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ABSTRACT 

 

We apply utilized the extended form of the auxiliary equation method to obtain extensively 

reliable exact travelling wave solutions of perturbed Gerdjikov–Ivanov equation (GIE) that is 

widely used as a model in the field theory of quanta and non-linear optics. The method is based 

on a simple first order second degree ODE. The new form of the approach gives more solutions 

to the governing equation efficiently. 

Keywords:. Perturbed Gerdjikov–Ivanov equation; travelling wave solution; extended 

auxiliary equation method; complex wave solution. 
 

1. Introduction 

Optical soliton perturbation is studied in both physical and experimental phenomena modelled in to 

linear and non-linear PDEs such as; non-linear optics, electro-magnetics, plasma and solid state physics, 

water wave propagation in shallow media, fluid problems, and more.  However, different approaches 

have been proposed over the years to handle the analytical solution of non-linear partial differential 

equations (NPDEs), see [1–18]. 

The perturbed GIE with full non-linearity is given in [13] of the form 
 

2 24 2 * ( ( ) (( ) ),
m m

t xx x t x xiw a w b w i c w w i w w w w w  + + + = + +                                  (1.1) 

 

herein a, b and c are constants with real values and m denotes all non-linearity effects, α is the dispersion 

coefficient, μ is another dispersion term with higher effect as λ is the coefficients of short pulses that 

steepen themselves. 

It is remarkable to mention that, quite number of methods have been set for finding the solutions of GIE. 

Structure in Hamiltonian forms, algebro-geometric solutions approach, tangent expansion technique, 

solution in Wronskian-types, transformations similar to Darboux. For more details see [19-24]. In this 

paper, we will propose another scheme for the exact and soliton solutions of GIE with aid of extended 
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form of the auxiliary equation method (EAEM) [25]. 

The remaining article is designed as follows. In the next, we described methodology of the our scheme 

using EAEM in [25]. Then, in Section 3, some solutions are set to the GIE using the aforementioned 

methodology. Eventually, a brief conclusion is given in the last section. 

 

2. Description of the method: 
 

Suppose that we have the following PDE 

( , , , , ) 0,t xF u u u u =                        (2.1) 
 

where ( , )u x t u=  is the dependent variable, x  and t  are dependent variables, F  is a polynomial-like 

in terms of u and its derivatives. 
 

EAEM mainly consists of three steps: 
 

Step 1: The first step is the reduction of the governing equation by a compatible wave transformation 

such as 

( , ) ( ), ,u x t U x vt = = −                       (2.2) 

where v  is arbitrary constant. This transform can be changed to some complex-valued transforms in 

order to the governing equation into a non-linear ODE with respect to the variable   of the form 

( , , , ),G U U U                         (2.3) 

where the prime represents classical derivative for the independent variable  . 

Step 2. Assume that the predicted solution to Eq. (2.3) is of the form of finite series as 

0

( ) ( )
N

i

i

i

U n 
=

=                         (2.4) 

in which ( 0,1,2,3, , )in i N= are all real constants to be determined, N is a positive integer which can 

be determined by classical balancing procedure between the highest order derivative terms and the 

highest degree non-linear terms in Eq. (2.3).  One should note that ( )  satisfies the following new 

first order second degree auxiliary ODE 
 

2

2 4 6

1 2 3( )+ ( ) + ( )
d

m m m
d

  


 
=    

 
                    (2.5)  

 

where m1, m2, m3 are real parameters to be found.  

Equation (2.5) gives the following solutions: 

When 1 0,m   

1

2 2
1 2 1

1 2 2

2 1 3 1

sech ( )
( ) .

(1 tanh( ))

m m m

m m m m




 

 −
 =  

 − + 

                  (2.6) 

When 1 0,m   

1

2 2
1 2 1

2 2 2

2 1 3 1

csch ( )
( ) .

(1 coth( ))

m m m

m m m m




 

 
 =  

 − + 

                  (2.7) 

When 1 0, 0,m     

1

2

1
3

1 2

2
( ) .

cosh(2 )

m

m m


 

 
 =  

  − 

                                 (2.8) 

When 1 0, 0,m     
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                                 (2.9) 

When 1 0, 0,m     

1
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When 1 0, 0,m     
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When 1 30, 0,m m   
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                (2.12) 

When 1 30, 0,m m   
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When 1 30, 0,m m   
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When 1 30, 0,m m   
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When 1 0, 0,m   =  
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                (2.16) 

When 1 0, 0,m   =  
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                (2.17) 

When 1 0,m   
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When 1 20, 0,m m =  
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 − 

                 (2.19) 

where 
2

2 1 34m m m = − and 1 =  . 

Step 3. Finally, the ansatz (2.4) is substituted into (2.3) and all the coefficients of all powers of ( )  

are equated to zero. The resultants set of algebraic equations are investigated to find the relations among 

the parameters particularly for unknowns m1, m2, m3, ( 1,2,3, , ).in i N=     
 

3. Application: 
 

Consider the complex-valued wave transformation 
 

( , ) ( ) exp( ( , )),w x t W i x t =                                                                                                (3.1) 
 

with , ( , ) , ( )x vt x t kx t W    = − =− + +  representing various features of the wave and the 

phase ( , )x t of the soliton, the other constants , , ,k v   are frequency, the number of wave, the 

constant of wave and soliton speed, respectively. Putting (3.1) into (2.2), followed by an uncoupled 

system of equations derived from the real and imaginary parts of the equation. 

The imaginary component reads: 
 

2 2

1 12 (2 (2 1) ) ,mv a k cW m m W  = − − + − + +                                                                 (3.2) 
 

which anticipates the soliton speed. By setting m=1 in Eq. (3.2) and equating the coefficients of linearly 

independent functions to zero forces: 
 

1 12 , 2 3 ,v a k c  = − = +                                                                                                      (3.3) 
 

The real component reads: 
2 2 1 3 5

1 1 1( ) 0,maW k W a k W k W c kW bW  +− + + − − + =                                                  (3.4) 
 

which furnishes soliton profile. 

Moreover Eq. (3.4) is reduced to following ODE, by employing dependent variable change as 

( ) ( ),W U =  
 

( )

2 2 3 4 2 1

1 1 1

2

1

4 ( ) 4( ) 4

( 2 ) 0,

mU k w a k c kU bU k U

a U UU

  +− + + + − + −

 + − + =
                 (3.5)  

 

Taking m=1, by homogeneous balancing method we consider
 U or 

2U   with 
4U  in equation (3.5), we 

got N=1 and proceeded as 
 

0 1( ) ( )U n n = +                       (3.6) 
 

With 0n and 1n  being constant terms to be determine. Substituting Eq. (3.6) into Eq. (3.5) by the fact 

that Eq. (2.5) is satisfied and equating the coefficients of ( )i   for ( 0,1,2, , )i N=  to zero we get 

the algebraic system of equations as follows: 
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Solving this set of algebraic equations using Maple, we found our solutions to be 
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When 0,ab   
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4. Physical Illustrations 

 

In this section, we illustrate some particular forms of the solutions determined above for particular 

choices of parameters satisfying given constraints.  
 

The real and imaginary components of the solution ),(1 txw  is depicted in Fig 1a-1b for some particular 

choice of the parameters as 𝑘 = 1, 𝑐 = −1, 𝜆 = −1, 𝑎 = 1, 𝑏 = 1, 𝜐 = 1, 𝛼 = 1, 𝜃 = 0  in the finite 

domain of independent variables 𝑥 ∈ [−10,10] × 𝑡 ∈ [0,2]. Fig 1c  represent the modulus of the same 

solution for the same parameters and in the same domain. Both the real imaginary components represent 

some periodic solutions as the modulus is a single solitary wave propagating to the right along the space 

axis.  
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In Fig 2, we plot the solution ),(2 txw  in the finite domain 𝑥 ∈ [−10,10] × 𝑡 ∈ [0,2] for the parameters 

𝑘 = 1, 𝑐 = −1, 𝜆 = −1, 𝑎 = 1, 𝑏 = 1, 𝜐 = 1, 𝛼 = 1, 𝜃 = 0. The real and imaginary components of the 

solutions have some positive and negative explosions at some points of space and time due to their 

functional nature, Fig 2a-b. The modulus of  ),(2 txw  also indicates explosions with huge positive 

amplitudes time to time owing to the behaviours of the real and imaginary components of the solutions. 

Fig 3 demonstrates the solution ),(6 txw  for the particular parameters 𝑘 = 1, 𝑐 = −1/2, 𝜆 = −1, 𝑎 =

−1, 𝑏 = 1, 𝜈 = 1, 𝛼 = 1, 𝜃 = 0. In Fig 3a-b, the real and imaginary components represent multi waves 

having positive or negative jumps time to time. The modulus of this solution represent periodic long 

waves with positive amplitudes, Fig 3c.  

 

  
(a) Real component (b) Imaginary component 

 

 

(c) Modulus   

Fig 1. The solution ),(1 txw  for 𝑘 = 1, 𝑐 = −1, 𝜆 = −1, 𝑎 = 1, 𝑏 = 1, 𝜐 = 1, 𝛼 = 1, 𝜃 = 0 
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(a) Real component (b) Imaginary component 

 

 

(c) Modulus   

Fig 2. The solution ),(2 txw  for 𝑘 = 1, 𝑐 = −1, 𝜆 = −1, 𝑎 = 1, 𝑏 = 1, 𝜐 = 1, 𝛼 = 1, 𝜃 = 0 

   

  
(a) Real component (b) Imaginary component 
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(c) Modulus   

Fig 3. The solution ),(6 txw  for 𝑘 = 1, 𝑐 = −1/2, 𝜆 = −1, 𝑎 = −1, 𝑏 = 1, 𝜈 = 1, 𝛼 = 1, 𝜃 = 0 

 

 

5.Conclusion: 
In this paper, we found exact travelling wave solutions for the non-linear perturbed GIE with the help 

of new EAEM.  The complex valued solutions represent traveling waves in various forms. Even though 

some are of the form of well-known bell shaped multi waves, the shape of some others are completely 

different from them.   

Eventually, the scheme is simple, direct, efficient and robust for solving perturbed Gerdjikov–Ivanov 

non-linear equation and it kind that usually arises experimental and mathematical physics.  
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