Disintegration of Wastewater Activated Sludge (WAS) for Improved Biogas Production: A Mini Review

Stanisław Waclawek1, Klaudiusz Grübel2, Daniele Silvestri1, Vinod V.T. Padil1, Maria Ząbkowska-Waclawek3 and Miroslav Černík1

1 Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec 1, Czech Republic; daniele.silvestri@tul.cz (D.S.); vinod.padil@tul.cz (V.V.T.P); miroslav.cernik@tul.cz (M.Č.)
2 Institute of Environmental Protection and Engineering, University of Bielsko-Biała, Willowa 2, 43-309 Bielsko-Biała, Poland, phone +48 338 279 157; kgrubel@live.ath.edu.pl (K.G.)
3 Faculty of Natural Sciences and Technology, University of Opole, ul. k. Kominka 6, 45-032 Opole, Poland; maria.waclawek@outlook.com (M.Z-W.)

* Correspondence: stanislaw.waclawek@tul.cz; Tel.: +420 485 353 006

Abstract: Due to rapid urbanization, the quantity of wastewater treatment plants (WWTP) has increased, and with it the amount of waste generated by them. Sustainable management of this waste can lead to the creation of energy-rich biogas through the fermentation process. This review presents recent advances in the anaerobic digestion process resulting in greater biogas production. Disintegration techniques for enhancing waste activated sludge fermentation can be generally partitioned into biological, physical and chemical, each of which are covered in this review. These disintegration techniques were compared mainly in terms of their biogas yield. It was found that ultrasonic and microwave disintegration provides the highest biogas yield (>500%); however, they are also the most energy demanding (>10,000 kJ kg⁻¹ total solids).

Keywords: biogas; renewable energy; anaerobic digestion; waste activated sludge; disintegration

1. Introduction

The continuous increase in the use of fossil fuel in modern society and the harmful effects of greenhouse gases on the environment will see research of alternative energy sources becoming more important and even mandatory in the future. In this context, research focussing on the improvement of biogas production has become essential. Moreover, due to the increase in urbanization, the number of wastewater treatment plants (WWTP) has increased, and since the wastes (e.g. waste activated sludge (WAS)) generated from the WWTP are considered dangerous for the environment, it is important to develop efficient processes for their treatment [1].

Raw activated sludge is hydrated to a level of 97%-99% and the rest contains solid and dissolved matter, minerals and organic substances, coagulants, gels and trapped gas bubbles. However, the stabilized sediment is most often hydrated to a level of 60%-88% [1-3].

The basic process of sludge utilisation consists in spreading it over the surface of the soil in order to fertilize it or improve its properties. Sludge utilisation is used in the following areas:

- in agriculture, for growing crops,
- for the reclamation of land, including land for agricultural purposes,
- for the adaptation of land to specific needs resulting from waste management plans, spatial development plans or decisions on building and land development conditions,
- for the production of compost,
- for the cultivation of flora not intended for consumption [2].
Unless it contains excessive amounts of heavy metals, stabilized sludge can improve the agrotechnical state of fertilized soils, because it contains a high concentration of available organic phosphorus, lime and magnesium compounds.

Each producer of waste, including WAS, is obligated to handle it in a manner consistent with the principles of waste management and the requirements of environmental protection and waste management plans [4]. Firstly, waste should be subject to a recovery process and if it is impossible for technological reasons or is not justified for ecological or economic reasons, it should be subjected to disposal [2]. The composition of WAS is extremely varied and depends on many factors, for example, the WWTP and the method of treatment applied [5]. There are many issues concerning WAS including, dissolved heavy metals and/or toxic organic substances [6]: dioxins and furans, PCBs, and pesticides. At present, there are 500 substances classified in 15 different categories. With the exception of heavy metals, European Union regulations still lack strict limits on these substances in WAS.

Anaerobic digestion (AD) is one of the most commonly applied processes for WAS treatment as it is considered to be sustainable. It is also capable of decreasing the weight of the sludge, and stabilising and decreasing its toxicity. Another advantage of this method is that it produces biofuel (biogas), making it not only an environmentally feasible option but also cost-beneficial. With this in mind, it is not surprising that the number of WWTPs producing and storing biogas is increasing each year. For example, in 2009 there were 6,227 of these plants in Europe, by 2015 there were 17,376, an almost three-fold increase in only six years [7]. In China alone there are currently more than one million of these plants [8].

![Figure 1](https://ec.europa.eu/eurostat; 2018)

Figure 1. Primary production of biogas in the EU (tonnes of oil equivalent · 1000; source: https://ec.europa.eu/eurostat; 2018).

Biogas can be made from a range of organic substances and can be used to produce heat, power, heat and power (combined) or as a fuel for vehicles. Biogas contains methane, carbon dioxide, and nitrogen in different proportions and in trace concentrations also hydrogen sulphide, hydrogen, ammonia, oxygen, and carbon monoxide [9], siloxanes and aromatic and halogenated compounds (also depending on the fermentation/pre-treatment type) [10]. Primary production of biogas in the
European Union is shown in Fig. 1 and the typical characteristic of biogas can be found in Table 1 [11].

Table 1. Typical characteristic of biogas.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Energy (kW m$^{-3}$)</th>
<th>Fuel equivalent (L oil m$^{-3}$ biogas)</th>
<th>Ignition temperature (°C)</th>
<th>Critical pressure (bar)</th>
<th>Critical temperature (°C)</th>
<th>Normal density (kg m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$: 55-70%, CO$_2$: 30-45%, other gases</td>
<td>6.0-6.5</td>
<td>0.6-0.65</td>
<td>650-750</td>
<td>75-89</td>
<td>-82.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Anaerobic digestion consists of four steps i.e. hydrolysis, acidogenesis, acetogenesis and methanogenesis [12]. It is a complex process achievable only under strict anaerobic conditions, with hydrolysis considered as a rate limiting step [13]. During hydrolysis, lipids, proteins, polysaccharides and soluble organic matter are all degraded, with the final products being further treated through acidogenesis to yield volatile fatty acids (acidogenesis = generation of acids also known as VFAs) and other by-products [14]. The acidogenesis step is followed by acetogenesis, during which the VFAs are digested by acetogenic microorganisms producing an even simpler molecule, acetate. The last step is methanogenesis, during which methane is generated. Methanogenesis involves two methanogenic microorganisms, one group uses acetate to obtain methane and CO$_2$ and the other uses hydrogen to produce methane [15]. This whole process, including the contribution of organic substances (chemical oxygen demand (COD)) and bacteria involved in it, is illustrated in Fig. 2.

Figure 2. Proposed diagram of methane production during anaerobic digestion (based on [16]).

Biogas is a renewable fuel, which is considered to be more eco-friendly than conventional energy reserves; therefore, rapid development in this field is based on improving the biogas yield and especially by improving the pre-treatment process of WAS.
Pre-treatment of WAS is one of the most crucial steps before AD as it eliminates the disadvantages of the rate-limiting step – hydrolysis, and can often significantly enhance the yield of biogas with a simultaneous reduction of the sludge cake. In addition, several of these methods can efficiently reduce the toxicity of WAS by degrading toxic and persistent microorganisms and molecules.

For various reasons, it is hard to compare the effectiveness of different pre-treatment methods used in wastewater technologies. The most important variables that make unambiguous comparison impossible are the type of sludge (inter alia: waste activated, primary, digested, sludge age) and the anaerobic conditions used (inter alia: temperature, continuous/batch, hydraulic retention time (HRT)).

However, this mini-review paper focuses only on the recent advances in WAS pre-treatment methods, which positively impacts subsequent biogas production.

2. Pre-treatment methods

Pre-treatment methods can be described as being either separate or hybrid processes (not discussed in this mini-review). These processes are applied to provide the optimum results for a range of purposes. Before selecting the technology, the pre-treatment goals must be clearly defined, because improvement of one of the processes can negatively affect another treatment stage.

As mentioned above, selection of the disintegration method depends heavily on the type of sludge. Müller [17] suggests that the most effectively method for primary sludges and sludges with high lignocellulose content is enzymatic pre-treatment. However, it could be less suitable for WAS or secondary sludges as they degrade themselves before enzymatic hydrolysis starts.

The vast majority of studies devoted to disintegration methods focus on the implementation of these methods for activated sludge or secondary sludge. This is due to the fact that primary sludges are most frequently composed of easily-degraded components (no treatment needed) or secondary sludges, and are mainly formed by microorganisms whose cell walls prevent rapid degradation.

One of the major components of WAS flocs are extracellular polymeric substances (EPS) comprised mainly of a proteins (e.g. enzymes), carbohydrates, humic matter and, to a smaller amount, uronic and deoxyribonucleic (DNA) acids and lipids. EPS, multivalent cations, hydrophobic interactions and hydrogen bonds while interacting together cause formation of a network of polymeric substances in the waste activated sludge [18,19]. All of this leads to long retention times required for biological stabilisation. Recently, many pre-treatment methods focus on EPS degradation and there are also many methods for their extraction [20,21].

Several different pre-treatment/disintegration methods are used specifically to improve anaerobic digestion e.g. biological, chemical and physical methods as well as their combinations. Essentially, sludge pre-treatment is used to break down the cell walls of microbes generally to reduce the molecular weight of substances in WAS, releasing the intracellular matter, which becomes more accessible to anaerobic microbes and consequently enhancement of the anaerobic digestion.

The most important objectives of disintegration/pre-treatment methods include:

- **Simple access to the organic substances that were trapped inside the biomass and their release into the supernatant/liquid phase, as well as to intracellular enzymes that cause direct decomposition of pollutants,**
- **Release of organic substrate (in the case of disintegration of surplus activated sludge; often represented as chemical oxygen demand (COD)) that can be an easily digestible organic carbon source for the denitrification process, in the case of its absence in incoming sewage to the bioreactor. The increase in COD solubilization can be often correlated with the increase in methane production [22],**
- **Removing activated sludge foam generated on the surface of bioreactors as well as elimination of foaming in digestion chambers and secondary settling tanks,**
- **Increase in the biogas production and biogas yield and hence energy production with faster digestion.**
In recent years, several pre-treatment / disintegration methods have been applied both on a bench and technical scale, for example by using thermal energy [23,24], enzymes [25], ozonisation [26], acidification [27], alkalinisation [28,29], high pressure [30,31], mechanical grinding [32] and ultrasound energy [33,34]. In general, these techniques can be split into 3 categories: biological, physical and chemical (Fig. 3).

2.1. Biological

Biological pre-treatment (Tab. 2) can utilise anaerobic or aerobic processes [35,36]. Anaerobic pre-treatment is one of the most commonly used in sludge pre-treatment [37], this process can effectively destroy pathogens, reduce volatile solids and enhance biogas production [38–42].

Ai et al. [43] concluded in their recent research that adding Bacillus coagulants can promote the hydrolysis and acidogenesis process with no negative effect on the methanogenesis process. In order to obtain the sludge disintegration, it is possible to use enzymes, which are biologically derived molecules that work as a catalyst (also known as a biocatalyst). It is possible to classify these enzymes into six basic classes: oxidoreductases, ligases, transferases, lyases, hydrolases, and isomerases. Enzymatic lysis by the enzyme catalysing the reaction leads to the breaking down of bonds and compounds constituting the cell wall of the microorganisms. The enzymes can help decompose the organic matter, i.e. turn it into smaller molecules [25,36,37,44–57]. Very recently, Prajapati et al. [58] successfully used a bio-electrochemical process to enhance the methane production from sewage sludge with food waste.

2.2. Chemical
Chemical pre-treatment is another efficient and cost-effective process for hydrolysing the membranes and the cell walls and hence increase the solubility of the organic matter that is located inside the cells. The most commonly used and popular chemical pre-treatment methods before anaerobic digestion are alkalization [59] or acidification [46,60,61].

The most commonly used alkali compound reagents are NaOH [62], Ca(OH)2 [63] and KOH [63]. Alkali pre-treatment can solubilize the cell membranes, releasing the intracellular matter from the cells in solution, which becomes available for the fermentation process. The intracellular matter essentially formed by lipid proteins and hydrocarbons is decomposed in the soluble substances that are available for the microorganisms [64]. The advantages of alkali methods are their high efficiency and the easiness of performing the process [65].

On the other hand, oxidation techniques are often used because of their enormous efficiency. Traditional oxidation techniques include Fenton reactions, and photocatalytic and ozonation processes. All of the above-mentioned techniques have one thing in common, namely the formation of a hydroxyl radical. These processes are also known as advanced oxidation processes (AOP). Ozonation pre-treatment includes two different types of oxidation processes i.e. ozonolysis and hydroxyl radical reactions, which depend mainly on the pH values. It was reported that at low pH the ozone reacts selectively with the organic molecules constituted by C=C, -OH, CH3, -OCH3 and others [66], and at pH >8 the ozone generates O- and HO2 radicals [67], more details can be found in [66,68–81]. On the other hand, Fenton reactions involve the reaction of hydrogen peroxide with divalent iron producing hydroxyl radicals, and has been used in environmental matrices (including WAS) for a long period of time [82,83]. Although, these methods have been tested for many years for WAS pre-treatment, there are still some innovative solutions being reported. For example, in a recent study Hallaji et al. [84] reported the possibility to increase the methane production by 72% with a combined FNA (free nitrous acid)/Fenton reaction pre-treatment process. The possibility to increase methane production by ~200% with a combination of micro aerobic hydrolysis and the addition of trace metals has also been reported [85]. Anjum et al. [86] recently reported the possibility to enhance the biogas production using photocatalytic disintegration of WAS, whereby this procedure increased the biogas production by 1.6 times.

It should be noted that whereas the hydroxyl radical pre-treatment of WAS have been known for some time, sulphate radical pre-treatment (activated peroxydisulfate or peroxymonosulphate (persulphates)) has only been known for the last few years; however, several limitations disable their in situ application for now. Peroxydisulphate (PDS) is a strong oxidant used with success for the disintegration of WAS by several authors [20,87–90]. In order to form sulphate and hydroxyl radicals, persulphates need to be activated, usually by heat [91], metal [92], UV [93] and alkaline conditions [94] among others [95].

Many oxidation techniques, including Fenton reactions [96]) and new reactions concerning peroxomonomosulphate (PMS; [97]) and dimethyldioxirane (DMDO), can cause the alteration of refractory organic matter into easily accessible and soluble biochemical oxygen demand (BOD), and subsequently improve the biogas yield [83] (Tab. 2).

Recently, a newly used oxidant for this purpose, peracetic acid (PAA), was proposed to improve anaerobic digestion [98].

2.2. Physical methods

Physical and mechanical treatments of WAS work in basically the same way, the cell walls are broken and flocks break up by the application of force/external energy. Disintegration of the WAS with the use of mechanical forces causes the fragmentation of flocks and effective lysis of bacterial cells, leading to the release of organic substances and therefore an increase in biogas production.
The effect of mechanical disintegration of WAS on the efficiency of AD has been investigated for a long period. Mechanical shearing, lysate-thickening centrifuge [99], milling technology [100], and high pressure technology [49,101–106] are some of the main techniques.

Hydrodynamic cavitation triggered by the Venturi effect is a promising process for pretreatment of waste activated sludge prior to mesophilic fermentation according to many authors, including Machnicka et al. [107]. Furthermore, mesophilic digestion trials have reported a significant increase in the biogas production of approximately 36.1% and 62.1% for 10% and 30% of the volume of foam added to the digestion chamber, respectively.

Ultrasonic methods have also been included as physical treatment in this review; however, they can also be included as AOPs. These methods involve two different processes: cavitation, which is promoted at low frequencies, and the formation of radicals (OH, HO₂, H) due to the chemical reactions at high frequencies [36]. To induce cavitation, the process has to run at a certain frequency (<100 kHz), the ultrasound creates gas bubbles that when collapsing produce hydromechanical forces, which disintegrate the macromolecules [31,108,109]. The extreme conditions that occur during the cavitation process can cause generation of hydroxyl radicals, which can degrade volatile and non-volatile pollutants. Ultrasonication can enhance the WAS digestibility by damaging the physical, chemical and biological properties of the sludge. Ultrasonic lysis accelerates the hydrolysis reactions by disrupting the cells. Within the explosion (cavitational) of transient bubbles, a certain amount of soluble particulate organic matter can be made completely soluble. Ultrasound is considered to be one of the most efficient sludge pre-treatments for sludge floc disintegration [72,108,110–115]. For example, Lizama et al. [116] reported an increase in biogas production after ultrasonic treatment of 560% (Tab. 2).

Compared to mechanical techniques, thermal disintegration processes consumes more energy, but they can be used e.g. by using heat exchangers or by the use of steam to the WAS. Thermal pre-treatment processes can take place at a wide range of temperatures from 60 to 270 °C. The processes at a temperature of <100 °C are considered as low temperature processes and those taking place at a temperature of >100 °C are high temperature processes [48,49,72,117–120].

The optimal temperature treatment is frequently stated to be around 170 °C [121]. Ennouri et al. [122] reported that at a thermal pre-treatment temperature of 120 °C the biogas yield increased by 37%.

However, Dwyer et al. [123] reported that COD solubilisation increased at temperatures above 150 °C but there was no increase in the methane production. According to Batstone et al. [124], the main disadvantages of thermal pre-treatment are linked to the costs and increased ammonia inhibition.

Another pre-treatment process that has already shown to improve anaerobic digestion is microwave pre-treatment [125]. Microwave pre-treatment is reported to be a good substitute for thermal pre-treatment, increasing the concentration of soluble proteins in solution [126] and improving biogas [127,128] production and disinfection [129]. Microwave irradiation has two main effects, thermal and non-thermal. The thermal effect is due to the electric field that interacts with proteins, fats and H₂O. The non-thermal effect results in the break down of hydrogen bonds and the consequent death of microorganisms [130].

Other recent methods involve the application of low temperatures for WAS treatment known as freezing/thawing [23,24,131].
Table 2. Recent advances in the pretreatment of WAS for biogas production enhancement.

<table>
<thead>
<tr>
<th>Disintegration type</th>
<th>Treatment type/condition</th>
<th>Anaerobic digestion condition</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological</td>
<td>Amylase + protease</td>
<td>37 °C 42 °C</td>
<td>+23% biogas yield 744 mg ∙ L⁻¹ acetic acid</td>
<td>[25] [133]</td>
</tr>
<tr>
<td></td>
<td>Lysozyme</td>
<td>37 °C</td>
<td>+45% COD removal +72% methane yield</td>
<td>[132] [85]</td>
</tr>
<tr>
<td></td>
<td>Biological hydrolysis</td>
<td>42 °C</td>
<td>+744 mg ∙ L⁻¹ acetic acid</td>
<td>[133]</td>
</tr>
<tr>
<td></td>
<td>Micro-aerobic hydrolysis</td>
<td>25 °C</td>
<td>+186% methane yield</td>
<td>[85]</td>
</tr>
<tr>
<td></td>
<td>1.11 mg HNO₂-N L⁻¹</td>
<td>37 °C</td>
<td>+32% methane yield</td>
<td>[134]</td>
</tr>
<tr>
<td></td>
<td>FNA (Free Nitrous Acid): 2.5 mg L⁻¹ H₂O₂: 5 mg L⁻¹</td>
<td>-</td>
<td>+72% methane yield</td>
<td>[84]</td>
</tr>
<tr>
<td>Chemical</td>
<td>20 mg NaOH g⁻¹TS</td>
<td>37 °C</td>
<td>+35% methane yield</td>
<td>[135]</td>
</tr>
<tr>
<td></td>
<td>157 g NaOH kg⁻¹TS</td>
<td>37 °C</td>
<td>+34% methane yield</td>
<td>[136]</td>
</tr>
<tr>
<td></td>
<td>0.1 g K₂S₂O₈ g⁻¹SS</td>
<td>35 °C</td>
<td>180% methane yield</td>
<td>[88]</td>
</tr>
<tr>
<td></td>
<td>Nano-layered TiO₂</td>
<td>40 °C</td>
<td>1.6 times higher biogas yield</td>
<td>[137]</td>
</tr>
<tr>
<td></td>
<td>ZnO-ZnS@polyaniline</td>
<td>35 °C</td>
<td>1.6 times higher biogas yield</td>
<td>[86]</td>
</tr>
<tr>
<td></td>
<td>70 °C 50 °C</td>
<td>-</td>
<td>+148% methane yield</td>
<td>[138]</td>
</tr>
<tr>
<td></td>
<td>70 °C 90 °C</td>
<td>55 °C</td>
<td>+160% methane yield</td>
<td>[139]</td>
</tr>
<tr>
<td></td>
<td>100 °C</td>
<td>33 °C</td>
<td>+251% biogas yield</td>
<td>[140]</td>
</tr>
<tr>
<td></td>
<td>134 °C</td>
<td>55 °C</td>
<td>+38.5% biogas yield</td>
<td>[141]</td>
</tr>
<tr>
<td></td>
<td>170 °C</td>
<td>35 °C</td>
<td>+60% methane yield</td>
<td>[142]</td>
</tr>
<tr>
<td></td>
<td>25 W/L</td>
<td>35 °C</td>
<td>+95% methane yield</td>
<td>[143]</td>
</tr>
<tr>
<td></td>
<td>0.2 W/g</td>
<td>37 °C</td>
<td>+27% biogas yield</td>
<td>[144]</td>
</tr>
<tr>
<td></td>
<td>14,000 kJ/kg TS</td>
<td>35 °C</td>
<td>+570% biogas yield</td>
<td>[145]</td>
</tr>
</tbody>
</table>
3. Conclusions

In this review we have evaluated various disintegration methods of waste activated sludge for enhanced production of eco-fuel – biogas. The pre-treatments are focused mainly on enhancing the disintegration method and improving the hydrolysis and gaining more biogas in the AD process. We have presented three types of pre-treatment processes (biological, chemical and physical), their various strengths, weaknesses and recent advances. Some pre-treatment processes are more efficient in reducing the biomass [72], and others work better for the solubilization of organic matter [150] or for the cell disintegration. In addition, the different pre-treatment processes generate differing costs depending on e.g. the volume of WAS used, have differing reaction times and effects on biogas generation. Biological pre-treatment is usually slower than other types of treatment and can last several days. Chemical and physical methods are faster and easier to implement; however, they are often more energy demanding. A very good example of this can be taken from [116,145] where the application of microwaves or ultrasonic energy increased biogas production by >500%; however, these processes are very energy-demanding.

Funding: The research presented in this article was supported by the Ministry of Education, Youth and Sports in the framework of the targeted support of the “National Programme for Sustainability I” LO 1201 and the OPR & DI project “Extension of CxI facilities” (CZ.1.05/2.1.00/19.0386). The authors also acknowledge the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project no. LM2015073. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic and the European Union – European Structural and Investment Funds in the frames of Operational Program Research, Development and Education – project Hybrid Materials for Hierarchical Structures (HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843).

Conflicts of Interest: The authors declare no conflict of interest.

References

7. Mathiasson, A. *Future of Biogas Europe*; 2017;

18. Wawrzynczyk, J. Enzymatic treatment of wastewater sludge. Sludge solubilisation, improvement of anaerobic digestion and extraction of extracellular polymeric substances Available online:

