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Abstract

Soybean yields are often indicated as an interesting case of climate change miti-
gation due to the beneficial effects of CO2 fertilization. In this paper we econo-
metrically study this effect using a time series model of yields in a multivariate
framework for a main producer and exporter of this commodity, Argentina. We
have to deal with the upward behavior of soybean yields trying to identify which
variables are the long-run determinants responsible of its observed trend. With
this aim we adopt a partial system approach to estimate subsets of long-run
relationships due to climate, technological and economic factors. Using an au-
tomatic selection algorithm we evaluate encompassing of the different obtained
equilibrium correction models. We found that only technological innovations due
to new crop practices and the use of modified seeds explain soybean yield in the
long run. Regarding short run determinants we found positive effects associ-
ated with the use of standard fertilizers and also from changes in atmospheric
CO2 concentration which would suggest a mitigation effect from global warm-
ing. However, we also found negative climate effects from periods of droughts
associated with La Niña episodes, high temperatures and extreme rainfall events
during the growing season of the plant.
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1. Introduction

Due to its strong dependence on climatic variables, the effects of climate changes
on agriculture have been deeply studied. In particular, world food production has
been a matter of global concern, particularly for less developed economies as outlined
in the Stern Review. However, as Nordhaus (2013) suggests (based on the IPCC 4th
Assessment Report) it is especially in the agricultural sector where the adaptation
and mitigation processes have been taking place. These processes are mainly driven
by technological developments or managerial changes such as the displacement of crop
areas, replacing those most affected by global warming with “modest warming” areas
and the incorporation of new technology (e.g. the use of seeds more resistant to climate
variability or pesticides).

Moreover, for several agricultural products the CO2 emissions, the main responsi-
ble for climate change and global warming, are indicated as having an important mit-
igation effect on crop yields due to fertilizer properties. In particular, it is extremely
relevant for soybeans yields given it is usually pointed out as a case of increasing yields
associated with the fortuitously beneficial effects of CO2 atmospheric concentrations.
According to Nordhaus (2013) multiple field studies found that doubling atmospheric
concentrations of CO2 would increase yields of rice, wheat and soybeans 10-15 per-
cent. For the Argentine case, the third worldwide largest producer and exporter of
soybeans, Magrin et al. (2005) using agronomic models found that changes in yields
corresponding to climate changes between 1930-60 and 1970-2000 were 38% for this
crop.

In this paper we econometrically study the time series behaviour of soybean yields
in Argentina in order to understand and measure the effect of global climate change
on them, including in particular the mitigation effects driven by CO2 along with other
factors such as managerial changes and technology. It is worth noting that to address
the CO2 fertilization effect, it is CO2 global concentration that should have a local
impact by improving crop yields. Furthermore, we should take into account other
determinants of crop yields like variables reflecting technological developments and
economic factors such as product and inputs prices.

To achieve this goal, we follow a partial system approach as discussed in Juselius
(2006, ch. 19). One of the advantages of this approach is that it allows us to deal with
collinearities, a main issue when variables show trending behavior1 and also to evaluate
exogeneity. We estimate subsets of long-run relationships due to climate, technolog-
ical and economic factors. Using an automatic selection algorithm, Autometrics, we
evaluate encompassing of the different equilibrium correction models obtained from
the partial systems.

1The question of trend removal is a key issue as discussed by Lobell and Burke (2010).
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Our findings provide evidence that only technology innovations explain yields in
the long run and carbon fertilization would have short run effects along with climate
variables measured by La Niña episodes and local high temperatures.

The paper is organised as follows. Section 2 discusses different approaches to
modelling crop yields that have been suggested in the literature. Section 3 describes
our data. Section 4 explains the econometric methodology. Section 5 presents our
main results for the long run from the partial system approach, shows the estimates
of the selected equilibrium correction model with the main determinants and discusses
the main findings. The last section concludes.

2. Different approaches to modelling crop yields

Since the pioneering works of Smith (1914) and Fisher (1925), an extensive empir-
ical literature has been trying to statistically estimate the effects of climatic variables
on the agricultural sector.

The awareness of global warming, and its consequences on different fields, has
renewed the interest in studying this topic during the last decade. The assessment of
climate changes effects on crop yields has been a multidisciplinary topic. Economists,
agronomists, meteorologists and other scientists have been largely studying the subject.

In contrast to econometric studies, many of the agronomic analyses focus on esti-
mating the effect of climate on crops yields from models based on controlled experi-
ments that require greater insights of the plant physiology, climate conditions and soil
properties. However, the usefulness of these models is limited because they only incor-
porate physical aspects of potential yield and typically do not consider technological
and global factors that allow yields to change over time.

Crop simulation models are also widely used in the meteorology field to predict crop
production and yields in studies of the climate change impacts. Their calculations are
based on the existing knowledge of the plant conditions and ecology of crop responses
to the environment. Several other agronomic studies have modelled the effects of
climate change on a wide variety of crops and areas throughout the world, but at a
micro (states or counties) level.

The empirical literature shows mixed evidence of the effect of climate changes
on crop yields because there would be several factors that have partially reduced
the harmful impacts of climate change. Adaptation, trade, the declining share over
time of agriculture in the economy and, relevant for our study, the mitigation carbon
fertilization (see Nordhaus 2013). Lobell and Burke (2010) summarize the sources of
divergence among different estimated models to get a more robust picture of likely
climate change impacts. They conclude that statistical models, compared to process-
based models, play an important role in anticipating future impacts of climate change
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and their usefulness is higher at broader spatial scales.
Using a county-level panel on crop yields, Chen et al. (2013) estimate the im-

pact of climate change on corn and soybean yields in China. From different spatial
panel econometrics techniques, the authors find non-linearities and asymmetric rela-
tionships between yields and weather variables as it has been previously suggested in
the literature (Schlenker and Roberts 2009). Furthermore, they find that extreme high
temperatures are always harmful for crop growth.

In this line, Lobell et al. (2011) study the impact of the change in climate trends
on the yield of four large crops (corn, wheat, rice and soybeans, which account for
75% of the calories humans consume directly or indirectly) between 1980 and 2008 for
all the countries of the world. The authors find that, at the global level, corn and
wheat yields showed adverse effects for the largest producers and a net overall loss
of 3.8% and 5.5%, respectively. The net impact on rice and soybean production was
insignificant, with gains in some countries that balanced the losses of others. In turn,
most of the impacts were due to changes in temperature trends and not precipitation.
This result is consistent with many recent studies of the climate change effects on
yields where changes in temperature are more important than changes in rainfall, at
least at the national and regional levels (Reilly and Schimmelpfennig 2000; Schlenker
and Lobell 2010). Crop yield losses on the hottest days drive much of the effect of
temperature (Schlenker and Roberts 2009). Furthermore, crops are more sensitive to
extremely high temperatures during the phases of the growth cycle (Auffhammer et al.
2012; Welch et al. 2010).

As Auffhammer and Schlenker (2014) state, one of the greatest challenges in em-
pirical analyses is the identification of adaptation responses to changes in climatic
conditions. In this sense, the adaptation process should be evaluated as a long-term
effect, but short-run responses should also be taken into account. Burke and Emerick
(2016) examine the effect of long-term changes in climatic variables on yields using
county-level data in the United States. Their results indicate that the main crops
in the U.S., corn and soybeans, are significantly and negative affected by long-term
changes in extreme heat temperatures. Changes in short-term temperature extremes
can be critical, especially if they coincide with flowering stage of many crops reducing
their yield (Wheeler et al. 2000).

Empirical studies should not ignore or underestimate the effects of adaptation
measures as means for diminishing the adverse effects of climate change. Several
adaptation measures such as shifting planting dates or developing new crop varieties
have also been suggested and implemented for reducing vulnerability from the potential
negative impacts of climate change on crop yield and production (Lobell et al. 2008;
Cohn et al. 2016).

A more comprehensive analysis of yield determinants is provided by Huang and
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Khanna (2010). They estimate a model using county panel data including climate
variables along with output and input prices and technology measured as irrigated
lands and deterministic trends.

Given the above literature and the importance of considering a multivariate frame-
work, we suggest an econometric approach that tries to encompass different groups of
drivers that affect crop yields which can be organized as in Figure 1 and are discussed
in sections 3 and 4.

Figure 1. Different determinants of soybean yields

Soybeans yields

Climate
system

Global warming
CO2 fertilization
Extreme events

Technology
system

Agricultural practices
Modified seeds

Fertilizers

Prices
system

Soybeans prices
Input prices

3. Data description

Our dataset consists of annually series over a period spanning from 1973 to 2015
(T = 43). The initial period is due not only to data availability but also because it is
in the early 70’s when soybeans start to be a significant crop in Argentina. Table 1
reports the variables descriptions and sources.
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Table 1: Data description

Symbol Description Units Source
y Soybean yield kg/ha FAO
cropland Arable Land + Land in Permanent Crops ha USDA
irrigation Area equiped for irrigation ha USDA
labour Agricultural labor, 1000 persons economically ac-

tive in agriculture
units USDA

machinery Number of 40 CV Tractor-Equivalents in use units USDA
fertilizer Fertilizer consumption, first principal component

of N, P2O5 and K2O
tonnes IFA

agriland Agricultural land % FAO
CO2 Mean atmospheric carbon dioxide at Mauna Loa

Observatory, Hawaii
ppm NOAA

temp Global annual temperature anomalies ◦C CDIAC
max28 Number of days during growing season with max-

imum temperature above 28◦C
days SMN

max29 Number of days during growing season with max-
imum temperature above 29◦C

days SMN

max30 Number of days during growing season with max-
imum temperature above 30◦C

days SMN

max31 Number of days during growing season with max-
imum temperature above 31◦C

days SMN

CV Precipitation coefficient of variation % SMN
PCI Precipitation concentration index % SMN
RGI Rainfall Gini Index index SMN
AD Precipitation absolute deviations with respect to

the historical mean
mm SMN

AD1SE AD ± one standard error mm SMN
AD2SE AD ± two standard errors mm SMN
Niña Niña events dummy BOM
Niño Niño events dummy BOM
no till Proportion of no tilled cropland acres ratio AAPRESID
seeds Number of soybean seeds registered in Argentina,

Brazil and United States
units INASE, SRNC

& USDA
pfertilizer Weighted average of natural phosphate rock,

phosphate, potassium, and nitrogenous prices.
Based on current US dollars

2010=100 World Bank

psoybean Soybean prices. Based on current US dollars 2010=100 World Bank

Demand for oilseeds, and particularly soybeans, has rapidly increased during the
last decades. It is one of the most valuable crops in the world, not only because of its
use as oil seed but also as high-protein meal for animal and human feed as well as a
source for biofuel production. In Argentina, the third worldwide largest producer of
soybeans, production increased by 2% annually from 1973 to 2015. Average soybean
yield (measured as kilogram per hectare, kg/ha) increased from 1,732 kg/ha in 1973
to 3,174 kg/ha in 2015. During the sample period, climate changes and technological
advances shifted the main production area to the north, to warmer latitudes. These
factors, which are taken into account in our dataset, suggest that it is worth focusing
on their effects on soybean yields in Argentina.
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3.1. Climate variables

Several global and local climate variables are considered in the analysis. It has
been usually indicated that one of the best predictors of soybean yield is a measure
of extreme heat during growth periods considering a temperature threshold above
29◦C (Schlenker and Roberts, 2009). Thus, using daily data of maximum temperature
from 54 meteorological stations of the soybean production area, we construct different
variables that measure the number of days in a year, during the growing phase of
the crop (from December to April) in which the temperature exceeded a threshold of
28◦C, 29◦C, 30◦C or 31◦C. Therefore, we evaluate which of these different thresholds is
significant for Argentine soybean yields. The maximum temperature data was obtained
from the National Weather Service. The maximum temperature of each meteorological
station was weighted by its share in the total soybean planted area. Those weights
were annually updated to account for the displacement of crop areas over time. This
variable allows us to capture non-linearities in the relationships between yield and
local temperature as it has been suggested in the literature.

Another weather influence on crop yields is precipitation. Unfavorable weather
conditions during the growing season of the plant may threaten soybean yields. Water
stress during flower induction and flowering may affect seed weight, resulting in large
seed weight variations. We used the daily precipitation data from the same mete-
orological stations in the soybean production area, as descripted above, to evaluate
different measures of excess or lack of precipitation. We restricted our analysis to the
R3 and R4 reproductive soybean growth stages. During those stages, the plant reaches
the full pod stage and the seed development begins. Those stages mainly occur during
January and February in the main soybean area of Argentina. The different measures
of precipitation variability include: the coefficient of variation (CV ), the precipita-
tion concentration index (PCI), the rainfall gini index (RGI), the absolute deviations
with respect to the historical mean (AD), the AD plus and minus one standard error
(AD1SE), and the AD plus and minus two standard erros (AD2SE).

Also, el Niño and La Niña events in the Pacific Ocean were identified through the
Southern Oscillation Index (SOI). The SOI, obtained from the Australian Bureau of
Meteorology (BOM), is calculated using the pressure differences between Tahiti and
Darwin. Sustained negatives values of SOI below -7 indicate El Niño episodes, while
sustained positives values of SOI above +7 indicate La Niña episodes (see Figure 2).
El Niño and La Niña events are respectively associated to floods and droughts in
southeastern South America.

We also consider a measure of global warming: the global temperature anomalies
computed from land and ocean data as the temperature differences (in ◦C) relative
to the 1951-1980 base period means reported by the GISTEMP team of the Carbon
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Dioxide Information Analysis Center (CDIAC). During our sample period, the global
temperature anomalies showed a steady increase from a minimum of -0.81 ◦C in 1974
to a maximum of 0.86 ◦C by 2015.

Figure 2. Number of days during the growing season with temperatures above
30◦C and El Niño and La Niña events.
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The largest amount of carbon dioxide (CO2) in the atmosphere that has resulted
from rising anthropogenic emissions may have positive effects on the plants growth
as plants use carbon dioxide during photosynthesis. This effect is known as the car-
bon fertilization effect, the phenomenon by which the increase of carbon dioxide in
the atmosphere increases the rate of photosynthesis in plants. Carbon fertilization
has a greater effect on plants with C4 and C3 photosynthesis systems (such as corn
and soybeans, respectively), which can concentrate carbon dioxide onto reaction sites.
However, this effect may not take place as nutrient levels, soil moisture, water availabil-
ity and other conditions must also be met. Using an eight-year study to simulate C3

crop yield by rising concentrations of atmospheric carbon dioxide, Gray et al. (2016)
found that the intensification of drought eliminates the potential benefits of elevated
dioxide for soybean.

Figure 3 shows the evolution of soybean yields, global temperature anomalies and
the globally average CO2 concentration at the surface during the analysed period.
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Figure 3. Argentine soybean yield and global climate variables
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3.2. Other potential determinants of soybean yields

As stated before, to evaluate the effect of climate change on crop yields and, in
particular, the CO2 fertilization effect, we should also control for other determinants
such as technological innovations and prices.

In our estimations, we also considered the consumption of different fertilizers, that
is, the use of inorganic manufactured products that supply plant nutrients as a possible
driver of the soybean yield increase during the last fifty years. Soybean plants usually
have high requirement for phosphorus (P2O5), potassium (K2O) and, in a lesser ex-
tent, nitrogen (N). Therefore, in order to have an aggregate measure of fertilizer use
and to control for their high collinearities (as shown in Figure 4), we have conducted
a principal component analysis among the consumption of these three fertilizers and
obtained the first principal component, which accounted for 96.94% of the data vari-
ability. This principal component is then incorporated in our models as a measure of
fertilizer aggregate consumption in soybeans production.

To assess the effect of changes in managerial practices, we included the evolution
of no till practices. No till has gained ground quickly in Argentina as an effective
solution to the problem of soil erosion. According to AAPRESID, the Argentine No
till Farmers Association, 70% of no till farming growth was exponential with values of
90% of surface under no-till by 2014-15. Furthermore, 70% of the surface under no-till
was covered by soybean in the season 2012-13 (Nocelli Pac 2017).

The use of new modified seeds was also considered in our analysis through the num-
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ber of soybean varieties registered in United States, Brazil and Argentina (the three
main worldwide producers of soybeans). This variable intends to capture the transfer
of knowledge across the main soybean producer countries from the adoption of genet-
ically modified (GM) crops. Soybean remains the most adopted GM crop, according
to the International Service for the Acquisition of Agri-biotech Applications (ISAAA)2

biotech soybean accounted for 50% of all the biotech crop area in the world in 2016.
Commercially grown GM soybeans are concentrated in a few countries, mainly USA,
Brazil and Argentina. Figure 4 shows the marked trend for many of the technological
variables.

Figure 4. Technological variables evolution
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Other input factors we included, but resulted not significant, were the agricultural
and irrigated land, machinery use and agricultural labor.

Finally, our dataset also includes prices to address the elasticity of soybean yield
response with respect to expected output prices and fertilizer prices (as input prices).

4. Econometric methodology

Because of their large collinearity among the variables described in the previous
section, we adopt a cointegration approach working with partial systems. This ap-
proach was first implemented by Juselius (1992) to model inflation considering the
complicated relationships from the different markets by analyzing labor, external and
money markets as separated systems. From the estimation of the systems, differ-

2ISAAA. 2016. Global Status of Commercialized Biotech/GM Crops: 2016. ISAAA Brief No.
52. ISAAA: Ithaca, New York.
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ent equilibrium relationships were obtained and their deviations were used to explain
inflation dynamics (see also Hendry 2001; Brouwer and Ericsson 1998).

A great advantage of this approach is the invariance of the cointegration property
to the extension of the information set (see Juselius 2006, ch. 19). This means that
once cointegration is found among a set of variables, the cointegration results will
remain valid if more variables are added to the system. This model is also designed
to distinguish between influences that move equilibria (pushing forces) and influences
that correct deviations from equilibrium (pulling forces) which give rise to long-run
relations. After determining the cointegration rank, the significance of adjustment co-
efficients gives us information about which variables adjust and thereby weak exogenity
can be tested by zero restrictions in the respective coefficient.

For soybean yields we start by estimating three different systems from Figure 1
(named as climate, technological, and relative prices) starting from VAR models with
two lags. Given that the variables may grow at different rates we initially include a
trend in the cointegration space and if not significant its effect is restricted to zero.
All variables are expressed in logs, with the exception of global temperature anomalies
(temp), the number of days with maximum temperatures above 30◦C (max30) and
the ratio of no tillage adoption (no till). We have also included other maximum
temperature thresholds (28◦C, 29◦C and 31◦C), but max30 proved to be the most
significant. La Niña events (Niña) and max30 are unrestrictedly included in the
climate system as they are stationary and the first one has a similar behavior to
impulse dummies. We have also tested for other climate variables such as El Niño
events and weather variables associated with excessive precipitations and floods, but
they were found statistically insignificant.

It should be noted that most of the series used in the systems, in particular soybean
yields, can be represented as stationary around a deterministic linear trend. Because of
that many studies removes deterministic trends before studying the effects of climate
factors on yields (see for example Thomasz et al. 2016, in the Argentine case). However,
given that our aim is to understand which variable could be behind this observed
trending behavior, we study their long run relationships assuming them as integrated
of first order and studying cointegration by Johansen approach. As Juselius (2006, p.
18) assesses “the order of integration of a variable is not in general a property of an
economic variable but a convenient statistical approximation to distinguish between
the short run, medium run and long run variation in the data”.

The consistent estimates of the different long run relationships were used to esti-
mate an equilibrium correction (EC) model of soybean yields nesting the EC terms of
each (j) partial system along with several short run determinants from our information
set. That is, for the log differences of soybean yields (∆yt), the estimated equation is:
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∆yt = γ −
n∑

j=1

αj

[
yt−1 − β′jxjt−1

]
+

2∑
k=1

ρk∆yt−k +
1∑

k=0

λ′∆wt + εt

where j = 1, ..., n; indicates each if the partial systems. The vector xj denotes the
variables that enter each j partial system; αj and βj denote the adjustment coefficients
and long run coefficient for the j partial system, respectively. We considered up to
k = 1 lag for the w variables entering the short run, expressed as differences.3

Starting from a large information set (as descripted in the previous section), we
jointly evaluate many of the explanatory variables suggested in the literature that
has tried to explain crop yields. To deal with such a wide range of information and
to help us select the dominant congruent model and not only a best fit, we used
Autometrics, an automatic model selection algorithm. This algorithm uses a tree
search to discard paths, rejected as reductions of a general unrestricted initial model,
and includes diagnostic testing. This automatic algorithm follows a general to specific
strategy to select variables and helped us to choose the relevant variables in the last
equation.

Moreover, the algorithm can be used for an encompassing evaluation as discussed
by Doornik (2008) selecting the relevant model(s) from a general unrestricted model,
which includes all the variables of the different models obtained. The next section
describes the estimated partial systems and the encompassing evaluation of the EC
models by Autometrics.

5. Results

In this section, we present the results obtained using the information set described
in Section 3 and following the econometric approach explained in Section 4. The EC
representation allows us to disentangle the long-run and short-run effects on soybean
yields as described in the following sub-sections.

5.1. Long-run effects

Taking into account the different kinds of potential determinants of crop yields we
estimate three partial systems of Argentine soybean yields in line with the description
of Figure 1. The cointegration results and the (not rejected by our data) constrained
parameter estimates are reported in the Appendix (see Table A2 to A4).

Equations (1) to (4) show the resulting long-run equations for the cases in which

3w includes ∆x as well as other stationary potential determinants. Only the contemporaneous
effects were considered for the following climate variables: max28, max29, max30, max31, CV , PCI,
RGI, AD, AD1SE and AD2SE.

12

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 November 2018                   doi:10.20944/preprints201811.0387.v1

http://dx.doi.org/10.20944/preprints201811.0387.v1


the yield adjusts. Equation (1) shows the long run relationship corresponding to the
climate model. Equation (2) belongs to the technology model describing the long run
relationship of yields with the effects of no till adoption and the introduction of new
seed varieties. Finally, Equations (3) and (4) correspond to the prices model. In all
the cases, the estimated models pass all diagnostic tests at traditional levels.4

(climate model) ln y = −2.34 temp+ 11.94 lnCO2 (1)

(technological model) ln y = 0.003 no till + 0.05 ln seeds (2)

(prices model 1) ln y = 1.16 ln psoybean − 0.82 ln pfertilizer + 0.02 t (3)

(prices model 2) ln pfertilizer = 1.36 ln psoybean + 0.01 t (4)

First, as much of the literature does, we focus only on climate variables (Table A2 in
Appendix). A measure of global warming (global temperature anomalies) and the CO2

concentration in the atmosphere are found to be cointegrated with Argentine soybean
yields. An interesting feature is that although global temperature has a negative effect,
the results suggest a mitigation effect on yield associated with carbon fertilization. To
analyze the magnitude of estimated coefficients we can note that in this sample period,
if the temperature changes as its median value (0.06◦C) soybean yields will decrease
about 14% in the long run. As a possible mitigation effect, yields increase near 6%
as a consequence of the median percentage variations of CO2 concentrations (0.47%)
during 1973-2015.

It should be noted that in this system, not only soybeans yields adjust to devia-
tions from the long-run relationships but also global temperature anomalies and CO2

concentrations. Although this last result may be unexpected at first sight, it may be
due to the effect of deforestation. We can note that the upward trend of yields in
Argentina, a behavior also shown by other main soybean producers like Brazil, could
give incentives to the expansion of agriculture through the use of new lands coming
from deforestation.5 South America, during our sample period, has experienced a
shift of the main production area to the north, to warmer latitudes. Deforestation
contributes to global climate warming since it is responsible for not compensating the
anthropogenic emissions of carbon dioxide to the atmosphere. Therefore, in this sense,
we could think that global temperature anomalies and CO2 emissions may also adjust
to deviations from the long-run in our estimated climate system. As Pretis (2017)
warns, human activity (say, through deforestation) affects local and global climate
and climate change, in turn, affects human activity (say, crop yields). Empirically,

4These results are not reported but can be obtained from the authors upon request.
5Using data from NASA’s Moderate Resolution Imaging Spectrometer (MODIS) on the Terra

and Aqua satellites, Morton et al. (2006) have shown that in 2003, the peak year of deforestation in
Matto Grosso (Brazilian state with the highest deforestation and soybean production rates), more
than 20 percent of the state’s forests were converted to cropland.
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this implies that if we want to estimate the effect of humanity (in its multiple dimen-
sions) on climate change and vice versa, it is necessary to evaluate the exogeneity of
the variables within the economic-climate system to understand these interrelations in
the long-run.

Nonetheless, we have found other representations associated with factors different
from climate change. A system with the main technological innovations for the crop
practices is studied (Table A3 in Appendix). One long run relationship is found in
which soybean yields are explained by the no till adoption measure and the introduc-
tion of new seeds, in both cases with positive effects. In this system, only soybeans
yields adjust to deviations from the long run, thus, technological variables are found
to be weakly exogenous.

Finally, accordingly to the prices model (Table A4 in Appendix), two different
vectors are found to affect soybean yield. In the first one, the commodity price and a
main variable input price –fertilizers– have the expected signs while the second vector
(significant at a 6% level) indicates that there may be an additional effect on yields
when there are deviations of soybean prices over fertilizer prices, which have a positive
relationship between them. From the prices system we found that soybeans yields and
its price adjust to deviations from the long run.

The estimated (1) to (4) equations suggest that to understand crop yields behavior
in the long-run not only climate variables are important but also technological and
economic factors should be taken into account. Consistent estimates of the long run
effects can be obtained from this system cointegration approach.

5.2. Short-run effects

In consequence, we have several explanations, which may be alternative or com-
plementary, of the long run trending behavior of soybean yields. Encompassing by
automatic selection can help to discriminate long run effects while selecting other,
short run, determinants. Results are presented in Table 2.6

Column (1) shows the OLS estimation of selected by Autometrics. Column (2)
shows the IV estimation as the variations of CO2 concentrations have a contempora-
neous effect on yield variations and, from the long-run results, we have found that CO2

may also adjust to reach the equilibrium in the climate model. The estimated models
pass all diagnostic tests at traditional levels.

The main finding is that only the EC term derived from the technology model
maintains its effect on soybean yield when nested with other long run deviations. Much
of its effect is in the first year. Therefore, the results obtained from this in-sample

6In the case of the climate system, we have included the two-lagged ECT in the general unre-
stricted model as the first lag was not significant.
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encompassing test performed by Autometrics suggest that the information content of
the technology model in the long-run is such that it dominates the others.

However, the effect of climate variables as well as changes in the use of fertilizers can
explain the variations of yields in the short run. Our estimates show that variations on
CO2 increase soybean yields. We can note that for the median values of CO2 rises, the
short run effect on yield is about 14%, all else equal. However, it is difficult to assume
that CO2 concentrations in the atmosphere could increase without an increase in global
temperature and a higher intensity, frequency and duration of extreme weather events.

In particular, the estimates show as expected, negative effects of La Niña events,
associated with droughts, and cumulated days of high temperature. No effects of El
Niño events as well as other weather variables associated with excessive precipitations
and floods were found significant. The greater importance of changes in temperature
over changes in rainfall on crop yields was also found by Reilly and Schimmelpfen-
nig (2000) and Schlenker and Lobell (2010). An extreme event associated with La
Niña episodes decreases yields in 1% or 2%, while 10 additional days of maximum
temperature above 30◦C during the growing season produce a decrease of 5%.

Although it is difficult to assess how the climate variables of this model will change
in the future with local consequences of the global warming, the free ride effect that
Argentine soybean yields should be jointly evaluated with the potential effects derived
of other climate variables.
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Table 2: Selected equilibrium correction model, 1973-2015

Dependent variable (∆ln(y))
(1) (2)
OLS IV

constant 6.58 6.20
(0.91) (1.01)
[0.00] [0.00]

EC termtechnology
t−1 -0.87 -0.82

(0.13) (0.14)
[0.00] [0.00]

∆ ln (fertilizer)t 0.11 0.12
(0.05) (0.05)
[0.02] [0.02]

Niñat−1 -0.01 -0.01
(0.004) (0.005)
[0.00] [0.02]

max30t -0.005 -0.006
(0.002) (0.002)
[0.01] [0.01]

∆ ln (CO2)t 31.56 44.48
(12.65) (17.85)
[0.02] [0.02]

σ̂ 0.0996 0.1024
F test of excluded instruments 9.92

[0.000]
Sargan test 0.927

[0.819]
Note: standard errors reported in parentheses, p-values in
brackets.

Finally, given that the variations of CO2 have a contemporaneous effect on yield
variations in the short-run and given that cointegration results have shown us that this
variable may also adjust in the long-run, we reestimated the model using instrumental
variables (IV). As instruments, we employ the log difference of the global fossil fuel
consumption7, the log level of passenger cars and commercial vehicles8 and two impulse
dummies for 1976 and 1998. According to the Carbon Dioxide Information Analysis
Center (CDIAC), hundreds of billions of metric tonnes of carbon have been released
into the atmosphere from the consumption of fossil fuels since 1751, leading to a

7This variable is measured as the global primary energy consumption by fossil fuel source (coal,
crude oil and natural gas), measured in terawatt-hours (TWh). Data was obtained from Vaclav Smil
(2017). Energy Transitions: Global and National Perspectives & BP Statistical Review of World
Energy.

8This variable was obtained from the Motor Vehicle Manufacturers Association of the United
States, World Motor Vehicle Data, 1981 Edition; Ward’s Communications, Ward’s World Motor
Vehicle Data 2002; United States Department of Transportation, Bureau of Transportation Statistics,
National Transportation Statistics, Table 1-23.
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positive correlation between this two variables. The Sargan test also validates the
instrumental variables as the null hypothesis that the error term is not correlated with
the instruments is not rejected. From the IV estimation, the short run coefficient of
CO2 variations increases, but it is not statistically different from the OLS estimation.
This result may suggest that CO2 can be taken as given in the soybean yield equilibrium
correction model in which the long run relationship is represented by a technological
effect.

6. Final remarks

Evaluating the effect of climate change on crop yields is a difficult task mainly
due to their many different determinants and empirical methodologies followed. As
a multidisciplinary topic, many agronomists, meteorologists and other scientists have
been largely studying this subject. This paper has contributed to understand the
effects of climate change on crop yields using a multivariate econometric model that
enables us to evaluate encompassing of different climatic, technological and economic
factors that have been suggested in the literature.

We focus on soybean yields in Argentina, the third worldwide largest producer
and exporter of this commodity. Using a partial system approach, we study the long
run behaviour of soybean yields. In particular, we have measured the effect of global
climate change, including the mitigation effects driven by the CO2 fertilization. Other
effects coming from new managerial practices and technology innovations are consid-
ered as well. Using an automatic algorithm to select variables, Autometrics, we have
analyzed encompassing of the different models discriminating long run and short run
effects.

Our main results indicate that soybean yields in the long run is mainly dominated
by technology innovation variables such as the evolution of no till adoption and the
incorporation of new seeds. As short run determinants, we found positive effects
associated to the use of standard fertilizers and also from changes in atmospheric CO2

concentration which would suggest a mitigation effect from global warming. However,
we also found negative climate effects from periods of droughts associated with La
Niña episodes and high temperatures during the growing season of the plant, which
should be jointly evaluated when analyzing climate change.

Further research should focus on studying if the technological long run effects on
soybean yields is driven by economic or the same climate factors.
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A. Appendix

Table A1. Unit root tests

Variable trend k ADF b PP b KPSS
ln (y) yes 0 -6.74∗∗∗ 2 -6.74∗∗∗ 2 0.06
temp yes 0 -5.71∗∗∗ 4 -5.67∗∗∗ 3 0.05
ln (CO2) yes 0 -0.69 4 -0.54 5 0.18∗∗
max30 no 0 -6.25∗∗∗ 2 -6.27∗∗∗ 3 0.27
AD2SE no 0 -5.77∗∗∗ 2 -5.73∗∗∗ 2 0.22
Niña no 0 -4.62∗∗∗ 1 -4.65∗∗∗ 2 0.12
ln (seeds) yes 0 -8.55∗∗∗ 4 -8.30∗∗∗ 4 0.08
no till yes 1 -1.78 4 -2.69 5 0.19∗∗
ln (fertilizer) yes 0 -2.88 0 -2.88 9 0.11∗∗∗
ln (pfertilizer) yes 0 -3.19∗ 1 -3.35∗ 4 0.18∗∗
ln (psoybean) yes 2 -0.98 0 -2.73 4 0.18∗∗
ECT climate no 0 -5.75∗∗∗ 1 -5.76∗∗∗ 2 0.24
ECT technology no 0 -6.23∗∗∗ 1 -6.23∗∗∗ 0 0.16
ECT1prices no 0 -5.71∗∗∗ 2 -5.71∗∗∗ 1 0.08
ECT2prices no 0 -5.25∗∗∗ 21 -5.80∗∗∗ 15 0.16

∆ ln (y) no 1 -7.66∗∗∗ 16 -20.12∗∗∗ 20 0.32
∆temp no 6 -5.42∗∗∗ 41 -33.39∗∗∗ 9 0.29
∆ ln (CO2) no 0 -5.64∗∗∗ 1 -5.65∗∗∗ 6 0.10
∆max30 no 1 -7.96∗∗∗ 13 -23.03∗∗∗ 8 0.11
∆AD2SE no 1 -9.31∗∗∗ 20 -20.62∗∗∗ 28 0.31
∆Niña no 1 -6.91∗∗∗ 8 -14.55∗∗∗ 7 0.10
∆ ln (seeds) no 1 -8.79∗∗∗ 2 -9.77∗∗∗ 1 0.14
∆no till no 0 -3.70∗∗∗ 2 -3.64∗∗∗ 4 0.42∗
∆ ln (fertilizer) no 0 -7.10∗∗∗ 5 -7.25∗∗∗ 6 0.15
∆ ln (pfertilizer) no 1 -6.22∗∗∗ 17 -6.58∗∗∗ 14 0.18
∆ ln (psoybean) no 1 -8.71∗∗∗ 22 -6.47∗∗∗ 16 0.17
∆ECT climate no 2 -6.69∗∗∗ 41 -22.58∗∗∗ 20 0.33
∆ECT technology no 1 -7.61∗∗∗ 15 -20.96∗∗∗ 12 0.26
∆ECT1prices no 1 -7.87∗∗∗ 22 -14.87∗∗∗ 16 0.33
∆ECT2prices no 1 -7.29∗∗∗ 19 -16.41∗∗∗ 21 0.27
Note: k = lag length selected by SIC, b = bandwidth using Bartlett kernel.

∗
,

∗∗
y

∗∗∗
indicate significance at the 10%, 5% and 1% level, respectively. ADF

= Augmented Dickey Fuller, PP = Phillips-Perron, KPSS = Kwiatkowski-
Phillips-Schmidt-Shin. A constant and a trend were included for level variables
that exhibited a trend behaviour, otherwise only a constant was considered.
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Table A2. Climate model: cointegration analysis, 1973-2015.

r Eigenvalue Trace p-value
0 0.38 43.12 0.046
1 0.31 22.89 0.112
2 0.15 6.94 0.361

For r = 1
Unrestricted adjustment coefficients (α)
Variable Coeff. S.E.
ln (y) -0.21 0.09
ln (temp) -0.24 0.07
ln (CO2) -0.002 0.001

Restricted eigenvectors (β)
Variable Coeff. S.E.
ln (y) 1.00 –
ln (temp) 2.34 0.75
ln (CO2) -11.94 2.75
trend – –

LR test: 0.41; p-value=0.52
Note: the VAR(2) model unrestrictedly includes
Niña and max30.

Table A3. Technological model: cointegration analysis, 1973-2015.

r Eigenvalue Trace p-value
0 0.65 70.73 0.00
1 0.36 25.24 0.06
2 0.13 5.76 0.50

For r = 1
Restricted adjustment coefficients (α)
Variable Coeff. S.E.
ln (y) -0.99 0.22
ln (no− till) – –
ln (seeds) – –

Restricted eigenvectors (β)
Variable Coeff. S.E.
ln (y) 1.00 –
ln (no− till) -0.002 0.001
ln (seeds) -0.06 0.03
trend – –

LR test: 3.34; p-value=0.65
Note: the VAR(2) model unrestrictedly includes
two impulse dummies for 2012 and 2013.
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Table A4. Prices model: cointegration analysis, 1973-2014.

r Eigenvalue Trace p-value
0 0.60 64.15 0.00
1 0.37 25.11 0.06
2 0.12 5.35 0.56

For r = 2
Restricted adjustment coefficients (α)
Variable Vector 1 Vector 2

Coeff. S.E. Coeff. S.E.
ln (y) -0.77 0.17 0.46 0.17
ln (pfertilizer) – – -0.67 0.20
ln (psoybean) 0.36 0.11 – –

Restricted eigenvectors (β)
Variable Vector 1 Vector 2

Coeff. S.E. Coeff. S.E.
ln (y) 1.00 – – –
ln (pfertilizer) 0.82 0.12 1.00 –
ln (psoybean) -1.16 0.19 -1.36 0.13
trend -0.02 0.003 -0.01 0.003

LR test: 0.93; p-value=0.33
Note: the VAR(2) model includes an unrestricted dummy for 1973.
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