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13 Abstract: Automatic recognition methods for non-stationary EEG data collected from EEG sensors
14 play an essential role in neurological detection. The integrative approaches proposed in this study
15 consists of Symlet wavelet processing, a gradient boosting machine, and a grid search optimizer
16 for a three-level classification scheme for normal subjects, intermittent epilepsy, and continuous
17 epilepsy. Fourth-order Symlet wavelets were adopted to decompose the EEG data into five
18 time-frequency sub-bands, whose statistical features were computed and used as classification
19 features. The grid search optimizer was used to automatically find the optimal parameters for
20 training the classifier. The classification accuracy of the gradient boosting machine was compared
21 with that of a support vector machine and a random forest classifier constructed according to
22 previous descriptions. Multiple-index were wused to evaluate the Symlet wavelet
23 transform-gradient boosting machine-grid search optimizer classification scheme, which provided
24 better classification accuracy and detection effectiveness than has recently reported in other work
25 on three-level classification of EEG data.

26 Keywords: recognition of epilepsy EEG; Symlet wavelet; gradient boosting machine; grid search
27 optimizer; multiple-index evaluation.

28 1. Introduction

29 Epilepsy is one of the most common neurological disorders, with one person in every hundred
30  worldwide suffering from epilepsy !. Epileptic episodes are a clinical manifestation of paroxysmal
31 abnormal ultra-synchronized electrical activity in the brain, which is iterative, sudden, and
32  temporary. Automated detection of an epileptic episode and subsequent alerting can aid
33 neurologists monitoring treatment in busy neurological wards, and could help to ensure patient
34  safety 2 However, the time frequencies of epileptic episodes are uncertain, and their clinical
35  manifestations are not easy to detect. In the early stages of testing and monitoring patients for
36  epilepsy, researchers attempted to use sensors 2 to collect biological data from the patient’s surface,
37  including electrocardiogram (ECG), electromyography (EMG) 45, motion data 6, and
38  electrodermography (EDG). These data can be collected by wearable systems, including E-textiles 7,
39  capacitive sensing 8, polymer materials such as carbon nanotube (CNT)-polydimethylsiloxane
40 (PDMS) % Ag/AgCl electrodes 19, and micro-needle arrays !. Wearable sensor systems can
41  non-invasively monitor biological signals from epileptic patients for long periods. However, such
42 biological data has the drawback of insufficient spatial resolution.
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43 Therefore, approaches to directly obtain epilepsy information from the brain have been
44 researched, including positron emission tomography (PET), single photon emission computed
45 tomography (SPECT), magnetic resonance imaging (MRI), and functional magnetic resonance
46 imaging (fMRI) 12. Currently, most research focuses on the use of video-electroencephalograms
47 (EEGs)'*14. EEGs not only display temporal information, but also provide spatial information on
48 clectrical activity in the brain. The video-electroencephalogram technique has been considered a
49 gold standard tool for the study of epilepsy. The real time information on an epileptic episode
S0 reflected by EEG cannot currently be replaced by any other physiological brain function monitoring
S method. As the physiological processes of seizure are typically non-stationary, dynamic, and
gg nonlinear, the differentiation of rhythmic discharges from nonstationary processes brings great

challenges to the analysis of EEG signals.

54 In general, the automated detection of EEG signals includes the two core methods of feature
55  extraction and classification. The features extracted can be divided into four categories: statistical
56 features, fractal dimension features, entropy features, and time-frequency domain features. Several
57  studies have used combined time and frequency features for the automatic recognition of
58  non-stationary EEG at the onset of epilepsy. Gotman was a pioneer in the exploration of automatic
59  seizure detection technology based on EEG, and to capture transient behavior during long-term
60  EEG monitoring he decomposed the EEG into half waves, which recorded the typical peak value as
61  a morphological feature 5. Discrete wavelet transforms (DWT) have the ability to capture the
62  time-frequency information in epileptic EEG ¢18, and many researchers have used Daubechies
63  wavelets to analyze epileptic EEG, as they considered the db4 wavelet to be similar to the spike
64  wave of EEG. A classic example is the Welch spectral analysis method introduced into the feature
65  analysis of epileptic seizure detection. Tzallas et al. used different time-frequency domain methods
66  to extract the power spectrum density of computerized EEG during epileptic seizures .
67  Independent components analysis (ICA) 2 and linear discriminant analysis have also been reported
68  for EEG signal extraction, while a multiscale radial basis function algorithm recently showed
69  promising results in the decoding of EEG of epileptic seizures 2. After consideration of the
70 above-mentioned literature, Polat et al. proposed a hybrid model for seizure detection using a fast
71 Fourier transform (FFT) for feature extraction 2. However, the FFT has several disadvantages: first,
72 the FFT cannot do a good job of solving the non-stationary EEG problem using a fixed window
73 function; second, it is very time-consuming. Therefore, a short-time Fourier transform (STFT) was
74  used to extract the frequency information from the raw EEG recording. The original signal was
75  truncated into smaller sections and windowed, and the discrete Fourier transform was applied to
76 the signals. The STFT algorithm performed time-frequency analysis of non-stationary EEG signals
77 by adjusting different time windows to avoid the disadvantages of the FFT %2 Boashash et al.
78  extracted statistical and image features according to their time-frequency distribution to handle
79  multichannel EEG from neonates %. A sensitivity of the criterion is that it is taken into consideration
80  in the feature selection, resulting in a reduction in computational cost and improvement in
81 detection performance 2. Flexible wavelet transforms and the fractal dimension of the
82  time-frequency method have also been used for the detection of seizure segments in long-term EEG
83 272 From the above literature, we believe that the wavelet transform is the most commonly used
84  method for extracting EEG features, although this extraction method ignores the overall statistical
85  information. Therefore, we aimed to find an EEG analysis method combining time-frequency
86  information and statistical information.

87 For the automatic detection of EEG by machine learning, most studies adopt a supervised
88  learning paradigm. Regardless of the categories of the input EEGs, the EEGs used to train classifiers
89  are labeled according to prior knowledge. He et al.’s neural network (NN) classification technique
90  used machine learning applied to the field of brain science . Boser et al. 31, Kai Fu et al. 3, and Ying
91  Gueetal. all used support vector machines (SVM) to identify the EEG signals of epilepsy patients,
92 and obtained a relatively good recognition performance. Brabanter et al. proposed a least squares

93  support vector machine (LS-SVM) for the classification of two-levels of seizure and non-seizure
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94  EEG signals from the small seizure dataset of Bonn University. They obtained 98.0%-99.5%
95  accuracy using a radial basis function (RBF) kernel, and 99.5%-100% accuracy using a Morlet kernel
96 3. Sun et al. used an Ada-Boost classifier to achieve good accuracy for spike detection of epilepsy
97  seizures 3. However, the choice of a suitable strategy for machine learning is a difficult one,
98  numerous classification strategies have been developed for seizure detection, including random
99  forests (RF), K-nearest neighbors (KNN) %, principle component analysis (PCA), Bayesian neural
100  networks %, and empirical mode decomposition (EMD) %. The classification results indicate that
101 these pattern recognition systems can achieve high levels of classification accuracy, from 93% to
102 99.66%. Nevertheless, these accuracy scores were the results of two-level EEG classification, and the
103 above mentioned schemes were too inconvenient and time consuming for practical clinical
104  applications. Recently, Wang et al. explored a three-level classification problem, analyzing
105 continuous ictal epilepsy patients, intermittent epilepsy patients, and healthy subjects. Using an
106  SVM recognition system, they achieved an accuracy of 93.9% for the Bonn datasets 3. A more
107 effective classification scheme needs to be developed to solve the multi-level classification problem

108  presented in this work.

109 After completing the feature extraction and classification procedures, it is also essential to
110 perform a reasonable assessment to verify their accuracy. In the use of machine learning for the
111 assessment of EEG, only pursuit the high classification accuracy of recognition system cannot
112 satisfy comprehensive assessing of the classification effect of the classifiers. However, some other
113 verification indicators revealing the causes of error in classification are also important in epilepsy
114 detection. Recognition systems achieving high levels in these verification indicators could help fill
115  gaps in the analysis of seizure monitoring devices, and could reduce the rate of missed detections in
116  clinical situations ®. In 2014, the Mayo Clinic and the University of Pennsylvania hosted a
117  competition to find robust seizure detection and prediction systems. Participants used SVM and
118 random forest (RF) machine learning techniques to recognize canine and human cortical
119 electroencephalogram (ECoGs) datasets, and achieved high sensitivity and low false-positive rates
120 4041,

121 Following-on from the above-mentioned literature and analysis, this paper adopts a wavelet
122 transform to analyze the time-frequency information of epilepsy and avoid the shortcomings of
123 Fourier, STFT, and Welch spectral analysis. The Symlet wavelet is used to decompose the EEG
124 signals into y,8,2,0,6 sub-bands. Then, the statistical information of the five sub-bands is
125  extracted to generate the features for feeding into the feature recognition sensor module. Most
126  previous studies have applied recognition algorithms to the Bonn epilepsy dataset, which is
127 classified into seizure EEG epochs and non-seizure EEG epochs for two-level classification. Such
128  two-level classification schemes are not ideal for practical applications, because in reality there are
129  multiple degrees of epileptic seizure. To obtain an efficient three-level classification scheme, we
130  propose a gradient boosting machine-grid search optimization (GBM-GSO) to classify the Bonn
131 EEG dataset into three categories representing normal subjects, intermittent epilepsy, and
132 continuous epilepsy. We also implement two other state-of-the-art machine learning classifiers, an
133 SVM and an RF, and compared them with the GBM classifiers. This comparison demonstrated that
134 the GBM classifier was the most effective for identifying epileptic state EEG. This recognition
135  scheme not only ran faster than the SVM and RF, but also effectively avoided the misdiagnoses or
136 missed diagnoses caused by manual tuning of parameters. Our auxiliary medical diagnostic system
137  can directly recognize three classifications from epilepsy EEG signals: continuous ictal epilepsy
138  patients, intermittent epilepsy patients, and healthy subjects.

139 We believe that our machine learning approach has the following innovations and advantages
140  for training on and classification of epilepsy EEG.

141 a) It not only allows visualization of the core time-frequency information of EEG through
142 wavelet transforms, but also extracts the statistical information by key statistical techniques. The


http://dx.doi.org/10.20944/preprints201811.0493.v1
http://dx.doi.org/10.3390/s19020219

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2018 d0i:10.20944/preprints201811.0493.v1

40f21

143 statistical information of time-frequency features are as the latter recognition features, and these
144 features reflect the overall characteristics of the data. Simultaneously, a principle component
145  analysis algorithm used to reduce the dimensionality of the data. Thus, the new method reduces the
146  hardware calculation under the premise of ensuring the accuracy of the classifier.

147 b) The proposed GBM recognition system is highly parallelized to improve operational
148  efficiency. Another advantage is that it can process large-scale data. However, the recognition
149 system generates many parameters in the course of the training process, and it can be difficult to
150  determine the optimal parameters by manual tuning. This paper proposes a grid search optimizer
151  to optimize these parameters and determine the best recognition system filtering parameters
152 repeatedly by variable step size way. To prevent over-fitting in the GBM training process, we adopt
153  a10-fold cross-validation (CV) strategy, which ensures that the optimized system is more robust.
154 c¢) The SW-GBM-GSO integrative techniques can perform three classifications: healthy
155  subjects, intermittent epilepsy patients, and continuous ictal epilepsy patients. We use multiple
156  indicators to evaluate and verify the diagnostic system, with these being not only limited to
157  dlassification accuracy, but also including other indicators such as accuracy (ACC), a confusion matrix
158 (CM), a precision recall curve (PRC), the receiver operating characteristic curve (ROC), and the area under
159  curve (AUC). Multiple indicators can make a more thorough and clearer analysis of the error rate
160  resulting from misclassification. This strategy is pivotal in medical screening.

161 The automatic integrative epileptic seizure EEG technology described in this paper comprises
162 five major modules, as illustrated in Fig. 1. In the first step, signals are collected from EEG sensors
163 in the monitoring module. In the third step, time-frequency and statistical features are extracted by
164  the feature extraction and selection module. PCA is applied to reduce the feature dimensionality,
165 which is beneficial in respect to the computer operating time. In the fourth step, pre-classified
166  testing data are fed into the feature classification module. Then, an optimization procedure is
167  performed to search the hyper-parameters and optimize the recognition system. Finally, we use
168  multiple indices to evaluate the scheme, and a verification module to detect the performance in the
169  three classifications of seizure status.

— T .
EEG Sensor monitoring Preprocessing Feature extraction and PCA > Classification
module selectlon module 10-CV module

A

Auxiliary |Decision support:
Security /Alarm

ACC, CM, ROC, | _Classification| Scheme evaluation Optimal Classifer parameter

AUC, PR h result module classifier optimization
170 Figure 1. Auxiliary medical diagnostic system for Epilepsy EEG
171 The remainder of the paper is organized as follows. In Section 2, we apply the time-frequency

172 and statistical methods to real EEG data after first preprocessing it. This study adopts the PCA
173 method to reduce the dimensionality of the EEG features. In Section 3, we build the novel automatic
174 GBM recognition system using 10-fold CV. In Section 4, we apply the automatic detection method
175  toreal EEG data to classify the three categories of seizure, light-seizure, and non-seizure, and verify
176  the effectiveness of the machine learning system. The experimental results are analyzed using
177  accuracy, CM, PRC, ROC, and AUC generated from the sensitivity and specificity. Finally, the
178  contributions and future contemplated work are summarized in Section 5.

179 2. Feature Extraction and Selection Module

180 There are many approaches for extracting the features of EEG signals. First, we discuss the
181  time-frequency feature methods for EEG. The EEG scalp signals at time ¢ can be defined as a
182 vector:
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183 st)=(s(t,),s(t,).L ,5(t,))=| M O M (1)
Sy L S

184 where s(t) represents the EEG signals. Fourier transforms, multitaper spectral analysis, and STFTs can

185 all be used to describe the time-frequency features of the signals. To a certain degree, the most commonly
186 used Fourier transform reflects the frequency characteristics of the entire signal. Using FFTs, it is possible to
187 smooth and slow signals that change over time. However, EEG signals are nonlinear and non-stationary, and
188 their frequency changes rapidly with time; fast changing frequencies are effectively “averaged” by the FFT,
189 and it can only give the overall effect of the signals, it cannot reflect the frequency variation characteristics of
190 the signals themselves. The STFT will move a fixed length window function over the signal during signal
191 processing. Under the assumption that the windowed signals represent stationary signals in different finite
192 time widths, the power spectrum at different moments can be calculated. The STFT considers non-stationary
193 EEG signals as stationary signals and superimposes a series of short signals.

194 Discrete wavelet analysis has seen rapid development in recent years '”>3%42 It is an analysis method
195 that combines both the time and frequency domains. The wavelet transform decomposes the signal into
196 different frequency bands, and studies the nature and characteristics of the signal according to the "wavelet
197 family" £, (¢) in these different frequency bands. The wavelet transform generally performs better than the

198 FFT and STFT without prior knowledge. It can be used to analyze different frequency components of burst
199  and non-stationary signals using variable windows.

1 t—b
200 () =—=3¢(—) (2)
la = @
201 where a#0,a,be R,a,b are different ratios and conversion parameters and ¢ is time. The continuous
202  wavelet transform for EEG s(t) is defined as the correlation between a and b :
203 WT, (a,b) = ﬁ [ s (=2 as 3)
al* ™ a
204 Following work based on the above analysis applied to practice signals, we selected the
205 DWT to construct a wavelet basis function. The wavelet basis function and its decompositi

206  on impact on feature extraction effort of signal. There are a variety of continuous wavelet b
207 ases, including Daubechies, Symlets, Haar, Morlet, Mexican Hat, and Meyer types. Each wav
208  elet transform is suitable for different task applications. We compared the characteristics of
209  different wavelets according to their weight orthogonality, tight support, support length, and
210 symmetry, as shown in Table 1. In this work, we considered the Symlet wavelet (SW) to b
211 e appropriate for the nonlinear EEG analysis. The Symlet wavelet is an improvement on the
212 Daubechies wavelet, making up for the shortcoming of approximate asymmetry present wit
213 h the Daubechies wavelet. Secondly, the support range and the vanishing moment of the Sy
214 mlet wavelet are 2N-1 and N, respectively. The Symlet wavelet basis has better regularity th
215  an Daubechies, and this can reduce the phase distortion in the analysis and reconstruction o
216  f signals.

217 Table 1. Comparison of the properties of wavelet transforms
Wavelet Daubechies Symlets Haar Morlet Mexican Hat Meyer
Orthogonality Yes Yes Yes No No Yes
Tight support Yes Yes Yes No No No
Support length 2N-1 2N-1 1 Finite Finite Finite
Symmetry No Yes Yes No Yes Yes
218 As the energy loss of the epileptic EEG signal in the first two scales of the Symlet wavelet

219  transform is less than 30%, we used the fourth-order Symlet wavelet to transform the scalp EEG
220  signal on the third scale to obtain the EEG spectrum. After applying a band-pass filter to preprocess
221 the EEG to the bands between 0 and 50 Hz, we divided the frequency information into five bands of
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222 EEG  component  y(25~50Hz),B(12~25Hz),a(6~12Hz),6(3 ~6Hz),6(0~3Hz) .  The
223  approximation coefficient @, and detail coefficients d,,d,,d, and d, are generated in the

224 decomposition structure process, as shown in Fig. 2.

N : \ y 7(25~50Hz) |
Highdpass: ks(t) ! SW |
Enpass ] ( ) +—» EEG —>|j: ﬁ(lZ ~25 HZ)—“ Features
) | Split !
Lowdpass] ;S(t): . psl()Hal d a(6 ~ 12HZ) I
. I~ z
Datab a I
: (0~12H23) P 5(0~3HZ) i
Input: s(t) I (0~6HZ4) |
225 (S J
226 Figure 2. Wavelet transform decomposition process for EEG
227 The mean and standard deviations show the density of the value center and possible EEG signal values,

228 which are defined as the formulas. In practice, it is necessary to extract statistical information from the
229  time-frequency features of EEG signals, which can be understood as continuous random variables *.

230 o= sOP(s®)ds() (4)
231 8" = [ (s(t)- @) P(s() ds(t) (5)
232 It is also necessary to use PCA in the process of feature extraction to achieve low dimension

233 features after using the Symlet wavelet. PCA ensures the information is as relevant as possible, with
234 anew feature subspace being constructed from the information derived from the existing features.
235  This procedure reduces the load on the recognition system and increases computational efficiency.

236 3. Classification Module

237 3.1. Analysis for the machine learning classification

238 There are many machine learning pattern classifiers that could be used to classify EEG data,
239 and it is difficult to choose the most suitable one for the analysis of multilevel epilepsy EEG data. In
240  the following section we discuss the most widely used SVM and RF classifiers and the gradient
241 boosting machine classifier proposed in this paper.

242 3.1.1.Support vector machine

243 Among the pattern recognition systems available, SVMs are the most popular machine
244 learning algorithms for classifying EEG data, because they offer a good classification performance
245  and excellent generalization ability 4. The essence of the SVM is to search for a separating
246  hyperplane @' +b maximizing the boundary distance between two types of data feature vectors:
247 SVMs are not very suitable for three or multi-classification problems, which is why they have been
248  mainly used to separate EEG data into two types, rather than three or more categories. The pseudo
249 code for the SVM is shown in Table 2.

250 Table 2. Support vector machine classifier in pseudo-code

ALGORITHM 1: Support vector machine (SVM)

Data: n observed data features {T-F features, statistical features s(t,)}

classifier: SVM.
1. The unit step function f, , acts on the classified super-plane

g(a)r +b) , where g(co’ +b) =1if @" +b>0and -1 otherwise.
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2. Calculate the distance / of the EEG data to the separated
hyperplane and find ®,b st. min(/).
3. Then, maximize the minimum distance.
arg ma%)x{min(label(a)T +b))-||a)||_l},st. label(w” +b) =1, max("a)"_l)
Result: label, minimum distance /
251 In the above optimization problem, we find the optimal value given the constraints

252 label (w” +b) > 0 . Lagrange multipliers can be used for this type of optimization problem, and the

253  optimization objective function can be written as:

254 max {z a —% z label” - label™ ‘a;-a, <x(i),x0)> 6)

i=1 i,j=1

255 The constraint is « >0 and Za,.label(") =0. A Gaussian kernel achieved consistently better

i=1

256  performance than a linear kernel.

257  3.1.2. Random Forests

258 The RF # is an effective integrated machine learning classifier combining many decision trees, and is an

259 extended variant of Bagging. First, a bootstrap sample Z " was randomly selected from the training set in a
260 returning way. Taking the randomly selected data in the above steps as the training data, 7, decision trees

261 were established. Second, a subset of M features is randomly selected from the feature set of each node of the
262  decision tree. The RF tree is grown to enhance the binding EEG data by recursively repeating the above steps
263 for each terminal node of the decision tree until the decision tree can accurately identify the training data set
264 while achieving the minimum node size. For the process of training the recognition system, this study used a
265 classification and regression tree algorithm to split the nodes, and the Gini value of the Gini index was used as

266 the basis of the splitting node. The sample training set Z " contains different characteristics, and the Gini
267  index of this training set is:

k
268 GINI(k)=1-)" p, (7)
i=1
269 where p, is the probability of a category i feature. The number of features corresponding to the sample
270 training set were {m,n,,L ,n,}, the split Gini index is:
271 GINI(M") =" GINI(M ) + "2 GINI (M) + 2 GINI(M,) (8)
n n n

272 All the decision trees{7,}" are aggregated. For an input sample, the decision trees of m have the

273 recognition results of m, and the RF recognition system inherits all the recognition voting results. Forecasting

274 s performed on the new node, and the most recognized number of votes is the output {C»(x)};" . The pseudo
275  code for the RF-GSO is shown in Table 3.

276 Table 3 Random forest classifier in pseudo-code

ALGORITHM 2: Random Forest (RF)
1.For i=1to m :

(a) Draw a bootstrap sample Z’ of size P from the training data.
(b) Grow a random forest tree 7, to the boost strapped data, by

recursively repeating the following steps for each terminal node of the
tree, until the minimum node size 7, is reached.
2. Output ensemble of tree {7, }}"

To make a prediction at a new point x
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Classification: Let C»(x)be the class prediction of the random forest tree.
Then Cj;(x) = majority vote {Cs(x)};’
277  3.1.3. Gradient Boosting machine
278 The GBM is a method for the gradual enhancement or improvement of error, it was designed

279 by Jerome H. Friedman of Stanford University 5, who considered estimation of the functional
280  dependence y =(s(t)). Then, the loss function y (y,7) is minimized:

281 7(s(t) = y = argminy (y.77) ©)
282 The function estimate )A/ = zzl;i is parametrized, with )A/,. defined as a boost. We can draw
283  up a greedy strategy that estimates )A;k = )A;,H +V, £ (@, Hk) at each recursive where é(Tti),H) is
284  called a base learner, that is, a decision tree. The function is built as:

285 (V,.6,) = argmin, , Zilw[y“hn;}vé(?t,)ﬂ) (10)

286 While this optimization problem is hard for a general loss function and base learners,
287  Friedman suggested a new function 5(@,9) to be the most parallel to the negative gradient

288  along the observed data, whereby the optimization task becomes a classic least-square
289  minimization. Table. 4 describes the pseudo code of GBM.

290 Table 4. Gradient boosting machine classifier in pseudo-code

ALGORITHM 3: Gradient Boosting Machine (GBM)
Data: n observed data features {T-F features, statistical features Tti)}

Input: Calculate loss function y(y,n) and base-learner classifier
& (It), 0) to number of iterations M.
Process:
1. Build predicted classifier 7A7(s(t)) for s(t).
N N —
2. Initialize 7, = argngn ;y/(s(t,-),Ak );

for me{1,2,L ,M}
3. Compute the negative gradient ¢, (s(t));
4. Fit a new base-learner function ¢ (E, o, ) ;

5. Find the best gradient descent step-size V, to get tree classifier:
. N i n —
V,=argmin,, Zl_:l v (y( )1, (8(t, ))j +V-& (s(t,. ). 6, )

6. Update the function 7, =A,d,(s(t)) gradient boosting machine

classifier Tl(m) =1t

end

return n(s(t,.));

291  3.1.4. Comparative analysis of the methods

292 One of the purposes of this paper was to maintain robustness while solving the multi-level
293 classification, thereby ensuring recognition accuracy. SVMs are widely used for classifying EEG,
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294 and RFs can achieve excellent performance in pattern recognition. We compare the proposed GBM
295  with an SVM and RF, discussing them from three main aspects: the multi-level classification
296  problem, the generalization ability, and the sensitivity of parameter selection. The conclusions
297  obtained may provide valuable references for other researchers using pattern recognition systems.
298 e Multi-level classification problem

299 The SVM was initially used to solve problems with two classifications, by finding the optimal
300  hyperplane that divides the data into two. The idea of maximizing the classification margin is the
301  core of the SVM method. In the practical application of data mining, it is generally necessary to
302  solve the classification problem of multiple classes. This can only be solved by constructing a
303  combination of multiple two-level classifiers. Although a multi-level classification problem can be
304  solved using this combination method, it is cumbersome and does not guarantee superior precision
305 3. RF and GBM are decision tree models based on integration ideas, and they are better suited for
306  solving multi-level classification problems.

307 e Sensitivity of parameter selection

308 The performance of a support vector machine depends mainly on the selection of the kernel
309  function; therefore, a practical problem is how to choose the appropriate kernel function. At
310  present, the more mature approach is to artificially choose the kernel function and its parameters on
311  the basis of experience plus an element of randomness. Kernel functions should have different
312  forms and parameters for different problem areas, and so domain knowledge should be introduced
313 when making the selection. Currently, there is no good way to solve the problem of kernel function
314 selection.

315 e Generalization ability

316 The main characteristic of the RF method is the selection of features using the principle of
317 minimization of the Gini index. Because of the random selection of samples and features, it is not
318  easy to fall into overfitting. In the bagging algorithm, the tree growing obtains an average
319  predictive power across all decision trees using a parallel boosting method. Each tree is constructed
320 on a sample of raw data and the results of the trees are voted on to achieve the final result, with the
321  training results of different trees not being further optimized.

322 The essential difference between GBM and RF is that each tree in GBM learns the residuals of
323 all previous tree conclusions. The residual is the true value minus the predicted value. GBM is
324  superior to RF in that it is not based on decision trees built in parallel. The construction of a GBM
325  dlassifier involves moving along the direction in which the gradient drops the fastest. The gradient
326  generates a completely new decision tree at each iteration. To make up for the lack of an original
327  recognition system, the partial derivative of the loss function at each training sample point is used
328  to construct a weak learner. Therefore, the GBM classification system has stronger generalizing
329  abilities and better adaptability to new data than RF and SVM techniques.

330 The above comparative analysis indicates that the GBM classifier is the most suitable for the
331  three-level classification problem with the epilepsy EEG.

332 3.2. Parameter optimization and cross-validation

333 3.2.1. Parameter optimization

334 The gradient boosting machine identification algorithm generates decision tree and boosting
335  parameters during the training process. Although the GBM classifier does not result in much
336  overfitting as the decision tree grows, the high learning rate still causes over-fitting of the
337  classification model. If we reduce the learning rate and increase the decision tree blindly, the
338  calculations can be very expensive and take a long time to run. This paper proposes an improved
339  grid search algorithm to optimize and configure the parameters of the GBM model to improve the
340  classification performance of the gradient boosting machine classifier.

341 The GSO algorithm resorts to meshing the variable regions and then traversing all the grid
342 points, solving the objective function values to satisfy the constraints, and thereby selecting the
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343 optimal values. It takes a lot of training time to traverse all the parameters on the grid, and in this
344  paper, the GSO algorithm is improved to reduce the training time. The specific steps are as follows.

345 First, we use a long-distance step size for a rough search over a large range. Second, the mesh
346  is built on the coordinate system, with its mesh nodes being the corresponding parameter pairs of
347  decision trees and boosting. The optimal parameters and recognition accuracy are output when
348  there is a set of parameters that meet the requirements; we selected the parameter with the smallest
349  penalty parameter as a more selective object when multiple sets of parameters met the requirements.
350  Next, a second accurate search is performed in small steps on the set of parameters: the above steps
351  are repeated with the step set to 0.1 to find the global optimal hyper-parameters. A flowchart of this
352  parameter optimization of the GBM model based on the improved grid search algorithm is shown

353  inFig.3.
‘ Start traversing search parameters
Determine the parameters of the RF
model to form nodes
: 77777777777777777 I ~ Thyper-parameters ~— |
| v
| decision trees Split feature Leaf node minimum Penalty |
| number number sample number function |
|
|
‘ multiple sets of parameters ‘ Reduce step size
:precise grid search
355 Figure 3 . Parameters optimization flow in the GSO algorithm
356 Generally, the default value for the learning rate is 0.1; however, for different problems, values

357  between 0.05 and 0.2 can determine the optimal number of decision trees at the current learning
358  rate. In this paper, the optimal learning rates determined by the GSO algorithm is 0.06.

359  3.2.2. K-fold cross-validation

360 To reduce the influence of the selected training and testing data on the model verification,
361  k-fold CV was used. This involves the training data being divided into subsets without repetition.

362 L WL (r1 7, =2) (14)

363 k-1 subsets were used for training, with the remaining subset being used for testing. This
364  process was repeated k times to obtain k accuracy values, which were then averaged to provide a
365 mean value for the evaluation. The automatic seizure detection systems of Guo et al.’!, Nicolaou et
366  al® Samiee et al®?, and Yuanfa Wang et al®. did not use CV, while Qu et al. used the default 5-fold
367  CV2. In this study, 10-fold CV was used to obtain more reliable and robust performance results.
368  The training set was randomly divided into 10 subsets, with only one subset being used as the
369  verification set. The other residual subsets were used to train the EEG classifier on data
370  corresponding to different levels of epileptic seizure. The use of 10-fold CV reduces the over-fitting
371  phenomenon and increases the credibility of the data classification. The pseudo code for the 10-fold
372  CVisshown in Table 5.
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373 Table 5 10-fold cross-validation in pseudo-code

ALGORITHM4: 10-Fold Cross-validation ( s, GBM, L, 10 )

Input: s(),s(t,)es(¢r) Sample set
gradient boosting machine (GBM): Decision algorithm
L : Loss function 10: Fold number
Process:
1: Define: V,®V,®L @V, =s

- Vi+V,+L +V,, =s

V.1 (V,+L +V_ +V,, +L +V,)) ={0}

2: forifrom 1 to 10 do
3: J;=RF(s/V,)
4: for cc in V, do
5: e, = L(f,s(t,)
6: end for

7: end for

53

Return e

374 4. Experimental results and discussion

375 The experiments were performed on an Acer PC with a 2.8 GHz Intel Core i5-6200U CPU, 8 GB
376  of low voltage memory, 1 TB of storage, and a 64-bit operating system.

377 4.1 Real clinical EEG dataset

378 This paper used an open-source database available at the University of Bonn and extracted the
379  key features to detect continuous ictal epilepsy patients, intermittent epilepsy patients, or healthy
380  subjects from their EEGs. The datasets have been widely used to test methods proposed by many
381  researchers, and can be considered as a benchmark for developing seizure detection schemes. The
382  noninvasive EEG datasets were obtained from 25 subjects with medically intractable partial
383  epilepsy.

384 The datasets were divided into five groups of ictal scalp EEG signals: {F, N, O, Z, and S}. Each
385  group of data contained 100 samples from five subjects. The raw EEG data was recorded using a
386  standard 10-20 system with a sampling frequency of 173.61 Hz. The age of the subjects ranged from
387 19 to 60 years, they were all right-handed, and the locations of the epileptogenic foci for each
388  subject were identified by experienced epileptologists. The five EEG datasets {F, N, O, Z, S} were
389  subjected to standard normalization procedures and were combined into three types
390  {F/N}-{O/Z}-{S} according to the level of disease. More detailed information about the five EEG
391 datasets {F, N, O, Z, S} are provided in Table 6.

392 Table 6. Dataset description
Data Sources Parameter Dataset Subject Epileptogenic Electrode Samples
Description  category condition foci collection area Number
5 groups {0/Z} Health Scalp surface All brain areas 200

Bonn 173.6 Hz. {F/N} Intermittent Intracranial Lesionoutside 200
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points. 8} epilepsy firacrama lesional area
395 A major goal of this paper is to classify the existing EEG signals {F/N}-{O/Z}-{S} into the three

396  types. The datasets {O/Z} were from healthy subjects in an alert state and only used EEG signals
397  acquired from the surface of the scalp. The datasets {F/N} were from epilepsy patients who did not
398  suffer a seizure within the area covered by the intracranial EEG signals during the data acquisition
399  period. The {S} dataset was from ill patients with epileptic episodes from lesions within the area of
400  the intracranial EEG.

401 First, the raw EEG signals were preprocessed using the open source toolbox EEGlab running
402  under Matlab. This involved several steps, including Butterworth filtering, removal of artifacts,
403  baseline corrections, and cutting the data into segments .

404 4.2 Time frequency and statistical feature extraction

405 The joint time-frequency distribution is a power spectrum analysis able to accommodate the
406  properties of non-stationary signals. The effective frequency range obtained after band pass
407  filtering was 0.5 to 50 Hz. We used SW to perform a 4-layer decomposition into a spectrogram.
408  One-dimensional EEG data are transformed into a two-dimensional time-frequency distribution,
409  where for every time point on the x-axis, a distribution of instantaneous frequencies is estimated
410  and plotted on the y-axis. Fig. 4 shows the SW visual decomposition process for the continuous
411  epilepsy {S}, intermittent epilepsy {FN} and healthy subject {O/Z} datasets. The raw EEGs are
412 expressed in the first column of Fig. 4. (a), (b), and (c). The EEGs are divided into several feature
413 segments according to the frequency domains y (25 ~50Hz), 5(12 ~ 25Hz),a (6 ~ 12Hz),

414  0(3~6Hz),6(0~3Hz) . In the first decomposition process, the detail coefficient d, and
415  approximation coefficient «, are generated. Next, g, is injected into the SW to generate the detail

416  coefficient d, and approximation coefficient a,. The other wavelet coefficients are obtained in a

417 similar way. The decompositions {S}, {FN}, and {O/Z} of the EEG datasets are shown in lines 2 to 6
418  of Fig. 4. (a), (b), (¢).
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Figure 4. (a) Raw {S} data and corresponding wavelet decomposition; (b) Raw {F/N} data and
corresponding wavelet decomposition; (c) Raw {O/Z} data and corresponding wavelet
decomposition.

The absolute value of the data is taken to avoid negative energy. To ensure the credibility of
the test results, arithmetic average processing was performed for the above three groups of data
and they were compressed into single column matrices. The energy mean, number of cases, and
variance of the datasets {F/N}-{O/Z}-{S} are shown in Table 7. Dataset {S} was observed to have the
largest standard deviation and the highest mean energy.

Table 7. Statistical features of the data

Datasets {FN} {O/Z} {S}
Mean -5.94 -6.31 -4.74
Number of cases 4097 4097 4097

Standard deviation 13.10 4.56 38.55



http://dx.doi.org/10.20944/preprints201811.0493.v1
http://dx.doi.org/10.3390/s19020219

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2018 d0i:10.20944/preprints201811.0493.v1

14 of 21

434 4.3 Classification implementation

435 The architectures of three types of classifiers used for epilepsy detection are shown in Fig. 5.
436  The training data and its corresponding labels are included in the prepared category dataset. The
437 EEGs {S}-{F/N}-{O/Z} are decomposed into five frequency sub-bands by four levels of SW. The
438  mean and standard deviation values of the wavelet coefficients are then calculated to create a
439  ten-dimension feature vector. The training sets {S}, {F/N}, and {O/Z} are labeled with "1", "0" and
440  "-1", respectively. The ten-dimensional feature vector and pre-trained SVM, RF, and GBM classifiers
441  act on the feature recognition module of the scheme. In the practical applications, we use 10-fold
442 CV in the process of training the classifier, because of the number of epileptic datasets. After 10

10
443  operations, the average is used as the final CV error CVe:%Zeq for selecting the classifier,
q=1

m A 2
444 where ¢, = Z( y,— yn) is the average error of the ¢th test set and mis the number of samples

1
m n=1
445  in the gth test set. During the training process, the GSO searches for the optimal values for the

446  generated parameters.
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448 Figure 5. Classification implementation
449 4.4 Multiple-index evaluation and comparisons

450 It is also essential to conduct a multiple-index verification of the program after completing the
451  design of the epilepsy detection scheme. We investigated the validity of the proposed method
452  through several experiments using the Bonn University data. The signification costs for the
453  different categories are not equal. Some of the performance indicators, such as accuracy, sensitivity,
454  specificity, and the confusion matrix for the three-level classification of the epilepsy EEG, are
455  defined in Table 8.

456 Table 8. Definition of the classification multiple-index
{0/Z2}  {F/N}  {S} Sensitivity Specificity Accuracy
Test\Real type
(1) 2) 3) (SEN) (SPE) (ACC)
4 Ay + Ay + Ay + Ay
oz A A A i A+ 4,
1 All + A22 + A33

All
Ay + A+ Ay + Ay

{F/N} (2) 4 A, Ay Ao 4+ 4
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457
458 The parameters 4, (i=j) are defined as the correct classification probability of sub-dataset

459  {i} in the five datasets. Similarly, 4, (i# j) represents the incorrect classification probability. The

3
460  parameters 4, =>4, are the sum of all classification rates of sub-datasets {i} (i,j=1,2,3).

i=1

461 This paper summarizes the processing results of the Bonn University data over recent years,
462 including the techniques used, the number of classification levels, and the results of multiple-index
463 evaluations. As listed in Table 10, almost all researchers have classified the data into two levels,
464 {Z}-{S}, {OHS), {N}HS), {F}-{S}, {ZO}-{S}, {NF}-{S}, {ZO}-{NF}, or {FNOZ}-{S}>25+5; although Wang et
465 al. conducted three-category classification according to {FN}-{OZ}-{S} in 2017, and achieved an
466  accuracy rate of 93.9% 3. With our method, we achieved better results on the three-category
467  problem, with an accuracy of 96.5%. Many different indicators of machine learning have been
468  evaluated for the SM-GBM-GSO approach, as shown in Table 10. From the above experimental
469  results, we infer that our proposed approach exhibits potential for automated three-level
470  classification of Epilepsy EEG.

471 Table 9. Comparison of ACC of the two and three-level classifications
Authors Techniques 10-fold CV Dataset ACC% AUC CM/PRC
Guo et al. DWT and line N {Z}-{S} 100 N N
0 o 0
4(2010) length, ANN {FNOZ}-{S} 97.7
Gandhi et al. % DWT, energy
@o11) and std, Yes {FNOZ}-{S} 95.4 No No
SVM, NN
{Z}-{S} 93.5
. . {0}-{S} 82.8
Nicolaou Permutation
No {N}-{S} 88.0 No No
etal. 2 (2012) entropy, SVM (F)-15) 79,94
{FNOZ}-{S} 86.1
STFT Spectral {Z}-{S} 99.8
Samice et al. coefficients with {O}-{S} 99.3
amiee et al.
2015) their statistical, No {N}-{S} 98.5 No No
values,Bayes,LR, {F}-{S} 94.9
SVM,KNN,ANN {FNOZ}-{S} 98.1
{Z}-{S} 100
{0}-{S} 98.89
DTCWT, energy N}-(S) 98.72
Swami et al. 3¢ an std, Shannon ’
Yes {F}-{S} 93.3 No No
(2016) entropy features,
RNN {ZO}-{S} 99.1
{NF}-{S} 95.1
{FNOZ}-{S} 95.2
Distributi for sample Yes
istribution
. d entropy 2-level
entropy an
P.Lietal. ¥ 4 classification
sample entropy No o mean No
(2016) Statistical distribution
atistica
Ivsi entropy for short 0.93-0.97
analysis
4 length data 0.66-0.87
Z}-{S} 100
Manish Z3-8)
Cal 5 ATFFWT and v {0}-{S} 100 N N
etal. es o 0
2017) FD, LS-SVM {N}-{S} 99

{F}-{S} 98.5
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{ZO}-{S} 100
{NF}-{S} 98.6
{ZO}-{NF} 92.5
{FNOZ}-{S} 99.2
Yuanfa Wang
DWT, SVM No {FN}-{OZ}-{S} 93.9 No No
etal. 3 (2017)
{Z}-{S} 100 Yes
{0}-{S} 100 3-level
Symlets . .
{N}-{S} 98.4 classification
wavelets,
. {F}-{S} 98.1 GBM -GSO
statistical mean
This work Yes {ZO}-{S} 100 0.9695 Yes
energy std and
{NF}-{S} 98.1 RF -GSO
PCA, GBM, RF,
{ZO}-{NF} 93.2 0.9586
and SVM GSO
{FNOZ}-{S} 98.4 SVM -GSO
{FN}-{0Z}-{S} 96.5 0.9538
472 Furthermore, we compared the confusion matrix (CM) for the three EEG dataset categories

473 {S}-{F/N}-{O/Z} labeled as continuous ictal epilepsy patients, intermittent epilepsy patients, and
474  healthy subjects by the GBM, RF, and SVM classifiers. The GBM classifier achieved higher
475  performance than the RF and SVM classifiers in Fig. 6. This not only guarantees high prediction of
476  true positives and true negatives, as can be seen on the main diagonal line, but also avoids errors
477  from false positives and true negatives, represented by the off-diagonal line.

478
GBM Confusion Matrix RFConfusion Matrix SVM Confusion Matrix
0 kL 0 4 o Pl 0 9 1] 24 1 13
% 1 1 21 1 % 1 2 19 2 % 1 3 19 1
2 3 1 k-3 2 5 0 £ 2 5 1 3
] 1 2 0 1 2 0o 1 2
479 predicted label predicted label predicted label
480 Figure 6. Confusion matrices comparing GBM, RF, and SVM with GSO for {FN}-{OZ}-{S}
481 With the technological developments in machine learning over recent years, the identification

482  accuracy and confusion matrix can be considered insufficient to judge the accuracy of a
483  classification. We can construct a classifier with high accuracy or recall, but it is difficult to ensure
484 both at the same time. Therefore, we used the ROC and AUC to assess the performance of the
485  classifiers . To allow an ROC curve to be drawn the classifier must provide a confidence value that
486  isjudged as positive or negative for each sample. The AUC defines a natural measure for overall
487  performance assessment of a classifier based on the ROC. Li et al. also used the AUC index for their
488  results on the same dataset, but their values of 0.66-0.87 as shown in Table 9 are not very
489  satisfactory ¥. Fig. 7. summarizes the AUC comparisons between the proposed GBM, RF, and SVM
490  identifiers with GSO using subsets {F/N}-{O/Z}-{S}, with values of 0.9695, 0.9586, and 0.9538,
491  respectively. In medical detection, a high true-positive rate is more desirable for a fixed lower-false
492 positive rate. By definition, we consider the higher true-positive value to be the better one.
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494 Figure 7. Comparison of ROCs for the three-level classification. Figure 8. Comparison of PRCs space
495 for the three-level classification
496 The precision recall curve (PRC) has a wide range of applications in the field of classification

497  and retrieval; it represents the relationship between precision and recall. The precision values of the
498  vertical axis represent the correct predictions as the ratio of positive samples to all positive samples,
499  while the recall of the horizontal axis represents the correctly predicted ratio of positive samples to
500  true samples. When the precision and recall are high, we can be assured that the classification
501  performance is good. It can be seen in Fig. 8 that the GBM-GSO classifier has the best performance
502 in the three-level classification according to the multiple indicators of accuracy, CM, ROC, AUC,
503  and PRC.

504 5. Conclusions

505 The use of EEG signals has changed the method of monitoring epileptic seizures. In this study,
506  the proposed integrative SW-GBM-GSO methods of auxiliary medical diagnostic system for Epilepsy EEG
507  presented excellent performance in a three-level classification of healthy subjects, intermittent
508  epilepsy, and continuous ictal epilepsy. Symlet wavelets were used to decompose the EEG data into
509 five time-frequency sub-bands, while the mean and standard deviation of statistical features were
510  calculated. Subsequently, a modified grid search optimizer was used to search for the optimal
511  parameters using a variable-step method. The use of 10-fold CV avoided overfitting of the classifier.
512 We then compared GBM with SVM and RF in the classification of the EEG data. Considering that
513  most other schemes have only been concerned with classification accuracy, we focused on multiple
514  indicators to illustrate the misclassification factors. These indicators are essential in medical
515  screening. According to the experimental results and multiple co-verification indicators, we
516  conclude that the proposed Symlet wavelet processing, a gradient boosting machine, and a grid
517  search optimizer integrative methods obtain the highest performance in the three-level
518  classification.

519 In the future, we intend to optimize our detection approach to improve its running speed and
520  achieve higher recognition rates for multiple levels of epileptic seizure. We also hope to transfer the
521  technology out of the laboratory and plan to develop a smart mobile application such as
522 "UMindSleep" to assist medical diagnosis of the epilepsy patient. The EEG signals would be
523  transmitted to a mobile terminal through a wireless sensor network ¢ 62, The scheme could assist
524  medical diagnosis and be used to alert medical professionals to an epileptic occurrence. It should be
525  especially useful for people or infants who suffer paroxysmal epilepsy and who could be monitored
526  athome in the evening.

527 Funding: This research was funded by National Science Foundation of China, grant number 61773032.
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