthonormal frame {β, β′, β × β′}
along the base curve α as

α′ = ε3uβ
′ − ε2ε3Qβ × β′,

β′′ = −ε2ε3β − ε2ε3Rβ × β′,
α′ × β = ε3Qβ

′ − ε3uβ × β′,
β × β′′ = −ε3Rβ′.

(4.1)

Therefore, the smooth function q is given by

q = ε4(ε3t
2 + 2ut+ ε3u

2 − ε2ε3Q2).

Note that t is chosen so that q takes positive values.
Furthermore, the Gauss map G of M is given by

G = q−1/2 (ε3Qβ
′ − (ε3u+ t)β × β′) . (4.2)

By using the determinants of the first fundamental form and the second fundamental
form, the mean curvature H and the Gaussian curvature K of M are obtained by,
respectively,

H =
1

2
ε2q
−3/2 (Rt2 + (2ε3uR +Q′)t+ u2R + ε3uQ

′ − ε3u′Q− ε2Q2R
)
,

K = q−2Q2.
(4.3)

Applying the Gauss and Weingarten formulas, the Laplacian of the Gauss map G of
M in E3

1 is expressed by

∆G = 2gradH + 〈G,G〉(trA2
G)G, (4.4)

where AG denotes the shape operator of the surface M in E3
1 and gradH is the gradient

of H. Using (4.3), we get

2gradH = 2〈e1, e1〉e1(H)e1 + 2〈e2, e2〉e2(H)e2

= 2ε4e1(H)e1 + 2ε2e2(H)e2

= q−7/2{−ε2(ε3u+ t)A1β
′ − ε4qB1β + ε3QA1β × β′},

where e1 = xs

||xs|| , e2 = xt

||xt|| ,

A1 =3(u′t+ ε3uu
′ − ε2ε3QQ′){Rt2 + (2ε3uR +Q′)t+ u2R + ε3uQ

′ − ε3u′Q− ε2Q2R}
− (ε3t

2 + 2ut+ ε3u
2 − ε2ε3Q2){R′t2 + (2ε3u

′R + 2ε3uR
′ +Q′′)t+ 2uu′R + u2R′

+ ε3uQ
′′ − ε3u′′Q− 2ε2QQ

′R− ε2Q2R′},
B1 =ε3Rt

3 + (3uR + 2ε3Q
′)t2 + (3ε3u

2R + 4uQ′ − 3u′Q− ε2ε3Q2R)t+ u3R + 2ε3u
2Q′

− ε2uQ2R− 3ε3uu
′Q+ ε2ε3Q

2Q′.
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The straightforward computation gives

trA2
G = −ε2ε4q−3D1,

where

D1 = −ε4(u′t+ε3uu
′−ε2ε3QQ′)2 +ε3q{(ε2QR+ε3u

′)2−ε2(Q′+ε3uR+Rt)2−2ε3Q
2}.

Thus, the Laplacian ∆G of the Gauss map G of M is obtained by

∆G = q−7/2[−ε4qB1β + {−ε2(ε3u+ t)A1 + ε3QD1}β′ + {ε3QA1 − (ε3u+ t)D1}β × β′].
(4.5)

Now, suppose that the Gauss map G of M is of generalized 1-type. Hence, from
(1.1), (4.2) and (4.5), we get

q−7/2[−ε4qB1β + {−ε2(ε3u+ t)A1 + ε3QD1}β′ + {(ε3QA1 − (ε3u+ t)D1}β × β′]
=fq−1/2 (ε3Qβ

′ − (ε3u+ t)β × β′) + gC.
(4.6)

If we take the indefinite scalar product to equation (4.6) with β, β′ and β × β′,
respectively, then we obtain respectively,

−ε2ε4q−5/2B1 = g 〈C, β〉, (4.7)

q−7/2{−ε2ε3(ε3u+ t)A1 +QD1} = fq−1/2Q+ g 〈C, β′〉, (4.8)

q−7/2{−ε2QA1 + ε2ε3(ε3u+ t)D1} = fq−1/2ε2ε3(ε3u+ t) + g 〈C, β × β′〉. (4.9)

On the other hand, the constant vector C can be written as

C = c1β + c2β
′ + c3β × β′,

where c1 = ε2〈C, β〉, c2 = ε3〈C, β′〉 and c3 = −ε2ε3〈C, β × β′〉. Differentiating the
functions c1, c2 and c3 with respect to s, we have

c′1 − ε2ε3c2 = 0,

c1 + c′2 − ε3Rc3 = 0,

ε2ε3Rc2 − c′3 = 0.

(4.10)

Also, equations (4.7), (4.8) and (4.9) are expressed as follows:

−ε4q−5/2B1 = gc1, (4.11)

q−7/2{−ε2(ε3u+ t)A1 + ε3QD1} = fq−1/2ε3Q+ gc2, (4.12)

q−7/2{−ε3QA1 + (ε3u+ t)D1} = fq−1/2(ε3u+ t)− gc3. (4.13)

Combining equations (4.11), (4.12) and (4.13), we have

{−ε2(ε3u+ t)A1 + ε3QD1}c1 + qε4B1c2 = q3fε3Qc1, (4.14)

{−ε3QA1 + (ε3u+ t)D1}c1 − qε4B1c3 = q3f(ε3u+ t)c1. (4.15)

Hence, equations (4.14) and (4.15) yield that

−ε2ε3A1c1 +B1{c2(ε3u+ t) + ε3Qc3} = 0. (4.16)
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First of all, we prove

Theorem 4.1. Let M be a non-cylindrical ruled surface of type M1
+, M

3
+ or M1

−
parameterized by the base curve α and the director vector field β in E3

1 with generalized
1-type Gauss map. If β, β′ and β′′ are coplanar along α, then M is an open part of
a plane, the helicoid of the first kind, the helicoid of the second kind or the helicoid of
the third kind.

Proof. If the constant vector C is zero in definition (1.1), then the Gauss map is nothing
but of pointwise 1-type of the first kind. Thus, according to Classification Theorem
of ruled surfaces in E3

1 with pointwise 1-type Gauss map of the first kind in [12], M
is an open part of the helicoid of the first kind, the helicoid of the second kind or the
helicoid of the third kind.

Now we assume that the constant vector C is non-zero. In this case, if the function
Q is identically zero on M, then M is an open part of a plane because of (4.3).

Suppose that an open subset U = {s ∈ dom(α)|Q(s) 6= 0} of dom(α) is not empty.
Since β, β′ and β′′ are coplanar along α, R vanishes. Thus, c3 is a constant and
c′′1 = −ε2ε3c1 from (4.10). Since the left hand side of (4.16) is a polynomial in t with
functions of s as the coefficients, all of the coefficients which are of functions of s must
be zero. From the leading coefficient, we have

ε2ε3c1Q
′′ + 2c2Q

′ = 0. (4.17)

Observing the coefficient of the term involving t2 of (4.16) with the help of (4.17), we
get

ε2ε3c1(3u
′Q′ + u′′Q) + 3c2u

′Q− 2c3QQ
′ = 0. (4.18)

Examining the coefficient of the linear term in t of (4.16) and using (4.17) and (4.18),
we also get

Q{c1
(
ε2(u

′)2 + (Q′)2
)

+ ε2ε3c2QQ
′ − ε3c3u′Q} = 0.

On U,
c1
(
ε2(u

′)2 + (Q′)2
)

+ ε2ε3c2QQ
′ − ε3c3u′Q = 0. (4.19)

Similarly, from the constant term with respect to t of (4.16), we have

ε3c1(−3u′Q′ + u′′Q) + ε2c3QQ
′ = 0 (4.20)

by using (4.17), (4.18) and (4.19). Combining (4.18) and (4.20), we obtain

2ε3c1u
′Q′ + ε2c2u

′Q− ε2c3QQ′ = 0. (4.21)

Now suppose that u′(s) 6= 0 at some point s ∈ U and then u′ 6= 0 on an open interval
U1 ⊂ U . Equation (4.19) yields

ε3c3Q =
1

u′
{c1
(
ε2(u

′)2 + (Q′)2
)

+ ε2ε3c2QQ
′}. (4.22)

Substituting (4.22) into (4.21), we get

{(u′)2 − ε2(Q′)2}(ε3c1Q′ + ε2c2Q) = 0,
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or, using c2 = ε2ε3c
′
1 in (4.10),

{(u′)2 − ε2(Q′)2}(c1Q)′ = 0.

Suppose that
(
(u′)2 − ε2(Q′)2

)
(s0) 6= 0 for some s0 ∈ U1. Then c1Q is constant on a

component U2 containing s0 of U1.
If c1 = 0 on U2, we easily see that c2 = 0 by (4.10). Hence, (4.19) yields that

c3u
′Q = 0 and so c3 = 0. Since C is a constant vector, C is zero on M . It contradicts

our assumption. Thus, c1 6= 0 on U2. From the equation c′′1 + ε2ε3c1 = 0, we get

c1 = k1 cos(s+ s1) or c1 = k2 cosh(s+ s2)

for some non-zero constants ki and si ∈ R (i = 1, 2). Since c1Q is constant, k1 and
k2 must be zero. Hence c1 = 0, a contradiction. Thus, (u′)2 − ε2(Q

′)2 = 0 on U1,
from which, we get ε2 = 1 and u′ = ±Q′. If u′ 6= −Q′, then u′ = Q′ on an open
subset U3 in U1. Hence (4.19) implies that Q′(2ε3c1Q

′ + c2Q − c3Q) = 0. On U3, we
get c3Q = 2ε3c1Q

′ + c2Q. Putting it into (4.20), we have

ε3c1(Q
′)2 − ε3c1QQ′′ − c2QQ′ = 0. (4.23)

Combining (4.17) and (4.23), c1Q is constant on U3. Similarly as above, we can derive
that C is zero on M , which is a contradiction. Therefore, we have u′ = −Q′ on U1.
Similarly as we just did to the case under the assumption u′ 6= −Q′, it is also proved
that the constant vector C becomes zero. It is also a contradiction and so U1 = ∅.
Thus, u′ = 0 and Q′ = 0. From (4.3), the mean curvature H vanishes. In this case, the
Gauss map G is of pointwise 1-type of the first kind. Hence, the open set U is empty.
Therefore Q = 0 on M. Because of (4.3), M is an open part of a plane. �

From now on, we assume that R is non-vanishing, i.e., β ∧ β′ ∧ β′′ 6= 0 everywhere
on M.

If f = g, the Gauss map of the non-cylindrical ruled surface of type M1
+, M

1
− or M3

+

in E3
1 is of pointwise 1-type. According to Classification Theorem given in [8], M is

part of a circular cone or a hyperbolic cone.
Now, we suppose that f 6= g and the constant vector C is non-zero unless otherwise

stated. Similarly as before, we develop our argument with (4.16). The left hand side
of (4.16) is a polynomial in t with functions of s as the coefficients and thus they are
zero. From the leading coefficient of the left hand side of (4.16), we obtain

ε2c1R
′ + ε3c2R = 0. (4.24)

With the help of (4.10), c1R is constant. If we examine the coefficient of the term of
t3 of the left hand side of (4.16), we get

c1(−ε2ε3u′R + ε2Q
′′) + 2c2ε3Q

′ + c3QR = 0. (4.25)

From the coefficient of the term involving t2 in (4.16), using (4.10) and (4.25), we also
get

c1(−3ε2ε3u
′Q′ +QQ′R− ε2ε3u′′Q−Q2R′)− 3c2u

′Q+ 2c3QQ
′ = 0. (4.26)
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Furthermore, considering the coefficient of the linear term in t of (4.16) and making
use of equations (4.10), (4.25) and (4.26), we obtain

Q{c1(ε2(u′)2 + (Q′)2) + c2ε2ε3QQ
′ − c3ε3u′Q} = 0. (4.27)

Now, we consider the open set V = {s ∈ dom(α)|Q(s) 6= 0}. Suppose V 6= ∅. From
(4.27),

c1(ε2(u
′)2 + (Q′)2) + c2ε2ε3QQ

′ − c3ε3u′Q = 0. (4.28)

Similarly as above, observing the constant term in t of the left hand side of (4.16) with
the help of (4.10) and (4.24), and using (4.25), (4.26) and (4.28), we have

Q2(2c1ε3u
′Q′ + c2ε2u

′Q− c3ε2QQ′) = 0.

Since Q 6= 0 on V, one can have

2c1ε3u
′Q′ + c2ε2u

′Q− c3ε2QQ′ = 0. (4.29)

Our making use of the first and the second equations in (4.10), (4.25) reduces to

c1ε2u
′R− ε2ε3(c1Q)′′ − c1Q = 0. (4.30)

Suppose that u′(s) 6= 0 for some s ∈ V. Then, u′ 6= 0 on an open subset V1 ⊂ V.
From (4.28), on V1

c3Q =
1

u′
{ε2ε3c1(u′)2 + ε3c1(Q

′)2 + ε2c2QQ
′}. (4.31)

Putting (4.31) into (4.29), we have {(u′)2 − ε2(Q′)2}(ε3c1Q′ + ε2c2Q) = 0. With the
help of c′1 = ε2ε3c2, it becomes

{(u′)2 − ε2(Q′)2}(c1Q)′ = 0.

Suppose that ((u′)2 − ε2(Q′)2) (s) 6= 0 on V1. Then c1Q is constant on a component
V2 of V1. Hence, (4.30) yields that

c1Q = ε2c1u
′R. (4.32)

If c1 ≡ 0 on V2, (4.10) gives that c2 = 0 and c3R = 0. Since R 6= 0, c3 = 0. Hence,
the constant vector C is zero, a contradiction. Therefore, c1 6= 0 on V2. From (4.32),
Q = ε2u

′R. Moreover, u′ is a non-zero constant because c1Q and c1R are constants.
Thus, (4.26) and (4.29) can be reduced to as follows

c1Q
′R− c1QR′ + 2c3Q

′ = 0, (4.33)

ε3c1u
′Q′ − ε2c3QQ′ = 0. (4.34)

Our putting Q = ε2u
′R into (4.33), c3Q

′ = 0 is derived. By (4.34), c1u
′Q′ = 0. Hence,

Q′ = 0. It follows that Q and R are non-zero constants on V2.
On the other hand, since the torsion of the director vector field β viewed as a curve in

E3
1 is zero, β is part of a plane curve. Moreover, β has constant curvature

√
ε2 − ε2ε3R2.
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Hence, β is a circle or a hyperbola on the unit pseudo-sphere or the hyperbolic space
of radius 1 in E3

1. Without loss of generality, we may put

β(s) =
1

p
(R, cos ps, sin ps) or β(s) =

1

p
(sinh ps, cosh ps,R),

where p2 = ε2(1− ε3R2) and p > 0. Then the function u = 〈α′, β′〉 is given by

u = −α′2(s) sin ps+ α′3(s) cos ps or u = −α′1(s) cosh ps+ α′2(s) sinh ps,

where α′(s) = (α′1(s), α
′
2(s), α

′
3(s)). Therefore we have

u′ = −(α′′2+pα′3) sin ps−(pα′2−α′′3) cos ps or u′ = (−α′′1+pα′2) cosh ps−(pα′1−α′′2) sinh ps.

Since u′ is a constant, u′ must be zero. It is a contradiction on V1 and so

(u′)2 = ε2(Q
′)2

on V1. It immediately follows
ε2 = 1

on V1. Therefore, we get u′ = ±Q′. Suppose u′ 6= −Q′ on V1. Then u′ = Q′ and (4.28)
can be written as

Q′(2ε3c1Q
′ + c2Q− c3Q) = 0.

Since Q′ 6= 0 on V,
c3Q = 2ε3c1Q

′ + c2Q. (4.35)

Putting (4.35) into (4.25) and (4.26), respectively, we obtain

ε3c1Q
′R + c2QR + 2ε3c2Q

′ + c1Q
′′ = 0, (4.36)

ε3c1(Q
′)2 + c1QQ

′R− ε3c1QQ′′ − c1Q2R′ − c2QQ′ = 0. (4.37)

Putting together equations (4.36) and (4.37) with the help of (4.24), we get

(ε3c1Q
′ + c2Q)(Q′ + 2ε3QR) = 0.

Suppose (ε3c1Q
′+c2Q)(s) 6= 0 on V1. Then Q′ = −2ε3QR. If we make use of it, we can

derive R(ε3c1Q
′+ c2Q) = 0 from (4.36). Since R is non-vanishing, ε3c1Q

′+ c2Q = 0, a
contradiction. Thus

ε3c1Q
′ + c2Q = 0, (4.38)

that is, c1Q is constant on each component of V1. From (4.30), c1Q = c1u
′R. Similarly

as before, it is seen that c1 6= 0 and u′ is a non-zero constant. Hence, Q = u′R. If we
use the fact that c1Q and Q′ are constant, c2Q

′ = 0 is derived from (4.36). Therefore
c2 = 0 on each component of V1. By (4.38), c1 = 0 on each component of V1. Hence,
(4.35) implies that c3 = 0 on each component of V1. Since C is a constant vector, C
is zero on M , a contradiction. Thus, we obtain u′ = −Q′ on V1. Equation (4.28) with
u′ = −Q′ gives that

c3Q = −2ε3c1Q
′ − c2Q. (4.39)

Putting (4.39) together with u′ = −Q′ into (4.25), we have

c1Q
′′ = ε3c1Q

′R + c2QR− 2ε3c2Q
′. (4.40)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2018                   doi:10.20944/preprints201811.0500.v1

Peer-reviewed version available at Mathematics 2018, 6, 318; doi:10.3390/math6120318

http://dx.doi.org/10.20944/preprints201811.0500.v1
http://dx.doi.org/10.3390/math6120318


CLASSIFICATION THEOREMS OF RULED SURFACES 15

Also, equations (4.24), (4.26), (4.39) and (4.40) give

(ε3c1Q
′ + c2Q)(Q′ − 2ε3QR) = 0

on V1.
Suppose ε3c1Q

′ + c2Q 6= 0. Then, Q′ = 2ε3QR and thus Q′′ = 2ε3Q
′R + 2ε3QR

′.
Putting it into (4.40) with the help of (4.24), we get

R(ε3c1Q
′ + c2Q) = 0,

from which, ε3c1Q
′ + c2Q = 0, a contradiction. Therefore, we get

ε3c1Q
′ + c2Q = 0

on V1. Thus, c1Q is constant on each component of V1. Similarly developing the
argument as before, we see that the constant vector C is zero which contradicts our
assumption. Consequently, the open subset V1 is empty, i.e., the functions u and Q are
constant on each component of V. Since Q = u′R, Q vanishes on V. Thus, the open
subset V is empty and hence Q vanishes on M . Thus, (4.3) shows that the Gaussian
curvature K automatically vanishes on M.

Thus, we obtain

Theorem 4.2. Let M be a non-cylindrical ruled surface of type M1
+, M

3
+ or M1

−
parameterized by the non-null base curve α and the director vector field β in E3

1 with
generalized 1-type Gauss map. If β, β′ and β′′ are not coplanar along α, then M is
flat.

Combining Definition 1.4, Theorem 4.1, Theorem 4.2 and Classification Theorem of
flat surfaces with generalized 1-type Gauss map in Minkowski 3-space in [13], we have
the following

Theorem 4.3. Let M be a non-cylindrical ruled surface of type M1
+, M

3
+ or M1

− in
E3

1 with generalized 1-type Gauss map. Then M is locally part of a plane, the helicoid
of the first kind, the helicoid of the second kind, the helicoid of the third kind, a circular
cone, a hyperbolic cone or a conical surface of G-type.

Case 2. Let M be a non-cylindrical ruled surface of type M2
+, M

2
−. Then, up to a

rigid motion, a parametrization of M is given by

x(s, t) = α(s) + tβ(s)

satisfying 〈α′, β〉 = 0, 〈α′, α′〉 = ε1(= ±1), 〈β, β〉 = 1 and 〈β′, β′〉 = 0 with β′ 6= 0.
Again, we put the smooth functions q and u as follows:

q = ‖xs‖2 = |〈xs, xs〉|, u = 〈α′, β′〉.

We see that the null vector fields β′ and β × β′ are orthogonal and they are parallel.
It is easily derived as β′ = β × β′. Moreover, we may assume that β(0) = (0, 0, 1) and
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β can be taken by
β(s) = (as, as, 1)

for a non-zero constant a. Then {α′, β, α′ × β} forms an orthonormal frame along the
base curve α. With respect to this frame, we can put

β′ = ε1u(α′ − α′ × β) and α′′ = −uβ +
u′

u
α′ × β. (4.41)

Note that the function u is non-vanishing.
On the other hand, we can compute the Gauss map G of M such as

G = q−1/2(α′ × β − tβ′). (4.42)

And the mean curvature H and the Gaussian curvature K of M are obtained by,
respectively,

H =
1

2
q−3/2

(
u′t− ε1

u′

u

)
and K = q−2u2. (4.43)

Our using (4.4), the Laplacian of the Gauss map G of M is expressed as

∆G = q−7/2 (A2α
′ +B2β +D2α

′ × β) (4.44)

with respect to the orthonormal frame {α′, β, α′ × β}, where we put

A2 =3ε1
(u′)2

u
t+ ε4ε1q

(
−u

′′

u
+

(u′)2

u2
+ uu′′t2 + ε1

(u′)2

u
t

)
+ q

(u′)2

u
t− 3ε1u(u′)2t3

+ ε4ε1u(u′)2t3 + 2ε4ε1qu
3t,

B2 =ε4qu
′(4ε1 − ut),

D2 =3ε1u(u′)2t3 − 3(u′)2t2 − ε4q
(
ε1uu

′′t2 − u′′t+
(u′)2

u
t

)
− ε1q

(u′)2

u2
− q (u′)2

u
t

− ε4(u′)2t2 − 2ε4qu
2 − ε4ε1u(u′)2t3 − 2ε4ε1qu

3t.

We now suppose that the Gauss map G of M is of generalized 1-type satisfying the
condition (1.1). Then, from (4.41), (4.42) and (4.44), we get

q−7/2 (A2α
′ +B2β +D2α

′ × β) = fq−1/2{(1 + ε1ut)α
′ × β − ε1utα′}+ gC. (4.45)

If the constant vector C is zero, the Gauss map G is nothing but of pointwise 1-type
of the first kind. By a result of [12], M is part of the conjugate of Enneper’s surface of
the second kind.

From now on for a while, we assume that C is a non-zero constant vector.
Taking the indefinite scalar product to equation (4.45) with the orthonormal vector

fields α′, β and α′ × β, respectively, we obtain

ε1q
−7/2A2 = −fq−1/2ut+ g 〈C, α′〉, (4.46)

q−7/2B2 = g 〈C, β〉, (4.47)

ε1q
−7/2D2 = fq−1/2(ε1 + ut)− g 〈C, α′ × β〉. (4.48)
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On the other hand, in terms of the orthonormal frame {α′, β, α′ × β}, the constant
vector C can be written as

C = c1α
′ + c2β + c3α

′ × β,
where we have put c1 = ε1〈C, α′〉, c2 = 〈C, β〉 and c3 = −ε1〈C, α′×β〉. Then equations
(4.46), (4.47) and (4.48) are expressed as follows:

ε1q
−7/2A2 = −fq−1/2ut+ ε1gc1, (4.49)

q−7/2B2 = g c2, (4.50)

ε1q
−7/2D2 = fq−1/2(ε1 + ut) + ε1gc3. (4.51)

Differentiating the functions c1, c2 and c3 with respect to the parameter s, we get

c′1 = −ε1uc2 −
u′

u
c3,

c′2 = uc1 + uc3,

c′3 = −u
′

u
c1 + ε1uc2.

(4.52)

Combining equations (4.49), (4.50) and (4.51), we obtain

c2(ε1 + ut)A2 − {ε1c1 + (c1 + c3)ut}B2 + c2utD2 = 0. (4.53)

As before, from (4.53), we obtain the following

c2(2uu
′′ − 3(u′)2) + (c1 + c3)u

2u′ = 0, (4.54)

7c2(u
′)2 − 5c1u

2u′ − 7c3u
2u′ = 0, (4.55)

c2(7(u′)2 − 3uu′′)− 11c1u
2u′ − 4c3u

2u′ = 0, (4.56)

c2(uu
′′ − (u′)2) + 4c1u

2u′ = 0. (4.57)

Combining equations (4.54) and (4.56), we get

5c2(uu
′′ − (u′)2)− 7c1u

2u′ = 0. (4.58)

From (4.57) and (4.58), we get c1u
′ = 0. Hence, equations (4.55) and (4.57) become

u′(c2u
′ − c3u2) = 0, (4.59)

c2(uu
′′ − (u′)2) = 0. (4.60)

Now suppose that u′(s0) 6= 0 at some point s0 ∈ dom(α). Then, there exists an open
interval J such that u′ 6= 0 on J. Then c1 = 0 on J. Hence, (4.52) reduces to as follows

ε1u
2c2 + u′c3 = 0,

c′2 = uc3,

c′3 = ε1uc2.

(4.61)

From the above relationships, we see that c′2 is constant on J. In this case, if c2 = 0,
then c3 = 0. Hence C is zero on J . Since C is a constant vector, C is zero on M . It
is a contradiction. Therefore, c2 is non-zero. Solving the differential equation (4.59)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2018                   doi:10.20944/preprints201811.0500.v1

Peer-reviewed version available at Mathematics 2018, 6, 318; doi:10.3390/math6120318

http://dx.doi.org/10.20944/preprints201811.0500.v1
http://dx.doi.org/10.3390/math6120318


18 MIEKYUNG CHOI AND YOUNG HO KIM*

with the help of c′2 = uc3 in (4.61), we get u = kc2 for some non-zero constant k.
Moreover, since c′2 is constant, u′′ = 0. Thus equation (4.60) implies that u′ = 0, which
is a contradiction. Therefore, there does not exist such a point s0 ∈ dom(α) such that
u′(s0) 6= 0. Hence, u is constant on M . With the help of (4.43), the mean curvature
H of M vanishes on M. It is easily seen from (4.4) that the Gauss map G of M is of
pointwise 1-type of the first kind which means (1.1) is satisfied with C = 0. Thus, this
case does not occur.

As a consequence, we give the following classification:

Theorem 4.4. Let M be a non-cylindrical ruled surface of type M2
+ or M2

− in E3
1 with

generalized 1-type Gauss map G. Then the Gauss map G is of pointwise 1-type of the
first kind and M is an open part of the conjugate of Enneper’s surface of the second
kind.

5. Null scrolls with generalized 1-type Gauss map

In this section, we examine the null scrolls with generalized 1-type Gauss map in
Minkowski 3-space E3

1. In particular, we focus on proving the following theorem.

Theorem 5.1. Let M be a null scroll in Minkowski 3-space E3
1. Then M has general-

ized 1-type Gauss map G if and only if M is part of a Minkowski plane or a B-scroll.

Proof. Suppose that a null scroll M has generalized 1-type Gauss map. Let α = α(s)
be a null curve in E3

1 and β = β(s) a null vector field along α such that 〈α′, β〉 = 1.
Then the null scroll M is parameterized by

x(s, t) = α(s) + tβ(s)

and we have the natural frame {xs, xt} given by

xs = α′ + tβ′ and xt = β.

We put the smooth functions u, v, Q and R by

u = 〈α′, β′〉, v = 〈β′, β′〉, Q = 〈α′, β′ × β〉, R = 〈α′, β′′ × β〉. (5.1)

Then, {α′, β, α′ × β} is a pseudo-orthonormal frame along α.
Straightforward computation gives the Gauss map G of M and the Laplacian ∆G

of G by

G = α′ × β + tβ′ × β and ∆G = −2β′′ × β + 2(u+ tv)β′ × β.
With respect to the pseudo-orthonormal frame {α′, β, α′ × β}, the vector fields β′,

β′ × β and β′′ × β are represented as

β′ = uβ −Qα′ × β, β′ × β = Qβ and β′′ × β = Rβ − vα′ × β. (5.2)

Thus, the Gauss map G and its Laplacian ∆G are expressed by

G = α′ × β + tQβ and ∆G = −2(R− uQ− tvQ)β + 2vα′ × β. (5.3)
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Since M has generalized 1-type Gauss map, ∆G = fG + gC is satisfied for some
non-zero smooth functions f, g and a constant vector C. From (5.3), we get

−2(R− uQ− tvQ)β + 2vα′ × β = f(α′ × β + tQβ) + gC. (5.4)

If the constant vector C is zero, the Gauss map G is of pointwise 1-type of the first
kind. According to Classification Theorem in [12], M is an open part of a Minkowski
plane or a B-scroll.

Suppose that C is non-zero.
If we take the indefinite inner product to equation (5.4) with α′, β and α′ × β,

respectively, we get

−2(R− uQ− tvQ) = ftQ+ gc2, gc1 = 0, 2v = f + gc3, (5.5)

where we have put

c1 = 〈C, β〉, c2 = 〈C, α′〉 and c3 = 〈C, α′ × β〉.
Since g 6= 0, equation (5.5) gives 〈C, β′〉 = 0. Together with (5.2), we see that c3Q = 0.

Suppose that Q(s) 6= 0 on an open interval Ĩ ⊂ dom(α). Then c3 = 0 on Ĩ. So the
constant vector C can be written as C = c2β on Ĩ. If we differentiate C = c2β with
respect to s, c′2β+ c2β

′ = 0 and thus c2v = 0. On the other hand, from (5.1) and (5.2),
we have v = Q2. Hence v is non-zero on Ĩ and so c2 = 0. It contradicts that C is a
non-zero vector. In the sequel, Q vanishes identically. Then, β′ = uβ, which implies
R = 0. Thus, the Gauss map G is reduced to G = α′ × β which depends only on the
parameter s, from which, the shape operator S of M is easily derived as

S =

(
0 0
0 0

)
or S =

(
0 0

k(s) 0

)
for some non-vanishing function k. Therefore, the null scroll M is part of a Minkowski
plane or a flat B-scroll described in Section 2 determined by A = α′, B = β, C = G
satisfying C ′ = −k(s)B. The converse is obvious. It completes the proof. �

Corollary 5.2. There do not exist null scrolls in E3
1 with proper generalized 1-type

Gauss map.
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