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11 Abstract: The development and application of marine current energy are attracting more and more
12 attention in the world. Due to the hardness of its working environment, it is important and difficult
13 to study the fault diagnosis of marine current generation system. In this paper, underwater image
14 is chosen as the fault diagnosing signal after different sensors are compared. This paper proposes a
15 diagnosis method based on the sparse autoencoder (SA) and softmax regression (SR). The SA is
16 used to extract the features and SR is used to classify them. Images are used to monitor whether the
17 blade is attached by benthos and to determine its corresponding degree of attachment. Compared
18 with the other techniques, experiment results show that the proposed method can diagnose the

19 blade attachment with higher accuracy.

20 Keywords: marine current turbine; blade attachment; sparse autoencoder; softmax regression

21

22  1.Introduction

23 Nowadays, reducing carbon emission becomes a consensus in the world. It is urgent to adjust
24 the energy structure, reduce the dependence on fossil energy and increase the use of sustainable
25 energy, which makes the wind, solar, marine current energies [1]-[3] more and more attractive. The
26 system of wind and solar energies is greatly affected by the environment, occupies a lot of land
27  resources, and brings noise and visual pollution to the surrounding residents. The marine current
28  energy can avoid these problems. The marine current mainly refers to the steady flow in the
29  submarine channel and the regular flow of water caused by tides [4]. The flow of the marine current
30 s stable, and the flow rate is kept within a certain range all year round [5], therefore the power can
31  be continuously generated [6], [7]. Marine current energy is an inexhaustible green energy resource
32 and marine current turbine (MCT) is mainly independent of weather conditions [8]. However,
33 compared with the terrestrial environment, the undersea working environment is more complex. In
34  addition to the traditional generator faults, MCT system is also influenced by the marine
35 environment, such as attachment, biofouling [9], [10], etc., affecting the normal operation of electrical
36  equipment. On the other hand, the marine current generation system is affected by the sun, lunar
37  gravity and surge, resulting in the instability of the current flow rate [11], [12], which makes the MCT
38  work in complicated environment during a long time, which means that the detection and diagnosis
39  of faults of MCT are more difficult. Once a fault occurs, it can cause great damage to the whole system
40  ifitis not found and dealt with in time. The conventional faults caused by attachment include rotor
41  asymmetries, increased surface roughness and deformation of blade [13]. In addition, the metal parts
42 are much easier corroded by attachment [8]. When the blades are attached by sea creatures which
43  gradually form the biofouling, the blade imbalance and hydrodynamic effect will result in the output
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44 power imbalance. When the blade is affected by attachment, the amplitude and frequency of the
45  output voltage are reduced. The attachment will reduce the efficiency of the absorption of kinetic
46  energy from flow and reduce rotational speed of the blade. At same time, a small change of the flow
47 rate will have a great influence on the output voltage [14]. If the blade attachment is not found in time
48  and cleaned up quickly, the situation of biological deposition becomes serious and its output voltage
49  waveform will be distorted.

50 At present, there are few researches on the fault diagnosis of MCT. Reference [15] proposes a
51  fault detection method, based on empirical mode decomposition (EMD) and spectral analysis, for
52 MCT under the condition of wave and turbulence. A mode-correlation principal component analysis
53 method is proposed to monitor MCT under random occurrence of turbulence and wave [16].
54 Reference [17] uses time domain, time-frequency domain and angle domain features to detect faults
55  which achieves good performance for MCT under complex condition. But those methods only detect
56 the imbalance fault. Particularly in reference [17], only two categories of faults (imbalance fault 1%
57 and 3%) are considered, which means that even-distributed attachment cannot be detected.
58  Meanwhile, those methods still need human to analyze the observed results. Reference [42] proposed
59  a modified extended kalman filter (MEKF)fault detection strategy, but this method needs extra
60 electric circuit, which is a challenge in undersea environment.

61 On the other hand, the electrical and mechanical signals are not always enough to diagnose
62  faults in environment with strong currents and complex spatiotemporal variability [18,19] The
63  undersea radio signals cannot travel far due to the absorption losses [20] and many acoustic signals
64  arelost due to partial band interference [20]. Therefore, this paper proposes to use image as the fault
65  diagnosing signal, because underwater camera has been widely used which provides an effective
66 nondestructive means for underwater measurement in various scenarios [21]. In reference [22], a
67  lithium polymer battery of 10000 mAh capacity is used for camera battery and the camera can work
68  for up to 10 days if it is controlled to record 60 seconds video every two hours under the sea with
69  depth between 1000m and 1800m. Traditional image classification methods include BP neural
70 network [23], support vector machine (SVM) [24], principal component analysis [25], etc. BP neural
71  network and SVM require a great number of parameters when the dimension of input is large.
72 Convolutional neural network (CNN), a more recent classification method, achieves high accuracy
73 in image classification by stacking convolutional layers or blocks [26], [27], which also means a big
74 number of parameters and very high computational complexity [28]. In this paper, a diagnosis
75  method based on a sparse autoencoder (SA) and softmax regression (SR) is proposed to diagnose
76  whether the blade of the MCT is attached by benthos and to determine its corresponding degree of
77  attachment. The SA is adopted to extract the features which will be classified by SR. Theoretical
78  analysis and experimental results show the effectiveness of the proposed method.

79 This paper is an extended version of reference [29] and the rest of paper is organized as follows.
80  Section II introduces the problems of blade attachment. Section III describes the proposed method.
81  Section IV presents the platform and gives some experimental results and comparison. The
82  conclusions are drawn in the final section.

83  2.Problem description on Blade attachment of MCT

&4 At present, MCT fault detection mainly focuses on imbalance faults, which is based on electrical
85  signal. But electrical signal is affected by the complex environment, which results in difficulties to
86  diagnose the attachment with similar degrees. In [17], two attachment degrees are set, which can be
87  explicitly distinguished under waves, but cannot be distinguished under condition of turbulence.
88 The increased surface roughness and deformation of blade are also important in addition to the
89  rotor asymmetries caused by imbalance attachment. These two kinds of faults are mainly caused by
90  symmetrical or uniform attachment. For example, the output voltage signals are sampled under
91  health condition and uniform attachment; FFT is used to analyze the sampled signal, the results are
92 shownin Figure 1.

93 Although the amplitude and main frequency of the output voltage for uniform attachment are
94 lower, the frequency behavior is better in terms of harmonic components distribution and amplitude.
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95  That leads to the challenge of accurate diagnosis based on electrical signal under increased surface
96  roughness and deformation of blade. Acoustic signal is also used to diagnose faults under increased
97  surface roughness of blade for wind turbine [13], however, many acoustic signals are lost in the
98  undersea environment [20].

99
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102 Figure 1. The output voltage of MCT under different condition: (a) The output voltage under health
103 condition; (b) The output voltage with uniform attachment.
104 Image as fault diagnosing signal is proposed in this paper. The undersea environment is

105  different from that on land, there is no source of light. Underwater imaging systems have to rely on
106  the artificial light to provide illumination, which brings problems due to light absorption, light
107  reflection, bending, light scattering and poor visibility [30]. Therefore, image feature extraction
108  method is a key point for diagnosing faults based on image classification.

109 In real situation, the thickness is not considered as a parameter. Fig. 3 shows real situation, when
110 marine current turbine is salvaged from undersea. MCT is only with thin brown attachment. In
111  addition, blades fouled with a 1.1 mm thick layer of lithium grease impregnated with diatomaceous
112 earth as an approximation of slime growth in Fig. 4. The Fig. 4 shows that attachment grows from the
113 center and outwards. Because of above reasons and real biofilms were not able to be grown on a
114  rotating turbine or be tested in the towing tank [42], brown rope is used to simulate attachment.

117
118

119 Figure 2. Image under different environment: (a) Waterborne image [17]; (b) Underwater image.
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120

121 Fig. 3 Biofouling & Erosion for MCECS [8]

122

123 Fig. 4. (a) blade fouled with 1.1 mm thick layer of lithium grease impregnated with diatomaceous

124 earth, (b)blade roughened with randomly applied contact cement. [42]

125 Marine biofouling is a process from being attached to biological reproduction which takes about

126  three weeks [9]. By analyzing the images, the degree of attachment, consequently, the degree of fault
127  could be estimated in time. This kind of diagnosis method has been applied in cancer image
128  processing and achieved promised results, such as breast cancer diagnosis [31].

129 3. The Sparse Autoencoder and Softmax Regression based Diagnosis Method

130 The diagnosis method proposed in this paper is divided into four steps as shown in Figure 5.
131  Step 1, preprocess the unlabeled images to pre-train the convolution kernels; Step 2, make the
132 convolution between the labeled images and convolution kernels to obtain the convolved features of
133 each image in the labeled samples; Step 3, transform the convolved features into the pooled features
134 by using pooling operation; finally, Step 4,put the pooled features into the softmax classifier to
135  diagnose the faults category .
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137 Figure 5. Frame of the proposed diagnosis method.
138 3.1. Image data preprocessing
139 The whole image of MCT will result in great number of parameters as input, and the 160

140  unlabeled images are used to extract patches for effectively extracting features. We extract 500
141  patches of 20x20 pixels per channel (3 channels for each patch) from each image as the unlabeled
142 learning samples, which are arranged in matrix Xynaper = [Xiniabers - » Xomoper], Where xX .. is
143 the kth column of X, 4pe;, Which is a matrix of dimension 1200 x 80000, where 1200 = 20 X 20 X
144 3 represents the amount of pixels of one patch and 80000 = 160 X 500 corresponds the total
145  number of patches. Then we use the zero mean and zero-phase component (ZCA) whitening
146 technique [32] to calculate matrix Xnitening- The row images of MCT are effectively reduced by ZCA
147  preprocessing so as to sparse autoencoder’s input with low correlation.

m
*k k 1 i
Xuniabel = Xunlabel — E X uniabel (1)
i=1
1 * * T
Cx = Exunlabel(xunlabel) )
1,
thitening =U(S +eD) 2Xniaper ©)

148  Where xX 4,0 is the kth column of X}, aper; Cx the covariance matrix of X}, qper; m=80000 the
149 number of samples; S is the diagonal matrix of eigenvalues and U is the eigenvectors of Cx, and ¢ is
150  the regularization parameter.
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151  3.2. Pre-training convolutional kernels based on sparse autoencoder

152 The recent image recognition of method is that the convolutional kernels and the softmax’s
153 parameters are trained based on convolution, and the number of convolutional layers is greater than
154 one. The method of mentioned could extract abundant features by trained convolutional kernels for
155  image with complex feature. however, network with less convolutional layers also shows good
156  performance in some image classification. For instance, reference [36] uses two convolutional layers
157  toclassify different numbers, this paper tries to use one convolutional layer and asynchronously train
158  convolutional kernels and softmax’s parameters to classify MCT’s image. Training convolutional
159  kernels are based on SA.

160 Fig.6 shows the structure of SA neural network. It has three layers, the input layer (L,), hidden
161  layer (L,) and output layer (Ls), where “+1” is the bias coefficient. SA is an unsupervised learning
162 algorithm because its ideal output equals to its input, which means that it can learn features from

163 training data by itself. Assuming the preprocessed input matrix X,nitening = [X", ..., 2%°°°], where

164 x* is the kth column of Xynitening, ¥ € R", n=1200 is the number of pixels of each patch. W](L1 ), for
165 i=1,..,8,j =1,..,5, denotes the weight connecting the ith neuron from the input layer to the jth
166  neuron of the hidden layer. The input threshold of the hidden layer is b(®. Wg), fori=1,..,53j=
167  1,..,s,, denotes the weight connecting the jth neuron from the hidden layer to the ith neuron of the
168  output layer; where s; = 1200 is the number of neurons in the input layer, s, = 800 the number of
169  neurons in the hidden layer, s; = 1200 the number of neurons in the output layer. The threshold of
170  the outputlayeris b®. Wj(l1 ), Wg), b® and b® are trainable parameters and which are trained by
171  the forward and backward propagation method. The activation function of the hidden layer is the
172 sigmoid function and that of the output layer is the proportional function. The optimal values of
173 parameters are calculated by using L-BFGS algorithm [34]. Finally, the weights of the hidden layer
174  are the learned features. After pretraining based on SA, the weights between input layer and hidden
175  layer are reshaped for extracting the convolution features as convolutional kernels.

@/ ’ Layer L.

’ Layer Ls l
Layer L:

176
177 Figure 6. SA neural network structure.

S1
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178  where x; is the ith component of vector x, z;” and a]@

correspond to the input and output of the
179  activation function in the jth neurons of the hidden layer respectively, ZLG) and aL@ correspond to
180  the input and output of the activation function in the ith neuron of the output layer respectively, ¢ is

181  the proportionality coefficient. Assuming that the input is a dataset containing m=80000 samples.

182

183 3.3. Features Extraction based on Convolution and Pooling

184 Local connection and weight sharing are the characteristics of convolution layer, so using
185  convolution can reduce the number of parameters and training complexity. In addition, the
186  convolutional and pooling architecture can learn invariant features and reduce the over-fitting [35].
187  Inthis step, the convolved features will be extracted from each image firstly, then the pooled features
188  will be obtained by sub-sampling the convolved features.

189 Different feature activation value is obtained at each location in the image by convolving each
190  image with the convolution kernels pre-trained in the previous step. Specifically, if the number of
191  pixels of one image is Dimgge X Dimage and the number of pixels of convolution kernels is Dpgecn X
192 Dpgech, the dimension of the convolved features is (Dinage — Dpatch + 1) X (Dimage — Dpaten + 1) [36].
193 Assuming the number of kernels for the hidden layer is equal to ny, the dimension of a convolved
194 featureis (Dimage — Dpatcn + 1) X (Dimage — Dpatcn + 1) X nywhich will bring difficulty to classify.
195 Pooling operation is then introduced to reduce the dimension of the convolved features while
196  maintaining the invariant information and to improve the results with less over-fitting. The mean
197  pooling is used in this paper [36].

198 3.4. Faults classification based on softmax classifier

199 After step 3, the pooling features are obtained for training classifier. According to the different
200  attachment degrees, the different categories and labels are set. The pooling features is as the softmax

201  input. Suppose 6 is a parameter matrix, the L-BFGS iterative algorithm can be used to obtain
202 parameter 6.

p® =11x®;6) 027

, ® = 21x®. 9 1 0,0
he(x®) = PO : |x*; 6) = ef2 8)

. : . j=1 ;

p(y®D = k|xD; 0) / 20kx®

203 4. Experimental analysis

204  4.1. Experimental Platform

205 In order to get a rich diversity of samples, the state of each category will be sampled
206  from the blade in 4 different configurations to extract data as shown in Figure 6. In this
207  experiment, the speed of water current is set 0.6m/s. 860 images with RGB channels are
208 collected by underwater camera, the camera is 1.2 million pixels. The sampling frequency is 1Hz.
209  The luminous flux of fluorescent lamp is 1700lm. After remote transmission, each channel is
210  represented by a matrix of size (320x320). Among them, 160 images are selected as
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unlabeled pre-training samples, 420 images as labeled training samples, and the remaining

280 images as testing samples.
In this paper, for simplicity and without losing generality, we define eight categories according
to the proportion of the area covered by attachment, as shown in Figure 7.

30%

20%

—1
10%

5%
1%

Figure 7. Single blade with different degrees attachment.

Figure 8. Four configurations of blade data acquisition.

Figure 9 shows the experiment platform of MCT, it is a 230W direct-drive permanent magnet
synchronous motor prototype. The whole system mainly consists of three parts: 1) the permanent
magnet synchronous generator (PMSG) prototype; 2) the marine current simulation system
(adjustable flow rate from 0.2m/s to 1.5m/s); 3) the data monitoring and collection system. This
platform can simulate stationary current, wave and turbulence. Table III gives the main parameters

of the system.

Table 1. Diagnostic category label.

Percentage
of area
occupied
by
attachment
(%)

01]

(1,3]

(5,10]

(10,20]

(20,30]

60 (two
blades,
with each
30
attachment)

90 (three
blades,
with each
30
attachment)
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Classifier
labels 1 2 3 4 5 6 7
227 Table 2. Detail of dataset.
Dataset’s name Number
Unlabeled pre-training sample 160
Labeled training sample 420
Testing sample 280
228
229 Table 3. Parameters of the MCT.
PMSG SAP 71
Rated power 230W
Rated voltage 37V
Rated current 21A
Pole-pair number 8
Airfoil Naca0018
Chord length 0.19m-0.32m
Blade diameter 0.6m
Water Pump Motor/|
- -
< Deflector — — ™
X - I\ -
&/ — o B U
] Marine Turbine r 1)
Converter
Water Tan
P "I'lonc_\ comb
Attachment
Faults
setting
=9 —
Adjustable
230 resistor

231 Figure 9. Experiment platform of the MCT [17].
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Figure 10. Data collection of the MCT.

4.2. Experimental Results and Comparison
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Data acquisition and

monitoring system

Besides using the SA neural network for features extraction and softmax classifier for
classification, this paper also uses CNN for features extraction and classification, PCA algorithm for
features extraction and BP neural network for classification [38], and compares the results of different
methods. The PCA algorithm is used to produce kernels from X,,pirening and the BP neural network
is used to classify the faults, so combine the PCA algorithm with BP neural network can produce
kernels and classify faults, which shows in Table V. Meanwhile compared CNN'’s weights is different
for proposed method, because the kernels and softmax’s parameters are simultaneously trained.
Table IV gives all the parameters of SA in training step and Figure 11 gives its flow chart for all steps.
The parameters of compared methods are shown in Table V.

Offline training process

Online testing process

Collect unlabeled sample

l

Extract the patches from the
unlabeled sample

!

‘ Preprocess the patches ‘

I

Collect labeled training
sample

Convolve the weights with
each image of sample

Transform convolved feature
into pooled feature

l

Input to the softmax classifier

Input to the sparse
autoencoder neural network

l

Calculate cost function, adjust

—

parameter 0

Calculate cost function, adjust
weights and thresholds

Satisfy numbe

Satisfy numbe Y
of iterations?

atisfy Requireme
of error?

of iterations?

Record parameter g

Record weights

End

Collect labeled testing
sample

Convolve the weights with
each image of sample

Transform convolved
feature into pooled feature

l

Input to the softmax
classifier

l

Output the diagnostic result

Figure 11. Training and testing flow chart.
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246 Table 4. The parameters of the whole system.
Parameters Significance Value
& Whitening parameter 0.1
m Number of training samples 80,000
Weight attenuation parameter for SA 0.003
A
1
B Weight of the sparsity penalty term 3
P Sparsity parameter 0.1
Weight attenuation parameter for softmax 0.0001
A
2
Hidden size Number of neurons in the hidden layer 400
t Proportionality coefficient 1
247
248 Table 5. The parameters of mentioned methods.
Mentioned methods Parameters’ name Parameters
PCA Cumulative percent variance 95% or 99%
BP (classifier) Number of layers 2
Loss function Mean-square error
Number of convolutional layers 1
CNN Number of pooling layers 1
Loss function Cross entropy loss
249 Table 6. Experimental results based on different methods.
Diagnosis method Accuracy
Test 1 Test 2 Average
PCA+ CPV=95% 94.06% 87.81% 90.935%
BP CPV=99% 80.94% 90.00% 85.47%
PCA+ CPV=95% 98.750% 98.750% 98.750%
softmax CPV=99% 98.750% 98.750% 98.750%
SA+BP 98.44% 96.25% 97.345%
SA+softmax 99.375% 99.375% 99.375%
CNN 98.75% 98.44% 98.60%
250 Experimental results show that with same method of features extraction, all the classifier

251  method’s results are very good. That means the representational characteristics are got by the
252 proposed method. And the softmax classifier presents better performance than BP classifier. What's
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253 more, the softmax classifier shows a stable diagnostic accuracy. The experimental results illustrate
254 also that the feature extraction ability of SA is better than that of PCA whatever its value of CPV (95%
255 or99%).

256 5. Conclusions

257 Due to the hardness of MCT’s working environment, underwater image is chosen as the fault
258  diagnosing signal to classify the different degree of MCT’s biological attachment. This paper
259  proposes a diagnosis method based on a sparse autoencoder and softmax regression, which consists
260  of four parts. 1) preprocessing the unlabeled images to pre-train the convolution kernels; 2) making
261  the convolution between the labeled images and convolution kernels to obtain the convolved features
262  of each image in the labeled samples; 3) transforming the convolved features into the pooled features
263 by using pooling operation;4) applying the pooled features into the softmax classifier to diagnose
264  which category they belong to. The SA is used to product kernels and SR is used to classify them.
265  Images are used to monitor whether the blade is attached by benthos and then to determine its
266  corresponding degree of attachment. Also, this paper compares simultaneously training method
267  (CNN) with other asynchronously training methods (PCA for kernel production and BP for
268  classification). The experimental results and comparison with other methods show that the proposed
269  method is useful to classify the different degree of biological attachment. However, the training time
270  of the proposed method is too long, and we will simplify the algorithm and speed up the training
271  speed in the future work.
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