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Abstract 
 
Senescence is a stable cell cycle arrest that is either tumor suppressive or tumor 

promoting depending on context. Epigenetic changes such as histone methylation are 

known to affect both induction and suppression of senescence by altering expression of 

genes that regulate the cell cycle and the senescence-associated secretory phenotype. 

A conserved group of proteins containing a Jumonji C (JmjC) domain alter chromatin 

state, and therefore gene expression, by demethylating histones. Here, we will discuss 

what is currently known about JmjC demethylases in induction of senescence and how 

these enzymes suppress senescence to contribute to tumorigenesis. 
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Introduction  
 
Chromatin is organized through nucleosomes, which contain an octamer core of wrapped 

DNA (1, 2). This octamer core consists of two copies of each core histone, H2A, H2B, 

H3, and H4 (2, 3). Core histones are primarily identified by their histone fold domain and 

their N-terminal tails (4). Interestingly, histone tails undergo various post-translational 

modifications such as acetylation, methylation, phosphorylation, ubiquitination, and 

others (5, 6).  These various modifications can result in gene expression alterations 

through changes in electrostatic charge, which alters DNA accessibility (7).  

 

A common histone modification that can result in changes to gene expression is 

methylation, a reversible post-translational modification (8, 9). Histone methylation occurs 

on lysine, arginine, and histidine residues, resulting in transcriptional activation or 

silencing of genes, the recruitment of DNA damage response proteins, and changes in 

chromosomal packaging and DNA accessibility (10, 11). Through the recruitment of 

various enzymes, such as histone methyltransferases (HMTs) and histone demethylases, 

the methylation state of a particular histone can be altered. HMTs have been extensively 

reviewed elsewhere (12). Here, we will focus on a conserved group of histone 

demethylases containing a Jumonji C (JmjC) domain (8, 13, 14). JmjC demethylases are 

oxygenases dependent on Fe(II) and α-ketoglutarate (αKG) for their activity (8, 13, 15, 

16). Histone demethylation through JmjC proteins occurs through a hydroxylation 

reaction, in which αKG, oxygen, and Fe(II) are used to produce succinate and CO2 (12, 

13, 15). This hydroxylation reaction results in unstable hemiaminals products, which are 

broken into formaldehyde and a demethylated histone product (13, 15). Twenty-four 

human enzymes are currently known to contain a JmjC domain and have histone 

demethylase activity (17). These enzymes are organized into subfamilies based on 

sequence homology and methylation state preference (17, 18).  

 

JmjC histone demethylases regulate chromatin state through the removal of mono-, di-, 

and tri- methylation marks on the lysine residues of multiple histones (19). Changes within 

the chromatin state can lead to either activation or repression of transcription, depending 
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on the amino acid residue that is targeted. Additionally, methylation changes may also 

affect other cellular processes, such as DNA damage repair, without affecting 

transcription of surrounding genes (20, 21). Consistently, JmjC demethylases play a role 

in various pathological conditions (17, 22). For instance, JmjC demethylases have been 

shown to be both pro-tumorigenic and tumor suppressive (23, 24). This is due in part to 

their activity in inducing and suppressing senescence, a stable cell cycle arrest that is 

primarily mediated by the tumor suppressors p53 and pRB (retinoblastoma protein) (25, 

26). Here we will discuss the role of JmjC demethylases in senescence in the context of 

suppressing or promoting tumorigenesis. 

 

Role of JmjC Demethylases in Senescence  
 

A number of studies have shown a role for JmjC demethylases in senescence. Here, we 

will discuss what is known about these enzymes (specifically KDM6B, KDM5A, KDM5B, 

KDM4A, and KDM2B) in regulating the senescence phenotype (Table 1). 

 

Cellular Senescence 

 

Cellular senescence is defined as a stable cell cycle arrest (25). Senescence can occur 

due to a variety of stimuli, including oncogenic stress (26, 27). Therefore, senescence is 

considered a tumor suppression mechanism (28). Two canonical tumor suppressor 

pathways play a role in maintaining cells in the senescence-associated cell cycle arrest, 

p53/p21 and p16/pRB (26, 29). Senescent cells have a marked change in their 

epigenome, in part through increased repressive histone modifications, in particular 

H3K9me2/3 (30). This along with other changes in the chromatin structure of senescent 

cells is called senescence-associated heterochromatin foci (SAHF) (30, 31). Increased 

repressive H3K9me2/3 is observed at proliferation-promoting E2F gene targets such as 

CCNA2, PCNA, MCM3, and DHFR (32). This inhibits transcription of these genes and in 

part promotes the senescence phenotype (30, 32).  
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In addition to SAHF, senescent cells also acquire a unique microenvironment known as 

the senescence-associated secretory phenotype (SASP). SASP gene transcription is 

increased during senescence, resulting in an increase in cytokines, chemokines, and 

matrix metalloproteinases (MMPs) in the senescent microenvironment (33, 34). The 

increase in inflammatory cytokines due to the SASP can have detrimental side effects 

resulting in chronic inflammation and tumorigenesis (34, 35). In contrast, the SASP 

contributes to the clearance of senescent cells, thereby limiting tumorigenesis (36). JmjC 

demethylases have been shown to affect both the SAHF and SASP during senescence, 

which will be addressed in detail below. 

 

KDM6B 

 

KDM6B demethylates the repressive mark lysine 27 on histone H3 (H3K27me3)  (37). 

KDM6B is important for multiple senescent phenotypes, including SASP gene expression, 

p16 expression, SAHF, and p53 expression (38-41). Overexpression of KDM6B 

increases SASP gene expression in glioma cell lines (38). Consistently, H3K27 

methylation is lost at SASP gene loci, suggesting that H3K27 methylation suppresses 

SASP gene expression under normal conditions. In addition to increasing SASP gene 

expression, other studies have demonstrated that KDM6B expression increases during 

cellular senescence, and this may in part help maintain the CDKN2A locus (encoding 

p14ARF and p16INK4A) in a demethylated and activated state (39, 40). Moreover, KMD6B 

demethylates retinoblastoma protein (pRB), which inhibits its interaction with cyclin-

dependent kinase 4 (CDK4) and reduces pRB phosphorylation formation (41). pRB is 

known to play a role in SAHF formation (30). Therefore, KDM6B promotes SAHF 

formation through demethylating pRB. Finally, KDM6B regulates p53 by binding to p53-

responsive promoter and enhancer elements upon DNA damage (40). Although the 

mechanism is not clear, it is interesting to speculate that KDM6B is necessary at those 

loci to remove H3K27 methylation so that DNA damage response genes are not 

repressed. In this context, KDM6B expression may allow for cells to overcome DNA 

damage-induced senescence. Therefore, further work needs to be performed to fully 

understand whether KDM6B is tumor suppressive or tumor promoting. Together, these 
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findings suggest that KDM6B is important for multiple senescence pathways. It will be 

interesting in the future to determine whether KDM6B activity acts in concert at multiple 

loci during senescence to affect this phenotype. 

 

KDM5B 

 

KDM5B, also known as JARID1B, demethylates lysine 4 on histone H3 (H3K4me), an 

active histone mark (42). Two distinct methods for induction of senescence through 

KDM5B activity have been described. Upon knockdown of KDM5B, colorectal cancer 

(CRC) cells have increased H3K4 methylation at the CDKN2A locus (43). This correlates 

with decreased proliferation and increased senescence-associated-β-galactosidase (SA-

β-Gal) activity, a marker of senescence (43, 44). Additionally, KDM5B, through a direct 

interaction with pRb, promotes H3K4me3/2 demethylation in a model of oncogene-

induced senescence, which results in the silencing of E2F target gene promoters (45). 

Consistently, overexpression of KDM5B decreased H3K4 methylation and proliferation-

promoting E2F gene targets and increased senescence. Together, these two studies 

demonstrate that H3K4 methylation is important for proliferation-promoting gene 

expression to suppress senescence, and modulation of the H3K4 demethylase KDM5B 

affects both expression of these genes and the senescence-associated cell cycle arrest.  

Additionally, many reports indicate that the demethylase activity of KDM5B is critical for 

DNA damage repair and genomic instability (46-48). Indeed, inhibition or knockdown of 

KDM5B activates p53 and inhibits cell proliferation (46, 47), hallmarks of senescence. 

Therefore, it is possible that cells with KDM5B knockdown are undergoing senescence 

due to alteration in the DNA damage response. Future work will need to determine the 

role of KDM5B loss in the DNA damage accumulation observed during senescence. 

 

KDM5A 

 

Similar to KDM5B, KDM5A (JARID1A/RBP2), demethylates H3K4me2/3 (13). KDM5A 

binds to pRB to modulate transcription downstream of pRB (49). Knockdown of KDM5A 

induces senescence through an increase in cyclin-dependent kinase inhibitors such as 
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p21, p27, and p16 in multiple cell types through increased H3K4me3 at the promoters of 

these genes (50, 51). pRB is critical for SAHF formation during senescence (30). Thus, 

future studies are needed to determine the role of KDM5A-pRB binding in SAHF 

formation. 

 

KDM4A 

 

KDM4A demethylates H3K9me2 and H3K9me3, two repressive histone marks (52). 

Additionally, co-crystal structures of KDM4A suggest KMD4A also recognizes and binds 

to H3K4me2/3 and H3K20me2/3, active and repressive marks, respectively (53, 54). 

Downregulation of KDM4A activates the p53 pathway, thereby inducing senescence (55). 

Specifically, loss of KDM4A increases repressive H3K9me3 at the promoter region of 

chromodomain helicase DNA binding protein 5 (CHD5), resulting in transcriptional 

repression of CHD5. This in turn upregulates p53 levels to induce senescence. In 

addition,  knockdown of KDM4A induces accumulation of promyelocytic leukemia (PML) 

bodies (55). PML bodies, a marker of senescence, regulate SASP gene expression and 

fuse with persistent DNA damage foci termed DNA segments with chromatin alterations 

reinforcing senescence (DNA-SCARS) (56, 57). While the authors did not investigate the 

role of KDM4A on SASP gene expression, it is possible that loss of KDM4A may also 

affect transcription of these genes through the active H3K4 histone mark. Another study 

found that KDM4A forms a complex with F-box protein 22 (FBXO22) to target methylated 

p53 for ubiquitin-mediated degradation (58). Consistent with the study by Mallette et al., 

this study showed that depletion of KDM4A upregulates p53 expression and induces 

senescence. Interestingly, this study also found that the FBXO22-KDM4A complex is 

necessary for p16 and SASP induction in late-stage senescence. However, a role for 

KDM4A as a histone demethylase in this context is unclear. Finally, decreased KDM4A 

expression, mediated through miR-137, leads to an induction of senescence through the 

p53 and pRB pathway. However, it is unknown whether this is through histone 

demethylation or other mechanisms. Together, these studies demonstrate that KDM4A 

expression and activity are important for both p53 and p16 expression and inhibition of 

KDM4A induces senescence. 
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KDM2B 

 

KDM2B is a conserved nuclear protein that demethylates both active histone marks 

(H3K4me3, H3K36me2, and H3K79me3/2) and the repressive histone mark H3K27me3 

(59). Multiple studies have demonstrated that KDM2B demethylates H3K4me3 and 

H3K36me2 at the CDKN2A and CDKN2B loci (60, 61). Consistently, increased KDM2B 

immortalizes MEFs (24, 60). Recent work identified KDM2B as the histone demethylase 

for H3K79. Deficiency in DOT1L, the H3K79 histone methyltransferase, induces 

senescence (62).  Future work will need to determine whether KDM2B affects this mark 

during senescence. Together, these studies emphasize the critical role of KDM2B in gene 

silencing and preventing cellular senescence. 

 

Overall, JmjC demethylases play a role in cellular senescence by targeting proteins 

involved in one of the two major tumor suppressive pathways involved in maintaining cells 

in a senescent-associated cell cycle arrest, namely p16 and p53. As cellular senescence 

is both beneficial and detrimental, further investigations into how JmjC demethylases 

affect senescence and especially the SASP will be essential for understanding whether 

these enzymes can be targeted for therapeutic purposes to inhibit or eliminate senescent 

cells.  

 

JmjC Histone Demethylases Suppress Senescence during Tumorigenesis 
 

JmjC Demethylases Affect Cell Cycle Regulatory Genes to Suppress Senescence 

 
As discussed above, senescence is defined as a stable cell cycle arrest (25). Therefore, 

it is thought to be a bona fide tumor suppressor mechanism, and overcoming senescence 

is a critical barrier in tumorigenesis in some tumors (63, 64). Numerous JmjC 

demethylases are associated with tumorigenesis through a role in suppressing 

senescence (Table 1). This is mostly due to modulation of cell cycle-related genes and 

the p53 pathway, as detailed below. 
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KDM5B and KDM5A are highly expressed in cancer (65, 66). However, only KDM5A has 

been shown to play a role in suppressing senescence during tumorigenesis. As 

mentioned above, KDM5A binds to pRB to promote senescence (49). In Rb-null tumors, 

KDM5A ablation prolongs survival of mice, which correlates with increased H3K4me3 

(67). While the authors did not show that KDM5A overexpression induces tumorigenesis, 

it is interesting to speculate that increased KDM5A activity alone may overcome 

senescence. 

 

KMD2B is overexpressed in multiple cancer types (68). In regards to suppressing 

senescence, KDM2B expression plays a role in pancreatic cancer tumorigenesis by 

bypassing KRASG12D-mediated senescent lesions (pancreatic intraepithelial neoplasia) 

(69). Additionally, Kdm2b expression immortalizes MEFs by suppressing replicative 

senescence through inhibition of both the pRb and p53 pathways (24). This suggests that 

KDM2B may play a role in tumorigenesis through inhibiting these two critical tumor 

suppressor pathways. Interestingly, KDM2B expression alone is not able to suppress 

replicative senescence in human cells, suggesting that it cannot protect cells from 

telomere erosion (24). Finally, KDM2B cooperates with HRASG12V to facilitate 

transformation of MEFs (61).  

 

KDM4A cooperates with RAS to promote transformation through suppression of the p53 

pathway (55). It is possible that KDM4A is necessary to suppress senescence as it is 

highly expressed or amplified in a number of human cancers (70-72). Together, it is clear 

that some JmjC demethylases are critically important for suppressing senescence. Future 

work will need to determine the specificity of the JmjC demethylase and its downstream 

targets during tumorigenesis. 

 

JmjC Demethylases Affect the SASP 

 

In addition to the cell cycle arrest, senescence is also often defined by the SASP (73). 

The SASP can be tumor suppressive or tumor promoting, depending on the context (34). 
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Although the SASP can result in clearance of tumorigenic cells through an immune 

response (36), it can also promote tumorigenesis through its detrimental side effects (34). 

For instance, the SASP can induce epithelial-mesenchymal transition (EMT), mediated 

primarily through the increase in IL-6 and IL-8 (73, 74). In addition, the SASP increases 

angiogenesis through vascular endothelial growth factor (VEGF) expression (75). Finally, 

the SASP can promote chemotherapy resistance (34). As some JmjC demethylases 

affect SASP gene expression, it is possible that these demethylases contribute to 

tumorigenesis by promoting chronic inflammation. For instance, KDM6B overexpression 

in glioma cells increases SASP gene expression, leading to tumorigenesis and tumor 

progression (38). Additionally, KDM4A is necessary for the SASP as knockdown of 

KDM4A in combination with RAS expression inhibits IL6 and IL8 expression (58).  

 

As more research comes to light about histone methylation in DNA damage repair and 

gene transcription of the SASP and cell cycle regulators, in addition to non-histone targets 

of JmjC demethylases, we will undoubtedly learn more about their roles in tumorigenesis. 

 
Targeting JmjC Demethylases for Cancer Therapy 
 

As we have discussed here, epigenetic histone modifications affect both physiological 

and pathological processes. In particular, cancer progression is associated with 

numerous epigenetic modifications. Histone demethylation can change chromatin state 

leading to the enhancement or repression of gene expression (76, 77). In the context of 

cancer, histone demethylation of tumor suppressor gene loci can result in gene activation 

and promote tumorigenesis.  Thus, there has been an increased interest in developing 

small molecule inhibitors that target JmjC demethylases (78, 79), which we will discuss 

below.  

 

Recent studies have identified N-oxalylglycine, an analog of αKG that competitively binds 

at the active site of JmjC demethylases (79). High-throughput screens indicate N-

oxalylglycine is a KDM4E inhibitor (80). Inhibiting KDM4E, which is often overexpressed 

in breast, lung, and prostate tumors, may therefore have a positive impact in cancer 
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repression.  Although N-oxalylglycine inhibits KDM4E, it is not an ideal compound 

because of its high polarity and its ability to bind to other iron (II) and αKG-dependent 

enzymes (81). Therefore, it is likely to have toxicity to normal cells.  

 

In search for an alternative to N-oxalyglycine, a potent inhibitor, N-oxalyl-D-tyrosine was 

found to inhibit KDM4 and KDM5 subfamilies. N-oxalyl-D-tyrosine is a derivative of D-

tyrosine and binds to the active site of KDM4 and KDM5 subfamilies, which does not allow 

for αKG to bind and activate the enzymes (82). KDM4 and KDM5 are overexpressed in 

various cancers and downregulate tumor suppressors. The KDM4 subfamily 

demethylates the active histone marks H3K9me2/3 and H3K36me2/3. This subfamily of 

JmjC demethylases are amplified in lymphomas and regulate the function of the MYC 

oncogene in neuroblastomas (83, 84). As previously mentioned, members of the KDM5 

subfamily are overexpressed in prostate cancer, thereby promoting tumorigenesis. 

Overall, the KDM4 and KDM5 subfamilies can be considered proto-oncogenes. 

Therefore, targeting these JmjC demethylases could potentially result in tumor 

suppression. In addition to N-oxalyl-D-tyrosine, pyridine dicarboxylic acids were found to 

completely bind to the same active site as N-oxalyl-D-tyrosine in KDM4 subfamilies (85). 

Pyridine dicarboxylic acids as JmjC demethylase inhibitors also have shown to reduce 

proliferation in different cancer cell lines (86). Further work on these compounds will be 

necessary to determine on-target toxicity and specificity for certain JmjC demethylases. 

 

More recently, 5-carboxy-8-hydroxyquinoline (IOX1) has been shown to inhibit a broad 

spectrum of JmjC demethylases by binding at the αKG binding pocket  (87). Although 

IOX1 directly binds the αKG binding pocket to affect JmjC demethylase activity, it also 

chelates iron (II), which may produce negative effects on iron-dependent proteins (87). 

Additionally, the pyridine hydrazine derived from aryl N-heteroaryl ketones, JIB-04, has 

also been shown to inhibit a broad spectrum of JmjC demethylases (88, 89). Unlike IOX1, 

JIB-04 does not completely bind to the αKG binding pocket, but instead, interacts with 

iron at the catalytic site (89). Although it does not bind at the αKG binding pocket, JIB-04 

still chelates iron (II) when the iron concentration is higher than 400 nM. Compared to 

other JmjC demethylase inhibitors that bind at the αKG binding pocket, JIB-04 tends to 
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be more specific for JmjC histone demethylase family members as it does not interact 

with prolyl hydroxylases (PHDs), which require αKG for their activity (89, 90) 

 

Although numerous histone demethylase inhibitors have been characterized, they are not 

specific to one JmjC demethylases. Current inhibitors target JmjC demethylases by 

affecting the ability of αKG or iron (II) binding. The search for a histone demethylase 

inhibitor with higher potency and selectivity is still undergoing extensive research. 

Moreover, as many JmjC demethylases have multiple histone, and potentially non-

histone targets, it will be important to further investigate the on-target toxicity of these 

inhibitors.  

 

Conclusion 
 

In summary, JmjC demethylases have been shown to play a role in various cancers 

having both tumorigenic and tumor suppressive roles. In particular, studies have 

demonstrated that JmjC demethylases affect senescence and may promote 

tumorigenesis through suppressing the senescence-associated cell cycle arrest or 

activating the SASP. Interestingly, although known as histone demethylases, studies 

have shown that these enzymes may affect senescence through other non-histone-

mediated pathways. Nevertheless, the upregulation of these enzymes in many cancers 

makes them a promising therapeutic target. Future work to develop more selective 

inhibitors and to determine on-target side effects will be necessary to delineate the 

therapeutic potential of inhibiting these enzymes in cancer. 
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Table 1. JmjC histone demethylases play a role in inducing and suppressing 
cellular senescence. 
 

JmjC 
Histone 

Demethylase 

Target(s) Implications in  
Senescence 

Role in Suppressing 
Senescence to Promote 

Tumorigenesis 
KDM6B H3K27me3/2 

H3K9me2/1 
H4K20me1 

Overexpression 
increases SASP gene 
expression (38); 
Promotes SAHF 
formation through pRB 
(41); Regulation of p53 
(40) 
 

Overexpressed in glioma 
cells to promote SASP 
expression (38) 

KDM5B H3K4me3/2 Silences E2F target 
genes (43, 45); 
Knockdown increases 
H3K4 methylation at the 
CDKN2A locus (43) 

 

KDM5A H3K4me3/2 Knockdown or depletion 
induces senescence by 
increasing p21, p27, 
p16 (50, 51) 

Expression is required in 
pRB-defective cancer (67) 

KDM4A H3K36me3/2 
H3K9me3/2 

Downregulation 
activates the p53 
pathway and  induces 
PML body accumulation 
(55) 

Cooperates with RAS to 
promote transformation 
(55); Affects the SASP (58) 

KDM2B H3K36me2/1 
H3K4me3 
H3K79me2/3 

Demethylates CDKN2A 
(60) and CDKN2B loci 
(61) 

Cooperates with KRAS to 
promote pancreatic cancer 
(69); Immortalizes MEFs 
(24, 60)  
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