

1 Article

2

Novel Dead-time Compensation Strategy for wide

3 current range in a three-phase inverter

4 Jeong-Woo Lim ¹, Hanyoung Bu ¹, Younghoon Cho ^{1*}5 ¹ Department of Electrical Engineering, Konkuk University, Seoul 05029, Korea; wjddn1@konkuk.ac.kr

6 * Correspondence: yhcho98@konkuk.ac.kr; Tel.: +82-10-6207-0431

7

8

9 **Abstract:** This paper proposes a novel three - phase voltage source inverter dead-time compensation
10 strategy for accurate compensation in wide current regions of the inverter. In particular, an analysis
11 of the output voltage distortion of the inverter, which appears as parasitic components of the
12 switches, has been conducted for proper voltage compensation in the low current region, and an
13 on-line compensation voltage controller has been proposed. Also, a new trapezoidal compensation
14 voltage implementation method using the current phase is proposed to simplify realizing the
15 trapezoidal shape of the three-phase compensation voltages. Finally, when the proposed dead-time
16 compensation strategy is applied, the maximum phase voltage magnitude in the linear modulation
17 voltage regions is defined to achieve smooth operation even at high modulation index. Simulations
18 and experiments were conducted to verify the performance of the proposed dead-time
19 compensation scheme.20 **Keywords:** DTCS; dead-time compensation; trapezoidal compensation voltage; dead-time effects;
21 three-phase VSI compensation

22

23

1. Introduction

24 The dead-time is an efficient strategy which is adding blank time within complementary
25 switching signals to prevent arm-short. The series two switches circuit sharing a DC-link such a half-
26 bridge, is activated complementarily to keep arm-short condition. However, in the actual switch, a
27 delay occurs within on/off operating due to the parasitic components, the series switches appear to
28 be shorted with a DC-link. The short circuit allows excessive current through the series switches,
29 causing serious system failure. Therefore, the reliability of the system can be guaranteed by injecting
30 enough dead-time T_d until the switch reaches a steady state [1-2], [5-17].31 **Figure 1.** three-phase VSI and dead-time switching patterns in a-phase: (a) typical three-phase VSI
32 configuration; (b) switching patterns and output voltages of the half-bridge during the dead-time.

33 **Figure 2.** Effects of the dead-time in three-phase VSI ($f_{sw}=20$ kHz, $V_{dc}=100$ V, $L_s=0.01$ mH, $R_s=10\Omega$);
 34 (a) an a-phase pole voltage reference with SVPWM; (b) comparing dead-time effects with equal
 35 voltage reference at Figure 2 (a).

36 Especially, as shown in Figure 1 (a), a circuit structure such as a typical three-phase VSI in which
 37 three legs share a DC-link must ensure a reliability of the system by applying dead-time. Figure 1 (b)
 38 shows the process of the leg in a-phase according to time during the single switching period. Q_{ls}^*, \bar{Q}_{ls}^*
 39 are ideal complementary switches on/off signals and Q_{ls}, \bar{Q}_{ls} are real switch on/off signals adapted
 40 the dead-time T_d . Since the dead-time can't control actively, it causes not only serious voltage
 41 distortions in inverter output voltage as shown Figure 1 (b) but also adverse effects on the all
 42 algorithms using a voltage reference, thereby generating an error voltage between the real inverter
 43 output voltage and the voltage reference [3-4]. The Figure 2 (a) demonstrates a pole voltage reference
 44 and (b) illustrates current waveforms with Figure 2 (a) to confirm the current distortions by dead-
 45 time. Here, when the dead-time is applied, it can be recognized that the critical current distortion
 46 occurs near the zero crossing points and peak area.

47 Various types of dead-time compensation strategies have been published to analyze and
 48 compensate for the dead-time defects. In [1-2], [5], the dead-time and the switch on/off delay are
 49 analyzed and suggest dead-time compensation method via theoretical parameters. However, since the
 50 switch parameters are fluctuated with external factors, it is difficult to compensate accurately in all
 51 inverter operating areas by using fixed variables. In some papers [6-8], the distortions of inverter
 52 output voltage by switch's output capacitors studied and suggested compensation strategies with the
 53 look-up table containing the switch-off times according to the magnitude of the current. Although, it
 54 has a disadvantage that is difficult to compensate the precise dead-time in various environments
 55 since the table is limited to the experimental environment. The papers [9-10] proposed on-line dead-
 56 time compensation voltage (DTCV) modification methods that feeds back current distortions.
 57 However, the strategies extracting of the current errors are complicate and it has the drawbacks near
 58 the zero-crossing points. In [11], the dead-time compensation algorithm using filter has been
 59 suggested. Nevertheless, due to the lowpass-filter characteristics, the bandwidth of the current
 60 controller can be limited. The paper [12], it submits scheme which is compensates the sixth-order
 61 harmonic in d-q axis currents on the synchronous reference frame using bandpass filter. But, the
 62 performance of the dead-time compensation scheme is limited by the current controller performance
 63 because of the distortion errors input to the current reference. The [13-14] offer compensation
 64 strategies using observer which is feeding back d-q axis currents on synchronous reference frame.
 65 However, the observer regards not only the dead-time distortions but also various parasitic
 66 components as dead-time errors, since it is utilizing an ideal-model. Thus, it is impossible to
 67 accurately estimate the real output voltage of inverter. In [15-16], the on-line dead-time compensation
 68 algorithms having the trapezoidal shape compensation voltage and the modulator for slope have
 69 been proposed. However, it is difficult to completely compensate for the non-linearities of the switch
 70 especially low current region.

71 In this paper, a novel DTCS is proposed for correct dead-time compensation and for normal
 72 operating in wide-current region. In section 2, the inverter output voltage error is analyzed by the

73 dead-time and the switch's non-linearities. In section 3, it presents the proposed novel DTCV
 74 implementation strategy to revise the shape of the TCV and the on-line TCV controller. In section 4,
 75 the three-phase VSI distorted output voltage due to the dead-time is analyzed on the space vector
 76 and the maximum linear-modulation phase voltage (MMPV) is also done when the proposed DTCS
 77 is applied. Finally, in section 5, the simulation and the experiment are implemented to verify the
 78 proposed DTCS. And the performance of the DTCS is evaluated with phase current total harmonic
 79 distortion (THD).

80 **2. Analysis of dead-time effects**

81 In this paper, the dead-time T_d of (2) is including the ON/OFF propagation delay in order to
 82 simply express as V_d . And the conduction voltage drops across the diode and switch are excluded
 83 from the effect of dead-time because they are negligible compared to the dc-link voltage level.

84 *2.1. The three-phase VSI output voltage errors by the dead-time*

85 In figure 1 (b), the inverter output voltage v_{an} is varied according to the phase current i_a
 86 direction during the dead-time. When the current direction is in the positive, the current flows
 87 through the body diode D_2 in the lower switch \bar{Q}_1 , so that the v_{an} come to be $-V_{dc}/2$. On the
 88 other hand, when the current direction is in the negative direction, the current flows though the body
 89 diode D_1 in the upper switch Q_1 , thus the output v_{an} becomes $V_{dc}/2$. Therefore, the a-phase pole
 90 voltage errors due to the dead-time can be expressed as

$$\Delta v_{an}^{err} = \begin{cases} -V_d & (i_a > 0) \\ V_d & (i_a < 0) \end{cases} \quad (1)$$

$$V_d = \frac{T_{on} + T_d - T_{off}}{T_s} V_{dc} \quad (2)$$

91 In equation (2), the V_d is average pole voltage error (APVE) that occurs during single switching
 92 period, and it contains switch turn on/off delays T_{on}, T_{off} as well as dead-time T_d [2]. The a-phase
 93 APVE can be expressed according to the direction of current as shown equation (1), also the other
 94 phases b, c can be expressed in the same approach via each current polarity [1]. The APVEs of three-
 95 phase are represented by the voltage errors on the synchronous reference frame d-q axis as follows.

$$\begin{bmatrix} \Delta v_{as}^{err} \\ \Delta v_{bs}^{err} \\ \Delta v_{cs}^{err} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} \Delta v_{an}^{err} \\ \Delta v_{bn}^{err} \\ \Delta v_{cn}^{err} \end{bmatrix} \quad (3)$$

$$\begin{bmatrix} \Delta v_d^{err} \\ \Delta v_q^{err} \end{bmatrix} = \begin{bmatrix} \cos \theta_e & \sin \theta_e \\ -\sin \theta_e & \cos \theta_e \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \Delta v_{as}^{err} \\ \Delta v_{bs}^{err} \\ \Delta v_{cs}^{err} \end{bmatrix} \\ = -\frac{4V_d}{\pi} \begin{bmatrix} -\sin \delta - \sum_{n=1}^{\infty} \left\{ \frac{\sin(6n\omega_e t - \delta)}{(6n-1)} + \frac{\sin(6n\omega_e t + \delta)}{(6n+1)} \right\} \\ \cos \delta - \sum_{n=1}^{\infty} \left\{ \frac{\cos(6n\omega_e t - \delta)}{(6n-1)} - \frac{\cos(6n\omega_e t + \delta)}{(6n+1)} \right\} \end{bmatrix} \quad (4)$$

96 The equation (3) indicates average phase voltage errors by transferring the three-phase APVEs
 97 and equation (4) denotes the average d-q axis voltage errors on synchronous reference frame by the
 98 Fourier series expansion [5] [11]. Where the δ is the phase angle between the q-axis and the three-
 99 phase current vector I_s as shown Figure 3.

100

101 **Figure 3.** Stationary reference frame $\alpha - \beta$ axis and synchronous reference frame $d - q$ axis with δ .

102 The d-q axis voltage error contains both the fundamental and $6n^{\text{th}}$ harmonics distortion as
 103 equation (4). Theses voltage errors cause discordance between the real output voltage of three-phase
 104 VSI and the voltage references. Furthermore, the distortion components causing harmonic currents
 105 which degrades the performance of the VSI. Therefore, in order to compensate the voltage distortions
 106 due to the dead-time, the opposite voltage of the error voltage can be applied through the equation
 107 (1). The average compensation pole voltage (ACPV) can be expressed as follows.

$$\Delta v_{an} = V_d \text{sign}(i_a) \quad (5)$$

$$\text{sign}(i_a) = \begin{cases} 1 & (i_a > 0) \\ -1 & (i_a < 0) \end{cases} \quad (6)$$

108 The ACPVs of b, c -phases can be describe in similar way as equations (5), (6) which is a-phase
 109 AVPC [1-2]. Using the ACPVs of three-phase with synchronous reference frame transformer in
 110 equation (5), (6), the d-q axis compensation voltage waveforms can be illustrated as Figure 4.

111 **Figure 4.** Dead-time compensation voltage waveforms; (a) a-phase current;
 112 (b) ACPV of a-phase; (c) the average compensation phase voltage of a-phase;
 113 (d) compensation voltages on stationary reference frame $\alpha - \beta$ axis; (e) compensation voltages on synchronous reference frame $d - q$ axis;

114 **2.2. The effects of switch's parasitic components**

115 The switch contains diverse parasitic components and the output capacitor of the switch is
 116 critical factor in compensating the distorted output voltage of three-phase VSI because of it seriously
 117 affects the switch off delay time T_{off} depending on the magnitude of the phase current [6]. Figure 5
 118 shows the output capacitors C_1, C_2 connected in parallel with the switches and the charging and
 119 discharging process when the phase current i_a flows in the positive direction.

120 **Figure 5.** Charging and discharging process of the output capacitors ($i_a > 0$).

121 In Figure 5 (a), the voltage ($v_{C_1} = V_{dc}$) charged in capacitor C_1 is discharged while the upper
 122 switch is turn on. At the moment, the discharging current $-i_{C_1}$ flows to the node 'a' due to the
 123 potential difference and charges the capacitor C_2 of the lower switch. Since the impedance between
 124 the capacitor C_1 and C_2 is very small than the load, most of the current $-i_{C_1}$ flows to the capacitor
 125 C_2 , so that the voltage v_{C_2} of the lower switch parasitic capacitor C_2 is rapidly charged to V_{dc} .
 126 Consequently, when the upper switch is turned on, the output pole voltage v_{an} of the inverter is
 127 hardly affected. On the contrary, when the both upper and lower switches are turned off as shown
 128 in Figure 5 (b), the capacitor C_2 of the lower switch is discharged and the voltage of v_{C_2} arrives at
 129 zero. At this time, the phase current i_a can be expressed by the sum of the charge current i_{C_1} of the
 130 upper switch and the discharge current i_{C_2} of the lower switch.

$$i_a = -i_{C_2} + i_{C_1} \quad (7)$$

131 Assuming that the capacitances C_1, C_2 and the charging/discharging potentials are equal, the
 132 time T_{off} required for discharging v_{C_2} can be formulated as follows.

$$C_1 = C_2 = C_{12} \quad (8)$$

$$|i_{C_2}| = |i_{C_1}| = \frac{|i_a|}{2} \quad (9)$$

$$v_{C_2}(T_{off}) = \frac{1}{C_{12}} \int_0^{T_{off}} -i_{C_2}(t) dt + v_{C_2}(0) \quad (10)$$

133 From the equation (11), if the initial value is V_{dc} , the following equations (11), (12) can be
 134 obtained.

$$-V_{dc} = \frac{1}{C_{12}} \int_0^{T_{off}} -\frac{|i_a|}{2} dt \quad (11)$$

$$\therefore T_{off} = \frac{2C_{12}V_{dc}}{|i_a|} \quad (12)$$

135 If the phase current i_a flows in the opposite direction, the switch delay occurs in the upper
 136 switch in a similar way when the current flowing in the positive direction as shown Figure 5. Thus,
 137 the upper switch turns off delay time is the same as in equation (12) [17]. The Figure 6 shows a graph
 138 comparing the time T_{off}^{eq} calculated by equation (12) and the time T_{off}^{sim} measured by simulation
 139 result in Figure 5. It can be confirmed that the switch turns off delay time changes non-linearly along
 140 with the magnitude of the phase current. Therefore, to accurately compensate the distorted three-
 141 phase VSI output voltage, it is necessary to compensate for the appropriate switch delay according
 142 to the current magnitude because the influence of T_{off} is remarkable in the low current region.

143

144 **Figure 6.** Comparing with T_{off}^{eq} and T_{off}^{sim} .

145 The Figure 7 shows the simulation results of the circuit Figure 5. the symbols v_{Q_1} , v_{C_2} are
 146 meaning the gate voltage of the upper switch, the voltage of the lower switch respectively and the
 147 v_{an} is output pole voltage. When the phase current i_a is positive direction, the output pole voltage
 148 of the VSI represented as

$$v_{an} = -\frac{V_{dc}}{2} + v_{C_2} \quad (13)$$

149 In here, the v_{C_2} affects the output of the VSI since it is discharged with a slope depending on
 150 the amplitude of $|i_a|$ as shown in Figure 7. Therefore, the v_{C_2} should be properly compensated
 151 because of it can't be actively controlled.

Figure 7. Simulation results of Figure 5 ($T_{off} < T_d$) ; (a) gate voltage v_{Q_1} ; (b) capacitor voltage v_{C_2} of the lower switch; (c) inverter pole voltage v_{an} .

The Figure 8 shows the waveforms of real switch and the phase currents to compare with Figure 7 which is simulation results.

Figure 8. Variation of the T_{off} according to the phase current magnitude; (a) $i_a = 170\text{mA}$; (b) $i_a = 250\text{mA}$; (c) $i_a = 330\text{mA}$; (d) $i_a = 600\text{mA}$.

The equation (2) is applicable when the current level is enough to saturate the T_{off} and the voltage of the capacitor is rapidly falling or rising. Therefore, the output pole voltage changes the polarity with substantially constant slope as Figure 9, since the low current region where the effects of the turn off delay is maximized as Figure 7, 8. Consequently, it is necessary to redefine the compensation voltage considering the slop of the output capacitor voltage.

163

164

Figure 9. Detail of the dashed box in Figure 5 (c).

165 The regions A, B and C are non-controllable voltages caused by the output capacitors in Figure
 166 9 and it requires appropriate voltage compensation for the ideal inverter output. The voltage region
 167 Δv_{C_2} made by the output capacitor can be described as

$$\Delta v_{C_2} = A - (B + C) \quad (14)$$

168 If each area is defined as equation (15), (16) and (17), the parasitic voltage region Δv_{C_2}
 169 represented as equation (18)

$$A = \frac{1}{2} \left(\frac{V_{dc}}{2} \frac{T_{off}}{2T_s} \right) \quad (15)$$

$$B = \frac{1}{2} \left(-\frac{V_{dc}}{2} \frac{T_{off}}{2T_s} \right) \quad (16)$$

$$C = -\frac{V_{dc}}{2} \frac{T_{off}}{2T_s} \quad (17)$$

$$\Delta v_{C_2} = \frac{T_{off}}{2T_s} V_{dc} \quad (18)$$

170 Equation (2) can be redefined as equation (19), in order to properly compensate the output
 171 capacitor in the low current region in which the switch turns off delay has the greatest effect on the
 172 three-phase VSI.

$$\therefore V_d = \frac{T_{on} + T_d - \frac{T_{off}}{2}}{T_s} V_{dc} \quad (19)$$

173 3. The proposed DTCS

174 As mentioned above, the voltage error not only caused by dead-time distortion but also caused
 175 by switch parasitic are should be compensated to obtain the ideal three-phase VSI output. In the
 176 equation (19), the generally dead-time T_d is fixed value, but the delay time T_{off} is not. Hence, the
 177 precise T_{off} has to be calculated according to the phase current levels in real-time for correct
 178 compensation. In this paper, the TCV is used to simplify the variation of T_{off} [8], [15]. In addition,
 179 the novel implementation strategy is proposed to simplify the realizing trapezoidal shape voltage,
 180 also the novel on-line TCV controller is proposed to robust for variating parameters.

181 3.1. The implementaion of the TCV based on the current position

182 The proposed DTCS uses synchronous reference frame transformation matrix and limiter
 183 function to simplify realizing the TCV. Figure 10 shows the triangle waveform function $f(t)$, the
 184 sinusoidal waveform function $g(t)$ with peak value k and the trapezoidal waveforms utilizing
 185 them to comparing the outline. In Figure 3, the position of the three-phase current θ_d can be
 186 calculated as follows using the d-q axis currents.

$$\delta = \tan^{-1} \left(\frac{i_d}{i_q} \right) \quad (20)$$

$$\theta_d = (\theta_e - \delta) \quad (21)$$

187 The three-phase sinusoidal waveforms, which is in phase with the three-phase current vector
 188 I_s , can be defined as follows. $\alpha-\beta$ axis voltage $g(\Delta v_\alpha), g(\Delta v_\beta)$ with peak value k on the
 189 stationary reference frame expressed as

$$\begin{aligned} g(\Delta v_\alpha) &= -k \sin \theta_d \\ g(\Delta v_\beta) &= k \cos \theta_d \end{aligned} \quad (22)$$

190 $g(\Delta v_\alpha), g(\Delta v_\beta)$ is transferred to a three-phase stationary coordinate and the amplitude is
 191 limited to $\pm V_d$ as equation (23) to generate the TCV as shown in Figure 10 (b).

$$\begin{cases} g(\Delta v_{an}) = g(\Delta v_\alpha) & (-V_d \leq g(\Delta v_{an}) \leq V_d) \\ g(\Delta v_{bn}) = -\frac{(g(\Delta v_\alpha) - \sqrt{3}g(\Delta v_\beta))}{2} & (-V_d \leq g(\Delta v_{bn}) \leq V_d) \\ g(\Delta v_{cn}) = -\frac{(g(\Delta v_\alpha) + \sqrt{3}g(\Delta v_\beta))}{2} & (-V_d \leq g(\Delta v_{cn}) \leq V_d) \end{cases} \quad (23)$$

(a)

(b)

192 **Figure 10.** Proposed implementation strategy for TCV; (a) triangle waveform function $f(t)$ and
 193 sinusoidal waveform function $g(t)$ with peak k ; (b) TCV comparison made by $f(t)$ with
 194 $g(t)$.

195 As can be seen in the Figure 10 (b), if the peak level k is large enough to approximate a linear
 196 slope between V_d and $-V_d$, then the waveforms can be reckoned as $f(\Delta v_{an}) \approx g(\Delta v_{an})$. Next, as
 197 illustrated in Figure 11, the peak value k for implementing the TCV having slopes of the width ϕ
 198 can be defined as follows.

199

200 **Figure 11.** TCV with slopes of the width ϕ .

201 The function $g(t)$ can be express as $g(t) = k \sin(\omega t)$, and the time when $g(t)$ has a slopes of
 202 the width ϕ defines as t_ϕ , then the time t_ϕ can be derived as

$$t_\phi = \frac{\phi}{\omega} \quad (24)$$

203 Assuming that the output of $g(t)$ is $|V_d|$ at the time t_ϕ , the $g(t)$ rewritten as

$$k \sin(\omega t_\phi) = |V_d| \quad (25)$$

204 Therefore, the peak value k of the function $g(t)$ obtaining slope of the width ϕ is defined
 205 as equation (26)

$$\therefore k = \frac{|V_d|}{\sin(\phi)} \quad (26)$$

206 The adjustable TCV having a desired compensation voltage amplitude $|V_d|$ and compensation
 207 voltage slope of width ϕ can be realized with equations (23) to (26).

208 3.2. The on-line TCV controller

209 It can be seen from Figure 6 and equation (19) that the proportions of APVE must be varied
 210 according to the amount of the current flowing in the phase. Especially, when the VSI operates in the
 211 low current region, the magnitude of the APVE and the slopes of the TCV are decreased. For this
 212 reason, for smooth dead-time compensation in wide current regions, both the scale of the APVE and
 213 the slope of the TCV must be modulated to optimum value corresponding to the inverter operating
 214 environment.

215 Using the previously defined equations (12), (19) and (26), it is possible to vary the amplitude of
 216 APVE by responding to T_{off} . However, there is limitations to actively react changing conditions.

217 Therefore, a controller using the errors of the TCV is proposed to implement robust dead-time
218 compensation even unknown operating conditions.

219 While the influence of the dead-time appears $6n^{\text{th}}$ harmonics in the synchronous reference
220 frame as equation (4), the TCV errors can be generated using them [16]. The extracting axis can be
221 selected as a d-axis although the $6n^{\text{th}}$ harmonics appear on both d-q axis, since the d-axis has larger
222 voltage error than q-axis has. But if there is a d-axis current ($\delta \neq 0$), the fundamental component of
223 the distortion voltage is shared with q-axis shown in equation (4). Thus, to obtain a constant value
224 regardless of amount of d-axis current, the synchronous reference frame based the three-phase
225 current vector I_s should be carried out. In this, if the d-axis current for TCV error attained from the
226 equation (20), (21), the harmonics do not emerge on d-axis since the harmonic components of the
227 current affects the phase δ . For this reason, the ideal phase of three-phase current vector I_s can be
228 gotten by the d-q axis current references i_d^*, i_q^* as following equation (27), (28), assuming that the
229 actual currents do not deviate for the current commands.

$$\delta^* = \tan^{-1} \left(\frac{i_d^*}{i_q^*} \right) \quad (27)$$

$$\theta_d^* = (\theta_e - \delta^*) \quad (28)$$

230 The controller error i_{dd} is calculated from the d-q axis transfer matrix in equation (4) and the
231 phase of ideal three-phase current vector I_s (28).

232
233 **Figure 12.** The proposed on-line TCV controller.

234 The d-axis current i_{dd} based on θ_d^* includes the current distortion of the $6n^{\text{th}}$ harmonics as per
235 influence of the TCV errors, and the polarity of them can be determined by multiplying each order
236 harmonic via θ_d^* [16]. Figure 12 demonstrates the proposed on-line TCV controller. To adjust the
237 turn off delay time and slope of the TCV, the integrators are designed and for faster dynamics, T_{ff}
238 from the equation (12) is feedforwarded. While the T_{off}^* is a factor controlling the maximum APVE,
239 the phase current i_s in equation (12) must be altered as the three-phsae currents amplitude I_s .

240 **Figure 13.** Analysis of DTCV error characteristics on the synchronous reference frame; (a) error
 241 voltage of V_d ; (b) FFT result of Figure 13 (a); (c) error voltage of slop of DTCV; (d) FFT result of Figure
 242 13 (c).

243 Figure 13 indicates the fast fourier transform (FFT) results for two types of the DTCV errors.
 244 Figure 13 (a) shows the voltage waveform of the V_d error. And the FFT result of the V_d error has
 245 prominent component in the 6th harmonic as Figure 13 (b). Figure 13 (c) demonstrates the voltage
 246 waveform of the slope error. And the FFT result of the slope error has noticeable element in the 12th
 247 and 18th harmonics as Figure 13 (d).

248 By utilizing the results of the Figure 13, the 6th harmonic and 18th harmonic can be selected as
 249 error factors of the T_{off} and the ϕ respectively such as Figure 12. The 18th harmonic is picked as a
 250 slope error to minimize the influence of the 6th harmonic instead of the 12th.

251 4. The analysis of the linear modulation region with proposed DTCS

252 The proposed DTCS the way feedforwarding the DTCV at the controller output which voltage
 253 references. Thus, when the correct DTCV is applied, the dead-time effect does not come out at the
 254 controller sides. However, if the controller outputs a voltage command exceeding the inverter output
 255 limitation, the feedforwarding compensation voltage will not be able to suitable compensate due to
 256 physical constraints of the hardware. Therefore, it is required to limit the voltage reference of the
 257 controller by applying the proper physical voltage limit to the controller in order to perform normal
 258 operating of the DTCS.

259 4.1. The definition of the MMPV of the three-phase VSI

260 **Table 1.** The phase voltages and space voltage vectors of the three-phase VSI.

Vector	Phase voltage			Space voltage vector
	v_{as}	v_{bs}	v_{cs}	
V_1^i	$\frac{2}{3}V_{dc}$	$-\frac{1}{3}V_{dc}$	$-\frac{1}{3}V_{dc}$	$\frac{2}{3}V_{dc} / 0^\circ$
V_2^i	$\frac{1}{3}V_{dc}$	$\frac{1}{3}V_{dc}$	$-\frac{2}{3}V_{dc}$	$\frac{2}{3}V_{dc} / 60^\circ$
V_3^i	$-\frac{1}{3}V_{dc}$	$\frac{2}{3}V_{dc}$	$-\frac{1}{3}V_{dc}$	$\frac{2}{3}V_{dc} / 120^\circ$
V_4^i	$-\frac{2}{3}V_{dc}$	$\frac{1}{3}V_{dc}$	$\frac{1}{3}V_{dc}$	$\frac{2}{3}V_{dc} / 180^\circ$
V_5^i	$-\frac{1}{3}V_{dc}$	$-\frac{1}{3}V_{dc}$	$\frac{2}{3}V_{dc}$	$\frac{2}{3}V_{dc} / 240^\circ$
V_6^i	$\frac{1}{3}V_{dc}$	$-\frac{2}{3}V_{dc}$	$\frac{1}{3}V_{dc}$	$\frac{2}{3}V_{dc} / 300^\circ$

261

0 0 0 0 / 0°

262

263

Figure 14. Six output voltage vectors of typical three-phase VSI.

264 Table 1 and Figure 14 are express the voltage vectors of the three-phase VSI in Figure 1. The
 265 hexagonal region \mathfrak{R}^i using the six active voltage vectors is ideal voltage area. The switching
 266 operation state function $Q(Q_n, Q_n, Q_n)$ of each leg in Figure 14 is shown as

$$Q(Q_1, Q_2, Q_3) \begin{cases} Q_n = 1: & Q_n = on, \bar{Q}_n = off \\ Q_n = 0: & \bar{Q}_n = on, Q_n = off \end{cases} \quad (29)$$

267 In Figure 14, V_{smax}^i is the magnitude of the MMPV in the region \mathfrak{R}^i . When arbitrary voltage
 268 reference V^* presents at $0^\circ \leq \theta \leq 60^\circ$, it can be configured during the switching period T_s with the
 269 neighboring active voltage vector V_1^i, V_2^i and zero voltage vector O .

$$\int_0^{T_s} V^* dt = \int_0^{T_1} V_1^i dt + \int_{T_1}^{T_1+T_2} V_2^i dt + \int_{T_1+T_2}^{T_s} O dt \quad (30)$$

270 Where T_1, T_2 represent the interval for which the vectors V_1^i, V_2^i is applied, respectively. The
 271 maximum active voltage vector with V_1^i, V_2^i is

$$V^* T_s = V_1^i T_1 + V_2^i T_2 \quad (31)$$

272 The reference vector V^* projected on the V_1^i and V_2^i vectors, respectively, can be given as

$$V_1^i T_1 = V^* T_s \cos \theta - V_2^i T_2 \cos 60^\circ \quad (32)$$

$$V_2^i T_2 = V^* T_s \frac{\sin \theta}{\cos 30^\circ} \quad (33)$$

273 The periods of each voltage vector T_1, T_2 can be obtained with equation (32), (33)

$$T_1 = \gamma T_s \cos \theta - \frac{\gamma T_s}{\sqrt{3}} \sin \theta \quad \left(\text{where } \gamma = \frac{3}{2} \frac{V^*}{V_{dc}} \right) \quad (34)$$

$$T_2 = \frac{2\gamma T_s}{\sqrt{3}} \sin \theta \quad (35)$$

274 Here, since $T_1 + T_2 \leq T_s$, equations (34), (35) can be derived as equation (36)

$$V^* \left(\cos \theta + \frac{1}{\sqrt{3}} \sin \theta \right) \leq \frac{2}{3} V_{dc} \quad (36)$$

$$V^* \leq \frac{V_{dc}}{\sqrt{3}} \frac{1}{\sin(\theta + 60^\circ)} \quad (37)$$

$$\therefore V_{smax}^i = \frac{V_{dc}}{\sqrt{3}} \quad (\text{where } \theta = 30^\circ) \quad (38)$$

275 Accordingly, the MMPV amplitude V_{smax}^i at $\theta = 30^\circ$ in the ideal three-phase VSI can be defined
276 as equation (38)

277 *4.2. The analysis of the linear modulation region with dead-time and proposed DTCS*

278 The distortion voltage that occurs in dead-time can be derived by using equations (3) to (6) and
279 be demonstrated distorted voltage region with Figure 14. In this case, the affection of the distorted
280 voltage caused by the dead-time depends on the phase ψ of the current. Thus, the distortion voltage
281 can be defined as the function of ψ as $\Delta v_\alpha^{err}(\psi), \Delta v_\beta^{err}(\psi)$ on the stationary reference frame $\alpha-\beta$
282 axis. Where the maximum three-phase VSI output with six active voltage vectors is v_α^i, v_β^i , the
283 distorted three-phase VSI output, the v_α^r, v_β^r can be express as

$$\begin{bmatrix} v_\alpha^r \\ v_\beta^r \end{bmatrix} = \begin{bmatrix} v_\alpha^i \\ v_\beta^i \end{bmatrix} + \begin{bmatrix} \Delta v_\alpha^{err}(\psi) \\ \Delta v_\beta^{err}(\psi) \end{bmatrix} \quad (39)$$

284 The Figure 15 defines the phase ψ between the voltage reference and phase current.

285

286 **Figure 15.** The current phase ψ with a-phase voltage reference v_{as}^* and a-phase current i_a .

287 Figure 16 illustrates the distorted three-phase VSI output voltage waveforms v_α^r, v_β^r on the
288 stationary reference frame $\alpha-\beta$ axis according to the phase ψ . Figure 17 shows v_α^r, v_β^r regions on
289 the x-y plot using the waveforms in Figure 16 and equation (39), and the right side of each voltage
290 region reveals the sector ① in detail for more accurate analysis.

Figure 16. Voltage waveforms $v_{\alpha}^i, v_{\alpha}^r$ and v_{β}^i, v_{β}^r on the stationary reference frame according to the phase ψ ; (a) $\psi = 0^\circ$; (b) $\psi = 30^\circ$; (c) $\psi = 60^\circ$; (d) $\psi = 90^\circ$.

291
292

293 **Figure 17.** Distorted voltage regions according to the current phase ψ ; (a) $\psi = 0^\circ$; (b)
294 $0^\circ < \psi < 60^\circ$; (c) $\psi = 60^\circ$; (d) $60^\circ < \psi \leq 90^\circ$.

295 Figure 17 (a), (b), (c) and (d) are divided into four regions along the voltage region forms. In the
296 case of ψ being a negative phase value as a leading, it has a same form with a positive phase value
297 as Figure 17 since the distortion voltage from the dead-time is even function. Therefore, the MMPV
298 levels arrange in a Table 2 instead of illustrating the regions about negative phase value. Where \mathfrak{R}^i ,
299 \mathfrak{R}^r and \mathfrak{R}^c are the output voltage region of the ideal three-phase VSI, the output voltage of the
300 three-phase VSI distorted by the dead-time and the output voltage region of the three-phase VSI
301 applied proposed DTCS. Because of the dead-time physically limits the period the turn on time of the
302 switch, even if the dead-time compensated, the physical limits of the inverter can not be
303 compensated. Consequently, when the proposed DTCS is applied, the compensated region \mathfrak{R}^c is
304 inscribed voltage region in the dead-time region \mathfrak{R}^r .

305 **Table 2.** The compensated MMPV V_{smax}^c when the proposed DTCS applied.

Phase delay of current	Phase voltage V_{smax}^c
$\psi = 0^\circ$	from (42) $\frac{V_{dc} - 2V_d}{\sqrt{3}}$
$0^\circ < \psi < 60^\circ, -60^\circ < \psi < 0^\circ$	from (43) $\frac{V_{dc} - 2V_d}{\sqrt{3}}$

$$\psi = 60^\circ, \psi = -60^\circ \quad \text{from (46)} \quad \frac{\sqrt{3}}{2} |V_1^c|$$

$$60^\circ < \psi \leq 90^\circ, -90^\circ \leq \psi < -60^\circ \quad \text{from (50)} \quad \frac{V_{dc}}{\sqrt{3}}$$

306 4.2.1. where $\psi = 0^\circ$

307 When the output voltage is in phase with phase current, the voltage distortion exactly coincides
 308 with the six active voltage vectors as Figure 16 (a). Hence, by using the above equation (31) to (39),
 309 the arbitrary voltage reference V^* in the sector ① can be expressed as follows using the
 310 neighboring real voltage vectors V_1^r, V_2^r .

$$\begin{aligned} |V_1^r| &= |V_1^c| = |V_1^i| - \frac{4}{3} V_d \\ |V_2^r| &= |V_2^c| = |V_2^i| - \frac{4}{3} V_d \end{aligned} \quad (40)$$

311 The equation (36), (38) can be derived as

$$V^* \left(\cos \theta + \frac{1}{\sqrt{3}} \sin \theta \right) \leq \frac{2}{3} (V_{dc} - 2V_d) \quad (41)$$

$$\therefore V_{smax}^r = \frac{V_{dc} - 2V_d}{\sqrt{3}} \quad (\text{where } \theta = 30^\circ) \quad (42)$$

312 While the compensated region \mathfrak{R}^c is equal to the distorted real region \mathfrak{R}^r , the compensated
 313 MMPV V_{smax}^c is defined as

$$\therefore V_{smax}^r = V_{smax}^c = \frac{V_{dc} - 2V_d}{\sqrt{3}} \quad (\text{where } \theta = 30^\circ) \quad (43)$$

314 4.2.2. where $0^\circ < \psi < 60^\circ$

315 The proportions of the voltage vectors in Figure 17 (b) through Figure 16 (b) can be expressed as

$$V_{12}^r = \frac{2}{3} (V_{dc} - V_d) + j \frac{2}{3\sqrt{3}} V_d \quad (44)$$

$$|V_1^r| = |V_1^c| = \frac{2}{3} (V_{dc} - 2V_d) \quad (45)$$

316 Since the distorted real voltage vector V_{12}^r does not affect to the active voltage vector and output
 317 voltage region in Figure 17 (b), the V_{smax}^c can be derived as

$$\therefore V_{smax}^r = V_{smax}^c = \frac{V_{dc} - 2V_d}{\sqrt{3}} \quad (\text{where } \theta = 30^\circ) \quad (46)$$

318 4.2.3. where $\psi = 60^\circ$

319 In Figure 17 (c), the distorted voltage vector V_{12}^r affects the real output voltage region. It can be
 320 expressed as following using Figure 16 (c).

$$V_{12}^r = \frac{2}{3}(V_{dc} - V_d) + j \frac{2}{\sqrt{3}}V_d \quad (47)$$

321 And the angle ε between the V_{12}^r and V_1^i is

$$\varepsilon = \tan^{-1} \left(\frac{\frac{2}{\sqrt{3}}V_d}{\frac{2}{3}(V_{dc} - V_d)} \right) \quad (48)$$

322 The maximum voltage vector magnitude $|V_1^c|$ in the compensated voltage region \mathfrak{R}^c
 323 inscribed in the real voltage region \mathfrak{R}^r is derived as

$$|V_1^c| = \frac{2}{3}(V_{dc} - V_d) - \frac{2}{\sqrt{3}}V_d \frac{1}{\tan\left(\frac{\pi}{3} + \varepsilon\right)} \quad (49)$$

324 Therefore, the V_{smax}^c can be defined as equation (50) using the equation (36) to (38).

$$\therefore V_{smax}^c = \frac{\sqrt{3}}{2}|V_1^c| \quad (50)$$

325 4.2.4. where $60^\circ < \psi \leq 90^\circ$

326 In Figure 17 (d), the voltage vectors V_{12}^r , V_{21}^r that arisen in dead-time can be expressed as
 327 follows in Figure 16 (d).

$$V_{12}^r = \frac{2}{3}(V_{dc} - V_d) + j \frac{2}{\sqrt{3}}V_d \quad (51)$$

$$V_{21}^r = \frac{2}{3}(V_{dc} + V_d) + j \frac{2}{\sqrt{3}}V_d \quad (52)$$

328 The degree $\angle V_{21}^r V_1^c a$ is always 60° according to the equation (53)

$$\tan^{-1} \left(\frac{2/\sqrt{3}}{2/3} \right) = 60^\circ \quad (53)$$

329 As the line $\overline{V_{12}^r V_{21}^r}$ is parallel to the voltage vector V_1^i , the additional voltage region $\Delta V_{12}^r V_{21}^r V_1^i$
 330 generated by the dead-time always forms a regular triangle so that the voltage vector V_{12}^r is adjoined
 331 with ideal voltage region \mathfrak{R}^i . Therefore, the compensated MMPV V_{smax}^c has equal magnitude with
 332 ideal modulation phase voltage V_{smax}^i .

$$\therefore V_{smax}^c = V_{smax}^i = \frac{V_{dc}}{\sqrt{3}} \quad (54)$$

333 5. The results of the simulation and experiment of the proposed DTCS

334 The Figure 18 is a simplified block diagram of three-phase VSI controller with the proposed
 335 DTCS. Since the DTCV is feedforwarded at the controller output, there is no need to compensate for
 336 the dead-time into the current controller state. Therefore, the error between the voltage reference of
 337 the current controller and the output voltage of the three-phase VSI can be minimized, and it makes
 338 easy to design the algorithms using the voltage reference v_{dl}^*, v_{ql}^* . As mentioned above, unless the
 339 output of the current controller is appropriately limited, normal dead-time compensation is not

340 possible, so the current controller output v_d^*, v_q^* should be restricted as shown in block (b) in Figure
 341 18. Here, the voltage limit can be defined according to the phase of the current through Table 2. Where
 342 the outside of the current controller can be designed along the employed applications.

343
 344 **Figure 18.** The control block diagram of three-phase VSI with proposed DTCS.

345 Figure 19 shows a block diagram of the proposed DTCS of Figure 18 (a). The TCV contains the
 346 position calculate block which calculates and outputs current angles θ_d , θ_d^* and the on-line TCV
 347 controller block which regulates ϕ , T_{off}^* and outputs the references ϕ^* , T_{off}^* and compensation
 348 voltage calculator block which implements TCV.

349
 350 **Figure 19.** The specific block diagram of Figure 18 (a).

351 *5.1. The simulation results*

352 The proposed DTCS is verified using the simulation software Psim. The three-phase VSI and DTCS
 353 design the same as in Figure 18, and the current controller is performed alone without outer control
 354 loop. The circuit uses a three-phase VSI as shown in Figure 1. And in order to maximize the effect of
 355 dead-time, the load is composed of only the inductors and the resistors without the back
 356 electromotive force or the voltage sources. The switches modeled in SKM50GB063D manufactured
 357 SEMIKRON are used to observe the effects of the output capacitors into the simulation result.
 358 Detailed simulation specifications are shown in Table 3.

359 **Table 3.** The specifications of simulation.

Parameters	Description	Value	Parameters	Description	Value
------------	-------------	-------	------------	-------------	-------

V_{dc}	Dc-link voltage level	100 V	V_{ce}	Maximum collector - emitter voltage rating	600 V
R_s	Phase Resistance	0.5 Ω	$v_{G_{th}}$	Gate Threshold voltage	4.5 V
L_s	Phase inductance	10 mH	t_f	Fall time of the current when IGBT is turn off	300 ns
f_{sw}	Switching Frequency	20 kHz	C_{ies}	Input capacitance	2.2 nF
T_d	Dead-time	5.0 μ s	C_{oes}	Output capacitance	2.2 nF
f_m	Fundamental frequency	50 Hz	R_{ce_on}	On resistance	28 m Ω

360

361 Figure 20 demonstrates the simulation results of the proposed DTCV with the above
 362 specifications. Figure 20 (a) shows the compensated 3-phsae current waveforms and (d) is the
 363 compensation voltage on the synchronous reference frame d-q axis. It can be confirmed that the
 364 magnitudes of compensation voltages $g(\Delta v_d)$, $g(\Delta v_q)$ change according to the amplitude of the
 365 current I_s and the fundamental component of the dead-time distortions shifts to the d-axis along
 366 the d-axis current magnitude. Figure 20 (e) presents the position information of the three-phase
 367 current vector I_s using the control position θ_e and equation (21). It can validate that the position
 368 of the I_s is changed along the d-q axis currents amounts.

369 Figure 20. Simulation results of the proposed DTCS; (a) 3-phsae currents; (b) TCV of a-phase; (c) d-q
 370 axis currents on the synchronous reference frame; (d) DTCV on the synchronous reference frame d-q
 371 axis; (e) positions.

372 Figure 21 indicates the simulation result to comparing the performance of the proposed DTCS
 373 when any DTCS is not applied under the condition of Figure 20. Figure 21 (a) is the three-phase
 374 currents and (b) is the d-q axis current on the synchronous reference frame. As the amount of the
 375 current decreases, the harmonic distortions of the current become smaller. This is caused by the fact
 376 that as the switch turn off delay T_{off} increases in the low current region. However, when T_{off} is in
 377 the saturation region sufficiently, there is notable current distortions because of the current controller
 378 can not compensate the voltage distortion of high orderth harmonic distortions. As a result, the
 379 proposed DTCS applied three-phase currents has less than the 0.4% THD. Contrariwise, the three-
 380 phase currents which is not applied DTCS have a 5.4% THD that is about 10 times larger than that.

381 **Figure 21.** Simulation results without DTCS; (a) three-phase currents; (b) d-q axis currents on the
 382 synchronous reference frame.

383 5.2. The experimental results

384 The experiment to verify the proposed DTCS is used three-phase VSI connected with DC-power
 385 supply as shown Figure 22. And to maximize the effects of dead-time, it applied the only inductors
 386 and resistances as a load. Detailed stipulations of the experiment are summarized in Table 4.

387 **Figure 22.** Experiment setting; (a) the three-phase VSI; (b) DC-power supply for the DC-link voltage
 388 source.

389 **Table 4.** Experiment specifications.

Parameters	Description	Value
Switch (Q_n)	three-phse VSI switch	SKM50GB063D

Gate driver	Gate driver of VSI	SKHI 22B
MCU	Micro controller unit	DSP 320F28335
DC Power supply	DC-link voltage source	TP5H-10D
V_{dc}	DC-link voltage level	310 V
R_s	Phase Resistance	5.5 Ω
L_s	Phase inductance	20.5 mH
f_{sw}	Switching Frequency	15 kHz
T_d	Dead-time	5.0 μ s

390

391 Figure 23, 24 and 25 shows the three-phase currents waveforms for comparing the performance
 392 of the proposed DTCS with dead-time compensation pole voltage of the a-phase. The experimental
 393 conditions of the phase current were keeping about 1.4% of the switch rate to perform in the region
 394 where the effects of the switch's parasitic are present. Figure 23 is the three-phase current waveforms
 395 without DTCS, and it can be seen that serious current distortions occurs near the zero crossing. Figure
 396 24 illustrates the three-phase current waveforms when a conventional DTCS considering only dead-
 397 time T_d is adapted. While the compensation voltage that does not reflect the variation of T_{off} is
 398 larger than the actual voltage error. It can be confirmed that the current distortion due to the excessive
 399 compensation voltage. Figure 25 reveals the currents waveforms of the proposed DTCS, which shows
 400 very sinusoidal current waveform even in the low current region where affected by T_{off} variation.

401

402
403

Figure 23. three-phase current waveforms with a-phase dead-time compensation pole voltage adapting dead-time.

404

405
406

Figure 24. three-phase current waveforms with a-phase dead-time compensation pole voltage in case of adapting conventional DTCS.

407

408
409

Figure 25. three-phase current waveforms with a-phase dead-time compensation pole voltage in case of adapting proposed DTCS.

410
411
412
413
414
415

The Figure 26 displays waveforms for confirming the effects of the compensating pole voltage shape. The compensating pole voltage in the Figure 26 which shape is square whereas amplitude is equal with Figure 25. Even if it compensated with proper voltage level, the current distortions still exist near the zero-crossing points. Therefore, it can be proven that not only the amplitude of the compensation pole voltage but also the slope of it is a very important factor for correct dead-time compensation especially in low-current region.

416

417 **Figure 26.** three-phase current waveforms with a-phase dead-time compensation pole voltage with
418 equal amplitude with Figure 25.

419 The Figure 27, 28, 29 and 30 show the $\alpha - \beta$ axis currents on the stationary reference frame of
420 above three-phase current and also demonstrate the $\alpha - \beta$ axis currents on the x-y plot that can
421 compare the distortion of the current more intuitively. The $\alpha - \beta$ axis currents displayed using the
422 DAC. Since α -axis current is equal the a-phase current, the both currents waveforms are overlapped
423 to check the function of DAC. The $\alpha - \beta$ axis currents, as represented by the x-y plot, shows the
424 ideal circular shape as the ideal sinusoidal current waveforms.

425

426 **Figure 27.** $\alpha - \beta$ axis currents on the stationary reference frame and on the x-y plot of Figure 23.

427

428

Figure 28. $\alpha - \beta$ axis currents on the stationary reference frame and on the x-y plot of Figure 24.

429

430

Figure 29. $\alpha - \beta$ axis currents on the stationary reference frame and on the x-y plot of Figure 25.431
432
433
434
435

Figure 29 demonstrates the currents waveforms on the stationary reference frame when the suggested DTCS is applied. The currents waveform on the x-y plot is close to the ideal circle than the waveforms in Figure 26, 27. The currents waveform in Figure 30 appear closer to the circle than in the Figure 27, 38. However, due to the current distortion near the zero-crossing point, it is impossible to display the ideal circular waveform as proposed DTCS's.

436

437

Figure 30. $\alpha - \beta$ axis currents on the stationary reference frame and on the x-y plot of Figure 26.

438
439
440
441
442
443
444

The current THD is computed in the several conditions to compare the performance of the proposed DTCS in Figure 31. The current THD figured according to the amplitude and fundamental frequency of the current in a-phase. The square and circle symbols represent the THD without DTCS as Figure 23 and the THD with DTCS only considering T_d as Figure 24 respectively. The triangle symbol is the THD of the a-phase current with the proposed DTCS as Figure 25. The vertical axis denotes the THD value of the a-phase current and the horizontal axis denotes the peak values of the three-phase current in Figure 31.

445
446

Figure 31. Comparing the THD according to the fundamental frequency of current; (a) 10Hz; (b) 30Hz; (c) 50Hz.

447
448
449
450
451
452
453
454
455
456
457

In case of the DTCS is applied which only considers dead-time T_d , the THD is very seriously high at the low current region where the T_{off} affects on the output voltage of the three-phase VSI. And the THD becomes decease as the current amplitude increasing because of the T_{off} effect is as saturated APVE as reduced. These results show that it is worse when inaccurate compensation voltage is applied than without any DTCS. In case of the any DTCS is not employed, the THD is low in the low current region since the influence of the dead-time is disappear due to the T_{off} . As the amplitude of the current increases, the impact of T_{off} is reduced. As a result, the current distortion gradually increases. However, the THD is becomes lower when the current level is more raised because of the duty ratio becomes enough large than the dead-time. The proposed DTSC shows much lower current THD in all current ranges. Especially, at the low current region, the proposed algorithm has a better performance than convention's by containing the on-line TCV controller.

458

459 **Figure 32.** The differences of the THD along the fundamental frequency of the proposed DTCS.

460 Figure 32 shows the graphs comparing the current THD according to the fundamental frequency
 461 when the suggested DTCS is adapted. It can be realized that the current THD arises along the current
 462 frequency. The TCV should be generated to appropriate compensation but the fixed PWM is not
 463 enough to produce the slop of the TCV for the high frequency. Therefore, in the high frequency, the
 464 current THD is grown due to the imperfect TCV.

465 **6. Conclusions**

466 In this paper, the analysis of the output distortion of the three-phase VSI due to the dead-time
 467 and the parasitic component of the switch has been conducted, and a novel method of simply
 468 implementing the trapezoidal compensation voltage using the position of the three-phase current has
 469 been proposed. In addition, a novel compensation voltage controller is proposed to adjust the slope
 470 of the trapezoidal compensation voltage as well as the compensation voltage magnitude. That is
 471 robust to the internal parameters and current variations. An analysis of the maximum linear
 472 modulation region of the three-phase VSI is performed in parallel to normal operating at the high MI
 473 area by limiting the voltage reference. The proposed dead-time compensation strategy has been
 474 verified by simulation and experiment. The experimental results show that the it has excellent
 475 performance over all current range.

476 **Author Contributions:** J.-W.L. designed the proposed strategy and implemented the system and performed the
 477 experiments. H.Y. assisted a research and investigation process. Y.C. assisted with the idea development and
 478 paper writing.

479 **Funding:** This work was supported by "Human Resources Program in Energy Technology" of the Korea
 480 Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry
 481 of Trade, Industry & Energy, Republic of Korea. (No. 20174030201660), and also this work was supported by the
 482 National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(No.
 483 2017R1C1B2009425).

484 **Acknowledgments:** This work was supported by "Human Resources Program in Energy Technology" of the
 485 Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the
 486 Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20174030201660), and also this work was
 487 supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(No.
 488 2017R1C1B2009425).

489 **Conflicts of Interest:** The authors declare no conflict of interest.

490

491

492 **References**

493 1. SUKEGAWA, Takashi, et al. Fully digital, vector-controlled PWM VSI-fed ac drives with an inverter dead-
494 time compensation strategy. In: *Industry Applications Society Annual Meeting, 1988., Conference Record of the*
495 *1988 IEEE*. IEEE, 1988. p. 463-469.

496 2. CHOI, Jong-Woo; SUL, Seung-Ki. Inverter output voltage synthesis using novel dead time
497 compensation. *IEEE transactions on Power Electronics*, 1996, 11.2: 221-227.

498 3. PELLEGRINO, Gianmario, et al. Self-commissioning algorithm for inverter nonlinearity compensation in
499 sensorless induction motor drives. *IEEE Transactions on Industry Applications*, 2010, 46.4: 1416-1424.

500 4. MORIMOTO, Shigeo; SANADA, Masayuki; TAKEDA, Yoji. High-performance current-sensorless drive
501 for PMSM and SynRM with only low-resolution position sensor. *IEEE Transactions on Industry Applications*,
502 2003, 39.3: 792-801.

503 5. KIM, Sam-Young, et al. Effective dead-time compensation using a simple vectorial disturbance estimator
504 in PMSM drives. *IEEE Transactions on Industrial Electronics*, 2010, 57.5: 1609-1614.

505 6. URASAKI, N., et al. Dead-time compensation strategy for permanent magnet synchronous motor drive
506 taking zero-current clamp and parasitic capacitance effects into account. *IEE Proceedings-Electric Power*
507 *Applications*, 2005, 152.4: 845-853.

508 7. MUÑOZ, Alfredo R.; LIPO, Thomas A. On-line dead-time compensation technique for open-loop PWM-
509 VSI drives. *IEEE Transactions on power electronics*, 1999, 14.4: 683-689.

510 8. GUHA, Anirudh; NARAYANAN, G. An improved dead-time compensation scheme for voltage source
511 inverters considering the device switching transition times. In: *Power Electronics (IICPE), 2014 IEEE 6th India*
512 *International Conference on*. IEEE, 2014. p. 1-6.

513 9. HWANG, Seon-Hwan; KIM, Jang-Mok. Dead time compensation method for voltage-fed PWM
514 inverter. *IEEE Transactions on energy conversion*, 2010, 25.1: 1-10.

515 10. RYU, Ho-Seon, et al. A dead time compensation method in voltage-fed PWM inverter. In: *Industry*
516 *Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE*. IEEE, 2006. p. 911-
517 916.

518 11. ZHAO, Hengbing; WU, QM Jonathan; KAWAMURA, Atsuo. An accurate approach of nonlinearity
519 compensation for VSI inverter output voltage. *IEEE transactions on power electronics*, 2004, 19.4: 1029-1035.

520 12. KIM, Sam-Young; PARK, Seung-Yub. Compensation of dead-time effects based on adaptive harmonic
521 filtering in the vector-controlled AC motor drives. *IEEE Transactions on Industrial Electronics*, 2007, 54.3:
522 1768-1777.

523 13. URASAKI, Naomitsu, et al. An adaptive dead-time compensation strategy for voltage source inverter fed
524 motor drives. *IEEE Transactions on Power Electronics*, 2005, 20.5: 1150-1160.

525 14. KIM, Hyun-Soo; MOON, Hyung-Tae; YOUN, Myung-Joong. On-line dead-time compensation method
526 using disturbance observer. *IEEE Transactions on Power Electronics*, 2003, 18.6: 1336-1345.

527 15. PARK, Yongsoon; SUL, Seung-Ki. Implementation schemes to compensate for inverter nonlinearity based
528 on trapezoidal voltage. *IEEE Trans. Ind. Appl.*, 2014, 50.2: 1066-1073.

529 16. PARK, Yongsoon; SUL, Seung-Ki. A novel method utilizing trapezoidal voltage to compensate for inverter
530 nonlinearity. *IEEE Transactions on power Electronics*, 2012, 27.12: 4837-4846.

531 17. ZHANG, Zhendong; XU, Longya. Dead-time compensation of inverters considering snubber and parasitic
532 capacitance. *IEEE Transactions on Power Electronics*, 2014, 29.6: 3179-3187.