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CLASSIFICATION THEOREMS OF RULED SURFACES IN
MINKOWSKI 3-SPACE

MIEKYUNG CHOI AND YOUNG HO KIM*

ABSTRACT. By generalizing the notion of pointwise 1-type Gauss map, the gener-
alized 1-type Gauss map has been recently introduced. Without any assumption,
we classified all possible ruled surfaces with generalized 1-type Gauss map in a 3-
dimensional Minkowski space. In particular, null scrolls do not have the proper
generalized 1-type Gauss map. In fact, it is harmonic.

1. INTRODUCTION

A Riemannian manifold can be imbedded in a Euclidean space by Nash’s imbed-
ding theorem. That enables us to study Riemannian manifolds as submanifolds of a
Euclidean space. In the late 1970’s, B.-Y. Chen introduced the notion of finite-type
immersion of Riemannian manifolds into Euclidean space by generalizing the eigen-
value problem of the immersion ([1]). An isometric immersion = of a Riemannian
manifold M into a Euclidean space E™ is said to be of finite-type if it has the spectral
decomposition as

T=x9+ T+ -+ 2,
where g is a constant vector and Az; = \;z; for some positive integer k and \; € R,
, =1,...,k. Here, A denotes the Laplacian operator defined on M. If Ay, ..., Ay are
mutually different, M is said to be of k-type. By putting together the eigenvectors of
the same eigenvalue, we may assume that a finite-type immersion x of a Riemannian
manifold into a Euclidean space is of k-type for some positive integer k.

The notion of finite-type immersion of submanifold into Euclidean space was ex-
tended to the study of finite-type immersion or smooth maps defined on submanifolds
of a pseudo-Euclidean space EI" with the indefinite metric of index s > 1. In this
sense, it is very natural for geometers to have interest in finite-type Gauss map of
submanifolds of a pseudo-Euclidean space ([9, 11, 12]).

We now focus on surfaces of the Minkowski space E?. Let M be a surface in the
3-dimensional Minkowski space E? with non-degenerate induced metric. From now on,
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a surface M in E? means non-degenerate, i.e., its induced metric is non-degenerate
without otherwise stated. The map G : M — @Q*(e) C E} which maps each point of
M to a unit normal vector to M at the point is called the Gauss map of M, where
¢ (= &1) denotes the sign of the vector field G and Q?(¢) is a 2-dimensional space form
with constant sectional curvature e. A helicoid or a right cone in E? has the unique
form of Gauss map G which looks like 1-type Gauss map in the usual sense. However,
it is quite different and thus the authors et al. defined the following definition.

Definition 1.1. ([2]) A surface M in E} is said to have pointwise 1-type Gauss map
G or the Gauss map G is of pointwise 1-type if the Gauss map G of M satisfies

AG = f(G+C)

for some non-zero smooth function f and a constant vector C. In particular, if C is
zero, then the Gauss map is said to be of pointwise 1-type of the first kind. Otherwise,
it is said to be of pointwise 1-type of the second kind.

Some other surfaces of IE? such as conical surfaces have an interesting type of Gauss
map. A surface in E} parameterized by

x(s,t) =p+tB(s),
where p is a point and 5(s) a unit speed curve is called a conical surface. The typical

conical surfaces are a right (circular) cone and a plane.

Example 1.2. ([13]) Let M be a surface in E® parameterized by
x(s,t) = (tcos® s, tsin s cos s, ¢ sin s).

Then, the Gauss map G can be obtained by

1
G=——(—sin’s, (2 — cos®s) cos s, — cos” s).

V1 +cos?s
Its Laplacian turns out to be
AG = fG+¢C
for some non-zero smooth functions f, g and a constant vector C. The surface M is a

kind of conical surfaces generated by a spherical curve 3(s) = (cos? s, sin s cos s, sin s)
on the unit sphere S*(1) centered at the origin.

Based on such an example, by generalizing the notion of pointwise 1-type Gauss
map, the so-called generalized 1-type Gauss map was introduced.

Definition 1.3. ([13]) A surface M in E? is said to have generalized 1-type Gauss map
G or the Gauss map G is of generalized 1-type if the Gauss map G of M satisfies

AG = fG + ¢C (1.1)

for some non-zero smooth functions f, g and a constant vector C. In particular, If the
generalized 1-type Gauss map G is not of pointwise 1-type, it is said to be proper.


http://dx.doi.org/10.20944/preprints201811.0500.v1
http://dx.doi.org/10.3390/math6120318

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2018 d0i:10.20944/preprints201811.0500.v1

CLASSIFICATION THEOREMS OF RULED SURFACES 3
Definition 1.4. A conical surface with generalized 1-type Gauss map is called a conical
surface of G-type.

Remark 1.5. ([13]) A conical surface of G-type can be constructed by the functions
f, g and the constant vector C by solving the differential equations generated by (1.1).

Here, we provide an example of a cylindrical ruled surface in the 3-dimensional
Minkowski space E3 with generalized 1-type Gauss map.

Example 1.6. Let M be a ruled surface in the Minkowski 3-space E? parameterized
by

1 1
x(s,t) = (5 <5\/32 —1—In(s+ Vs?— 1)) ,532,t> , s>1.
Then, the Gauss map G is given by
= (—s,—Vs2—1,0).
By a direct computation, we see that its Laplacian satisfies
s—vs?—1 s(s —v/s?2—1)

AG = —3G+ 3 (1,—1,0),
(s2—1)2 (s2—1)2

which indicates that M has generalized 1-type Gauss map.

2. PRELIMINARIES

Let E? be a Minkowski 3-space with the Lorentz metric ds* = —dx?+dr3+dx3, where
(w1, T2, x3) denotes the standard coordinate system in E3. Let M be a non-degenerate
surface in E3. A curve in E? is said to be space-like, time-like or null if its tangent
vector field is space-like, time-like or null, respectively. It is well known that in terms
of the local coordinates {Z;} of M the Laplacian A is given by

= Z 919" 5— i B

\/E 1= 1
where (¢9) = (g;;)~" and G is the determinant of the matrix (g;;) consisting of the
components of the first fundamental form.

Now, we define a ruled surface M in the Minkowski 3-space E}. Let I and J be
some open intervals in the real line R. Let o = a(s) be a curve in E? defined on T
and 3 = [(s) a transversal vector field with o/(s) along a. From now on, ' denotes
the differentiation with respect to the parameter s unless otherwise stated. Then, a
parametrization of a ruled surface M is given by

z(s,t) = a(s) +tp(s), sel, tel

The curve a = «a(s) is called a base curve and B = [(s) a director vector field or a
ruling. In particular, if £ is constant, M is said to be cylindrical. Otherwise, it is said
to be non-cylindrical.
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Ruled surfaces in 3 with non-null base curve may have different types according to
their causal character of the base curve and the director vector field. If the base curve
« is space-like or time-like, the director vector field S can be chosen to be orthogonal to
« that is normalized. The ruled surface M is said to be of type M, or M_, respectively
if o is spacelike or timelike, respectively. Also, the ruled surface of type M, can be
divided into three types. If § is space-like, it is said to be of type M} or M? if ('
is non-null or null, respectively. When g is time-like, 8’ is space-like because of the
character of the causal vectors, which is said to be of type M?. On the other hand,
when « is time-like, § is always space-like. Accordingly, it is also said to be of type
M?! or M2 if 3 is non-null or null, respectively. The ruled surface of type M} or M3
(resp. M3, M or M?) is clearly space-like (resp. time-like).

If the base curve « is null, the director vector field § along o must be chosen to
be null since the ruled surface is non-degenerate. Such a ruled surface M is called a
null scroll. One of such is a B-scroll ([7], [9]). Other cases such as « is non-null and
3 is null, or « is null and A is non-null are reduced to one of the types M}, M2 and
M2, or a null scroll by an appropriate change of the base curve ([10]). Among null
scrolls, a B-scroll has an interesting geometric property such as it has constant mean
curvature and constant Gaussian curvature. Let a = «a(s) be a null curve in E? with
Cartan frame {A, B, C}, that is, A, B, C are vector fields along « in E3 satisfying the
following conditions:

(A,Ay=(B,B)=0, (A,B)=1, (A C)=(B,C)=0, (C,C)=1,
o =A, C'=-aA—k(s)B,

where a is a constant and k(s) a nowhere vanishing function. A null scroll parametrized
by x = x(s,t) = a(s) + tB(s) is called a B-scroll which has mean curvature H = a
and Gaussian curvature K = a?. Furthermore, its Laplacian AG of the Gauss map G
is given by

AG = —2a°G,
from which, we see that a B-scroll is minimal if and only if it is flat.

Throughout the paper, all surfaces in E} are smooth and connected unless otherwise
stated.

3. CYLINDRICAL RULED SURFACES IN E} WITH GENERALIZED 1-TYPE GAUSS MAP

In this section, we study the cylindrical ruled surfaces with generalized 1-type Gauss
map in the Minkowski 3-space E3.
Let M be a cylindrical ruled surface of type M}, MY or M? in E}. Then M is
parameterized by a base curve a and a unit constant vector [ such that
x(s,t) = as) + tp

satisfying (o/,a/) = ¢; (= %1), (¢/,8) =0 and (3, ) = 2 (= £1).

d0i:10.20944/preprints201811.0500.v1
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We now suppose that M has generalized 1-type Gauss map GG. Then the Gauss map
G satisfies the condition (1.1). We put the constant vector C = (¢q, ¢2, ¢3) in (1.1) for
some constants c;, ¢y and cs.

Suppose that f = g. Then the Gauss map G is nothing but of pointwise 1-type. A
classification of cylindrical ruled surfaces with pointwise 1-type Gauss map in E3 was
described in [5].

If M is of type M—lw then M is an open part of a Euclidean plane or a cylinder over
a curve of infinite-type satisfying

Af5 —In|df 75 4+ 1) = £3(s + k) (3.1)

if C is null, or

1 2 1 1 2
\/<c2f3 + 1) +(-3+d)—In (ch3 +1+ \/<c2f3 + 1) + (= + c%))

+Iny/| -+ 3| =+P(s+ k)

if C is non-null, where ¢ is some non-zero constant and k is a constant.
If M is of type M, M is an open part of a Minkowski plane or a cylinder over a
curve of infinite-type satisfying

Cf i 4|5 — 1 = +A(s + k) (3.3)

JEr =) —cd @ em <szé Sryf(ert ) - |>
—Iny/| =+ 2| =P (s + k)
(3.4)

depending on the constant vector C is null or non-null, respectively, for some non-zero
constant ¢ and some constant k.

If M is of type M3, M is an open part of either a Minkowski plane or a cylinder
over a curve of infinite-type satisfying

\/C% +ck— (c2f*% — 1)2 — sin™! (M> =+ (s + k), (3.5)

(3.2)

or

A+

where ¢ is a non-zero constant and k£ a constant.
We now assume that f # g. Here, we consider two cases.

Case 1. Let M be a cylindrical ruled surface of type M} or M!, ie. g3 = 1.
Without loss of generality, we may assume that a(s) = (ai(s),az(s),0) is a plane
curve parameterized by an arc length s and § is chosen as § = (0,0,1). Then the
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Gauss map G of M and the Laplacian AG of the Gauss map are respectively obtained

b
' G = (—ah(s),—a}(s),0) and AG = (e1as (s),e10; (5),0). (3.6)
With the help of (1.1) and (3.6), it immediately follows
C = (¢1,¢9,0)
for some constants ¢; and cs. And we also have
51a:2:: = —fay + geq, 57)
g1, = —faj + ges.

Firstly, we consider the case that M is of type M. Since « is space-like, we may put
o) (s) =sinhf(s) and ab(s) = cosh(s)
for some function 6(s) of s. Then (3.7) can be written in the form
(6)? cosh @ 4 6" sinh @ = — f cosh § + gey,
(0")?sinh @ 4 6" cosh @ = — f sinh § + gc,.
It implies that
(0)* = —f + g(c1 cosh @ — ¢, sinh 0) (3.8)
and
0" = g(—cy sinh 6 + ¢y cosh 6). (3.9)

In fact, 6’ is the signed curvature of the base curve a = a(s).

Suppose 6 is a constant, i.e., 0’ = 0. Then « is part of a straight line. In this case,
M is an open part of a Euclidean plane.

Now we suppose that 6’ # 0. From (3.7), we see that the functions f and g depend
only on the parameter s, i.e., f(s,t) = f(s) and g(s,t) = g(s). Taking the derivative
of equation (3.8) and using (3.9), we get

300" = —f" + ¢'(cq cosh § — ¢y 8inh 6).
With the help of (3.8), it follows that
3

5 ((9/)2)/ _ _f/ + %/ ((0/)2 + f) ]

Solving the above differential equation, we have

g5 /g_gf (—ﬂ + %) ds, ki (#£0)€R. (3.10)

We put
0'(s) = £/p(s),
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where p(s) = |klg§ + %g% fg_%f (—f7/ + %) ds|. It means that the function 6 is

determined by the functions f, g and a constant vector satisfying (1.1). Therefore, the
cylindrical ruled surface M satisfying (1.1) is determined by a base curve « such that

als) = ( / sinh 0(s)ds, / coshe<s)ds,o>

and the director vector field 5(s) = (0,0, 1).

In this case, if f and ¢ are constant, the signed curvature # of a base curve « is
non-zero constant and the Gauss map G is of usual 1-type. Hence, M is an open part
of a hyperbolic cylinder or a circular cylinder ([6]).

Suppose that one of the functions f and g is not constant. Then M is an open
part of a cylinder over the base curve of infinite-type satisfying (3.10). For a curve of
finite-type in a plane of E3, see [6] in details.

Next we consider the case that M is of type M. Since « is time-like, we may put

a’(s) = coshf(s) and oh(s) = sinh6(s)

for some function 6(s) of s.

As was given in the previous case of type M1, if the signed curvature ¢ of the base
curve « is zero, M is part of a Minkowski plane.

We now assume that ¢’ # 0. Quite similarly as above, we have

g /g—if (f7 - %/) ds, ky (#0)€R, (3.11)

or, we put
0/<8) = Q(S)7
where q(s) = |kogs + 295 [ g5 f (fT, — %) ds|.

Case 2. Let M be a cylindrical ruled surface of type M3. In this case, without loss of
generality we may assume that a(s) = (0, as(s), as(s)) is a plane curve parameterized
by the arc length s and (3 is chosen as = (1,0,0). Then the Gauss map G of M and
the Laplacian AG of the Gauss map are obtained by

G = (0,04, —cf) and AG = (0,—ay,a, ). (3.12)
The relationship (3.12) and the condition (1.1) imply that the constant vector C has
the form

C= (0» Ca, 03)
for some constants ¢y and cs.

If f and g are both constant, the Gauss map is of 1-type in the usual sense and thus
M is an open part of a circular cylinder ([1]).
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We now assume that the functions f and g are not both constant. Then, with the
help of (1.1) and (3.12), we get

"

—ag = fag + ge,

(3.13)
ay, = —fay + ges.
Since « is parameterized by the arc length s, we may put
ay(s) = cosf(s) and aj(s) =sinf(s)
for some function 6(s) of s. Hence, (3.13) can be expressed as
(0")*sinf — 0" cos ) = fsind + gey,
(0")? cos @ + 0" sinf = fcosf — ges.
It follows
(02 = f + g(cysin® — c3cos ). (3.14)

Thus, M is a cylinder over the base curve « given by

0 oo i) o 54} )

and the ruling 8(s) = (1,0,0), where 7(s) = | f(s) + g(s) (casin@(s) — c3cosb(s)) |.
Consequently, we have

Theorem 3.1 (Classification of cylindrical ruled surfaces in E3). Let M be a cylindrical
ruled surface with generalized 1-type Gauss map in the Minkowski 3-space E3. Then,
M is an open part of a Fuclidean plane, a Minkowski plane, a circular cylinder, a
hyperbolic cylinder or a cylinder over a base curve of infinite-type satisfying (3.1),
(3.2), (3.3), (3.4), (3.5), (3.10), (3.11) or (3.14).

4. NON-CYLINDRICAL RULED SURFACES WITH GENERALIZED 1-TYPE (GAUSS MAP

In this section, we classify the non-cylindrical ruled surfaces with generalized 1-type
Gauss map in E3.

Case 1. Let M be a non-cylindrical ruled surface of type M, M3 or M!. Then M
is parameterized by, up to a rigid motion,
2(s,1) = als) + tA(s)
such that (o/, 5) =0, (5,8) = &2 (= 1) and (', 5') = e3 (= £1). Then, {3, 5, Bx ('}

is an orthonormal frame along the base curve a. For later use, we define the smooth
functions ¢, u, ) and R as follows:

I = ealws,z), u=(a,8), Q=(,Bxp), R=(8"Bxp),

q= Hxs
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where ¢, is the sign of the coordinate vector field xz; = dx/0s. The vector fields o/, 5",

o/ x B and  x B” are represented in terms of the orthonormal frame {3, 5,8 x '}
along the base curve « as

of = egufl —e2e3Q8 x 3,

3" = —ege3f — cae3RB x 3 (4.1)
o x B =e3Q8" —esuf x '
Bxp" = —esRP.

Therefore, the smooth function ¢ is given by

q = 84(53t2 + 2ut + €3U2 — 8253@2).

Note that t is chosen so that ¢ takes positive values.
Furthermore, the Gauss map G of M is given by

G=q " (e3Q8 — (esu+ 1) x ). (4.2)

By using the determinants of the first fundamental form and the second fundamental

form, the mean curvature H and the Gaussian curvature K of M are obtained by,
respectively,

H= §5Qq_3/2 (Rt* + (2e3uR + Q')t + W’ R 4 e3uQ’ — e30'Q — 2Q°R) (43)
K =q Q%
Applying the Gauss and Weingarten formulas, the Laplacian of the Gauss map G of
M in E? is expressed by
AG = 2gradH + (G, G) (trAZ%)G, (4.4)

where Ag denotes the shape operator of the surface M in E$ and gradH is the gradient
of H. Using (4.3), we get

2gradH = 2<€1, 61>€1(H)61 + 2<€2, €2>62(H)62
= 2e4e1(H)ey + 2eqe9(H)eg
= 61_7/2{—82(€3U + 1) A1 8" — e4qB1 S+ e3QA 6 x ('},

here e = & — o
WRETE €1 = 1o €2 = [l

Ay =3(u't + esun’ — e23QQ ) {Rt? + (2e3uR + Q')t + R + e3uQ’ — e3u/Q — £,Q* R}
— (e3t® + 2ut + e3u® — £263Q*){ R't* + (2630 R + 2e3uR’ + Q")t + 2uu/R + v’ R’
+ e3uQ” — e3u"Q — 252QQ'R — 22Q°R'Y,
By =3 Rt® + (3uR + 2e3Q")t* + (3e3u” R + 4u@)’ — 3u'Q — £263Q*R)t + uP R + 2e3u*Q)’
— 8uQ’ R — 3e3ut/ Q + £265Q%Q).

d0i:10.20944/preprints201811.0500.v1
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The straightforward computation gives
trAé = —e9e4q 2Dy,
where
Dy = —e4(u't +esur’ — 963QQ" ) +e3¢{(e2QR +e3u')* — £2(Q 4+ 3uR+ Rt)* — 25307}
Thus, the Laplacian AG of the Gauss map G of M is obtained by
AG = q P[—e1qB1 B + {—e2(esu+t) Ay + e3Q D1 }8 + {e3Q A1 — (e3u+ ) D1 }3 ><(4515])-

Now, suppose that the Gauss map G of M is of generalized 1-type. Hence, from
(1.1), (4.2) and (4.5), we get

q*7/2[—€4q815 + {—e2(e3u +t) A1 + e3QD1 } ' + {(e3QA1 — (esu+ ) D1} 8 x ']

=fq"? (£3Q8 — (esu+1)B x B') + gC.
(4.6)
If we take the indefinite scalar product to equation (4.6) with 3,5 and 8 x ',
respectively, then we obtain respectively,

—e264q "?By = g (C, ), (4.7)
q " {—eses(esu+ ) A + QD } = fgPQ + g (C, B), (4.8)
¢ {—e2QA; + exe3(esu + 1) Dy} = fq V2 eqes5(esu+t) + g (C, 8 x §). (4.9)
On the other hand, the constant vector C can be written as
C=cf+cf +e38 x 3,

where ¢; = €3(C, 8), co = €3(C, ') and ¢3 = —e9e3(C, 8 x ). Differentiating the
functions ¢, ¢ and c3 with respect to s, we have

Cll — £9E3C9 = 0,
c + 6/2 — EgRCg = 0, (410)
g9e3Rcy — ¢ = 0.

Also, equations (4.7), (4.8) and (4.9) are expressed as follows:

—e4q "By = gen, (4.11)
G —ey(esu+t) Ay +e3QD1} = fqV%e3Q + geo, (4.12)
¢ {—e3QA1 + (esu+1)D1} = fq P (esu +t) — ges. (4.13)
Combining equations (4.11), (4.12) and (4.13), we have
{—ea(esu+t)A; + e3QD1 et + qeaBica = ¢° fesQcy, (4.14)
{—e3QA; + (s3u+1)Dy }e1 — geaBics = ¢ f(e3u + t)ey. (4.15)

Hence, equations (4.14) and (4.15) yield that
—€2€3A1€1 + Bl{CQ(E;ﬂL + t) + 53@63} =0. (416)
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First of all, we prove

Theorem 4.1. Let M be a non-cylindrical ruled surface of type My, M3 or M!
parameterized by the base curve o and the director vector field 8 in B3 with generalized
1-type Gauss map. If 3, B and " are coplanar along o, then M is an open part of
a plane, the helicoid of the first kind, the helicoid of the second kind or the helicoid of
the third kind.

Proof. 1f the constant vector C is zero in definition (1.1), then the Gauss map is nothing
but of pointwise 1-type of the first kind. Thus, according to Classification Theorem
of ruled surfaces in E? with pointwise 1-type Gauss map of the first kind in [12], M
is an open part of the helicoid of the first kind, the helicoid of the second kind or the
helicoid of the third kind.

Now we assume that the constant vector C is non-zero. In this case, if the function
@ is identically zero on M, then M is an open part of a plane because of (4.3).

Suppose that an open subset U = {s € dom(«)|Q(s) # 0} of dom(«) is not empty.
Since 3, B and (" are coplanar along «, R vanishes. Thus, c¢3 is a constant and
¢! = —ege3cy from (4.10). Since the left hand side of (4.16) is a polynomial in ¢ with
functions of s as the coefficients, all of the coefficients which are of functions of s must
be zero. From the leading coefficient, we have

626301Q” + 202Q/ =0. (417)
Observing the coefficient of the term involving ¢? of (4.16) with the help of (4.17), we
get
£263¢1(30'Q" + 1" Q) + 3e2u'Q — 2¢3QQ" = 0. (4.18)
Examining the coefficient of the linear term in ¢ of (4.16) and using (4.17) and (4.18),
we also get
Qa1 (22(W)” + (Q')?) + £26302QQ" — 3¢50/ Q} = 0.
On U,
C1 (€2<U/>2 + (Ql>2> + 528302QQ, — 8303“’@ =0. (419)
Similarly, from the constant term with respect to t of (4.16), we have
e301(—3u'Q" +u"Q) + £2¢3QQ" =0 (4.20)
by using (4.17), (4.18) and (4.19). Combining (4.18) and (4.20), we obtain
283611//@/ + €2C2u/Q - 8263QQ/ =0. (421)

Now suppose that u/(s) # 0 at some point s € U and then v’ # 0 on an open interval
U; C U. Equation (4.19) yields

ues@ = e (220 + Q) + 2250QQ ) (1.2)
Substituting (4.22) into (4.21), we get
{(0)? = e2(Q)*}e31Q" + £200Q) = 0,
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or, using ¢ = e3¢} in (4.10),

{()? = 22(Q)?*}nQ) = 0.
Suppose that ((1/)2 — 52(62’)2)(50) # 0 for some sy € U;. Then ¢;Q is constant on a
component U, containing s of Uj.
If ¢4 = 0 on U,, we easily see that ¢ = 0 by (4.10). Hence, (4.19) yields that
c3u’'@QQ = 0 and so ¢3 = 0. Since C is a constant vector, C is zero on M. It contradicts
our assumption. Thus, ¢; # 0 on U,. From the equation ¢] + e2e3¢1 = 0, we get

c1 = kycos(s+s1) or ¢ = kycosh(s+ sy)

for some non-zero constants k; and s; € R (i = 1, 2). Since ¢;Q is constant, k; and
ko must be zero. Hence ¢; = 0, a contradiction. Thus, (u)* — &2(Q')*> = 0 on Uy,
from which, we get ¢9 = 1 and v/ = +Q'. If v/ # —@Q’, then ' = @)’ on an open
subset Us in U;. Hence (4.19) implies that Q'(2e3¢1Q" + c2Q — ¢3Q)) = 0. On Us, we
get 3 = 2e3¢1Q" + Q. Putting it into (4.20), we have

5301(Q/)2 —£301QQ" — QQ" = 0. (4.23)
Combining (4.17) and (4.23), ¢;Q is constant on Us. Similarly as above, we can derive
that C is zero on M, which is a contradiction. Therefore, we have v’ = —Q’" on Uj.

Similarly as we just did to the case under the assumption v’ # —’, it is also proved
that the constant vector C becomes zero. It is also a contradiction and so U; = 0.
Thus, v’ = 0 and Q" = 0. From (4.3), the mean curvature H vanishes. In this case, the
Gauss map G is of pointwise 1-type of the first kind. Hence, the open set U is empty.
Therefore Q = 0 on M. Because of (4.3), M is an open part of a plane. [J

From now on, we assume that R is non-vanishing, i.e., B A 3’ A " # 0 everywhere
on M.

If f = g, the Gauss map of the non-cylindrical ruled surface of type M}, M* or M?
in E3 is of pointwise 1-type. According to Classification Theorem given in [8], M is
part of a circular cone or a hyperbolic cone.

Now, we suppose that f # g and the constant vector C is non-zero unless otherwise
stated. Similarly as before, we develop our argument with (4.16). The left hand side
of (4.16) is a polynomial in ¢ with functions of s as the coefficients and thus they are
zero. From the leading coefficient of the left hand side of (4.16), we obtain

8261R/ + EgCQR = 0. (424)

With the help of (4.10), ¢; R is constant. If we examine the coefficient of the term of
t3 of the left hand side of (4.16), we get

Cl(—€2€3U,R + SQQ”) + 20283Q’ + CgQR =0. (425)

From the coefficient of the term involving ¢? in (4.16), using (4.10) and (4.25), we also
get

Cl(—3€2€3U/Q, + QQ,R — 6283U”Q — QQR/) — 3CQU,Q + 263@@’ =0. (426)
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Furthermore, considering the coefficient of the linear term in ¢ of (4.16) and making
use of equations (4.10), (4.25) and (4.26), we obtain

Q{ci(ea(u)? + (Q)?) + cagae3QQ" — c3e3u/Q} = 0. (4.27)

Now, we consider the open set V = {s € dom(«)|Q(s) # 0}. Suppose V # (). From
(4.27),

Cl(€2<ul)2 + (Q/)Z) + CQ€2€3QQ, — 03€3UIQ =0. (428)

Similarly as above, observing the constant term in ¢ of the left hand side of (4.16) with
the help of (4.10) and (4.24), and using (4.25), (4.26) and (4.28), we have

Q*(2c183u' Q' + 260U/ Q — c32,QQ") = 0.

Since @ # 0 on V, one can have

201€3UIQ/ + CQgQU/IQ — nggQQ, =0. (429)
Our making use of the first and the second equations in (4.10), (4.25) reduces to
c189u' R — 963(c1Q)" — 1Q = 0. (4.30)

Suppose that u/(s) # 0 for some s € V. Then, v’ # 0 on an open subset V; C V.
From (4.28), on V;

Q= %{628361(1/)2 + e301(Q")? + £2,QQ'}. (4.31)

Putting (4.31) into (4.29), we have {(u)* — &2(Q")*}Hezc1Q' + £2¢2Q) = 0. With the
help of ¢} = eye3c9, it becomes

{(W)* — &2(Q')*HerQ) = 0.

Suppose that ((v)* — &2(Q")?) (s) # 0 on V. Then ¢;Q is constant on a component
V5 of Vi. Hence, (4.30) yields that

ClQ = 6201U/R. (432)

If c; =0 on Vy, (4.10) gives that ¢; = 0 and ¢3R = 0. Since R # 0, ¢3 = 0. Hence,
the constant vector C is zero, a contradiction. Therefore, ¢; # 0 on V;. From (4.32),
@ = eu’'R. Moreover, u' is a non-zero constant because ¢;() and ¢; R are constants.
Thus, (4.26) and (4.29) can be reduced to as follows

ClQ/R - ClQR/ + 203Q, = 0, (433)

6361’&,@/ — 6263QQ/ = 0. (434)

Our putting @ = 2/ R into (4.33), c3Q’ = 0 is derived. By (4.34), c;u/Q’ = 0. Hence,
Q' = 0. It follows that @ and R are non-zero constants on Vj.

On the other hand, since the torsion of the director vector field £ viewed as a curve in

[E? is zero, 3 is part of a plane curve. Moreover, 3 has constant curvature v/go — g963 R2.
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Hence, [ is a circle or a hyperbola on the unit pseudo-sphere or the hyperbolic space
of radius 1 in E2. Without loss of generality, we may put

1 1
B(s) = —(R,cosps,sinps) or [(s)= —(sinhps,coshps, R),
p p

where p? = e5(1 — e3R?) and p > 0. Then the function u = (o, #') is given by
u = —ay(s)sinps + a4(s) cosps or u = —aj(s)coshps+ ay(s)sinhps,
where o/(s) = (/) (s), a4(s), a4(s)). Therefore we have
u = —(ah+pay) sin ps—(pas—ajy) cosps  or  u = (—af+pal) cosh ps—(paj—aq) sinh ps.
Since u' is a constant, v’ must be zero. It is a contradiction on V; and so
() = e2(Q')
on Vj. It immediately follows
gg =1

on Vj. Therefore, we get ' = +@Q). Suppose ' # —@Q’ on V;. Then v’ = Q" and (4.28)
can be written as

Q' (2e301Q" + 2Q — 3Q) = 0.
Since Q' #0 on V,

c3Q = 2e301Q" + Q. (4.35)

Putting (4.35) into (4.25) and (4.26), respectively, we obtain
£3¢1Q' R + 2QR + 2e36,Q" + 1Q" = 0, (4.36)
5301(Q/)2 +QQ'R — £3¢:QQ" — c1Q°R' — ,QQ" = 0. (4.37)

Putting together equations (4.36) and (4.37) with the help of (4.24), we get

(e301Q + 2Q)(Q" + 253QR) = 0.
Suppose (e3¢1Q'+2Q)(s) # 0 on Vi. Then Q' = —2e3QR. If we make use of it, we can
derive R(e3¢1Q" + c2Q) = 0 from (4.36). Since R is non-vanishing, €3¢;Q’ + c2Q = 0, a
contradiction. Thus
830162/ + CQQ = 0, (438)
that is, ¢;@ is constant on each component of V;. From (4.30), ¢;Q = ¢;u/R. Similarly
as before, it is seen that ¢; # 0 and v’ is a non-zero constant. Hence, Q = «'R. If we
use the fact that ¢;@Q and Q' are constant, co@’ = 0 is derived from (4.36). Therefore
¢2 = 0 on each component of V. By (4.38), ¢; = 0 on each component of V;. Hence,
(4.35) implies that ¢3 = 0 on each component of V. Since C is a constant vector, C
is zero on M, a contradiction. Thus, we obtain v’ = —@Q’ on V;. Equation (4.28) with
u' = —@Q’ gives that
30 = —2e3¢:Q" — Q. (4.39)
Putting (4.39) together with v’ = —@Q’ into (4.25), we have

Q" =e361Q'R + QR — 2e36,Q)". (4.40)
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Also, equations (4.24), (4.26), (4.39) and (4.40) give
(e301Q" + Q) (Q" — 2e3QR) = 0

on Vi.
Suppose £3¢1Q" + c2Q) # 0. Then, @' = 2e3Q R and thus Q" = 2e3Q'R + 2:3Q R’
Putting it into (4.40) with the help of (4.24), we get

R(g3¢1Q" + Q) = 0,

from which, e3¢1Q’ + 2@ = 0, a contradiction. Therefore, we get

£301Q + Q=0

on Vi. Thus, ;@) is constant on each component of V;. Similarly developing the
argument as before, we see that the constant vector C is zero which contradicts our
assumption. Consequently, the open subset V7 is empty, i.e., the functions u and () are
constant on each component of V. Since Q) = v'R, ) vanishes on V. Thus, the open
subset V is empty and hence ) vanishes on M. Thus, (4.3) shows that the Gaussian
curvature K automatically vanishes on M.

Thus, we obtain

Theorem 4.2. Let M be a non-cylindrical ruled surface of type My, M3 or M!
parameterized by the non-null base curve o and the director vector field 3 in E3 with
generalized 1-type Gauss map. If 5, B and B” are not coplanar along «, then M is

flat.

Combining Definition 1.4, Theorem 4.1, Theorem 4.2 and Classification Theorem of
flat surfaces with generalized 1-type Gauss map in Minkowski 3-space in [13], we have
the following

Theorem 4.3. Let M be a non-cylindrical ruled surface of type MY, M3 or M in
E? with generalized 1-type Gauss map. Then M is locally part of a plane, the helicoid
of the first kind, the helicoid of the second kind, the helicoid of the third kind, a circular
cone, a hyperbolic cone or a conical surface of G-type.

Case 2. Let M be a non-cylindrical ruled surface of type M2, M?2. Then, up to a
rigid motion, a parametrization of M is given by

x(s,t) = afs) + tp(s)

satisfying (o/, 8) =0, (/, /) = e1(=%1), (B,0) =1 and (f’, ') = 0 with ' # 0.
Again, we put the smooth functions ¢ and u as follows:

q = llasl® = [(zs, 2], w= (o', B).

We see that the null vector fields f’ and 8 x [ are orthogonal and they are parallel.
It is easily derived as 3/ = 8 x /. Moreover, we may assume that 3(0) = (0,0,1) and

d0i:10.20944/preprints201811.0500.v1
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B can be taken by
B(s) = (as,as,1)
for a non-zero constant a. Then {/, 3,a’ x $} forms an orthonormal frame along the

base curve a. With respect to this frame, we can put
/

B =cu(d —a' xp) and o =—uf+ %O/ X 3. (4.41)

Note that the function v is non-vanishing.
On the other hand, we can compute the Gauss map G of M such as

G=q ' x -t (4.42)
And the mean curvature H and the Gaussian curvature K of M are obtained by,
respectively,
1 /
H = éq’3/2 <u't - 512) and K = q %’ (4.43)
u
Our using (4.4), the Laplacian of the Gauss map G of M is expressed as
AG = ¢ "2 (A" + By + Dydd x ) (4.44)
with respect to the orthonormal frame {/, 8, x 8}, where we put
\2 " AV AV AV
Ay =3¢, (u t+ 1819 (—u— + “‘3 +uu"t? + &, ﬂz&) + q<“ ) t — 3eyu(u)*t?
u u u u u

+ eqeru(u))?t? + 2e4e,qut,
By =eyqu’ (41 — ut),

12 12 2
Dy =3eu(u)*t® — 3(u')*t? — e4q <€1Uu"t2 —u't + Mt) - 81Q% - qﬂt
Uu u u

—e4(U)*t? — 2e4qu® — eqe1u(u)*t? — 2e481quit.

We now suppose that the Gauss map G of M is of generalized 1-type satisfying the
condition (1.1). Then, from (4.41), (4.42) and (4.44), we get
G (Asd’ + Bofi 4 Dya x B) = fq V(1 + cqut)o! x B — cquta’} + gC.  (4.45)

If the constant vector C is zero, the Gauss map G is nothing but of pointwise 1-type
of the first kind. By a result of [12], M is part of the conjugate of Enneper’s surface of
the second kind.

From now on for a while, we assume that C is a non-zero constant vector.

Taking the indefinite scalar product to equation (4.45) with the orthonormal vector
fields o/, 8 and o x f3, respectively, we obtain

51(]_7/2142 - _fq_l/QUt + g <<Ca Oé,)) (446>
q77/232 =g <C7 5>7 (447)
e1q ?Dy = fq P (e1 + ut) — g (C, o/ x f). (4.48)
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On the other hand, in terms of the orthonormal frame {¢/, 8, x 5}, the constant
vector C can be written as
C=c1d +f +c3a’ xf,

where we have put ¢; = £1(C, o), co = (C, B) and ¢5 = —¢1(C, &/ x 3). Then equations
(4.46), (4.47) and (4.48) are expressed as follows:

e1q P Ay = — fqPut + e1gey, (4.49)
g By =g cs, (4.50)
e1¢" 2Dy = fqV?(e1 + ut) + £1gcs. (4.51)
Differentiating the functions c¢;, c¢o and c3 with respect to the parameter s, we get
/ ul
Ci = —&1ucty — —¢Cg,
u
¢y = ucy + ucs, (4.52)
!/
¢y = ——C1 + g1ucs.
u

Combining equations (4.49), (4.50) and (4.51), we obtain
caer +ut)Ay — {e1c1 + (e1 + ¢c3)ut} By + cout Dy = 0. (4.53)
As before, from (4.53), we obtain the following
ca(2uu” — 3(u')?) + (1 + c3)uu’ = 0,
Teo(u')? — Beyuu’ — Tesu®u' = 0,
ca(T(u)? — 3un) — 1leyuu’ — desu®u’ = 0,
co(uu” — (u')?) + deyuu’ = 0.

Combining equations (4.54) and (4.56), we get

5co(un — (u')?) — Tequ?u' = 0. (4.58)

From (4.57) and (4.58), we get c;u’ = 0. Hence, equations (4.55) and (4.57) become
u'(cou’ — czu?) =0, (4.59)
co(uu” — (u')?) = 0. (4.60)

Now suppose that u/(sg) # 0 at some point sg € dom(«). Then, there exists an open
interval J such that «’ # 0 on J. Then ¢; = 0 on J. Hence, (4.52) reduces to as follows

gulcy +u'es = 0,

/
Cy = ucs, (4.61)
¢y = E1UCy.

From the above relationships, we see that ¢ is constant on J. In this case, if ¢; = 0,
then c¢3 = 0. Hence C is zero on J. Since C is a constant vector, C is zero on M. It
is a contradiction. Therefore, ¢y is non-zero. Solving the differential equation (4.59)
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with the help of ¢, = ucs in (4.61), we get u = kcy for some non-zero constant k.
Moreover, since ¢, is constant, u” = 0. Thus equation (4.60) implies that «’ = 0, which
is a contradiction. Therefore, there does not exist such a point sy € dom(«) such that
u'(sp) # 0. Hence, u is constant on M. With the help of (4.43), the mean curvature
H of M vanishes on M. It is easily seen from (4.4) that the Gauss map G of M is of
pointwise 1-type of the first kind which means (1.1) is satisfied with C = 0. Thus, this
case does not occur.
As a consequence, we give the following classification:

Theorem 4.4. Let M be a non-cylindrical ruled surface of type M3 or M2 in E} with
generalized 1-type Gauss map G. Then the Gauss map G is of pointwise 1-type of the
first kind and M 1is an open part of the conjugate of Enneper’s surface of the second
kind.

5. NULL SCROLLS WITH GENERALIZED 1-TYPE (GAUSS MAP

In this section, we examine the null scrolls with generalized 1-type Gauss map in
Minkowski 3-space E3. In particular, we focus on proving the following theorem.

Theorem 5.1. Let M be a null scroll in Minkowski 3-space E3. Then M has general-
ized 1-type Gauss map G if and only if M is part of a Minkowski plane or a B-scroll.

Proof. Suppose that a null scroll M has generalized 1-type Gauss map. Let a = «(s)
be a null curve in E? and 8 = B(s) a null vector field along « such that (o, 3) = 1.
Then the null scroll M is parameterized by

x(s,t) = a(s) + tp(s)
and we have the natural frame {z,, z;} given by
s =o +tB and x, = B.
We put the smooth functions u, v, () and R by
u=(B), v={F.F), Q=("Fxp), R=( B xB). (1)
Then, {«/, 5,a’ x B} is a pseudo-orthonormal frame along .

Straightforward computation gives the Gauss map G of M and the Laplacian AG
of G by

G=ad xpB+tf xpB and AG=-208"xp+2u+tv)s x f.

With respect to the pseudo-orthonormal frame {¢/, 3,a’ x §}, the vector fields f’,
5 x B and 8" x [ are represented as

B=uf—-—Qad' xB, B xB=QB and p"xB=RE—va x 8. (5.2)
Thus, the Gauss map G and its Laplacian AG are expressed by
G=d xpB+tQf and AG = —2(R—uQ —tvQ)S + 2va’ x B. (5.3)
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Since M has generalized 1-type Gauss map, AG = fG + ¢gC is satisfied for some
non-zero smooth functions f, ¢ and a constant vector C. From (5.3), we get

—2(R —uQ — tvQ)B + 2va’ x = f(a' x B+tQP) + gC. (5.4)

If the constant vector C is zero, the Gauss map G is of pointwise 1-type of the first
kind. According to Classification Theorem in [12], M is an open part of a Minkowski
plane or a B-scroll.

Suppose that C is non-zero.

If we take the indefinite inner product to equation (5.4) with «/, § and o' x 3,
respectively, we get

_2(R - UQ - tUQ) = ftQ + gca, g = 07 2v = f + gcs, (55>
where we have put
c1=(C,B), o =(C,a/) and c3=(C,a xf).

Since g # 0, equation (5.5) gives (C, ') = 0. Together with (5.2), we see that c3Q = 0.

Suppose that Q(s) # 0 on an open interval IcC dom(«). Then ¢3 = 0 on I. So the
constant vector C can be written as C = ¢, on 1. If we differentiate C = ¢, with
respect to s, ¢y 4 cof = 0 and thus cov = 0. On the other hand, from (5.1) and (5.2),
we have v = Q2. Hence v is non-zero on I and so ¢; = 0. It contradicts that C is a
non-zero vector. In the sequel, ) vanishes identically. Then, 8 = uf, which implies
R = 0. Thus, the Gauss map G is reduced to G = o x  which depends only on the
parameter s, from which, the shape operator S of M is easily derived as

- (28) w 5-(,0) 9)

for some non-vanishing function k. Therefore, the null scroll M is part of a Minkowski
plane or a flat B-scroll described in Section 2 determined by A =o', B=§, C =G
satisfying C" = —k(s)B. The converse is obvious. It completes the proof. O

Corollary 5.2. There do not exist null scrolls in E3 with proper generalized 1-type
Gauss map.
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