

1 Article

2 Polystyrene as graphene film and 3D graphene 3 sponge precursor

4 Alejandra Rendón-Patiño¹, Jinan Niu¹, Antonio Doménech-Carbó², Hermenegildo García^{1,*} and
5 Ana Primo^{1,*}

6 ¹ Instituto de Tecnología Química, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de
7 Valencia, Av. De los Naranjos s/n, 46022 Valencia, Spain.

8 ² Departament de Química Analítica. Universitat de València. Dr. Moliner, 50, 46100 Burjassot (València)
9 Spain.

10 * Correspondence: hgarcia@qim.upv.es; Tel.: +0034-963877807

11

12 **Abstract:** Polystyrene as a thin film on arbitrary substrates or pellets form defective graphene films
13 or powders that can be dispersed in water and organic solvents. The materials were characterized
14 by visible absorption, Raman and X-ray photoelectron spectroscopy, electron and atomic force
15 microscopy and electrochemistry. Raman spectra of these materials show the presence of the
16 expected 2D, G and D peaks at 2750, 1590 and 1350 cm⁻¹, respectively. The relative intensity of the
17 G vs. the D peak is taken as a quantitative indicator of the density of defects in the G layer.

18 **Keywords:** graphene; polystyrene; 3D graphene sponges; electrochemistry
19

20 1. Introduction

21 Due to its wide availability and with the main objective of plastic wastes reutilization as carbon
22 source, pyrolysis of polystyrene has attracted considerable attention.[1,2] Starting from the first
23 report on 1950,[3-6] it was found that polystyrene decomposes in very high yields at temperatures
24 above 370 °C affording a complex mixture of volatile compounds.[4-9] Polystyrene pyrolysis can be
25 carried out at convenient rates at temperatures about 700 °C. Depending on temperature and
26 operating conditions the formation in significant amounts in variable proportions of toluene,
27 ethylbenzene, cumene, styrene and other benzene derivatives is observed.[8,10]

28 Since the target of all these studies has been the use of polystyrene wastes as feedstock,[1,11-13]
29 the vast majority of the reports on polystyrene pyrolysis have focused on the analysis of the gas phase
30 products, with the target being on the obtainment of a suitable mixture to be used as fuel.
31 Surprisingly, as far as we know, none of these studies have paid attention to the nature of the possible
32 solid residue that could remain after the pyrolysis. Evidence will be presented here showing that the
33 residue of the polystyrene pyrolysis is a defective graphene.

34 A few years ago, we reported that pyrolysis of natural polysaccharides considered food and
35 agricultural wastes is a suitable process for the preparation of defective graphenes either as a large
36 area films on arbitrary substrates[14] or as a suspensions after sonication of the carbonaceous residue
37 in liquid media.[15] About 40 % of the mass of these polymeric carbohydrates are converted into
38 carbonaceous residue. On one hand, our contribution to this field was to show that these *filmogenic*
39 polysaccharides form films on hydrophilic surfaces of appropriate substrates that upon pyrolysis are
40 converted into continuous films of single or few-layers defective graphenes.[14] On the other hand,
41 it was shown that pyrolysis of carbohydrate particles as powders and subsequent sonication of the
42 carbonaceous residue renders dispersions of single or few-layers defective graphene particles in
43 almost quantitative exfoliation yield.[15]

44 Although the procedure was adapted also to the preparation of doped and co-doped defective
45 graphenes,[16-18] it has not been possible to decrease the oxygen content of the resulting graphenes

46 below 10 wt%. The presence of residual oxygen is proposed to be due to the composition of the
47 carbohydrates whose composition contains over 50 wt% in oxygen. After pyrolysis, a fraction of the
48 initial oxygen content remains as oxygenated functional groups on the defective graphene sheet.

49 Continuing with alternative procedures for graphene preparation based on pyrolysis, either as
50 films or as dispersible powders that could render graphene suspensions, it is of interest to explore
51 the possibility to use also synthetic organic polymers that do not contain oxygen in its composition
52 as precursors. In this way, it could be possible the formation of graphene materials lacking oxygen in
53 their composition. In addition, a well-known property of synthetic plastic polymers is their ability to
54 form high quality films on arbitrary supports what is a prerequisite to obtain graphene films.

55 Herein it will be shown that polystyrene, either cast as films on arbitrary surface or as pellets,
56 upon pyrolysis at 900 °C form single or few layers graphenes or graphitic residues that can be
57 efficiently dispersed as single or few layers graphene in liquid media. The procedure can be adapted
58 to the formation of tridimensional (3D) graphene sponges by coating using silica spheres of uniform
59 particle size as hard templates.

60 2. Materials and Methods

61 2.1 Preparation of Graphene films

62 Polystyrene (Mw 280,000 amu by GPC, Aldrich) was dissolved in dichloromethane at
63 concentration of 3-30 mg/mL. The films were obtained by spin coating over 1x1 cm² quartz or Copper
64 substrate (APT-POLOS spin-coater: 4000 rpm, 30 s). Polystyrene was pyrolysed under argon
65 atmosphere using the following oven program: heating at 5 °C/min up to 900 °C for 2 h.

66 In an additional experiment, conversion of expanded polystyrene into graphene was performed
67 by pyrolysis under argon atmosphere in a tubular oven heating at rate of 5 °C/min up to 900 °C for 2
68 h.

69 2.2 Preparation of graphene sponges

70 1 g of monodispersed silica spheres (80 nm) were suspended in a solution of polystyrene in
71 dichloromethane at concentration of 50 mg/mL and stirred for 24 h under 40 °C reflux. This mixture
72 was centrifuged at 4000 rpm for 5 min (Hettich Zentrifugen EBA 21) and washed twice with
73 dichloromethane. After drying at 80 °C, the conversion of polystyrene into graphene was performed
74 under argon atmosphere using an electrical furnace heating at rate of 2 °C/min up to 900 °C for a
75 holding time of 2 h. Then, the silica spheres were removed in a 2 M NaOH solution by stirring for 2
76 h at 80 °C. Finally, the product was collected by filtration.

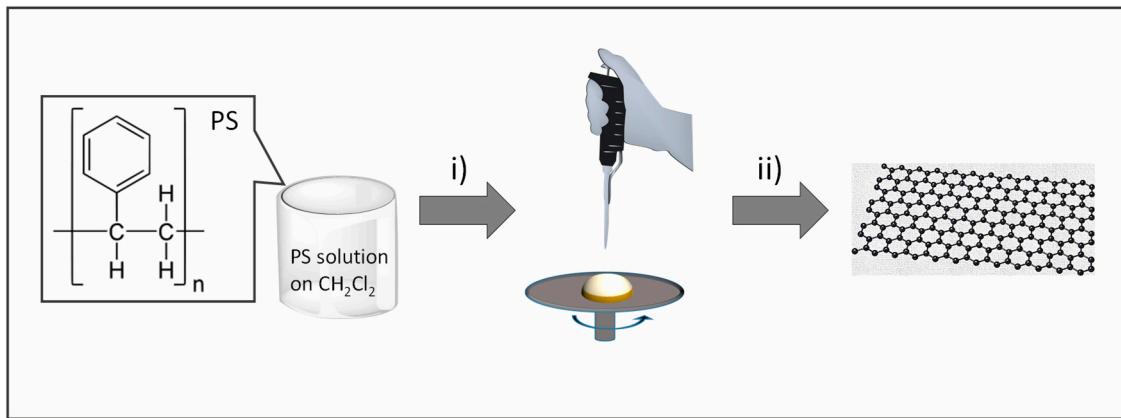
77 2.3 Electrocatalytic measurements

78 Cyclic voltammetric (CV) and electrochemical impedance spectroscopy (EIS) measurements
79 were performed at graphene sheets deposited onto glassy carbon electrode (geometrical surface area
80 0.071 cm²) in a conventional three-electrode electrochemical cell completed with an Ag/AgCl (3 M
81 NaCl) reference electrode and a Pt wire auxiliary electrode using a CH 660I potentiostat. Air-
82 saturated 0.10 M potassium phosphate buffer solution at pH=7 was used as a supporting electrolyte
83 incorporating 0.5 mM K₃Fe(CN)₆ plus 0.5 mM K₄Fe(CN)₆ as a redox probe. EIS experiments were
84 performed upon application of a sinusoidal potential modulation of ±5 mV amplitude in the 10⁵ Hz-
85 10⁻¹ Hz range. The bias potential was that of the equilibrium potential of the Fe(CN)₆³⁻/Fe(CN)₆⁴⁻
86 couple determined in CV measurements.

87

88

89

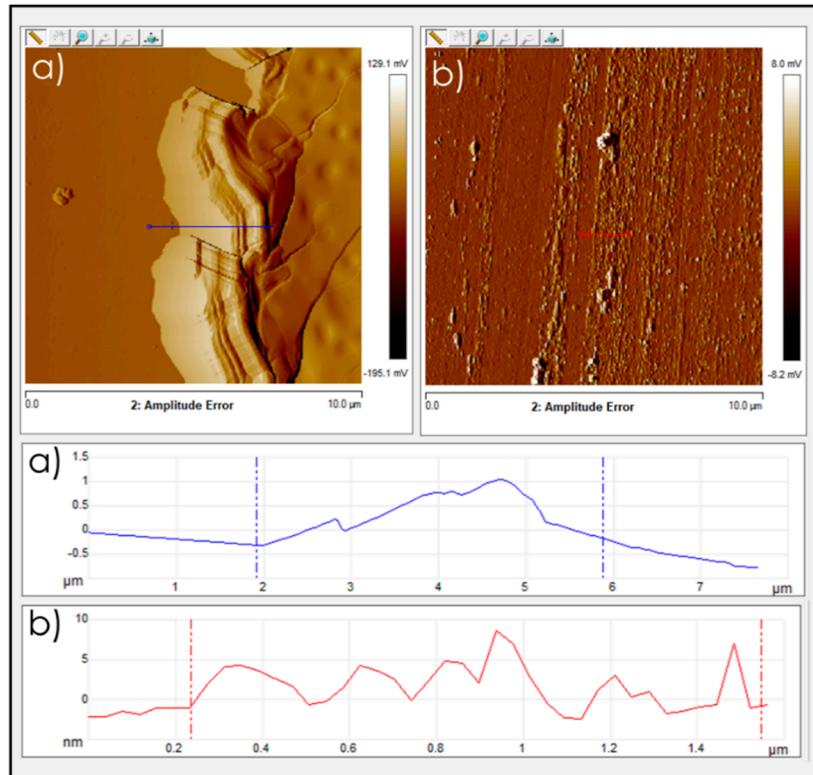

90

91

92

93 **3. Results**94 *3.1. Graphene films*

95 Initial experiments were carried out by casting polystyrene (average MW 280 000) onto copper
96 foils or rigid transparent quartz substrates. Figure 1 illustrates the procedure of the formation of
97 defective graphene films. It has been reported that pyrolysis of polystyrene converts almost
98 quantitatively this polymer into volatile organic compounds.[3] In agreement of these precedents,
99 thermogravimetric analysis under inert atmosphere of our polystyrene sample indicates a weight loss
100 about 99 %, confirming that most of the polymer has decomposed into volatile products.

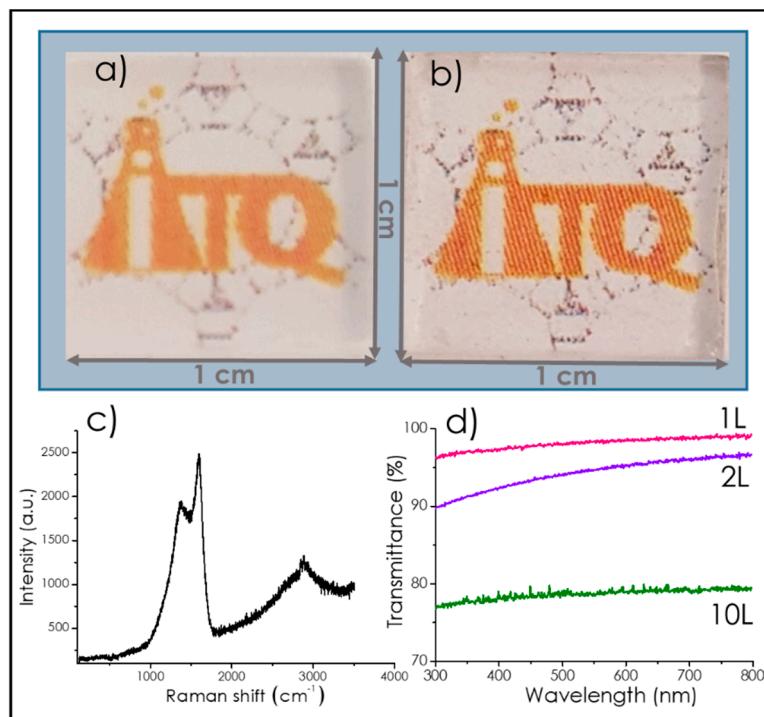

114 **Figure 1.** Illustration of the preparation procedure of defective graphene films by pyrolysis of polystyrene.

115 i) spin coating of clean substrate with a CH_2Cl_2 solution of polystyrene; ii) pyrolysis under N_2 at 900 °C for
116 2 h.

117
118
119 In spite of an almost complete weight loss, and completing the previous studies analyzing
120 volatile products, characterization of the substrate surface after the pyrolysis of polystyrene films
121 shows the presence on these surfaces of defective graphene films, either as single layer, few-layers or
122 multilayers. In accordance with the expected mass loss and also with the tendency of graphene layers
123 to form stacks, the pyrolytic process results in a considerably decrease in the thickness of the resulting
124 graphene films after pyrolysis that is about three orders of magnitude decrease of the initial
125 polystyrene film thickness. In this way, micrometric polystyrene films typically result as a rule of
126 thumb after the pyrolysis at 900 °C for 4 h under inert atmosphere into nanometric thick films
127 corresponding to the stack of graphene layers. As an example, Figure 2 shows AFM images of a
128 polystyrene film precursor that is converted in the pyrolysis into a defective few-layers graphene
129 film.

130
131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

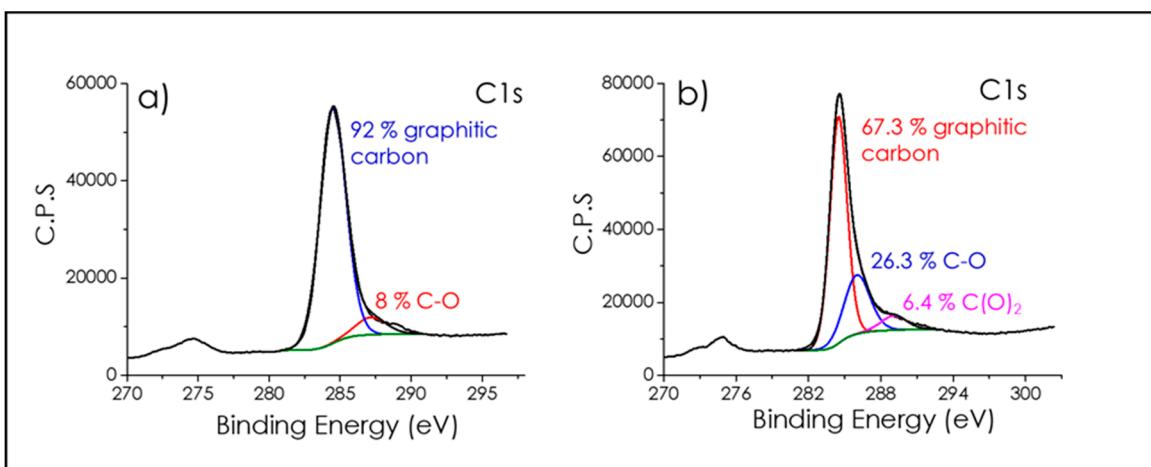
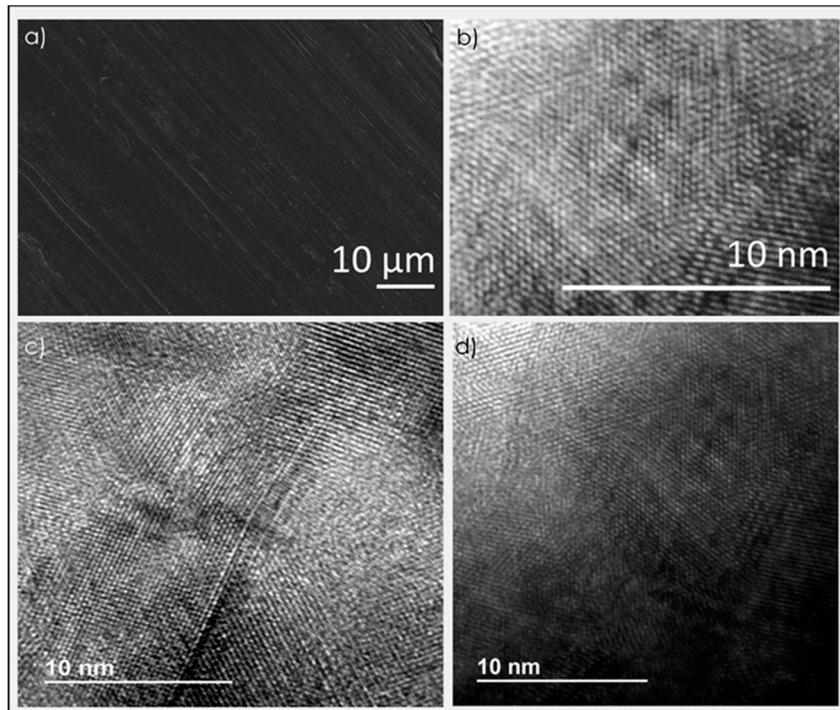


166 **Figure 2.** AFM images of a) polystyrene film precursor with a measured thickness of 1.5 μm and b) defective
167 graphene film from pyrolysed polystyrene with a measured thickness of 5nm.

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

After the pyrolysis, the films were also characterized by Raman and visible absorption spectroscopy. The Raman spectra of the graphene films show the expected G band at about 1590 cm^{-1} accompanied by a D peak at 1350 cm^{-1} that is associated to the presence of defects on graphene. The presence of a 2D peak at 2700 cm^{-1} on top of a broad background was also observed. Figure 3c shows a representative example of the Raman spectra obtained for these defective graphene films. The relative intensity of the G vs. the D peak is usually taken as a quantitative indicator of the density of defects in the G layer.[19,20] In the present case the I_G/I_D ratio is about 1.19 that compares favorably with previous I_G/I_D ratio values reported in the literature, for instance for reduced graphene oxides that are about 0.9 [21] or even for defective graphenes obtained by pyrolysis of natural polysaccharides (I_G/I_D 1.15).[15]

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214



215 Figure 3. Photograph of quartz support with a) PS film before pyrolysis and b) graphene film after
216 pyrolysis of PS; c) Raman spectrum recorded upon 514 nm excitation for defective graphene films on
217 quartz obtained by pyrolysis of polystyrene films; d) Optical transmittance vs wavelength for 1 layer
218 graphene film ([PS]= 3 mg/mL), 2 layers graphene film ([PS]= 10 mg/mL), 10 layers graphene film
219 ([PS]= 30 mg/mL), spin coating rate 4,000 rpm.

220
221

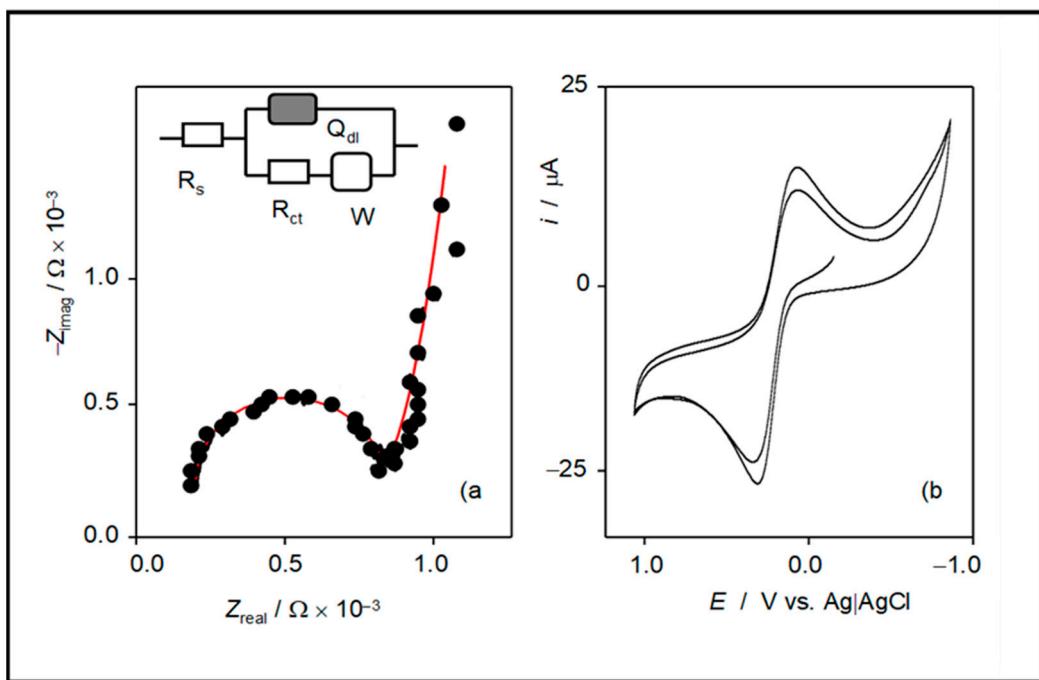
222 For those films on quartz, optical transparency was in agreement with the number of layers of
223 the resulting graphene films. As reported,[14,22,23] the optical transmittance measured at long
224 wavelengths (660 nm) can serve to determine the number of layers of the samples. As an example,
225 Figure 3 shows photographs of the polystyrene film on quartz before and the resulting defective few-
226 layers graphene film after pyrolysis, as well as the relative transmittance of the samples.

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

The nature of the carbon atoms in the defective graphene film was determined by deconvolution
of the C1s peak in high resolution XPS (Figure 4). Survey XPS analysis shows in the film the presence
of C and O as the only detectable elements. Deconvolution of the C1s for films of defective graphene
films on quartz substrates indicates that about 92 % of the carbon atoms are graphitic carbons
appearing at the expected 284.5 eV binding energy.[24] It was estimated that about 8 % are sp^2 C
atoms bonded to oxygen with a binding energy value of 286 eV. It should be commented that,
depending on the nature of the substrate, the percentage of C atoms bonded to oxygen can increase
respect to this value. In this way, using copper foils as substrates, the defective graphene films exhibit
very similar Raman spectra as those presented in Figure 3, but in XPS the C1s peak was broader,
more asymmetric, shifted towards higher binding energies and presented a significant larger
contribution of C atoms bonded to O at 286.5 eV and even the presence of carboxylic C atoms in 6.4
% at 289.0 eV. Since the oxygen content of polystyrene precursor is negligible and the pyrolysis is
carried out under inert atmosphere, XPS data suggests that the surface of the substrate is providing
during the pyrolytic process some oxygen to the nascent defective graphene that becomes
incorporated into the defective graphene. It should be remarked that no special precautions on the
presence of surface oxides were taken in the case of copper foils. It also appears that quartz appears
more reluctant than copper to act as oxygen donor during the pyrolysis. This seems to be in
accordance with the chemical nature of copper that is more reducible in comparison with silicon.

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259260
261 **Figure 4.** Deconvolution of the C1s peak in high resolution XPS of a) defective graphene on quartz
support and b) defective graphene in Copper foil.262 Scanning electron microscopy images of the defective graphene films after pyrolysis show a
263 smooth continuous films at the submillimetric length scale (Figure 5a). Upon detaching some material
264 from these films, transmission electron microscopy (TEM) images of the detached film can be taken.
265 These images from the detached films show the expected layered morphology of the material. High
266 resolution TEM images clearly show the structural ordering at the nanometric scale characteristic of
267 graphene (Figure 5).268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288289
290 **Figure 5.** a) SEM images and b) high resolution TEM images of the defective graphene films after
pyrolysis and c) and d) High resolution TEM images of defective graphene from polystyrene pellets.291
292
293
294

Films on quartz of defective few-layers graphene obtained from polystyrene exhibit a notable electrical conductivity in the range below $k\Omega/\text{square}$, typically about 170 and $270 \Omega/\text{square}$. This electrical conductivity was sufficiently high to allow recording high resolution scan tunneling


295 microscopy (STM) of the samples. Figure S1 (supporting information) presents an illustrative
296 example of the images taken for these defective graphene films, showing the presence of atoms in the
297 expected arrangement. Unfortunately, the lack of sufficient flatness of the quartz substrate,
298 particularly after being submitted to the thermal stress of the pyrolysis process, precludes recording
299 the image of a large area of these films. It should be noted in this context that previous attempts to
300 record STM images of defective graphene films from chitosan and alginate pyrolysis met with failure,
301 due to their insufficient electrical conductivity. In this regard, the behavior of polystyrene derived
302 graphene films are remarkable compared to precedents in the literature that report STM for high
303 quality graphene films prepared by chemical vapor deposition on facet oriented clean metal
304 surface.[25]

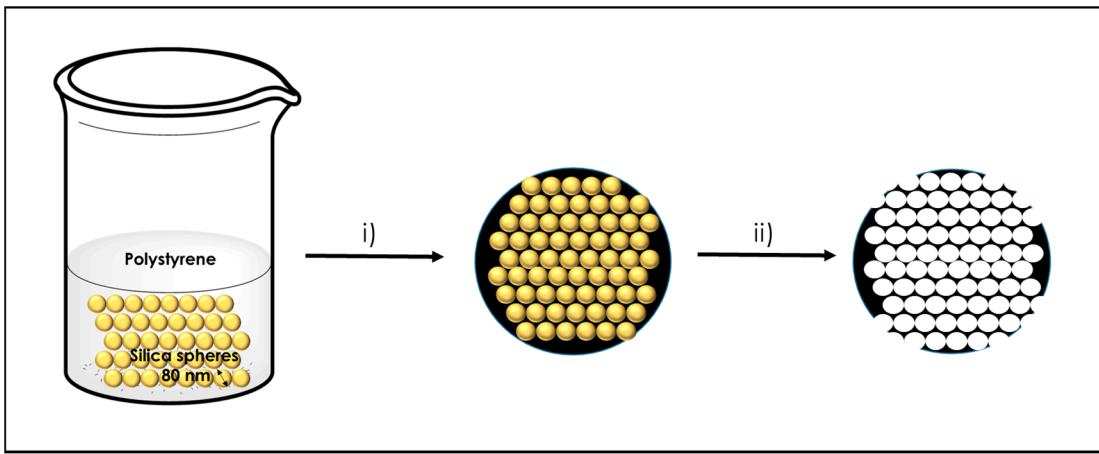
305 Besides films, polystyrene was also pyrolyzed as pellets. It was observed that during the initial
306 stages of temperature increase, polystyrene pellets melt and coat the ceramic crucible used in the
307 pyrolysis process forming a spontaneously a high quality film. If the amount of polystyrene in the
308 crucible is large, films of several millimeters thickness can be obtained due to melting of the plastic.
309 At the end of the pyrolysis, bright metallic carbon residues coating the ceramic crucible are formed.
310 For thick films, the carbonaceous residue can be recovered from the crucible by scratching and the
311 solid suspended by sonication on various solvents. Figure 5 also provides some TEM images of the
312 graphene material present in the suspensions, whereby the typical hexagonal atomic arrangement
313 characteristic of graphene can also be observed.

314 The films of defective graphenes on glassy carbon electrodes were characterized
315 electrochemically by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV)
316 using $\text{Fe}(\text{CN})_6^{3-}/\text{Fe}(\text{CN})_6^{4-}$ couple as a redox probe. EIS of defective graphene films is shown in Figure
317 6. The experimental data were satisfactorily modeled using the Randles-type equivalent circuit (see
318 inset in Figure 6) composed by solution resistance (R_s) in series with a parallel combination of a
319 constant phase element (Q_{dl}) representative of the non-ideal capacitance at the electrolyte/sheet
320 interface with a branch containing a resistance (R_{ct}), representative of the charge-transfer resistance
321 at the above interface, in series with a Warburg element (W), representative of the existing diffusive
322 effects. This equivalent circuit is coincident with that proposed for describing the EIS of graphene
323 oxide sheets on glassy carbon electrode.[26-28] The R_s , R_{ct} , Q_{dl} and W values determined from the EIS
324 of these defective graphene films were 200Ω , 7900Ω , $6.8 \times 10^{-5} \Omega \text{ s}^{-n}$ (n 0.92) and $2.3 \times 10^{-3} \Omega \text{ s}^{-1/2}$,
325 respectively.

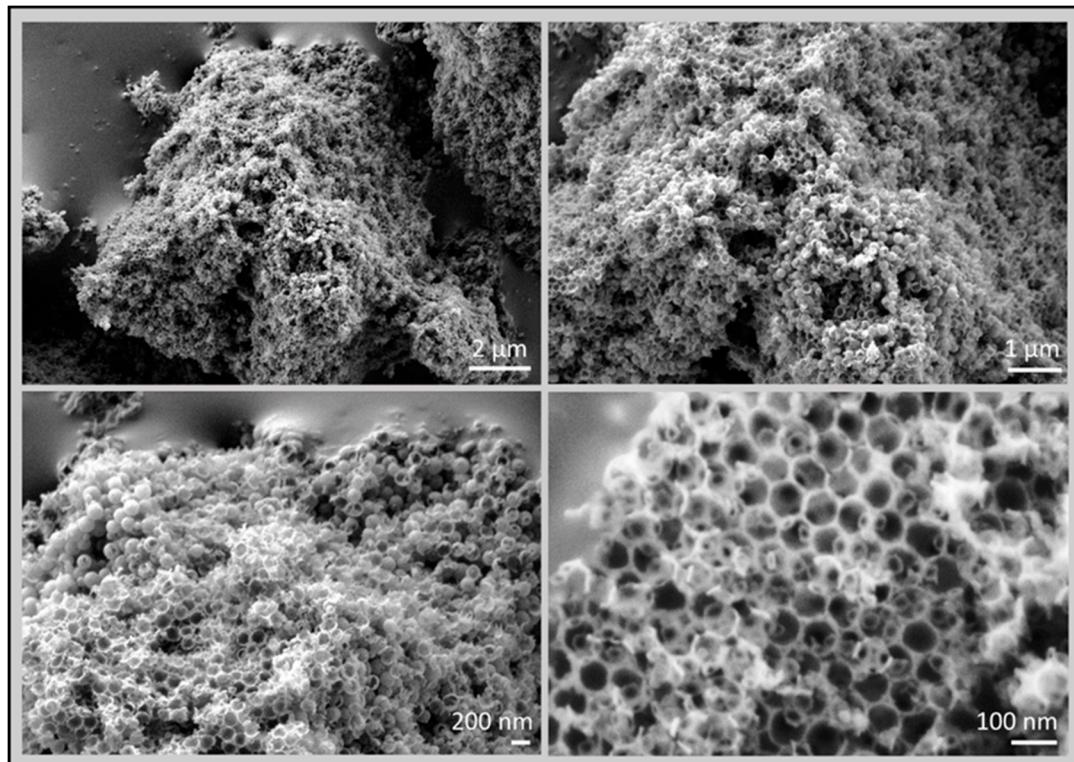
326 Cyclic voltammograms of the $\text{Fe}(\text{CN})_6^{3-}/\text{Fe}(\text{CN})_6^{4-}$ redox pair at the defective graphene film on
327 glassy carbon displayed the characteristic peaks for the essentially reversible interconversion of the
328 two species (Figure 6). The peak current corresponds to an effective electrochemical area of the
329 working graphene electrodes 4.8 times larger than the geometrical surface area of the bare glassy
330 carbon electrode.

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366


367 **Figure 6.** Electrochemical characterization of graphene films deposited on glassy carbon electrode in
368 contact with 1.0 mM $\text{K}_3\text{Fe}(\text{CN})_6/\text{K}_4\text{Fe}(\text{CN})_6$ solution in 0.10 M potassium phosphate aqueous solution
369 at pH 7.0. a) Nyquist plot of EIS at a bias potential of 0.20 V vs. Ag/AgCl; b) CV, potential scan rate 20
370 mV/s. The inset in Fig. 6a corresponds to the equivalent circuit providing the theoretical impedance
371 spectrum depicted as the continuous line in the same.

372 3.2. 3D graphene sponges


373 Besides forming flat films, the possibility to exploit the filmogenic ability of polystyrene to adopt
374 the form of the substrates for the formation of 3D graphene sponges was considered. Structuring of
375 graphene into 3D objects is important as a way to increase the surface area of the material, for instance
376 in the preparation of electrodes and supercapacitors, among other possible applications.[29-32] A
377 general strategy to obtain 3D graphene sponges with regular pore size is the use of hard
378 templates.[33] Silica spheres of uniform diameter are among the preferred hard templates to form 3D
379 sponges.[34] In some procedures, graphene was formed by chemical vapor deposition on the silica
380 spheres as templates[35] or graphene oxide was adhered to the silica spheres and used as precursor
381 of reduced graphene oxide sponges.[33]

382 In the present study, silica spheres of uniform dimensions about 80 nm were prepared by the
383 Stöber hydrolysis procedure and used as templates.[36] These silica spheres were impregnated with
384 polystyrene by stirring a suspension of both components in CH_2Cl_2 . After recovery of the
385 impregnated spheres and washings to remove polystyrene excess, pyrolysis of the impregnated silica
386 spheres was carried out at 900 °C under N_2 atmosphere. The silica spheres were removed by etching
387 of the resulting carbonaceous composite material with NaOH. Figure 7 summarizes the procedure
388 for the preparation of the 3D defective graphene sponges.

389
390
391
392
393
394
395
396
397

398
399
400
401
402
403
404
405
406
407
408
409
410
411412 **Figure 7.** Illustration of the preparation procedure of 3D defective graphene sponges.413
414
415
416
417
418
419
420

Raman and X-ray photoelectron spectroscopy of the 3D defective graphene sponges were mostly coincident with those previously commented. Interestingly, SEM images of the 3D porous graphene sponge after removal of the silica spheres shows the presence of a regular porosity in the material. Figure 8 shows some selected images at different magnifications to illustrate the morphological features of the 3D graphene sponges prepared from polystyrene.

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442443 **Figure 8.** SEM images at different magnifications of 3D graphene sponges prepared from polystyrene.444
445
446
447

448

449 As observed in these images, the 3D graphene sponge morphology is constituted by hexagonal
450 cavities of very uniform dimensions of about 80 nm. This dimension is commensurate with the
451 diameters of the silica spheres used as templates. These cages have four windows of about 40 nm
452 diameter that are tetrahedrally arranged. The thickness of the wall is about 5 nm that is consistent
453 with them being constituted by few-layers defective graphene.

454

455 4. Conclusions

456 Although pyrolysis of graphene has been exhaustively studied as a way to convert this synthetic
457 polymer into fuels, no attention was paid to the possibility to form graphene. In the present
458 manuscript, it has been shown that pyrolysis of polystyrene films or pellets form defective graphenes
459 either as films or as residues that can be dispersed in liquid media. Depending on the nature of the
460 substrate, the resulting graphene can incorporate oxygen in a variable percentage. The notable
461 electrical conductivity of these defective graphene films allows to monitor the surface by scanning
462 tunneling microscopy and to use these films as electrodes. The filmogenic properties of polystyrene
463 make also possible the preparation of 3D graphene sponges with remarkable uniform pore size by
464 using silica spheres as hard templates. The present finding paves the way to the preparation of doped
465 defective graphene and heterojunctions by taken advantage of the ability of polystyrene to form these
466 graphenes.

467 **Supplementary Materials:** The following are available online, Figure S1: High resolution scan tunneling
468 microscopy (STM) of defective graphene using polystyrene as precursor.

469 **Author Contributions:** The research has been performed with the contribution of all the authors. The concept of
470 the study was developed by J.N., A.P. and H.G. Sample preparation and characterization was performed by
471 A.R.-P. and J.N. Electrochemical measurements were carried out by A.D. Drafting of the manuscript was
472 performed by H.G. and A.P. All the authors correct and read the manuscript.

473 **Funding:** This research was funded by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa
474 and CTQ2015-68653-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083).

475 **Acknowledgments:** AP thanks the Spanish Ministry for a Ramón y Cajal research associate contract.

476 **Conflicts of Interest:** The authors declare no conflict of interest.

477

478

479 References

1. Scheirs, J.; Kaminsky, W. *Feedstock recycling and pyrolysis of waste plastics*; John Wiley & Sons Chichester, UK: 2006.
2. Kaminsky, W. Chemical recycling of mixed plastics of pyrolysis. *Advances in Polymer Technology: Journal of the Polymer Processing Institute* **1995**, *14*, 337-344.
3. E., A. Pyrolysis of polystyrene. *Journal of Polymer Science* **1950**, *5*, 378-379, doi:doi:10.1002/pol.1950.120050310.
4. Karaduman, A.; Şimşek, E.; Cicek, B.; Bilgesü, A. Flash pyrolysis of polystyrene wastes in a free-fall reactor under vacuum. *Journal of Analytical and Applied Pyrolysis* **2001**, *60*, 179-186.
5. Kim, S.-S.; Kim, S. Pyrolysis characteristics of polystyrene and polypropylene in a stirred batch reactor. *Chemical Engineering Journal* **2004**, *98*, 53-60.
6. Liu, Y.; Qian, J.; Wang, J. Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. *Fuel Processing Technology* **2000**, *63*, 45-55, doi:[https://doi.org/10.1016/S0378-3820\(99\)00066-1](https://doi.org/10.1016/S0378-3820(99)00066-1).

493 7. Bradt, P.; Dibeler, V.H.; Mohler, F.L. A new technique for the mass spectrometric study of the pyrolysis
494 products of polystyrene. *Journal of Research of the National Bureau of Standards* **1953**, *50*, 201-202.

495 8. Cameron, G. Mechanism of volatile production during pyrolysis of polystyrene. *Die Makromolekulare
496 Chemie: Macromolecular Chemistry and Physics* **1967**, *100*, 255-261.

497 9. Hussain, Z.; Khan, K.M.; Perveen, S.; Hussain, K.; Voelter, W. The conversion of waste polystyrene into
498 useful hydrocarbons by microwave-metal interaction pyrolysis. *Fuel processing technology* **2012**, *94*, 145-
499 150.

500 10. Onwudili, J.A.; Insura, N.; Williams, P.T. Composition of products from the pyrolysis of polyethylene
501 and polystyrene in a closed batch reactor: Effects of temperature and residence time. *Journal of Analytical
502 and Applied Pyrolysis* **2009**, *86*, 293-303.

503 11. Kaminsky, W.; Predel, M.; Sadiki, A. Feedstock recycling of polymers by pyrolysis in a fluidised bed.
504 *Polymer Degradation and Stability* **2004**, *85*, 1045-1050.

505 12. Angyal, A.; Miskolczi, N.; Bartha, L. Petrochemical feedstock by thermal cracking of plastic waste.
506 *Journal of analytical and applied pyrolysis* **2007**, *79*, 409-414.

507 13. Miandad, R.; Nizami, A.; Rehan, M.; Barakat, M.; Khan, M.; Mustafa, A.; Ismail, I.; Murphy, J. Influence
508 of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. *Waste
509 management* **2016**, *58*, 250-259.

510 14. Primo, A.; Atienzar, P.; Sanchez, E.; Delgado, J.M.; García, H. From biomass wastes to large-area, high-
511 quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates.
512 *Chemical communications* **2012**, *48*, 9254-9256.

513 15. Primo, A.; Sánchez, E.; Delgado, J.M.; García, H. High-yield production of N-doped graphitic platelets
514 by aqueous exfoliation of pyrolyzed chitosan. *Carbon* **2014**, *68*, 777-783.

515 16. Latorre-Sánchez, M.; Primo, A.; García, H. P-Doped Graphene Obtained by Pyrolysis of Modified
516 Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. *Angewandte
517 Chemie International Edition* **2013**, *52*, 11813-11816.

518 17. Dhakshinamoorthy, A.; Primo, A.; Concepcion, P.; Alvaro, M.; Garcia, H. Doped Graphene as a Metal-
519 Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and
520 Styrene. *Chemistry—A European Journal* **2013**, *19*, 7547-7554.

521 18. Dhakshinamoorthy, A.; Latorre-Sánchez, M.; Asiri, A.M.; Primo, A.; Garcia, H. Sulphur-doped
522 graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. *Catalysis
523 Communications* **2015**, *65*, 10-13.

524 19. Cançado, L.G.; Jorio, A.; Ferreira, E.M.; Stavale, F.; Achete, C.; Capaz, R.; Moutinho, M.; Lombardo, A.;
525 Kulmala, T.; Ferrari, A. Quantifying defects in graphene via Raman spectroscopy at different excitation
526 energies. *Nano letters* **2011**, *11*, 3190-3196.

527 20. Eigler, S.; Dotzer, C.; Hirsch, A. Visualization of defect densities in reduced graphene oxide. *Carbon*
528 **2012**, *50*, 3666-3673.

529 21. Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.;
530 Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.
531 *carbon* **2007**, *45*, 1558-1565.

532 22. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-
533 layer graphene films on arbitrary substrates by chemical vapor deposition. *Nano letters* **2008**, *9*, 30-35.

534 23. Wassei, J.K.; Kaner, R.B. Graphene, a promising transparent conductor. *Materials today* **2010**, *13*, 52-59.

535 24. Panchakarla, L.; Subrahmanyam, K.; Saha, S.; Govindaraj, A.; Krishnamurthy, H.; Waghmare, U.; Rao, C. Synthesis, structure, and properties of boron-and nitrogen-doped graphene. *Advanced Materials* **2009**, *21*, 4726-4730.

536 25. Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. *Physical review letters* **2008**, *101*, 157601.

537 26. Casero, E.; Parra-Alfambra, A.; Petit-Domínguez, M.; Pariente, F.; Lorenzo, E.; Alonso, C. Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS). *Electrochemistry Communications* **2012**, *20*, 63-66.

538 27. Bonanni, A.; Pumera, M. High-resolution impedance spectroscopy for graphene characterization. *Electrochemistry Communications* **2013**, *26*, 52-54.

539 28. Song, Y.; Feng, M.; Zhan, H. Geometry-dependent electrochemistry of graphene oxide family. *Electrochemistry Communications* **2015**, *56*, 38-42.

540 29. Zhang, L.; Zhang, F.; Yang, X.; Long, G.; Wu, Y.; Zhang, T.; Leng, K.; Huang, Y.; Ma, Y.; Yu, A. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. *Scientific reports* **2013**, *3*, 1408.

541 30. Zhao, J.; Ren, W.; Cheng, H.-M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. *Journal of Materials Chemistry* **2012**, *22*, 20197-20202.

542 31. Gao, H.; Duan, H. 2D and 3D graphene materials: Preparation and bioelectrochemical applications. *Biosensors and Bioelectronics* **2015**, *65*, 404-419.

543 32. Zhou, G.; Paek, E.; Hwang, G.S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. *Nature communications* **2015**, *6*, 7760.

544 33. Han, S.; Wu, D.; Li, S.; Zhang, F.; Feng, X. Porous graphene materials for advanced electrochemical energy storage and conversion devices. *Advanced materials* **2014**, *26*, 849-864.

545 34. Huang, X.; Qian, K.; Yang, J.; Zhang, J.; Li, L.; Yu, C.; Zhao, D. Functional nanoporous graphene foams with controlled pore sizes. *Advanced Materials* **2012**, *24*, 4419-4423.

546 35. Xia, X.; Chao, D.; Zhang, Y.Q.; Shen, Z.X.; Fan, H.J. Three-dimensional graphene and their integrated electrodes. *Nano Today* **2014**, *9*, 785-807.

547 36. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. *Journal of colloid and interface science* **1968**, *26*, 62-69.

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565