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Abstract: Based on previous research results, we propose a new preprocessing HSS iteration method 
(PHSS) for the generalized Lyapunov equation. At the same time, the corresponding inexact PHSS 
algorithm (IPHSS) is given from the angle of application. All the new methods presented in this paper 
have given the corresponding convergence proof. The numerical experiments are carried out to 
compare the new method with the existing methods, and the improvement effect is obvious. The 
feasibility and effectiveness of the propos method are proved from two aspects of theory and 
calculation. 
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1. Introduction 

We consider the system of large sparse linear equations 

,Ax b=                               (1) 

where n nA C ×∈  is non-Hermite positive definite matrix and , n nx b C ×∈ . The actual 

background of such problems can be found in [1, 2, 3, 4, 5, 6, 7] and its references.  

For (1), Bai, Golub and Ng put forward the HSS[8] iteration method in 2003. 
Any matrix can be decomposed into the sum of symmetric matrices and skew 

symmetric matrices so that we can get the formula: 

( ) ( ) ( ( )) ( ( )) ( ( )) ( ( )),A H A S A I H A I S A I S A I H Aα α α α= + = + − − = + − −  

where α  is normal number, 1( ) ( )
2

H A A A∗= + , 1( ) ( )
2

S A A A∗= − , and 

( ), ( ) n nH A S A C ×∈ , As a result, the HSS iterative format proposed by Bai and others 

is: 

Let (0) nx C∈  be an initial guess. For 0,1, 2,......,k =  until the sequence of 

iterates ( ){ }kx  converges, compute the next iterate ( 1)kx +  through the following 

procedure: 
-------------------------------------- 
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1( ) ( )2

1( )( 1) 2

( ( )) ( ( )) ,

( ( )) ( ( )) ,

k k

kk

I H A x I S A x b

I S A x I H A x b

α α

α α

+

++


+ = − +


 + = − +

 

where α  is normal number. Bai and others proved its unconditional convergence to 

the unique solution of (1) in [8]. 

In order to speed up the HSS iteration method, Bai and others put forward the 

PHSS iteration method [9-11]. Decompose coefficient matrix A into the sum of 

symmetric matrices and skew symmetric matrices and we can get the formula: 

( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( )),A P A H A P A S A P A S A P A H Aα α α α= + − − = + − −   (2) 

where ( ) n nP A C ×∈  is Hermite positive definite matrix. Therefore, we can get the 

HSS iterative format: 
1( ) ( )2

1( )( 1) 2

( ( ) ( )) ( ( ) ( )) ,

( ( ) ( )) ( ( ) ( )) ,

k k

kk

P A H A x P A S A x b

P A S A x P A H A x b

α α

α α

+

++


+ = − +


 + = − +  

where α  is normal number. Bai and others proved its unconditional convergence to 

the unique solution of (1) in [10]. 

2. The PHSS iterative method for the generalized Lyapunov equation 

Many methods to solve the standard Lyapunov equation have been put forward 

in [12-19].In the literature [12], Xu Qingqing and others put forward the HSS iterative 

solution of the generalized Lyapunov equation. Inspired by this, this paper proposes 

the PHSS iterative solution of the generalized Lyapunov equation. 

Consider the generalized Lyapunov equation as follows: 

1
0,

m

j j
j

AX XA N XN CΤ Τ

=

+ + + =                      (3) 

where , , n n
jA N C R ×∈ , A is an asymmetric positive definite matrix, C is a symmetric 

matrix and 22
( 1,2..., )jN A j m= . When a=b, the equation (3) degenerates to the 
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standard Lyapunov equation. 

Then we apply the PHSS iterative method to solve the generalized Lyapunov 

equation (3): 

Let's suppose that α  is a normal number, then the decomposition of A  is 

similar to (2): 

( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( )),
( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( )),

A P A H A P A S A P A S A P A H A
A P A H A P A S A P A S A P A H A

α α α α
α α α αΤ

= + − − = + − −
= + − + = − − −

 

Then the iterative format can be obtained: 

1 1
2 2

1

1 1

1 1
2 2

( ( ) ( )) ( ( ) ( ))

( ( ) ( )) ( ( ) ( )) ,

( ( ) ( )) ( ( ) ( ))

( ( ) ( )) ( (

k k

m

k k j k j
j

k k

k k

P A H A X X P A H A

P A S A X X P A S A N X N C

P A S A X X P A S A

P A H A X X P A

α α

α α

α α

α α

+ +

Τ

=

+ +

+ +

+ + + =

                                 − + + − −

+ + − =

                        − +



1
) ( )) ,

m

j k j
j

H A N X N CΤ

=









 − − −




  (4) 

According to the nature of Kronecker product, we can get 

1
2

1

1

( ( ) ( ( ) ( )) ( ( ) ( )) ( ))

( ( ) ( ( ) ( )) ( ( ) ( )) ( )) ( ) ,

( ( ) ( ( ) ( )) ( ( ) ( )) ( ))

( ( ) ( ( ) ( )) ( ( ) ( ))

k

m

k j j k
j

k

I A P A H A P A H A I A x

I A P A S A P A S A I A x N N x c

I A P A S A P A S A I A x

I A P A H A P A H A

α α

α α

α α

α α

+

=

+

⊗ + + + ⊗ =

                ⊗ − + − ⊗ − ⊗ −

⊗ + + + ⊗ =

           ⊗ − + −



1
12

( )) ( ) ,
m

j j kk j
I A x N N x c

+ =









 ⊗ − ⊗ −




 

where ( )k kx vec X= , ( )c vec C= ,then, according to the nature of Kronecker product, 

we can get 

1
12

1 1
12

( ) ( ) ( ) ,

( ) ( ) ( ) ,

m

k j j kk j

m

k j j kk j

P H x P S x N N x c

P S x P H x N N x c

α α

α α

+ =

+ + =

 + = − − ⊗ −


 + = − − ⊗ −





           (5) 

where 

( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ).

P I A P A P A I A
H I A H A H A I A
S I A S A S A I A

= ⊗ + ⊗
 = ⊗ + ⊗
 = ⊗ + ⊗

 

The convergence of the iterative scheme (4) is equivalent to the convergence of the 
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iterative scheme (5) and their convergence factors are the same. 

Theorem 1. Let's suppose that n nA R ×∈  is an asymmetric positive definite matrix, 

1
2

1 2

m

j j
j

K P N N−

=

= ⊗ and the maximum and minimum eigenvalues of matrix 

1P H−  are maxλ  and minλ , respectively. Then the convergence factor of the PHSS 

iterative method (4) is the spectral radius of matrix 

1 1 1 1

1
( ) ( )( ) ( ) 2 ( ) ( ) ( ).

m

j j
j

G P S P H P H P S P P S P H N Nα α α α α α α− − − −

=

= + − + − − + + ⊗

Its upper bound is 

10
( ) min

2( ) max .
i

i

P H i

K
λ λ

α λσ α
α λ α λ−∈

−= +
+ +

 

When min Kλ >  and min max=α λ λ⋅ , 0 ( )σ α  reaches the minimum. It means that  

min max min
0

min max min

2
( ) 1,

Kλ λ λ
σ α

λ λ λ
⋅ − +

= <
⋅ +

  

Therefore, the PHSS iterative method for solving the generalized Lyapunov equation 

is convergent. 

Proof. The first form of the iteration format (5) is brought into the second form, and 

its iteration matrix is obtained: 
1 1

1 1

1

( ) ( )( ) ( )

2 ( ) ( ) ( ),
m

j j
j

G P S P H P H P S

P P S P H N N

α α α α

α α α

− −

− −

=

= + − + −

− + + ⊗
 

Then the convergence factor of the iterative scheme (5) is ( )Gρ , which is the same 

as the convergence factor of the iterative scheme (4). 

Because n nP R ×∈  is a symmetric positive definite matrix, we can suppose that  
1 1 1 1
2 2 2 2, .H P HP S P SP

− − − −
= =

 

Because G  is similar to 
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1
1

1 1

1 1 1

1

( ) ( )
( )( ) ( )( )

2 ( ) ( ) ( ) ( )( )
m

j j
j

G P S G P S
P H P H P S P S

P S P P S P H N N P S

α α
α α α α

α α α α α

−

− −

− − −

=

= + −

= − + − +

− + + + ⊗ +

 

and 1G  is similar to 

1 1
2 2

2 1
1 1 1 1 1 1 1 1 1 1

1 12 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1
1 12 2 2 2 2 2 2

1

1 1 1
12 2 2

1 1

( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( )

( )
( )( ) ( )( )

m

j j
j

G P G P

P P I H P P I H P P I S P P I S P P

P P I S P PP I S P P I H P N N

P P S P P
I H I H I S I S

α α α α

α α α α

α
α α α α

−

− − − − −− −

− − − − −− −

=

− −−

− −

=

= − + − +

− + + + ⊗

⋅ +

= − + − +



  

  

  
1 1

1 1 1 12 2

1
2 ( ) ( ) ( ) ( ) ( ) ,

m

j j
j

I S P I S P I H P N N P I Sα α α α α
− −− − − −

=

− + + + ⊗ +  

 

we can get that 

1 2 2

1 1

2

1 1
1 1 12 2

2 2 2 2
12 22

1 1

2

1 1 1
22 2

1 2

( ) ( ) ( )

( )( ) ( )( )

2 ( ) ( ) ( )

( )( ) ( )( )

2 ( ) ( ) ( ) .

m

j j
j

m

j j
j

G G G G

I H I H I S I S

P P I H P N N P I S

I H I H I S I S

I H P N N I S

ρ ρ ρ

α α α α

α α α

α α α α

α α α

− −

− −− − −

=

− −

− − −

=

= = ≤

≤ − + − +

− + ⊗ +

= − + − +

− + ⊗ +





  



  



 

(6) 

Because H  is positive definite matrix, S  is a semi positive definite matrix. For any 

non-zero column vector nx R∈ , we can get that 

0, 0,x Hx x SxΤ Τ> ≥  

P is symmetric positive definite matrix, so 1P− is positive definite matrix. It is easy to 

prove that 
1
2P x

−
 is a non-zero column vector by means of proof of absurdity. Then 

we can see that 

1 1 1 1
2 2 2 2 0,x Hx x P HP x P x H P x

Τ
− − − −Τ Τ    

= = >   
   

  
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1 1 1 1
2 2 2 2 0.x Sx x P SP x P x S P x

Τ
− − − −Τ Τ    

= = ≥   
   

  

Therefore, H  is a positive definite matrix, S  is a semi positive definite matrix.  

H  is a real symmetric matrix and S  is an antisymmetric matrix, so we can see 

that 

1 1 1 1 1 1
2 2 2 2 2 2 ,H P HP P H P P HP H

Τ
− − − − − −Τ Τ 

= = = = 
 

   

1 1 1 1 1 1
2 2 2 2 2 2 .S P SP P S P P SP S

Τ
− − − − − −Τ Τ 

= = = − = − 
 

   

Therefore, H  is a symmetric positive definite matrix, S  is an antisymmetric 

semidefinite matrix. Meanwhile, since 
1 1 1 1 1 1

12 2 2 2 2 2 ,P HP P P HP P P H
− − − − −= =  

1 1 1 1 1 1
12 2 2 2 2 2 ,P SP P P SP P P S

− − − − −= =  

we can conclude that H  is similar to 1P H−  and S  is similar to 1P S− . 

Let’s suppose that 1( )( )Q I S I Sα α −= − +   and we can see that 

( )1 1

1 1

1 1

( )( ) ( )( )

( )( ) ( ) ( )
( )( ) ( ) ( )
.

QQ I S I S I S I S

I S I S I S I S
I S I S I S I S

I

α α α α

α α α α
α α α α

∗∗ − −

− −

− −

= − + − +

= − + − +

= − − + +
=

   

   
   

 

It’s easy to deduce that Q Q I∗ =  and we can conclude that QQ Q Q I∗ ∗= = . So Q  

is a unitary matrix and we can deduce that  
1 1 1

22
( )( ) ( )( ) ( )( ) .I H I H I S I S I H I Hα α α α α α− − −− + − + = − +    

      
(7) 

Let’s suppose that 1( )( )L I H I Hα α −= − +  and we can deduce through that  

( )1 1

1 1

1 1

( )( ) ( )( )

( )( ) ( ) ( )
( ) ( )( )( )

.

LL I H I H I H I H

I H I H I H I H
I H I H I H I H

L L

α α α α

α α α α
α α α α

∗∗ − −

− −

− −

∗

= − + − +

= − + + −

= + − − +
=

   

   
   

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2018                   doi:10.20944/preprints201811.0484.v1

Peer-reviewed version available at Mathematics 2019, 7, 38; doi:10.3390/math7010038

http://dx.doi.org/10.20944/preprints201811.0484.v1
http://dx.doi.org/10.3390/math7010038


Therefore, L  is a normal matrix and we can deduce through the formula (7) that  
1 1 1

22

( )

( )( ) ( )( ) ( )( )

max ,
i

i

H
i

I H I H I S I S I H I H

λ λ

α α α α α α

α λ
α λ

− − −

∈

− + − + = − +

−=
−

    

     (8) 

It’s easy to see that  

( ) ( )1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ,I H I H I H I H I H I Hα α α α α α
∗ ∗− − − − − −+ + = + + = + +       

( )
( )

1 1 1 1

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

I S I S I S I S

I S I S I S I S

α α α α

α α α α

∗− − − −

∗− − − −

+ + = + −

= − + = + +

   

   
 

so both 1( )I Hα −+   and 1( )I Sα −+   are normal matrices. Because H  is a positive 

definite matrix and S  is a semi positive definite matrix, we can easy to deduce that  

1

2 ( )
min

1

2 ( )

1 1( ) max ,

1 1( ) max .

i

j

H
i

S
j

I H

I S

λ λ

μ λ

α
α λ α λ

α
α μ α

−

∈

−

∈


+ = = + +


 + = ≤ +








                (9) 

Through the formula (6), (8) and (9), we can see that  

( )
min

2( ) max .
i

i

H
i

KG
λ λ

α λρ
α λ α λ∈

−≤ +
+ +

 

The following proves that when min Kλ >  and min min=α λ λ⋅ , 0 ( )σ α  reaches 

the minimum and 0 ( )σ α  is less than 1 at this time. 

In fact, for fixed α  , function α λ
α λ

−
+

 is monotonically decreasing with respect 

to λ . So we can see that  

maxmin
0

min min max min

2 2( ) max , ,K Kα λα λσ α
α λ α λ α λ α λ

 −− = + + + + + +  
 

It’s easy to see that when min Kλ > , min

min min

2Kα λ
α λ α λ

− +
+ +

 monotonically decreases 

over min(0, )λ  and increases monotonously on min( , )λ +∞ , max

max min

2Kα λ
α λ α λ

− +
+ +
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monotonically decreases over max(0, )λ  and increases monotonously on max( , )λ +∞ . 

Therefore, when min maxλ α λ< <  and maxmin

min min max min

2 2=K Kα λα λ
α λ α λ α λ α λ

−− + +
+ + + +

, 

0 ( )σ α  reaches the minimum. And we can conclude that when min maxα λ λ α= ⋅  , 

we can get that min max min
0

min max min

2
( ) 1

Kλ λ λ
σ α

λ λ λ
⋅ − +

= <
⋅ +

 . 

Through the proof of the expression of 0 ( )σ α , we can see that on the one hand, 

when α → +∞ , we can get that 0 ( ) 1σ α →  and 0 ( )σ α  increases monotonously on 

( , )α +∞ , on the other hand, when α → −∞ , we can get that 0 ( ) 1σ α →  and 0 ( )σ α  

decreases monotonously on ( , )α +∞ , Therefore, we can see that on the one hand, 

when min maxα α λ λ≥ = ⋅ , we can get that 0 ( ) 1σ α < , on the other hand, when 

min max0 α α λ λ≤ ≤ = ⋅ , we can get that 0 ( ) 1σ α < . Summing up the above, we can 

conclude that the PHSS iterative method for the generalized Lyapunov equation is 

convergent and the upper bound of the convergence factor is 0 ( )σ α  which is only 

associated with matrix 1
2

1 2

( )
m

j j
j

P N N−

=

⊗  and the eigenvalues of matrix 1P H− . 

In addition, when =α α , the upper bound 0 ( )σ α  of the convergence factor of the 

PHSS iterative method of the generalized Lyapunov equation (3) is minimal, but the 

convergence factor ( )Gρ  does not necessarily reach the minimum at this time, that 

is to say, when =α α , the PHSS iteration does not necessarily converge the fastest. 

How to obtain the optimal parameters needs to be further studied.  

The actual iterative parameter α  is advisable to be =α α .Because 

( ) ( )H I H A H A I= ⊗ + ⊗ , we can get that  

min min max max2 ( ( )), 2 ( ( )).H A H Aλ λ λ λ= =  

Therefore, we can get that  
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min max min max min max2 ( ( )) 2 ( ( )) 2 ( ( )) ( ( )).H A H A H A H Aα λ λ λ λ λ λ= ⋅ = ⋅ = ⋅  

To sum up, the PHSS iterative method is convergent for the generalized 

Lyapunov equation (3) which satisfies the condition. 

3 Inexact PHSS (IPHSS) iterative algorithm 

In order to reduce the computational complexity of the HSS iterative method for 

solving the generalized Lyapunov equation, Xu Qingqing and others proposed an 

IHSS iteration method for solving the generalized Lyapunov equation in [12]. 

Similarly, the IPHSS iteration method for solving the generalized Lyapunov equation 

can be derived from the PHSS iteration method for solving the generalized Lyapunov 

equation. 

Taking kX  as the initial value, the following generalized Lyapunov equation is 

approximated by iterative method, and 1
2

k
X

+
 is obtained: 

1 1
2 2

1

( ( ) ( )) ( ( ) ( ))

( ( ) ( )) ( ( ) ( )) .

k k

m

k k j j
j

P A H A X X P A H A

P A S A X X P A S A N XN C

α α

α α

+ +

Τ

=

+ + + ≈

                                    − + + − −
 

(10) 

Because the matrix of the Lyapunov equation (10) is symmetric and positive definite, 

the approximate solution can be obtained by the CG algorithm. 

Next, we use 1
2

k
X

+
 as initial value approximation to solve the following 

Lyapunov equation and get 1kX + : 

1 1

1 1 1
12 2 2

( ( ) ( )) ( ( ) ( ))

( ( ) ( )) ( ( ) ( )) .

k k
m

j jk k kj

P A S A X X P A S A

P A H A X X P A H A N X N C

α α

α α

+ +

Τ

+ + +=

+ + − ≈

                       − + − − −
(11) 

For Lyapunov equation (11), the approximate solution can be obtained by CGNE 

algorithm. Similar to the inexact HSS iterative method for solving the generalized 

Lyapunov equation in the literature [12], the inexact PHSS iteration method for 

solving the generalized Lyapunov equation can be summarized as follows: 

Algorithm 2. Let’s give the initial value 0
n nX R ×∈ , 0,1,...,k =  and calculate the 
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1kX +  until the accuracy requirement is met. 

(i) Let's approximate the solution of  

1
2

( ) ,kk
P H z rα

+
+ = −  

where  

( ) ( ) ( ) ( ), ( ) ( ) ( ) ( )P I A P A P A I A H I A H A H A I A= ⊗ + ⊗ = ⊗ + ⊗  

and 

1 1
1 2 2

, ( ), ( )
m

k k k j k j k kk kj
R AX X A N X N C z vec Z r vec RΤ Τ

+ +=

= + + + = =  

until 1
2

k
Z

+
 makes the corresponding residual  

1 1
2 2

( )kk k
p r P H zα

+ +
= − − +  

satisfy 1 2
2 2

.k kk
p rε

+
≤   

(ii) Let's approximate the solution of  

1 1
2

( ) 2 ,k k
P S z Pzα α+ +

+ =  

where 1 1( )k kz vec Z+ +=  and ( ) ( ) ( ) ( )S I A S A S A I A= ⊗ + ⊗  until 1kZ +  makes the 

corresponding residual  

1 1 1
2

2 ( )k kk
q Pz P H zα α+ ++

= − +  

satisfy 1 12 22 .k k kq Pzαη+ +≤  

(iii) Computing 1 1.k k kX X Z+ += +  

In algorithm 2, kε  and kη  is used to control the accuracy of internal iterations 

in the iterative process, and the stopping criterion of the (ii) step only makes the 

following convergence theorem more concise. In fact, the criterion can be changed to 

1 12 2k k kq Pzη+ +≤ . 

Theorem 3. Let’s suppose that n nA R ×∈  is an asymmetrical positive definite matrix. 

According to theorem 1, α  is chosen to make the HSS iterative method converge. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2018                   doi:10.20944/preprints201811.0484.v1

Peer-reviewed version available at Mathematics 2019, 7, 38; doi:10.3390/math7010038

http://dx.doi.org/10.20944/preprints201811.0484.v1
http://dx.doi.org/10.3390/math7010038


{ }kX  is an iterative sequence generated by algorithm 2, and *X  is the exact 

solution of the generalized Lyapunov equation. Then we can get that  
1

2* *2
1 0

min

2
( ) ( (1 )) ,k k k k k

P F
x x x xσ α ε η ε

α λ

−

+

 
 − ≤ + + + ⋅ −

+  
 

where ( )k kx vec X=  and * *( )x vec X= . Let's define the vector norm ⋅  as: For 

any vector y , we can define that 1
2

( )y I P S yα −= +   

In particular, if  
1

22
0 max max max

min

2
( ) ( (1 )) 1,

P F
σ α ε η ε

α λ

−

+ + + <
+

 

the iterative sequence { }kx  converges to *x , that is, { }kX  converges to *X , 

where max max{ }kε ε=  and max max{ }kη η= . 

Proof. Because 

1 1
2 2

1 1 1
2

( ) ,

2 ( )

kk k

k kk

p r P H z

q Pz P S z

α

α α
+ +

+ ++

= − − +

 = − +


 

satisfies 1 2
2 2

k kk
p rε

+
≤  and 1 12 22k k kq Pzαη+ +≤ , then we can conclude that  

1 1
1

1 1
2

1 1 1
1 1
2

1 1 1 1 1 1
1 1
2

( ) (2 )

2 ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) .

k k k

k kk

k k kk

k k kk

x x z
x P S Pz q

x P S P P H r p P S q

x I P S I P H P r p P S q

α α

α α α α

α α α α

+ +

−
++

− − −
++

− − − − − −
++

= +

= + + −

= − + + + − +

= − + + + − +

 (12) 

Because  

1
( ) ,

m

k k j j k
j

r Fx c H S N N x c
=

= + = + + ⊗ +         (13) 

we can bring the formula (13) into the type (12) and see that  
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1 1 1 1 1 1 1
1

1

1 1 1 1 1 1
1 1
2

( ) ( ) ( )( ) 2

2 ( ) ( ) ( ) ( ) .

m

k j j k
j

kk

x I P S I P H I P H I P S P N N x

I P S I P H P c p P S q

α α α α α

α α α α

− − − − − − −
+

=

− − − − − −
++

 
= + + − − − ⊗ 

 
− + + + − +


 

Let *X  be the exact solution of the generalized Lyapunov equation, that is, *x  

is the exact solution of the following two equations: 

1

1

( ) ( ) ( ) ,

( ) ( ) ( ) .

m

j j
j

m

j j
j

P H x P S x N N x c

P S x P H x N N x c

α α

α α

=

=

 + = − − ⊗ −


 + = − − ⊗ −





            (14) 

Through the first equation in formula (14), we can see that 

* 1 * 1 *

1
( ) ( ) ( ) ( ),

m

j j
j

x P H P S x P H N N x cα α α− −

=

= + − − + ⊗ +       (15) 

We can bring the formula (15) into the second equation of the formula (14) and see 

that  

* 1 1 1 1 1 1 1 *

1

1 1 1 1 1

( ) ( ) ( )( ) 2

2 ( ) ( ) .

m

j j
j

x I P S I P H I P H I P S P N N x

I P S I P H P c

α α α α α

α α α

− − − − − − −

=

− − − − −

 
= + + − − − ⊗ 

 
− + +

  

As a result, we can conclude that  
* 1 1 1 1

1

1 1 1 *

1

1 1 1 1 1 1 1 1
1 1
2

( ) ( )

( )( ) 2 ( )

2 ( ) ( ) ( ) .

k

m

j j k
j

kk

x x I P S I P H

I P H I P S P N N x x

I P S I P H P p I P S P q

α α

α α α

α α α α

− − − −
+

− − −

=

− − − − − − − −
++

− = + +

 
⋅ − − − ⊗ − 
 

− + + − +



 

Let’s suppose that vector norm is 1
2

( )y I P S yα −= +  and the matrix norm is 

1 1 1
2

( ) ( ) .Y I P S Y I P Sα α− − −= + +  

Because 1( )I P Hα −+  and 1( )I P Hα −−  can be exchanged, we conclude that 

1 1( )I P Hα − −+  and 1( )I P Hα −−  can be exchanged. As a result, we can conclude 

that  
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* 1 1 1 1 1 1 1
1

1

* 1 1 1 1 1 1 1 1
1 1
2

1 1 1 1 1 1 1

1 2

*

( ) ( ) ( )( ) 2

+2 ( ) ( ) + ( )

( ) ( )( ) 2 ( )

2 (

m

k j j
j

k kk

m

j j
j

k

x x I P S I P H I P H I P S P N N

x x I P S I P H P p I P S P q

I P H I P H I P S P N N I P S

x x

α α α α α

α α α α

α α α α α

α

− − − − − − −
+

=

− − − − − − − −
++

− − − − − − −

=

 
− ≤ + + − − − ⊗ 

 

− + + +

 
= + − − − ⊗ + 

 

− +





1 1 1 1
1 1 2
2 2

) kk
I P H P p P qα − − − −

++
+ +

 

             

1 1 1 1 1 1

1 1 1 1 1

1 2

* 1 1 1 1
1 1 2
2 2

1 1

2

1 1 1
2 2 2

1 2

*

( )( ) ( )( )

2 ( ) ( )

2 ( )

( )( ) ( )( )

2 ( ) ( )

2 (

m

j j
j

k kk

m

j j
j

k

I P H I P H I P S I P S

I P H P N N I P S

x x I P H P p P q

I H I H I S I S

P I H N N I S

x x

α α α α

α α α

α α

α α α α

α α α

α

− − − − − −

− − − − −

=

− − − −
++

− −

− − −

=

= − + − +

− + ⊗ +

⋅ − + + +

≤ − + − +

− + ⊗ +

⋅ − +





  



1 1 1 1
1 1 2
2 2

* 1 1 1 1
0 1 1 22 2 2

2 2

)

( ) 2 ( ) .

kk

k kk

I P H P p P q

x x P I P H p P q

α

σ α α α

− − − −
++

− − − −
++

+ +

≤ − + + +
 

Because * 1 1 *
2 2 2

( ) ( )k k kr F x x F I P S x xα − −= − ≤ + − , we can see that 

1 1 * 1 1 *
1 2 22 2
2 2

( ) ( ) ,k k k k k kk
p r F I P S x x F I P S x xε ε α ε α− − − −

+
≤ ≤ + − ≤ + −  

1
1 1 12 2 2

2 22 2

1 1
122
2 2

1 1
22

1 1 1 1 *
22 2

2 2 ( ) ( )

2 ( ) ( )

2 ( ) (1 )

2 (1 ) ( ) ( ) ,

k k k kk k

k k k

k k k

k k k

q P z P P H r p

I P H r p

I P H r

I P H F I P S x x

αη αη α

αη α

αη α ε

αη ε α α

−
+ + +

− −

+

− −

− − − −

≤ = + − −

≤ + +

≤ + +

≤ + + + −

 

Through the formula (9), we can see that  
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* * 1 1 1 1
1 0 1 1 22 2 2

2 2

1 1 1 1 1
0 22 2 2

*

1 1 1 1
1 12 2 2 2

0 2
2

1 1 1 1
12 2 2 2

2
2

( ) 2 ( )

( )+2 ( (1 )) ( ) ( )

( )+2 ( (1 )) ( )

( )

k k kk

k k k

k

k k k

x x x x P I P H p P q

P I P H F I P S

x x

P P I P HP P

F P I P SP P

σ α α α

σ α α ε η ε α α

σ α α ε η ε α

α

− − − −
+ ++

− − − − −

− − −− −

− − − −

− ≤ − + + +

 ≤ + + + + 

⋅ −


≤ + + +



⋅ + 



*
kx x−

 

1 1
0 2 2

1 *
2 2

1 *
0 22

min

1
2 *2

0
min

( )+2 ( (1 )) ( )

( )

1 1( )+2 ( (1 ))

2
( )+ ( (1 )) .

k k k

k

k k k k

k k k k

P I H

F I S x x

P F x x

P F
x x

σ α α ε η ε α

α

σ α α ε η ε
α λ α

σ α ε η ε
α λ

− −

−

−

−

≤ + + +
⋅ + −

 
≤ + + − + 
 
 ≤ + + −

+  





 

If we accurately solve the Lyapunov equation (10) and (11), the corresponding 

{ }kε  and { }kη  should be zero, so both maxε  and maxη  are zero. At this point, the 

convergence factor of the IPHSS iteration method is the same as that of the PHSS 

iteration method. Theorem 3 shows that in order to guarantee the convergence of the 

IPHSS iterative method, we only need the conditional 
1

22
0

min

2
( ) ( (1 )) 1k k k

P F
σ α ε η ε

α λ

−

+ + + <
+

 

to satisfy, and we do not need { }kε  and { }kη  to go to zero with the increase of k . 

Therefore, when the generalized Lyapunov equation is solved, the selection of { }kε  

and { }kη  should make the calculation as small as possible, and the iterative factor of 

the IPHSS iterative method is as close to the convergence factor of the PHSS iterative 

method as possible. 

4 Numerical experiments 

In this section, we test the IPHSS algorithm for solving the generalized 
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Lyapunov equation by numerical examples. 

Now, we consider the generalized Lyapunov equation as follows: 

1
0,

m

j j
j

AX XA N XN CΤ Τ

=

+ + + =  

where n N N= × , jN  is a random matrix that satisfies the condition of theorem 1;  

A I R Q I= ⊗ + ⊗  where ⊗  is Kronecker product. Let 

         (( 2 ),8, ( 2 ))R tridiag h h= − − − +  and  (( 2 2 ),8, ( 2 2 ))Q tridiag h h= − − − +   

are three diagonal matrices; 1h
N

= ; ( )(0) (0)x vec X=  is taken as a zero vector; and 

the program is executed by Matlab. The order of the coefficient matrix A  is n . The 

relative error is 
( )

2

2

kr
Res

b
= . The stopping criterion is 610Res −< . Iter  is the 

number of iterations. CPU  is iterative time. The parameters are taken as 0.9α = . 

The preconditioned matrix P  is selected as the diagonal matrix of the coefficient 

matrix A . Through the IPHSS algorithm we can get Table 1 as follows: 
Table 1 Comparison of calculation results between IHSS and IPHSS method 

n 
IHSS  IPHSS 

Iter CPU Res  Iter CPU Res 

4 118 0.0083 79.3898 10−×   3 0.0310 75.5442 10−×  

16 114 0.0439 79.9883 10−×   5 0.0270 89.3586 10−×  

36 116 2.3878 79.9562 10−×   5 0.0516 74.6816 10−×  

64 121 40.7979 79.9562 10−×   5 0.7346 77.9511 10−×  

100 131 252.4446 79.0056 10−×   5 4.2164 78.8654 10−×  

 

The numerical results in the analysis Table 1 show that the amplitude of the 

number of iterative times for the IHSS iteration and the IPHSS iteration of the 

generalized Lyapunov equation is smaller, which indicates that the two methods are 
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very stable, but the number of iterations and times of the IPHSS iteration are far 

smaller than that of the IHSS iteration, and the relative error of the IPHSS iteration is 

also less than the relative error of the IHSS iteration. Not only that, it can be seen that 

the gap between the iterative time of the IPHSS iterative method and the iteration time 

of the IHSS iteration method is larger, as we can see the higher order of the matrix, 

and thus the IPHSS iterative method for solving the generalized Lyapunov equation is 

more effective than the IHSS iteration. 

5 Conclusion 

In this paper, a new method of solving the generalized Lyapunov equation by 

PHSS iterative method is proposed and its convergence is proved. Then, the IPHSS 

algorithm for solving the generalized Lyapunov equation is put forward, and the 

convergence of the generalized Lyapunov equation is proved. Finally, a numerical 

experiment is carried out to compare the new method with the existing methods. It is 

found that compared with the IHSS iteration method, the IPHSS iteration method has 

obvious improvement effect. 
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