
 
 
 
Review 1 

Zinc: A Necessary Ion for Mammalian Sperm 2 

Fertilization Competency 3 

Karl Kerns 1, Michal Zigo 2 & Peter Sutovsky 3,* 4 
1 Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300; kkerns@mail.missouri.edu 5 
2 Division of Animal Sciences, University of Missouri, Columbia, MO 65211-5300; zigom@missouri.edu 6 
3 Division of Animal Sciences, and Department of Obstetrics, Gynecology and Women’s Health, University of 7 

Missouri, Columbia, MO 65211-5300; 8 
* Correspondence: SutovskyP@missouri.edu; Tel.: +01-573-882-3329 9 

 10 

Abstract: The importance of zinc for male fertility only emerged recently, propelled in part by consumer 11 
interest in nutritional supplements containing ionic trace minerals. Here, we review the properties, 12 
biological roles and cellular mechanisms that are relevant to zinc function in the male reproductive 13 
system, survey available peer-reviewed data on nutritional zinc supplementation for fertility 14 
improvement in livestock animals and infertility therapy in men, and discuss recently discovered 15 
signaling pathways involving zinc in sperm maturation and fertilization. Emphasis is on the zinc-16 
interacting sperm proteome and its involvement in the regulation of sperm structure and function, from 17 
spermatogenesis and epididymal sperm maturation to sperm interactions with the female reproductive 18 
tract, capacitation, fertilization and embryo development. Merits of dietary zinc supplementation and 19 
zinc inclusion into semen processing media are considered with livestock artificial insemination (AI) and 20 
human assisted reproductive therapy (ART) in mind. Collectively, the currently available data underline 21 
the importance of zinc ions for male fertility, which could be harnessed to improve human reproductive 22 
health and reproductive efficiency in agriculturally important livestock species. Further research will 23 
advance the field of sperm and fertilization biology, provide new research tools, and ultimately optimize 24 
semen processing procedures for human infertility therapy and livestock AI.   25 
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1. Introduction – Encyclopedism of Biological Zinc  29 

Zinc (Zn) is one of the highly abundant elements on earth, an essential micronutrient to all things 30 
living, typically occurring as a divalent cation metal with moderate reactivity and reducing properties. 31 
Essential biological roles of zinc include signaling, enzymatic activities, regulation of normal growth and 32 
sexual maturation, digestion, homeostasis of central nervous system and mitochondrial oxidative stress 33 
[1, 2]. Conversely, zinc imbalance or altered zinc-signaling accompanies pathologies including but not 34 
limited to Alzheimer’s disease [3-5], blindness, cancer, digestive ailments, growth retardation and 35 
inflammation [6]. While ancient Etruscans and Romans may have already recognized medicinal 36 
properties of zinc salts [7], its biological importance was only fully realized in the 19th century, and 37 
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entered the mainstream human medicine hundred years later, when the first studied were conducted on 38 
dwarfism, human zinc deficiency and general importance of zinc as a growth factor [8].   39 

Cells of all organisms ranging from E. coli to mammals tightly regulate free zinc ion (Zn2+) 40 
distribution, even though its toxicity is relatively low [9, 10]. In humans, nearly 90 % of Zn2+ is found in 41 
the muscle and bone [11]. Other organs containing significant concentrations of Zn2+ are the prostate, 42 
liver, gastrointestinal tract, kidney, skin, lung, brain, heart and pancreas [12-14]. Homeostasis of Zn2+ is 43 
important for survival and fitness; thus, when Zn2+ is consumed in excess, it is important for the body to 44 
handle its surplus [15]. Upon ingestion and absorption through the small intestine, the redistribution of 45 
Zn2+ occurs via the serum, where Zn2+ is bound predominantly to albumin (major binding protein for up 46 
to 60% of Zn2+); the remaining Zn2+ is bound predominantly to 12 other proteins including α2-47 
macroglobulin, transferrin, ceruloplasmin, IgG IgA, IgM, complement C4, haptoglobin, and prealbumin 48 
[16, 17]. Serum Zn2+ accounts for only ~0.1 % of bodily Zn2+ [18]. Further, there is no known specialized 49 
Zn2+ storage system in the body, and therefore only the daily intake of Zn2+ will ensure steady availability 50 
[17]. 51 

On the cellular level, 30-40 % of Zn2+ localizes in the nucleus, while 50 % is stored in the 52 
cytoplasm and the rest is associated with membranes [19]. There are two families of proteins that are 53 
responsible for the movement of Zn2+ through biological membranes, thus exercising sustained 54 
homeostatic control. These include zinc-importer (ZIP; Zrt-, Irt-like) family proteins that transport Zn2+ 55 
into the cytosol and the zinc transporter (ZnT) family proteins transporting Zn2+ out of the cytosol [20]. 56 
Completion of human genome sequencing identified 14 members of ZIP (designated ZIP1-14) and 10 57 
members ZnT (designated ZnT1-10) [20] families. Few studies have inspected major tissues for expression 58 
patterns of ZnTs in humans [21], and the expression of ZIPs during spermatogenesis is only known in 59 
mice [22]. Once Zn2+ enters a cell by ZnTs and ZIPs, it becomes sequestered within the endoplasmic 60 
reticulum, mitochondria and Golgi, or other cell type-specific membrane bound vesicular structures, also 61 
called zincomsomes [23, 24]. Cytosolic Zn2+ complexing with cytosolic proteins maintains the 62 
concentration of free cytosolic Zn2+ within range between picomoles and nanomoles, depending on the 63 
cell type [9, 25-27]. Up to 20 % of cytosolic Zn2+ is bound by the apoprotein thionein, to form 64 
metallothionein (MT). MTs are small ubiquitous proteins (6-7 kDa), rich in cysteine that can complex 65 
transition metal ions [28, 29]. One molecule of MT can bind up to seven Zn2+, buffering excess Zn2+ and 66 
supplying such cation under Zn2+ deficiency states [30, 31].  67 

Limited information exists on the regulation of Zn2+ homeostasis in reproductive system.  In 68 
female gametes, Zn2+ plays a gatekeeping role in regulating meiotic resumption [32-34]. A novel 69 
phenomenon of Zn2+ release from the mammalian oocyte at fertilization was recently reported [33, 35], 70 
inspiring some of the work on male gametes that will be discussed later. The importance of Zn2+ for male 71 
fertility only emerged recently, propelled in part by consumer interest in nutritional supplements 72 
containing ionic trace minerals. Here, we review properties, biological roles and cellular mechanisms that 73 
are relevant to zinc function in the male reproductive system, survey available peer-reviewed data on 74 
nutritional zinc supplementation for fertility improvement in livestock animals and infertility therapy in 75 
men, and discuss recently discovered signaling pathways involving zinc in sperm maturation and 76 
fertilization. 77 
  78 
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2. Zinc-interacting Sperm Proteins and Proton Channels  79 

Zinc ions begin to colonize spermatogenic cells during the final stages of spermatid 80 
differentiation when they are incorporated in the nucleus [36] and nascent outer dense fibers (ODF) [37, 81 
38]. Additional Zn2+ is incorporated into the nucleus at ejaculation [39]. Nuclear Zn2+ associates with 82 
protamines and forms zinc bridges, most likely through imidazole groups of histidine and thiols of 83 
cysteine [40], proposed by Björndahl and Kvist to stabilize the sperm chromatin structure [41, 42]. These 84 
authors showed that a rapid sperm chromatin decondensation can be induced by Zn2+ chelation with 85 
2,2′,2″,2‴-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA), causing the disruption of the protamine zinc 86 
bridges [43-45]. In the sperm flagellum, Zn2+ is bound to sulfhydryl groups of ODF protein cysteine 87 
groups, to protect the nascent flagellum from premature oxidation [46]. During epididymal transit, Zn2+ is 88 
selectively removed from the flagellum by a 160 kDa protein, enabling oxidation of sulfhydryl groups 89 
and stiffening the ODF to support progressive motility [46]. High concentrations of Zn2+ have been found 90 
in the acrosome [47] and proteolytic conversion of proacrosin to acrosin is inhibited by Zn2+ [48, 49], as it 91 
probably involves Zn-dependent metalloproteinases. Zinc ions also associate with sperm membranes, 92 
where they interact with lipoproteins and membrane-bound metalloproteins in which they react with 93 
sulfhydryl groups of cysteine and therefore fulfill a membrane stabilizing function [50, 51]. Active 94 
removal of Zn2+ is therefore a prerequisite for the completion of sperm capacitation [47], a complex 95 
structural and molecular remodeling event that endows spermatozoa within female reproductive tract 96 
with ability to fertilize. High concentrations of Zn2+ (100 µM) reduce sperm motility in a reversible 97 
manner [52]. Initiation of motility following ejaculation [53] and the increased motility of the capacitation-98 
induced sperm hyperactivation are both dependent upon intracellular alkalinization [54]. 99 

Additional Zn2+ becomes incorporated into spermatozoa during ejaculation [21, 39] where it is 100 
believed to have protective function in terms of sperm chromatin decondensation [41, 42], sperm motility 101 
and metabolic inhibition [52, 55], membrane stabilization[50] and antioxidant activity [56, 57]. As Zn2+ 102 
becomes incorporated into spermatozoa upon mixing with seminal fluid, there are also seminal fluid Zn-103 
interacting proteins competitively binding free Zn2+. In humans, a bulk of seminal fluid Zn2+ is bound to 104 
high and low molecular weight ligands derived from prostatic and vesicular secretions [58-61]. Among 105 
them, semenogelins participate in the formation of coagulum, to prevent retrograde flow of semen 106 
deposited in the female tract. Prostasomes, small, exosome-like lipoprotein vesicles are the main zinc-107 
binding partners in human seminal fluid [62, 63]. Zinc-binding proteins have also been found in seminal 108 
fluid of boar [64] and dog [65, 66], and designated as ZnBP1-6. 109 

3. Zinc-containing Sperm Proteins  110 

Zinc-containing proteins, commonly known as metalloproteins, are capable of binding one or 111 
more Zn2+, usually as a requirement for their biological activity. Human genome sequencing and 112 
combined proteomic approaches independently identified 1,684 proteins in the human proteome as zinc-113 
containing proteins [67]. Metalloproteins can be further divided into three groups, i.e. i) metalloenzymes, 114 
ii) metallothioneins, and iii) gene regulatory proteins [19, 68]. Metallothioneins have been discussed in 115 
the previous section. Gene regulatory proteins are nucleoproteins directly involved with replication and 116 
transcription of DNA. Such DNA binding proteins can be further categorized into three structurally 117 
distinct groups, containing: i) zinc fingers, ii) zinc clusters, or iii) zinc twists [69]. Spermatozoa may have 118 
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limited use for gene regulatory proteins since they are transcriptionally silent; however, these proteins as 119 
for instance protamine P2 (discussed earlier) are used heavily for DNA condensation, packaging, and 120 
transcriptional suppression [70]. Majority of this section will therefore be dedicated to zinc-containing 121 
metalloenzymes, which play a vital role in sperm function. 122 

More than 300 enzymes have been identified that require Zn2+ for their function [19], representing 123 
more than 50 different enzyme types. Zn2+ is the only metal that is encountered in all six classes of 124 
enzymes, (i.e. oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases). This can be 125 
attributed to two properties of Zn2+: i) relatively low toxicity when compared to other transition metals 126 
[71], and ii) stable association and coordination flexibility with macromolecules [72]. Zn2+ fulfills three 127 
functions in the Zn-enzymes: i) catalytic, ii) co-active (co-catalytic), and iii) structural [73]. Catalytic Zn2+ 128 
takes part directly in enzyme catalysis. Co-active Zn2+ enhances or diminishes catalytic function in 129 
conjunction with catalytic Zn2+, but is not indispensable for catalytic function [73]. Structural Zn2+ is 130 
required for stabilization of quaternary structure of oligomeric enzymes. 131 

Matrix metalloproteinases (MMPs) belong to a family of zinc-dependent endopeptidases, 132 
involved in the degradation of extracellular matrix proteins. Since the first discovery of MMPs in the 133 
early 1960s, MMPs have grown in number and at least 28 species have been identified to this date; for 134 
subtype categorization, distribution and substrate specificities, see review by Cui et al. [74]. Structurally, 135 
a typical MMP contains a propeptide, a catalytic metalloproteinase domain, a linker peptide (hinge 136 
region) and a hemopexin domain [74]. The catalytic domain contains two Zn2+ (catalytic and structural) 137 
and up to three calcium ions (Ca2+) which stabilize the structure. The cysteine rich region in propeptide 138 
chelates the catalytic Zn2+, keeping MMPs in an inactive zymogen form [75]. MMP2 and MMP9, also 139 
referred to as Gelatinase-A and Gelatinase-B were described in human seminal fluid [76, 77] and canine 140 
epididymal fluid and seminal fluid [78, 79]. Furthermore, MMP2 was found to be localized in acrosomal 141 
and tail region of normal morphological ejaculated human and canine spermatozoa, while MMP9 was 142 
localized in the tail region [79, 80]. High levels of MMP2 are associated with high (70%) motility and 143 
significantly elevated levels of MMP9 are observed in semen samples with low sperm count [79]. Ferrer at 144 
al. [81] demonstrated that MMP2 together with acrosin were confined to the inner acrosomal membrane 145 
of epididymal bull sperm and thus introducing the possibility of their cooperation in enzymatic digestion 146 
of the oocyte zona pellucida (ZP) during penetration. Regulation of said MMPs by zinc ion fluxes 147 
associated with sperm capacitation is currently under investigation. Kratz et al., [82] demonstrated that 148 
the levels of seminal MMP2 and MMP9 are correlated with oxidative stress in men, making this a 149 
potential diagnostic tool for semen quality/male infertility. Finally, Atabakhsh et al., [83] noticed a 150 
positive correlation between seminal fluid MMP2 activity and sperm count, as well as fertilization and 151 
embryo quality in couples undergoing assisted reproductive therapy (ART) by intracytoplasmic sperm 152 
injection (ICSI), offering a potential predictor of ICSI outcome.      153 

Superoxide dismutases (SOD) are metalloenzymes responsible for dismutating the superoxide 154 
anion (O ), to hydrogen peroxide (H2O2) and oxygen (O2) [84]. Three isoforms have been reported in 155 
mammals; i) the cytosolic dimeric Cu/Zn-SOD (SOD1), ii) the mitochondrial matrix Mn-SOD (SOD2), and 156 
the secretory tetrameric extracellular SOD (EC-SOD/SOD3)[85]. It was shown earlier that both seminal 157 
fluid and spermatozoa contain SOD activity [86-93], of which 75 % was attributed to SOD1, which is also 158 
the main SOD isoform in spermatozoa SOD. The SOD activity in spermatozoa is several-fold higher than 159 
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SOD activity levels previously measured in more than 50 different human somatic cell types [92]. 160 
O’Flaherty et al. [88] suggested an important role of superoxide anion in sperm hyperactivation and 161 
capacitation; therefore, adequate balance between superoxide radical generation and dismutation is vital 162 
for proper function of spermatozoa as implicated by Sikka [94]. 163 

Another significant group of Zn2+ containing proteins of spermatozoa are sorbitol 164 
dehydrogenases that convert sorbitol to fructose, and endow spermatozoa with and have been correlated 165 
to motility [95]. Lactate dehydrogenase isoenzyme (LDH-X, LDH-C4) also has been reported to have 166 
relationship with sperm motility [96-98]. It was shown at least in mice that the inhibition of LDH-C4 167 
blocked sperm capacitation [99]. We previously reported the presence of a ring finger ubiquitin ligase 168 
homologous to UBR7 in round spermatids and spermatozoa [100], and implicated this zinc finger 169 
containing enzyme in spermiogenesis and possibly in the proteolytic degradation of the ZP at fertilization 170 
[101]. Angiotensin converting enzyme (ACE), yet another important Zn2+ containing protein, has been 171 
reported in testis, epididymis and spermatozoa of stallion, boar, and man [102-108]. Several roles in 172 
reproduction have been proposed for ACE, including spermatogenesis [109], sperm capacitation [110, 173 
111], and sperm-ZP binding [112]. Alkaline phosphatase (ALP), a homodimeric enzyme containing two 174 
Zn2+ and one Mg2+ is present in mammalian seminal fluid [113, 114] and spermatozoa [115]. Precise role of 175 
ALP in reproduction remains to be discovered, though it may serve as decapacitating factor [116]. 176 
Additional Zn2+ containing proteins found in the spermatozoa include fructose-bisphosphate aldolases 177 
[117] of which class-II possesses Zn2+ [118], and alcohol dehydrogenase present in human testis and 178 
spermatozoa [119, 120]. Also noteworthy is the ADAM (A Disintegrin And Metalloproteinase) protein 179 
family that plays some role in gamete transport and fertilization [121], in which the metalloproteinase 180 
domain contains Zn2+ [122]. The metalloproteinase domain, however, is cleaved during epididymal 181 
transit and only the disintegrin domain remains in mature spermatozoon [121]. Altogether, it is likely that 182 
the zinc-interacting proteome plays varied and often essential roles in the regulation of sperm 183 
homeostasis and fertilizing ability. Rather than a complete list of zinc-containing proteins, we focused on 184 
proteins that are well characterized. We are aware that there are many zinc-containing proteins to be 185 
characterized in spermatozoa. 186 

4. Zinc as a Regulator of Sperm Capacitation and Fertilization 187 

Zinc ions play a vital role in sperm capacitation, regulating key events responsible for 188 
fertilization competency (summarized in Figure 1a). Much as Ca2+ influx was understood as key for 189 
capacitation, today it is understood that Zn2+ efflux is the gatekeeper to this important Ca2+ influx [123-190 
126]. In the following discussion of sperm capacitation it is important to note the contrasting definitions 191 
of sperm capacitation (physiological vs. biochemical) [127] and we will discuss it strictly from the earlier 192 
in its original definition (the acquisition of the capacity to fertilize [128]). Prior to the discovery of the 193 
sperm capacitation state-reflecting Zn signatures in higher order mammals (boar, bull, and human) [129], 194 
there was a noticeable paucity of pivotal discoveries in sperm capacitation translatable from rodent 195 
models to humans [130]. Much of this was criticized as a lack of in vivo or minimal inclusion of an in vitro 196 
female component in sperm capacitation studies; however, a critical review of literature suggests this 197 
could be due to subtle but vivid differences in the study models and/or experimental design. This 198 
includes species differences in attaining intracellular alkalinization [131] thus regulating Ca2+ entry (solely 199 
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the Na+ -dependent Cl-/HCO3- exchanger [132] and possibly the sperm-specific Na+/H+ exchanger sNHE 200 
[133] in murine; hydrogen voltage gated channel, HVCN1 in humans [134]) as well as a result of using 201 
epididymal spermatozoa (as opposed to ejaculated). Both of these factors have a notable impact on the Zn 202 
signature and result in studies that do not mimic the physiology of ejaculated human semen. 203 

There is a moderate negative correlation between flagellar Zn2+ content, and sperm global and 204 
progressive motility in humans [135]. Chelation of sperm Zn2+ by (2R,3S)-2,3-Bis(sulfanyl)butanedioic 205 
acid (DMSA), 2,3-dimercaptopropane-1-sulfonate (DMPS), or DL-penicillamine leads to increased 206 
average velocity straight line and progressive sperm motility while decreasing the percentage of 207 
nonlinear motile spermatozoa [136]. Though discovered before the importance of HVCN1 in sperm 208 
motility activation and capacitation surfaced, previous authors believed this Zn2+ removal to be solely 209 
associated with stiffening of the ODF. Voltage-gated proton channel, HVCN1 localizes to the sperm 210 
flagellum and is responsible for sperm cytoplasmic alkalinization through transmembrane proton 211 
extrusion [55]. HVCN1 is asymmetrically positioned, likely providing differing alkalized 212 
microenvironments and gradients in relationship to the symmetrically positioned CatSper channels 213 
thereby responsible for asymmetrical flagellar bending during hyperactivation [137].  214 

The sperm Zn signature is a collective term for four distinct Zn2+ localization patterns that are 215 
indicative of sperm capacitation state [129]. These zinc ion fluxes are associated with key events in the 216 
acquisition of fertilization competency, indicating non-capacitated state, hyperactivation, acrosomal 217 
modifications, and acrosomal exocytosis (summarized in Figure 1b). These distinct signatures minimally 218 
distinguish the sequential sperm capacitation subpopulations, or to the extent Zn2+ establishes these 219 
sequential subpopulations and thereby is the previously unknown regulatory time clock of sperm 220 
capacitation. The decrease in Zn2+ concentration from the ejaculation/deposition site to the site of 221 
fertilization could remove sperm Zn2+ simply via concentration gradient differences and filtering out of 222 
seminal fluid, thereby promoting sperm capacitation. Further, it is well understood the ubiquitin-223 
dependent protease holoenzyme, the 26S proteasome regulates sperm capacitation (review [138]) as well 224 
as the  Zn2+ flux in boar spermatozoa [129], and participates in sperm acrosomal exocytosis induced by 225 
binding to the egg coat in sea urchin [139], bull [140], and human [141] spermatozoa. Besides acrosomal 226 
exocytosis, the sperm-borne 26S proteasome has been implicated in egg coat penetration (ascidian, sea 227 
urchin [139] and boar [101]). The relationship between 26S proteasome activity and Zn2+ is unclear, 228 
though the proteasomal regulatory subunit PSMD14/Rpn11 contains a metalloprotease-like Zn2+ site 229 
[142]. Additionally, Zn2+ has been implicated in regulating proteasome-dependent proteolysis in HeLa 230 
cells [143]. Contrarily to the high seminal fluid Zn2+ concentrations (2 mM) inhibiting HVCN1, lower 231 
concentrations (20 and 50 µM) have been implicated in promoting acrosomal exocytosis in sea urchin 232 
[144] and bovine [145] spermatozoa during in vitro capacitation. It is believed that Zn2+ interacts with Zn-233 
sensing receptor (ZnR) GPR39 of the G-protein-coupled receptor (GPCR) family found in the sperm 234 
acrosome. Such interaction stimulates acrosomal exocytosis through epidermal growth factor receptor 235 
(EGFR) transactivation and phosphorylation of phosphoinositide 3-kinase (PI3K) causing acrosomal Ca2+ 236 
mobilization [145]. This implicates a multifaceted role of Zn2+ in sperm capacitation and therefore more 237 
research will be needed to fully comprehend these contrasting pathways (inhibiting vs. inducing  238 
acrosomal exocytosis).  239 
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Successful embryo development in mammals depends upon efficient anti-polyspermy defense, 240 
preventing the entry of more than one spermatozoon in the oocyte cytoplasm at fertilization and thus 241 
alleviating an embryo-lethal polyploidy. While membrane depolarization and cortical granule exocytosis 242 
are regarded as the main barriers to polyspermy, a sperm-induced Zn2+ release from the oocyte cortex, 243 
nicknamed the Zn2+ spark, has recently been discovered in mammals [33, 35]. Besides the oocyte Zn2+ 244 
spark [33], there is also a physiochemical ZP hardening and a 300% Zn2+ increase in the ZP matrix 245 
observed when the fertilized oocyte zona becomes refractory to sperm binding in the mouse [35]. Such a 246 
proposed new anti-polyspermy defense mechanism is plausible, though the exact mechanism was not 247 
known until recently. We now know that Zn2+ is chemorepulsive, possibly overriding the chemoattraction 248 
of oocyte-secreted progesterone in capacitated human, mouse, and rabbit spermatozoa [146]. In light of 249 
the sperm Zn signature, a polyspermy defense mechanism of newly fertilized oocytes, termed the zinc 250 
shield [129] could in fact de-capacitate spermatozoa already bound to the zona or present in the 251 
perivitelline space at the time of fertilization. It is likely such hijacking sperm Zn-signaling and de-252 
capacitation complements the blockage of fertilization through traditional anti-polyspermy mechanisms. 253 
Zn2+ has been shown to inhibit fertilization when added to bovine in vitro fertilization (IVF) media [147]. 254 
In further support of this mechanism, Zn2+ regulates the activity of the proposed sperm-borne ZP lysins, 255 
the proteinases [148] implicated in ZP penetration, including acrosin [48, 49], 26S proteasome [129, 138] 256 
and MMP2 (brain) [149], therefore playing a regulatory role in sperm-ZP penetration. Additionally, 257 
inhibitors of zinc-dependent metalloproteases hinder sperm passage through the cumulus oophorus 258 
during porcine IVF [150]. 259 
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 260 
Figure 1. Summary of Zn signatures and Zn2+ regulation of the fertilization competency of mammalian spermatozoa. 261 
(a) Super-resolution images of the non-capacitated boar sperm Zn signature 1 (a’) and acrosome-remodeled sperm Zn 262 
signature 3 (a'') acquired by the Leica TCP SP8 STED (free zinc ions in green, outer acrosomal membrane in cyan, 263 
remodeled sperm head plasma membrane in red; scale bars in gray: 5 µm). (a''') High Zn2+ concentration (2 mM) 264 
negatively regulates proton channel HVCN1, responsible for the rise of intracellular pH, facilitiating: 1) Ca2+ entry via 265 
CatSper and 2) protein tyrosine phosphorylation (pY), triggered by activation of soluble sperm adenylyl cyclase 266 
(SACY), increasing intracellular cAMP, activating protein kinase A (PKA) and phosphorylating protein tyrosine 267 
phosphatases (PTP) to an inactive state. For general capacitation pathway, review see Kerns et al., [138]). Following 268 
acrosome remodeling and exocytosis, zona pellucida (ZP) proteinases (acrosin, MMP2, and the 26S proteasome) 269 
implicated in endowing the spermatozoon with the ability to penetrate the ZP are activated. Zn2+, abundantly present 270 
in the fertilizing sperm triggered oocyte zinc shield, negatively regulates proteinase activities of spermatozoa bound 271 
to the zona or present in the perivitelline space, de-capacitating spermatozoa and serving as a newly proposed anti-272 
polyspermy defense mechanism. (b) Capacitation-indicating state of the zinc signatures. Signature 1 spermatozoa are 273 
in a non-capacitated state. Signature 2 spermatozoa display hyperactivated motility. Only capacitating spermatozoa 274 
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susceptible to progesterone (P4) chemoattraction exhibit chemorepulsion by Zn2+. Signature 3 spermatozoa exhibit 275 
acrosome remodeling while acrosomal exocytosis reportedly occurs in signature 4. 276 

5. Effect of Zinc Supplementation on Male Fertility 277 

Reduced seminal fluid Zn2+ has been reported in cases of male infertility associated with 278 
accidental Chernobyl radiation in Ukraine [151], signifying a possible relationship between Zn2+ and male 279 
fertility. Indeed, Zn2+ supplementation improves sexual dysfunction in rats [152] and uremic men [153] 280 
likely due to the ability of Zn2+ to increase serum testosterone levels [154]. The negative effect of fatiguing 281 
bicycle exercise on thyroid hormone and testosterone levels in sedentary males is likewise prevented with 282 
Zn2+ supplementation [155]. Oral Zn2+ supplementation results in increased sperm counts in ram [156] 283 
and humans (combined with inclusion of folate; review) [157]. Zinc supplementation also restores 284 
superoxide scavenging antioxidant capacity in asthenospermic men [158]. Dietary Zn2+ intake and action 285 
on intraprostatic Zn2+ levels remain unknown; however, if such supplementation increases prostatic 286 
levels it could perceivably increase the percent of non-capacitated signature 1 spermatozoa at the time of 287 
ejaculation. Such would be beneficial for inhibiting HVCN1, warding off premature sperm capacitation. 288 
Goat dietary Zn2+ supplementation increases sperm plasma membrane and acrosome integrity, and 289 
percent of viable spermatozoa, also increasing seminal fluid SOD, catalase, and glutathione peroxidase 290 
activities [57]. Additionally, Cu2+ and Zn2+ dietary co-supplementation to bucks of the Osmanabadi goat 291 
breed allowed them to reached puberty 28-35 days earlier [159]. 292 

Few studies have assessed the addition of Zn2+ in media/semen extenders in agriculturally 293 
important livestock species propagated by artificial insemination (AI). A highly desirable property of 294 
such media is to reduce reactive oxygen species (ROS) that effect sperm function by oxidation of lipids, 295 
proteins and DNA (review [160]). Notably, Zn2+ supplementation would serve as an antioxidant by 296 
scavenging excessive superoxide anions [161]. Some studies have investigated Zn2+ supplementation, 297 
however they did so with the inclusion of D-aspartate and coenzyme Q10, without distinguishing which 298 
compound positively reduced lipid peroxidation and DNA fragmentation [162] and improved embryo 299 
development [163]. Spermatozoa have the capacity for Zn2+ loading [129], to the extent of restoring their 300 
pre-capacitation Zn signature, and it seems reasonable such would reduce premature, pathological sperm 301 
capacitation.  302 

While Zn2+ supplementation has a positive influence on multiple male reproductive measures, 303 
the literature is mixed regarding its relationship with prostate cancer and warrants caution, with some 304 
reports of supplementation over 100 mg/day having a 2.29 relative risk of advanced prostate cancer [164], 305 
which is not surprising as zinc becomes cytotoxic at such concentrations. 306 

6. Spermatotoxicity and Reprotoxicity of High Zinc Contamination and Zinc Deficiency 307 

At high soil levels, Zn2+ is reprotoxic to the terrestrial worm Enchutraeus crypticus [165]. Few 308 
studies exists that observe Zn2+ reprotoxicity [166]. ZnCl2 dietary supplementation to both male and 309 
female rats at 30 mg/kg/day but not 15 or 7.5 mg/kg/day showed significant reduction in fertility, 310 
offspring viability, and body weight of F1 pups; however, it had no effect on litter size (male reprotoxicity 311 
alone was not observed) [167]. Nanosized ZnO toxicity induces sea urchin sperm DNA damage, but does 312 
not reduce fertility [168]. A moderate negative correlation (r=-0.426) has been found between total 313 
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flagellar Zn2+ content and percentage of morphologically normal spermatozoa in men [135]. 314 
Morphologically abnormal spermatozoa actually contained high amounts of Zn2+ (as reported by 315 
fluorescent Zn-probe) [129]. Whether such is caused by Zn2+ toxicity or simply a product of defective 316 
spermatozoa failing to regulate their ion fluxes is unknown. Zn2+ deficiency is known to trigger 317 
autophagy in yeast [169], and elevated autophagy rate during spermatogenesis could decrease sperm 318 
count during Zn2+ deficiency. In the absence of fertilization, sperm capacitation is a terminal event leading 319 
down a rapid path of apoptosis [170] possibly from overproduction of ROS [171] in an environment with 320 
reduced Zn2+. No studies have been performed to observe if micromolar levels of Zn2+ under capacitation-321 
inducing conditions can prolong sperm lifespan during a fertilization competent state (as opposed to 322 
millimolar levels which inhibit sperm Zn2+ flux [129]). If such could be achieved, fertilization would be 323 
possible with fewer spermatozoa and especially useful for artificial insemination in livestock as well as 324 
human intrauterine insemination (IUI) in place of costly IVF treatments of couples with an oligospermic 325 
male partner. 326 

7. Conclusions and Perspectives  327 

Through a variety of pathways, Zn2+ plays a gatekeeping role in male gametes just as it does in 328 
those of the female. Prostatic seminal fluid with the highest concentration of Zn2+ found in any bodily 329 
fluids, plays a crucial role in fending off premature sperm capacitation and provides antioxidant activity, 330 
while lower concentrations of Zn2+ may be a prerequisite for successful acrosomal exocytosis. To fully 331 
understand the biological role of Zn2+ in male fertility, further research needs to be pursued, especially to 332 
fully disclose the Zn-interacting sperm proteome and its place in various cellular pathways controlling 333 
male reproductive function. Additionally, dietary and semen media Zn2+ supplementation has been 334 
found to be beneficial for male fertility. Collectively, the currently available data already hint at the 335 
importance of zinc ions for male fertility, which could be harnessed to improve the reproductive 336 
performance of livestock and increase the success rate of human assisted reproductive therapy. Further 337 
research will advance the field of sperm and fertilization biology, provide new research tools, and 338 
ultimately optimize semen processing procedures for human infertility therapy and livestock artificial 339 
insemination.   340 
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Abbreviations 355 

MDPI Multidisciplinary Digital Publishing Institute 
AI Artificial insemination 
Zn Zinc 
Zn2+ Zinc ion 
ZIP Zrt- and Irt-like protein 
ZnT Zinc transporter 
MT Metallothionein 
ODF Outer dense fibers 
EDTA 2,2′,2″,2‴-(Ethane-1,2-diyldinitrilo)tetraacetic acid 
ZnBP Zinc-binding proteins 
MMP Matrix metalloproteinase 
Ca2+ Calcium ion 
ZP Zona pellucida 
ICSI Intracytoplasmic sperm injection 
SOD Superoxide dismutase 
LDH Lactate dehydrogenase 
ACE Angiotensin converting enzyme 
ALP Alkaline phosphatase 
ADAM A disintegrin and metalloproteinase 
HVCN Hydrogen voltage gated channel 1 
DMSA (2R,3S)-2,3-Bis(sulfanyl)butanedioic acid 
DMPS 2,3-dimercaptopropane-1-sulfonate 
ZnR Zn-sensing receptor 
GPCR G-protein-coupled receptor 
EGFR Epidermal growth factor receptor 
PI3K Phosphoinositide 3-kinase 
IVF In vitro fertilization 
pY Protein tyrosine phosphorylation 
SACY Soluble sperm adenylyl cyclase 
PKA Protein kinase A 
PTP Protein tyrosine phosphatase 
ROS Reactive oxygen species 
IUI Intrauterine insemination 
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