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ABSTRACT This is a review of efforts to discover action principles for Hydrodynam-
ics and Thermodynamics. The work began with a determined attempt to create sources for
Einstein’s equations that describe continuous matter - as opposed to point particles. This
requires a relativistic action principle. This report is mainly about (non relativistic) Adia-
batic Thermodynamics, non equilibrium thermodynamics based on the method of Gibbs.
The main relations of classical thermodynamics can be derived from an action principle,
in the classical global form and in the local form advocated by Callen. The entropy is
defined as the negative derivative of the free energy (free energy density) with respect
to the volume (density). This is integrated with an action principle for hydrodynamics
that was known to Lagrange in 1760. It is strongly limited to irrotational velocity fields,
nevertheless it provides the needed Lagrangian for a large part of thermodynamics. This
is the subject of the first 3 sections. It includes a brief review of a new theory of mixtures.

The most difficult part of the program has been the discovery of Conservative Hy-
drodynamics with the required four independent degrees of freedom, with general flows.
We give an account of the genesis and the structure of this theory, then a tour of recent
applications.
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I. Minimal energy and maximal entropy.
1. Introduction

The two ideas in the title are among the most basic concepts of theoretical physics.
The central point that was made by Gibbs in his path breaking paper (1878) was that, in
thermodynamics, the two are equivalent: maximum entropy implies minimum energy and
vice versa.

This sheds light on both principles. Either one can be elevated to an axiom: then
the other becomes a theorem; they cannot both be axioms and they are not independent
theorems. The choice recommended by Callen (1960), and widely accepted, is to take
entropy as the more basic concept. But it can perhaps be argued that there must be
a more elevated standpoint from which the dominant fact is the equivalence of the two
statements. This appears to have been the attitude of Gibbs (1878); his verbal argument
can be illustrated as in Fig. 1, where the abscissa is the value of the entropy and the
ordinate is the energy. Gibbs argues that when the entropy can not be increased then the
energy cannot be decreased. This amounts to drawing a line with positive slope in the
E, S plane and declaring that allowed configurations are the points the left of the line.

Fig 1. Illustration of Gibbs’ equivalence theorem. Physical configurations are in the
shaded region. Gibbs shows that the limiting curve has positive slope.

While Gibbs’ proof was almost entirely verbal, it is easy to reduce it to formal state-
ments expressed by equations. It will be instructive to do so.

Consider a simple system with variables V, T, S, P and the function

A1(V, T, S, P ) = F (V, T ) + ST + V P. (1.1)

With Gibbs, we fix the values of S and P and postulate that this function is extremal with
respect to arbitrary variations of V and T ; this leads to the Euler-Lagrange equations

∂F

∂V
+ P = 0,

∂F

∂T
+ S = 0. (1.2)

These are the basic relations of thermodynamics and these are the equations used by Gibbs
to prove the equivalence of ‘Maximum entropy’ and ‘Minimum energy’.
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The second equation, ”the adiabatic condition”, is an algebraic equation for the tem-
perature. It can be used to express T in terms of V and S; projecting thermodynamics on
hydrodynamics, parametrized by the value of the entropy.

We shall limit the discussion to configurations in which the volume is fixed. Thermo-
dynamics is thus an action principle and the action is F +ST . Gibbs does not characterize
the energy, nor the entropy, instead he uses the relations that define thermodynamics to
prove the equivalence of the two statements. In practice, the existence of a configuration
with minimal energy is an axiom that is used to select appropriate expressions for the
function F (V, T ); then S is defined by the second condition in (1.2). This point of view is
complimentary to that of Callen; it is not in opposition to it.

2. The discovery and the definition of entropy

There were three important milestones.
1. Kelvin noticed that the gas law takes the form

p = Rρ(TC − 273)

and defined the absolute temperature as T = TC − 273.
2. Clausius (1859) discovered the role of 1/T as the multiplier that makes the differ-

ential

dS =
dQ

T

exact and proposed the name “entropy” for the state variable S.
3. Laplace (see Biot 1802) used the concept of adiabatic changes (dS = 0) to obtain

an accurate prediction of the speed of sound in air. Note that he makes use of the entropy
in an application that is out of equilibrium.

In this context but in the idiom developed later, the new variable S was defined as a
derivative of the free energy:

S = −∂F

∂T

∣

∣

∣

∣

V

. (2.1)

This definition has survived; it is valid for equilibria and for all other configurations.
The problem of how to define the entropy for configurations out of equilibrium is not a
problem for thermodynamics. But in 1868 Boltzmann created statistical mechanics and,
with stunning insight proposed a new type of entropy. An object of statistical mechanics, it
turned out to be identifiable with the entropy of equilibrium thermodynamics. Boltzmann’s
definition applies to statistical equilibria, till now it has not been generalized and that is
an important problem for statistical mechanics, but not for thermodynamics. The proof
is in the fact that Gibbs’ use of entropy, and Laplace’s early application of it, both apply
to non-equilibrium configurations.

This is more than a question of semantics, for the question has lain as a damper over
thermodynamics. We shall see that adopting the Gibbs-Laplace attitude to entropy has
wide implications.

Certainly, entropy as a concept is more elusive than energy; for this reason it is
natural to take the energy as more basic. We may not have a completely satisfactory
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definition of ‘energy’ in general, but we have done quite well for many particular systems.
In thermodynamics, armed with Gibbs’ statement about the equivalence between minimal
energy and maximal entropy, this is a already big step towards a definition of the entropy.
The function F can be identified with the Hamiltonian and then (2.1) is a cogent definition
of the entropy.

The problem is not to define the entropy but to determine the action.

3. The thermodynamic action

Gibbs begins with a discussion of a simple system where the variables are global and
the configurations are labelled by 4 real variables, then goes on to make applications of a
much greater complexity by applying acute physical insight. In a first step, later formalized
as Callen’s ‘main assumption’ (Callen 1960), one assumes that the fundamental relations
are satisfied pointwise. The formula for the action needs an extra term, as in

∫

d3x
(

±ρ~v2/2 + f(ρ, T ) + sT + P
)

, ....?, (3.1)

where f is the density of free energy and the entropy density s is a linear function of the
mass density,

s = ρS.

In elementary applications the specific entropy density S is a constant.
To go on we invoke Lagrange’s action principle for irrotional hydrodynamics, with

A2 =

∫

d3x
(

ρ(Φ̇− ~v2/2)−W [ρ]
)

. (3.2)

Here the velocity field is the negative gradient of a velocity potential,

~v = −~▽Φ.

The term ~v2/2 is part of the energy density and Φ̇ is the “kinetic” term, the part of the
Lagrangian with time derivatives. Uniting the actions (1.2) and (1.3) one arrives at the
action for irrotational thermodynamics,

A =

∫

d3xdt
(

ρ(Φ̇− ~v2/2)− f − sT
)

. (3.3)

A large part of thermodynamics is concerned with static configurations of systems
with a single components. The action (3.3) allows to consider motions, but only under the
severe limitation to irrotational velocity fields.

4. The value of an action principle in physics

The most highly developed branch of theoretical physics is high energy Particle
Physics. The amazing power of prediction of Electromagnetism, Quantum Mechanics and
Quantum Field Theory, successfully integrated to form the core of high energy physics,
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is without parallel. Outstanding examples are theoretical predictions of fundamental con-
stants to an accuracy of 8-10 significant figures and the prediction of the existence of
elementary particles, with the values of their masses, before their actual experimental dis-
covery. Two circumstances helped to bring this about. Perhaps most of all, the driving
force has been the insistence on logical consistency; as in the case of renormalizability of
quantum field theories, an obstacle that to many physicists had seemed to be inachievable
and irrelevant. Another essential idea was the fact that the developing theory was always
formulated as an action principle.

This ought to tell us something valuable, as can be demonstrated by a supremely
important counterexample. Perhaps as much as 200 years ago, and as recently as 70 years
ago, there were leading scientists who advocated the development of action principles
for thermodynamics and hydrodynamics. (Helmholtz 1883, Poincare 1908, Maxwell (see
Ruckeyser 1942), von Neumann 1945.) In the 1930’s there arose the need for a relativistic
action for extended material system to serve as a source for Einstein’s General Theory of
Relativity. But instead of making an all out effort to develop this concept the alternative
of a much less ambitious phenomenological attitude was adopted. The result can be seen
in a large compilation of papers that have little or no relevance today.

5. The legacy of J. W. Gibbs

Gibbs fundamental paper of 1870-1875 could have been the beginning of the develop-
ment of an action principle for thermodynamics. Let us try to understand why that did
not happen. Of course, Gibbs never used the words Action Principle or Lagrangian. Even
Maxwell, who expressed a strong admiration for Gibbs’ work, and who strongly advocated
action principles, made no move in that direction. One reason for this was the choice of
variables adopted by Gibbs in his approach to composite or extended systems.

For a multicomponent system, such as a mixture of gases of different kinds, Gibbs
used the temperature T , the total volume V , the total entropy S and the molar fractions.
An alternative is to use only intensive variables, the individual densities, the individual
specific entropy densities and the temperature. The advantages are considerable:

There is no entropy of mixing and no free energy of mixing, no Gibbs paradox and
no Gibbs-Duhem relation, no use for control volumes and no need for a separate study of
open systems. But that is only the beginning.

One of the most important aspects of Gibbs’ work is the attitude taken with respect
to entropy. For a unary system S is a parameter that is to be held fixed, along with the
pressure, as the temperature and the volume are varied. As we pass from global systems
actually invoked by Gibbs, to local systems characterized by field variables, we need to
decide how to localize the expression F + ST . for a unary system the usual practice is to
replace

F (V, T ) →
∫

d3x ρf(ρ, T ),

where f is the free energy density and

S →
∫

d3xρS,

5

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2018                   doi:10.20944/preprints201811.0438.v1Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2018                   doi:10.20944/preprints201811.0438.v1

http://dx.doi.org/10.20944/preprints201811.0438.v1
http://dx.doi.org/10.20944/preprints201811.0438.v1


where from now on S is the specific entropy density, almost always taken to be uniform.
Indeed, that is implied by the use of the hydrostatic relation or the Bernoulli equation in
the hydrodynamical context. The only circumstances in which the specific density is not
(piecewise) uniform are those that involve energy consumption, such as explosions.

In this context, the entropy distribution is a quantity to which is assigned a uniform
value. Circumstances in which this is not appropriate exist but they are exceptional, which
is why entropic forces are rarely evoked in applications of hydrodynamics.

6. Local thermodynamic potentials

Localization, the passage from global thermodynamics to continuum thermodynamics,
puts a new face on the theory of thermodynamic potentials. What is discussed here will
become important later on, when the set of dynamical variables is expanded to include
several densities.

The global theory deals with the following quartet

U(V, S) ST F (V, T )

V P V P

H(P, S) ST G(P, T )

of potentials and associated Legendre transformations. The letters ST between the po-
tentials U and F reminds us of the substitution S 7→ T in the Legendre transformation.
The potentials that have appeared so far refer to a fixed quantity of fluid, a fixed total
mass as one gram or one mole. To convert them to densities we multiply each by the mass
density, ρU = u, ρF = f and so on. In addition, we change variables, setting V = 1/ρ and
S = s/ρ. Then we find that

f(ρ, T ) = u(ρ, s)− sT, g(p, T ) = h(p, s)− sT, s = − ∂f

∂T

∣

∣

∣

ρ
= − ∂g

∂T

∣

∣

∣

p
(6.1)

and

g(p, T ) = f + p, h(p, s) = u+ p, p = ρ
∂f

∂ρ
− f, p̂ = u− ρ

∂u

∂ρ
. (6.2)

The first line brings no surprise but the second line informs us that the pressure p(T, µ
has become a potential. Instead of the quartet of global potential energies we now have a
quartet of potential densities,

p̂(s, µ) sT p(T, µ)

ρµ ρµ

u(s, ρ) sT f(T, ρ)

where

µ :=
∂f

∂ρ

∣

∣

∣

T
=

∂u

∂ρ

∣

∣

∣

s
. (6.3)
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is the chemical potential. It will play an important role in the theory. The natural variables
for p are T and µ. Among the partial derivatives there is

∂p

∂T
|µ = −s, (6.4)

known as the Clapeyron equation.
We shall rely principally on the density potentials u, s and f , functions of the den-

sity, the entropy density and the temperature. The total number of particles will not be
employed as a variable and there will be no distinction between open and closed systems.

In terms of densities the main relations of thermodynamics take the form

∂

∂T
(f + sT )

∣

∣

∣

ρ,S
= 0, Φ̇− ~v2/2− ∂

∂ρ
(f + sT )

∣

∣

∣

T,S
= constant, (6.5)

or
∂f

∂T

∣

∣

∣

ρ
+ s = 0, Φ̇− ~v2/2− µ = constant, (6.6)

7. The Hamiltonian of thermodynamics

This section has no foreseeable practical value. The issue is to justify the identification
of the free energy as the Hamiltonian, which is usually taken for granted. But when we ask
for a justification we are led to some speculations about the interpretation of the entropy
that may lead to a useful debate.

We are ready to resume the study of the general structure of thermodynamics, includ-
ing the central and most difficult issue: maximalization of the entropy.

We have an action, a Lagrangian density, a Hamiltonian density defined by the usual
Legendre transformation,

h = Φ̇
∂

∂Φ̇
L − L,

and Euler-Lagrange equations that summarize both hydrodynamics and thermodynamics.
What we do not have so far is a principle of minimum energy.

The classical Lagrangian paradigm

So far, the action principle provides all the laws of traditional thermodynamics, in-
cluding some that go beyond the description of the states of equilibrium. What is missing
is part of the interpretation. To complete the picture in this respect we can do no better
than to seek inspiration from tradition. We need to understand how it comes about that
the Hamiltonian of an action principle tends to have the lowest value at equilibrium. The
paradigm of an action principle is one that involves dynamical variables q1, ..., qn and

L =
∑

q̇2i /2− V (q1, ..., qn) =
∑

q̇ipi −H(q1, .., qn, p1, .., pn). (7.1)

This system is non degenerate, each variable has an independent conjugate momentum,

pi =
∂L
∂q̇i

.
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The equations of motion in Hamiltonian form are

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, ..., n. (7.2)

Here we see what we are looking for: If “equilibrium” is defined as a solution in which
nothing varies with the time, p1, ..., pn, q1, ..., qn being time independent, then Eq.(.2) tells
us that the Hamiltonian must be stationary at equilibrium.

Turning to our action principle for hydrodynamics, with its one-dimensional canonical
structure, we would define the Hamiltonian by a Legendre transformation

∫

d3x L =

∫

d3x ρΦ̇−H, (7.3)

thus H = F + ST =
∫

d3x(f + sT ). This is a close, field theoretic analogue of Lagrangian
particle mechanics, and the conclusion is the same: At equilibrium the Hamiltonian H
is extremal (assuming the appropriate definition of the Lagrangian multiplier included in
Φ̇.).

However, it has become established that the ‘energy’ functional that takes a minimal
value in many applications of thermodynamics to an isolated system (with fixed total
volume) is the free energy

F =

∫

d3x f(ρ, T ).

The ‘energy’ density is the free energy density f . The Hamiltonian density h, on the other
hand as defined by (7.3) or

L = ρΦ̇− h,

is h = ρ~v2/2 + f + sT . The problem is that the ‘energy’ of classical, equilibrium thermo-
dynamics is not the Hamiltonian of the Action Principle. A solution is to regard the term
sT as part of the kinetic energy density, * by interpreting S as a time derivative.

This should tell us something about the physical interpretation of entropy. The value
of the entropy can be changed by an interaction with the environment. It is a record of
past interactions between our system and the environment, an interaction that is no longer
active. That is why neither temperature nor entropy appears in the Lagrangian as a time
derivative. We shall have to generalize this situation, and we must try to do it without
altering the essential properties of the theory.

Consider replacing, in the Lagrangian density, the term sT :

sT → Tρσ̇ + j(σ). (7.4)

We have introduced a new field variable σ and a source density j. Variation of T gives

∂f

∂T
+ ρσ̇ = 0,

* The “kinetic part” of the Lagrangian density is the part that contains time derivatives.
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which tells us that σ̇ is the specific entropy density. Variation of the mass density gives
the familiar equation of motion with S renamed σ̇. We have one additional equation, from
variation of σ,

d

dt
(ρT ) =

δj

δσ
.

The source j(σ) is for us to choose and we shall take advantage of that by demanding
that the systems decouple. That is, we interpret the last equation as a constraint on
the right side, with no implications for the left side. The external part of the enlarged
system is chosen to allows the original system to obey its own equations of motion. This
is reasonable, for the only thing that we know and want to know about the extension of
the system by the new degree of freedom represented by σ is that it should maintain and
justify the assumptions that were made about the ‘isolated’ system.

After the replacement (7.4) we have two canonical pairs of dynamical variables and a
non-degenerate symplectic structure. The Hamiltonian density is now defined by - instead
of (7.3):

L = ρΦ̇− ρT σ̇ − h, h = ρ~v2/2 + f + j(σ).

The Hamiltonian is extremal for allowed variations of the equilibrium state, variations
that do not affect the field S = σ̇. Finally, the functional

∫

d3x(ρ~v2/2 + f) is extremal
with respect to variations that do not affect the external source j(σ). The term j(σ) is
inconsequential and will be dropped from now on. It may be resurrected when needed, as
when there is a flow of heat in or out of the system.

Summary

Prompted by the experimental evidence we have moved the term sT out of the Hamil-
tonian. The field σ is canonically conjugate to ρT , the canonical structure is non degener-
ate.

We have developed the interpretation of the entropy in a direction that helps us get
a better grasp on its nature. The parameter S acts like a Lagrangian multiplier, in that
the actual value is determined by a one-sided influence of the environment. The system
approaches an equilibrium state by giving up energy to the environment while it remains
constrained by the principle of least action; this necessarily leads to adopting the highest
value of the total entropy. The environment has infinite entropy and is not affected in
a measurable way; just as the reflection of a small mass from a very large one has no
measurable effect on the latter because the momentum change is measurable only through
observation of the velocity change ∆v = M−1∆p.

These conclusions are not the result of speculation but are based on the experimen-
tal fact that it is the free energy, rather than the internal energy, that is minimal for
equilibrium configurations of an isolated system.

II. A theory of Mixtures
8. The Lagrangian method

The traditional treatment of mixtures often relies on rules concerning the additivity
of properties; one of the most important ones is the additivity of the energies of the
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components of a composite system. Most fundamental of all is the postulate of additivity
of Lagrangians;

L =
∑

i=1,2

Li =
∑

i

ρi(Φ̇i − ~vi
2/2)− f − sT, (8.1)

it incorporates the additivity of energies and the additivity of entropies. The algebraic
sum of the Lagrangians of two adiabatic systems describes an adiabatic system with two
non interacting components.

The reason why this is an unfamiliar concept is that the Lagrangian density of hydro-
dynamics or thermodynamics has not been given any importance till now.

Realistically, coexistent systems are never non interacting and ways have to be found
to take the interaction into account. The strategy will be to begin by adding together the
Lagrangians of components, with the expectation that corrective terms, ‘interactions’, will
have to be added. The systematic application of this point of view is not wide spread in
thermodynamics. (See for example many studies of critical phenomena in mixtures.) But
it is a standard, and successful, strategy in more developed branches of theoretical physics.

Recall that in unary thermodynamics it is axiomatic that the free energy (or any other
fundamental potential expressed in terms of the natural variables) tells us all that we need
to know about a substance. It follows that a mixture in which each constituent behaves
as if it were alone is described by variables that satisfy the usual equations of motion of
a unary system. The natural variables for the mixture is thus the collection of natural
variables for the ingredients. And if this mixture is characterized by an action principle,
then the total action must be a sum of individual actions, in the limit of no interactions.

The persistent use of a Lagrangian does much to distinguish our approach to ther-
modynamics, the choice of variables is just as important. I confess to being perplexed by
the common usage, especially the occasional suppression of degrees of freedom and the
preference for molar fractions over partial densities. Here is the addition formula for free
energy of a mixture of ideal gases,

F =
f1 + f2

ρ
= N1F1 +N2F2 +RT

(

N1 lnN1 +N2 lnN2

)

.

In terms of ordinary densities this statement takes the form f = f1 + f2.

It will be assumed that no chemical reactions are taking place in the mixtures under
consideration, and that the equilibria are uniform. In this case an important idea is the
Gibbs-Dalton hypothesis.

Physical variables

A description of two non interacting systems requires two sets of variables. In par-
ticular, each system has a temperature or a temperature field. This is natural if the two
systems occupy different, non overlapping regions of space. Situations exist where two
systems occupy the same space and for which it has nevertheless been found useful to
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maintain a notion of separate temperatures. * But here the temperature shall always be
taken to be a unique field extended over the total vessel.

Taken for granted is the idea that each distinct component has an independent flow
vector field. Otherwise, there would be no way to formulate the separate conservation of
masses and separate equations of continuity, for each component (and no way to visualise
the ‘mixing’). More precisely, we say that, if two densities are separately conserved, then
one needs two independent velocity fields ~v1 and ~v2 in order to be able to assert that
ρ̇1+div(ρ1~v1) = 0 and ρ̇2+div(ρ2~v2) = 0. ** But if only the total density is conserved then
there is only one flow and only one continuity equation. The analysis becomes simpler if
one assumes that the mixture behaves as a one component fluid,*** with properties defined
by interpolation between those of the components. This drastic assumption, first used by
van der Waals, is tempting in the case of mixtures of many components; it is common, for
example, in calculations relating to the interior of the Sun. But it ignores physical degrees
of freedom and cannot account for all observed phenomena. And it reduces the “theory’
to an exercise in phenomenology.

By adopting a two-velocity approach to all binary mixtures without chemical reactions
we depart in an essential way from what is common practice. The most important 2-fluid
theory is Landau’s theory of superfluidity. But Landau’s equations are not derived from
an action principle and consequently, even in that case, we shall take a new direction.

In the ideal case, when there is no interaction between the components, there can be
no objection to two separate and independent velocities; they are unaware of each other
and they pass freely through each other. But this transparency will be much affected when
we allow for an interaction between the components, the simplest being an addition to the
total free energy density,

f = f1 + f2 + fint, fint = αρ1ρ2, α constant. (8.2)

An interaction of this type was used with some success by van der Waals (!873). With α
positive it has the effect of discouraging the overlap of the densities of the two species.

From now on it is taken for granted that the dynamical variables of mixtures at rest
are the individual densities ρi, individual specific entropies Si (next section), and T . The
variables chosen by Gibbs, and used almost universally ever since, are the total volume
and the molar fractions, instead of the individual densities.

9. The Gibbs-Dalton hypothesis for ideal gases

The additivity of energies that is implied by the addition of Lagrangians is an at-
tractive assumption, and probably a must in the absence of interactions, but what can be

* For example, in Plasma Physics, and in Cosmology.
** As in Landau’s 2-fluid theory of liquid helium with its 2 equations of continuity.

*** “Air is a mixture that behaves, under normal conditions, like an ideal gas.” Mueller
2009.
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done about the two entropy parameters? Addition of heat to the system must change the
parameters and if the system is to end up in a well defined configuration then it has to
follow a fixed path in the ‘entropy plane’ the Euklidean plane with coordinates S1, S2. A
partial answer to this question is provided by a literal interpretation of the Gibbs-Dalton
hypothesis, developed by Gibbs from Dalton’s law, namely

Gibbs-Dalton hypothesis, weak form. The entropy of a mixture of ideal

gases is additive in the same sense that the free energy density is additive.

That is,

s =
∑

si =
∑

ρiSi, (9.1)

with uniform values of S1 and S2; that is, this is the correct expression to be used for the
function s(ρ1, ρ2) in Eq.(8.1).

A stronger interpretation of the Gibbs - Dalton hypothesis is possible. In addition to
(9.1) it assumes that

When the mixture of ideal gases reaches a final

equilibrium each gas has the entropy that it would have

if it were alone at the same density and temperature.

When each gas is alone these relations hold:

Si = −Ri(ln
ρi
Tni

− ni), i = 1, 2 separated gases.

According to the strong version of the hypothesis it holds for a mixture, but only at
equilibrium.

Si = −Ri(ln
ρi
Tni

− ni), i = 1, 2 at equilibrium. (9.2)

This is what we are going to mean by ‘the strong Gibbs-Dalton hypothesis’ (for an ideal
gas). It is expected to holdfor miscible gases in the absence of any chemical reactions. The
virtue of this statement is that, as a statement about the value of the entropy, it applies to
the adiabatic system in general, not just to equilibrium states; it removes the ambiguity in
the Lagrangian by fixing a relation between the two entropy parameters defined in (9.1).

Consider two ideal gases with

fi + siT = RiρiT ln
ρi
Tni

+ ρiSiT, i = 1, 2.

If each gas were alone we should have the 2 equations of motion (adiabatic relations),

Riρi(ln
ρi
Tni

− ni) + ρiSi = 0, i = 1, 2, (9.3)

from variation of each Lagrangian with respect to the temperature, but variation of the
proposed total Lagrangian (9.1) with respect to the common temperature yields only one
adiabatic equation: *

∑

i=1,2

(

Riρi(ln
ρi
Tni

− ni) + ρiSi

)

= 0. (9.4)

* This is enough to give the formula for the internal energy density, u =
∑

i niRiρiT .
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The strong Gibbs-Dalton hypothesis requires that both of Eq.s (9.2) hold for the
unified system, but only at equilibrium. If the equilibrium is characterized by uniform
densities then this amounts to the required relation between S1 and S2, a relation that
provides the required path in the entropy plane. Suppose that there is a value T0 of T
such that both terms vanish, then for all T

Riρi(ln
ρi
Tni

− ni)− ρiSi = niRiρi ln
T0

T

and the equation of motion Eq.(9.4) reduces to

(
∑

niRiρi) ln
T0

T
= 0.

This can be true only at T = T0. That is, if such a value of T exists when the densities
take equilibrium values, then the equation of motion implies that this is the value of T at
equilibrium and that both terms vanish separately at equilibrium.

Away from equilibrium only (9.4) holds and each component gas no longer behaves
as if the other component were absent! The two gases at equilibrium may not be ‘aware of
each other’, but in configurations other than equilibrium the pair of adiabatic conditions
that characterize the pure gases is replaced by the single adiabatic condition (9.2).

For a system of ideal gases with fixed total quantities of each component and with
uniform equilibrium densities the Gibbs-Dalton hypothesis predicts the following entropy
path,

S1

n1R1

− S2

n2R2

= ln
ρ
1/n2

2

ρ
1/n1

1

, (9.5)

where ρ1, ρ2 are the densities at equilibrium. It agrees with Boltzmann’s distribution law
if n1 = n2.
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... and what lies behind it

We have attempted to determine what it is that would drive the mixed gas to satisfy
the strong version of the Gibbs-Dalton hypotheses. * Let

x =
ρ1

k01(eT)n1

, y =
ρ2

k02(eT)n2

, Si = −Ri ln k0i, i = 1, 2,

so that the Gibbs-Dalton hypothesis makes x = y = 1, and the adiabatic relation (9.4)
takes the form

x lnx+ ay ln y = 0, a = (R2k02/R1k01)(eT)
n2−n1 . (9.6)

Let us fix S1 and S2, and consider an equilibrium configuration in which all the fields
are uniform. Fig. 2 shows the locus of points in the x, y plane at which Eq.(9.4) holds,
for a particular value of T . Since the variables x, y are constant multiples of the densities
these variables are in fact scaled densities and we may refer to the plane of the figure as
the density plane. There is a family of such curves, one for each value of T . The figure
also shows several lines of constant total pressure,

p =
(

ρ1
∂

∂ρ1
+ ρ2

∂

∂ρ2
− 1

)

(f1 + f2) = T (R1ρ1 +R2ρ2). (9.7)

The loci of P are straight lines. The isotherm intersects the isobar at 2 points, at one
point, or at no point in the ρ-plane. If they intersect at no point then there is no such
configuration.

Fig. 2. The strong Gibbs - Dalton hypothesis.

If the curves touch at one point then the densities are uniquely determined. The
tangents of the two curves at any point are given by

R1dρ1(lnx+ 1) +R2dρ2(ln y + 1) = 0,

and

R1dρ1 +R2dρ2 + (R1ρ1 +R2ρ2)
dT

T
= 0,

* The answer given by Boltzmann to this question is the foundation of statistical
mechanics. Here we are looking for an answer within our chosen context of thermodynamic
field theory.

14

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2018                   doi:10.20944/preprints201811.0438.v1Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2018                   doi:10.20944/preprints201811.0438.v1

http://dx.doi.org/10.20944/preprints201811.0438.v1
http://dx.doi.org/10.20944/preprints201811.0438.v1


respectively; they coincide, for a fixed value of T , only if

lnx = ln y. (9.8)

By virtue of Eq. (9.6) that implies that both logarithms are zero, as required by the
Gibbs-Dalton hypothesis.

There remains the possibility of two intersections, at points A and B in the figure. To
justify the Gibbs-Dalton hypothesis we have to throw some aspersions on this case. Well, if
the gas at equilibrium is homogeneous, then the ratio r = ρ1/ρ2 is given in advance by the
ratio of total masses. This number need not coincide with the value of either of the ratios
r(A) or r(B). If it is intermediate between those values then the gas must separate into two
parts, one part in which r = r(A) and another part in which it is r = r(B). Mixtures exist,
where this does indeed happen, but in the case of ideal gases, or at high temperature or low
pressure for most gases, we know that it does not; so there is no stationary state available.
That is the same as to say that such states are adiabatically unstable to convection. Flow
will develop and eventually the kinetic energy will degenerate to heat. The final state will
be stationary but the values of the entropy parameters must have changed.

The only stable, homogeneous equilibrium available is the point C where the two
curves have the same tangent. At that point both terms in (9.4) vanish separately, as we
have shown.

If the values of the densities and of the temperature are given, then this is a restriction
on the values of the two entropy parameters S1 and S2. For a given system with fixed
mass and with uniform equilibrium densities, there will be a curve T 7→ (S1(T ), S2(T )),
the image of which is the path followed by the system as the temperature is varied so as
to move it through a succession of equilibrium configurations.

We seem to be able to conclude that the Gibbs-Dalton hypothesis finds the only stable
mixture and that this is what determines how the entropy is apportioned between the two
components. An argument based on the maximal entropy principle was expected. Instead
we have here an analogue of free expansion; the assumed initial point is unstable and goes
into an agitated state, out of equilibrium. The final equilibrium is reached by degradation
of the kinetic energy, leading to a state of maximal entropy.

Thus it seems that the Gibbs-Dalton distribution of entropy is not reached by a purely
dissipative process but because it is the only one that allows for the existence of equilibrium
states, or more generally for any stable adiabatic system.

It seems that the entropy chosen by the Gibbs-Dalton hypothesis is a kind of crit-
ical point. Recall that, in general, a critical point in thermodynamics is one in which
a Legendre transformation is singular (Tisza 1970). For example, consider the Legendre
transformation

p(T, q1, q2) =
∑

ρiµi − f, µi =
∂f

∂ρi
, i = 1, 2.

An example of a critical point is a point where

det(∂2p/∂ρi∂ρj) = 0.
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The critical point that is identified by the Gibbs-Dalton hypothesis is defined by the
vanishing of the Jacobean of the transformation T, p → ρ1, ρ2,

J =
∣

∣

∣

∂T∂p

∂ρi∂ρj

∣

∣

∣
;

that is, a point where the two gradients in the density plane

(
∂T

∂ρ1
,
∂T

, ∂ρ2
), (

∂p

∂ρ1
,

∂p

, ∂ρ2
)

are parallel. The derivations are to be taken with S1, S2 fixed.
With this interpretation we can ask for a generalization of the hypothesis to the case

of a mixture of real, interacting gases. In particular, it may be that this hypothesis applies
to the altitude variation of the concentration of Nitrogen and Oxygen in the terrestrial
atmosphere.

The suggested form of the Lagrangian for a mixture, with the concept of an entropy
space and the need to find the path through this space chosen by the system, is a central
feature of the treatment proposed in my book (Fronsdal 2019).

The calculation of the speed of sound in a mixture of gases needs to know the partition
of the entropy for the equilibrium state. The Gibbs-Dalton hypothesis was used for this
purpose in a calculation of the speed of sound in some mixtures. (Fronsdal 2019).

III. Why Loschmidt went to Canossa
10. introduction

The battle that Loschmidt launched, and lost, is one of these disagreements that arise
from diffferent points of view. With statistical mechanics Boltzmann and Maxwell built
a formidable and in all aspects successful theory of statistical mechanics. As that theory
has remained a theory of equilibria it has been well served by a popular dictum: The
temperature of an extended system in equilibrium is uniform. In thermodynamic this is
associated with the second law, the axiom of largest entropy.

Let us try to make the case from our point of view. The laws of thermodynamics are
the Eeuler- Lagrange equations of an action that depends parametrically on P and on S.
For an extended system P is replaced by a surface field and the entropy by an entropy
density.

Gibbs’ paper has a long discussion, over several pages, about the choice of the space
of variations. Then, on subsequent pages he includes, in the space of variations, local vari-
ations of entropy. Gibbs endows entropy with the property of being subject to interchange
between two regions, an increase in one with an equal, compensatory decrease in the other.
As was emphatically emphasized by Prigogine (1949), and as we teach our students, such
compensation takes place only when the temperatures are equal, since

dQ = T1∆S1 + T2∆S2 = 0.
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Once an action principle has been adopted, with a well defined space of variations,
one can of course ask if there is merit in enlarging that space. But beware that this
will lead to additional Euler-Lagrange equations that will be violated by some solutions
of the original action principle. A pragmatic approach is indicated, and this attitude
has dominated the history of applications of thermodynamics. In the present instance it
consists of eschewing, as a working hypothesis, local variations of the entropy. With this
attitude a theory of atmospheres has been developed, notably for stellar and planetary
atmospheres. In astrophysics the main object of analysis, since the beginning, has been
static configurations with extreme and universally recognized temperature variations.

Consider a laboratory vessel filled with an ideal gas, neglecting the effect of gravity. In
a hydrodynamic treatment the temperature is usually taken to be constant. The equations
of motion are the equation of continuity and the hydrostatic equation. When no external
forces and no entropic forces are acting it follows from these equations that, in the static
case, the pressure and the density are uniform. The equations used are the Euler-Lagrange
equations of the action

A =

∫

d3x

(

ρ(Φ̇− ~v2/2)−W [ρ]

)

, (10.1)

that was discovered by Lagrange ca 1760. Here Φ is the velocity potential, ~v = −~▽Φ.
The effect of gravity is surely known in this case, one simply modifies the Lagrangian

density by −ρφ, where ϕ is the Newtonian potential gz. In case of doubt it can be verified
that this prescription is consistent with the Einstein’s metric theory of gravity (Fronsdal
2007). The effect is to make ρ and p vary with the altitude. This result implies that the
temperature also varies with altitude, which is inconsistent with our initial assumption.
Standard hydrodynamics is not the answer.

Turning back to thermodynamics we must make an assumption about the entropy.
The great advantage of a uniform specific entropy is that, in this case only there are
no entropic forces and the usual hydrostatic condition of hydrodynamics is validated.
Choosing any other particular S(z) fails to give a uniform temperature. It has been
suggested to postulate

s = ρS + sex(z),

but this is inconsistent with the equations of localized thermodynamics.
In short, the dynamical approach based on an action principle is an excellent example

of the superior predictive power of action principles.
We want to know what is different when gravity is taken into account; especially,

if the equilibrium temperature is still uniform. In hydrodynamics the temperature, not
necessarily uniform, it is eliminated by using the adiabatic condition

S = − ∂f

∂T
,

which gives no information unless the specific entropy field is known. If S and T are both
uniform, as in the absence of an external field, then ρ and p are uniform as well; in the
presence of gravity this is inconsistent with the hydrostatic condition.

17

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2018                   doi:10.20944/preprints201811.0438.v1Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2018                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2018                   doi:10.20944/preprints201811.0438.v1

http://dx.doi.org/10.20944/preprints201811.0438.v1
http://dx.doi.org/10.20944/preprints201811.0438.v1


Consider an atmosphere that consists of an ideal, static gas with the action (10.1)
with the usual addition that represents the gravitational field,

A =

∫

d3x

(

ρ(Φ̇− ~v2/2− ϕ)−W [ρ]

)

, (10.2)

where ϕ is the terrestrial, gravitational potential, ϕ = gz and

f(ρ, T ) = Rρ ln
ρ

Tn
.

The two Euler-Lagrange equations, combined so as to eliminate the logarithm, yields

gz +R(n+ 1)T = constant, (10.3)

the famous temperature lapse, as shown in all the textbooks. This result is in good
numerical agreement with measurements in a dry atmosphere. The derivation, and the
resulting variation of T with the altitude, has been accepted by astrophysicists since its
inception in the 19’th century.

It will always be objected that stars are not in equilibrium. As well explained by
Eddington, the evolution of stars is characterized by (at least) two time scales. Visible,
global evolution is very slow, on a short time scale, the approximation in terms of equilibria
is a good one. Evolution is seen as a sequence of equilibria; to understand and to describe
them we must treat them as such.

Among the textbooks on thermodynamics, from the 1950’s onwards, there are some
that derive the observed temperature of our atmosphere from the equations of motion, as
above, then report that this result is not accepted by thermodynamicists. The temperature
lapse is real, but the result is ’wrong’ because a system with a variable temperature cannot
be in equilibrium. The action principle of Lagrange and Laplace is not recognized; that
is a strong position to take by physicists whose domain of expertize is often limited to
equilibria!

More recently, textbooks on planetary atmospheres eskew a discussion of the con-
troversy to present a straightforward, theoretical discussion, leading to the result (10.3),
directly compared to measurements.

Actually, there is no real conflict but a question of the most rational approach o a
complicated situation. The dyed in the wool statistical mechanician recomends taking the
isothermal atmosphere, far from the actual atmosphere that is the product of convection
and radiation as as a zeroth approximation. From a practical point of view this is very
difficult program.

The alternative is to develop a simple model, as above, that is favored by the right
temperature lapse, in agreement with experiment, to be left with the simpler task of
showing that the joint effects of convection and radiation actually tend to be minor, or
that they cancel out. A (theoretical) configuration of equilibrium in thermodynamics is
not an equilibrium in the sense of statistical mechanics, a theory with smaller field of
applications.
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The second law states that among available equilibrium fluctuations with given en-
ergy the system will choose the one with the highest entropy. The key word here is, as
emphasized by Gibbs, ‘available’. In the theory of Lagrange and Laplace the available
configurations are those that satisfy the Euler-Lagrange equations.

IV. Conservative Hydrodynamics
11. The variables of hydrodynamics

Traditional hydrodynamics knows two formulations, the Eulerian and the Lagrangian
versions; they are not equivalent but more accurately described as complimentary. In the
much studied case of cylindrical Couette flow two types of flow appear, usually combined
in the basic velocity field of the Navier-Stokes equation. The general solution, for the
simplest case of circular Couette flow is, in cylindrical coordinates,

~v =
a

r2
(−y, x, 0) + b(−y, x, 0), r =

√

x2 + y2.

The first type is irrotational and satisfies the Navier- Stokes equation; in this special case
that equation can be written in this form:

~̇v + ~▽K1 = −p

ρ
, ~▽K1 = (~v · ~▽)~v, K1 := ~v2/2, . (11.1)

In the second case one obtains the same result, but with the kinematic potential

K2 = −~v2/2, ~▽K2 = (~v · ~▽)~v. (11.2)

This tells us that the first case can be accommodated by the ’Eulerian’ action

∫

d3x

(

ρ(Φ̇− ~▽Φ2)−W [ρ]

)

,

the second by the ’Lagrangian’ action

∫

d3x

(

ρ
˙~▽X

2

/2−W [ρ]

)

;

neither theory can accommodate both.
It also tells us that the concept of a kinematic potential is not consistent with the

Navier - Stokes equation, nor is the concept of kinetic energy.
In the case that both flows are present, as is in fact the case in cylindrical Couette

flow, the Navier-Stokes equation can be written in the form

~̇v + ~▽K3 = −p

ρ
,

with the kinetic potential

K3 =
a2

2r2
+ 2ab ln r − b2r2/2.
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but it is not associated with any action; K3 cannot be expressed in terms of the sum ~v
and neither of the two formulas for K1, K2 is valid..

This suggests that, if we are looking for an action for hydrodynamics, then it is not
enough to allow for the general form of ~v; we must regard the two terms as two independent
degrees of freedom, as in the action

A =

∫

d3x

(

(ρ(Φ̇ + ~̇X
2

/2 + κ ~̇X · ~▽Φ− ~▽Φ2/2)ρ−W [ρ]

)

. (11.3)

12. Degrees of freedom. Equations of motion and constraints

The kinetic terms in (11.3) already appeared in a well known paper by Hall and
Vinen (1956), in an expression for the energy of superfluid Helium. The gradient field was
interpreted in terms of phonons. The vector field here denoted as a time derivative was
not a field degree of freedom but the velocity associated with a rotation of the liquid as a
whole: rotons. Perhaps it was felt that a dynamical field would bring in too many degrees
of freedom. Lund and Regge (1976) used the field ~X to represent vorticity, and interpreted
it has a classical, gauge fixed limit of the massless two-form field of the ’notoph’ that had
been examined by Ogievetskij and Palubarinov (1964). This field has only two degrees of
freedom, one propagating mode, which brings the total number of degrees of freedom in
(11.3) to 4, which is what we need for hydrodynamics.

Here then is the long sought generalization of the hydrodynamic action known to
Lagrange in 1760. It is unique in the following sense: It has the correct number of degrees
of freedom and it preserves the all-important equation of continuity; this equation is the
Euler - Lagrange equation that comes from variation of the velocity potential,

ρ̇+ ~▽ · (ρ~v) = 0, ~v := κ ~̇X − ~▽~Φ. (12.1)

The fact that the scalar velocity potential remains as a part of the set of dynamical field
variables is therefore of the greatest importance. That is, an additional field is needed, not
a generalization of the gradient velocity field. This field serves an additional important
function, for it provides the only way to relate Einstein’s metric field to non relativistic
Newtonian gravitational hydrodynamics (Fronsdal 2007).

The Euler-Lagrange equations are, from variation of the scalar potential Φ the equa-
tion of continuity and from variation of the density the Bernoulli equation:

~▽(Φ̇−K − φ) = −1

ρ
p, K = − ~̇X

2

/2− κ ~̇X · ~▽Φ+ ~▽Φ2/2. (12.2)

It has a strong flavor of the Navier - Stokes equation. From variation of ~X,

d

dt
(ρ~w) = 0. (12.3)
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Energy conservation is lost in the presence of dissipation, but some idea concerning the
effect of viscocity can be obtained by replacing the last equation by

d

dt
(ρ~w) = µρ∆~v.

The much studied stationary flows are characterized by

∆~v = 0. (12.4)

The full gauge theory is the relativistic theory of a two form Y ,

Yij = ǫijkX
k, Y0i = ηi.

In the physical gauge η = 0 and only the field ~X has a physical interpretation.
Besides the Euler - Lagrange equations there is a constraint, from the variation of the

action with respect to the gauge field η,

~▽∧ (ρ~w) = 0, ~w := ~̇X + κ~▽Φ.

This is what reduces the number of degrees of freedom; the 2-form has only one propagating
mode; and this is what gives the theory its power of prediction.

V. Interpretation
An intuitive grasp of the meaning of the new degrees of freedom will come gradually,

by applications. Here is a list of the simplest applications, all are stationary configurations.

Cylindrical Couette flow, steady, circular rotation of a fluid in the interval between
two concentric cylinders, with the no - slip boundary condition. The simplest question
of interest is the onset of instability of the most basic flow. What has been observed can
be very well understood by making the hypothesis that instability happens at a specific
value of the kinetic potential K. It is suggested that the breakdown of the horizontal flow
will be local in the case that the cylinders are rotating in opposite directions but that it
may be global in the case of co-rotation. It is predicted that the highest pressure must be
found at the inner boundary and this suggests that the gradient of K can be interpreted
in terms of internal stress. It was found that the parameter κ varies inversely with the
compressibility of the fluid.

Fig. 3. Cylindrical Couette flow. Fig.4. Traces of the flow.
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The constraint (12.3) is solved by defining a scalar field τ ,

ρ~w = ~▽τ.

This leads to the presentation of the mass flow velocity as

~v = −κ

ρ
~▽τ − (1 + κ2)~▽Φ.

The condition ~▽~v = 0 is solved, in the first place, by harmonic functions of low order.
Precisely the same plan was used for the other applications.

Rotating planets. The same equations were applied to planets rotating around a central
axis. The density profile can be fairly fitted in the case that it is known. The parameters
can be constrained by calculating the equatorial bulge. Planetary rings appear sponta-
neously but planetary disks have not been seen ... yet.

Fig. 5. A planet with ring.

The hexagonal pattern with local whorls that have been observed at the North Pole
of Saturn are easy to copy in the model. Only one local whorl was seen but up to 6 are
expected to greet the next traveller.

Inside the meniscus. It is traditional to explain the shape of the capillary meniscus,
as well as the shape of drops and similar phenomena, in terms of a surface tension. But
the curved surface of a meniscus is an isobar and the lower isobars must be curved too;
hence tension is present in the bulk. The surface can be fitted to a K locus and the isobars
calculated throughout. Although ~v = 0, Φ and τ are not zero. These fields contribute to
the kinetic energy and to angular momentum, and this opens fascinating possibilities for
explaining certain famous experiments with rotating superfluid Helium.

Landau’s original suggestion for understanding superfluid Helium employed two kinds
of flow, while the idea of two kinds of He4 was explicitly rejected. (Landau 1945). Now
we know that all liquids have two kinds of flow and a conservative theory of superfluids is
not an unreasonable prospect.
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Fig. 6. The meniscus against a straight wall, with isobars under the surface.

Metastable states of fluids. Finally, this example is about thermodynamics, and en-
tropy. Consider a piston containing a van der Waals fluid, neglecting gravity. As the pis-
ton is pulled outwards, carefully, at constant temperature, the system enters a metastable
state, pressure descends, eventually to large negative values. The thermodynamic free en-
ergy can be determined from measuring the temperature and the pressure but the complete
free energy has the additional, ‘kinetic’ contribution

∫

d3x
ρ

2

(

~̇X
2

+ ~▽Φ2

)

=
1

2
(1 +

1

κ2
)

∫

d3x ~▽Φ2.

When the the system is disturbed this energy is converted to entropy, used to produce
evaporation at an explosive rate (”rupture”) without addition of heat.

Fig. 7. Pulling out the piston can
reduce the pressure inside far below zero.

The proposed action principle for “Conservative Hydrodynamics” needs further test-
ing. Most promising is a new attempt to account for the properties of superfluid Helium4.
Necessary generalizations include systems with several components.

Last words. The original impulse for this work was the problem of finding a continuous
source for Einstein’s equation, a tensor constructed from hydrodynamic and thermody-
namic fields, subject to dynamical equations that imply the Bianchi identity. The work
of E. Noether tells us that, given any relativistically invariant action principle constructed
from tensor fields in an arbitrary background metric, there is an energy momentum tensor
given in the simplest case by the formula

T ν
µ =

∑

φ

φµ
∂L
∂φν

− δνµL,
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or equivalently by
√
−gTµν = 2

∂
√−gL
∂gµν

,

where φ runs over a set of fields, φµ = ∂φ/∂xµ and L is the Lagrangian density. This is
a highly constrained program which implies a strong predictive power. The alternative,
phenomenological approach is capable of accounting for observation but it has no predictive
power.

Plans for the near future lie in a different direction. The new theory of fluids is likely
to have applications of immense reach, theoretical and practical. Our lives are threatened
by hurricanes and floods. We have learned that there may be more energy, hence more
destructive power in fluids than had been known. We need to have a better understanding
of the forces that control life on Earth.

Finally, if the field ~̇X is truly ubiquitus then it will affect the motions of heavenly
bodies; it will contribute to the local photon mass and effect gravitational lensing. In
short, it will contribute to the effects that are usually attributed to Dark Matter.

Acknowledgements Segments of this report will appear in the book Adiabatic Thermo-

dynamics by the same author, to be published by World Scientific in 2019. I thank World
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