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Abstract: In this paper, some mixed type bounds on the spectral radius ρ(A ◦ B) for the Hadamard
product of two nonnegative matrices (A and B) and the minimum eigenvalue τ(C ? D) of the Fan
product of two M-matrices (C and D) are researched. These bounds complement some corresponding
results on the simple type bounds. In addition, a new lower bound on the minimum eigenvalue of
the Fan product of several M-matrices is also presented:

τ(A1 ? A2 · · · ? Am) ≥ min
1≤i≤n

{
m

∏
k=1

Ak(i, i)−
m

∏
k=1

[Ak(i, i)Pk − τ(A(Pk)
k )]

1
Pk },

where A1, . . . , Ak are n× n M-matrices and P1, . . . , Pk > 0 satisfy ∑m
k=1

1
Pk
≥ 1. Some special cases of

the above result and numerical examples show that this new bound improves some existing results.

Keywords: Hadamard product; Nonnegative matrices; Spectral radius; Fan product; M-matrix;
Inverse M-matrix; Minimum eigenvalue

1. Introduction

As is well known, the Hadamard, Fan and Kronecker products play an important role in matrix
methods for statistics and econometrics [16,17]. The research on eigenvalues of the Hadamard and Fan
products of matrices is always one of the hot topics in matrix theory see [2,3,5–9,11,13,14,18]. In this
paper, we will continue to research this topic and present some new results.

First, we introduce some notations, see [1]. For two real n× n matrices A = (aij) and B = (bij),
we write A ≥ B (A > B) if aij ≥ bij (aij > bij) for all i, j ∈ N. If A ≥ 0 (A > 0), we say that A is a
nonnegative (positive) matrix. The spectral radius of A is denoted by ρ(A). If A is a nonnegative
matrix, the Perron-Frobenius theorem guarantees that ρ(A) ∈ σ(A), where σ(A) is the set of all
eigenvalues of A. Moreover, a matrix A is called reducible if there exists a nonempty proper subset
I ⊂ N such that aij = 0, ∀i ∈ I, ∀j /∈ I. If A is not reducible, then we call A irreducible (see [7]).

In addition, we denote by Zn the class of all n× n real matrices of whose off-diagonal entries are
non-positive. If A ∈ Zn, then the minimum eigenvalue of A is defined by τ(A) := min{Re(λ)|λ ∈
σ(A)}. As a special case of Zn, a matrix A = (aij) ∈ Zn is called a nonsingular M-matrix if A is
nonsingular and A−1 ≥ 0 (see [8]). Denote byMn the set of all nonsingular M-matrices. Generally
speaking, the following simple facts are well known (see Problems 16, 19 and 28 in Section 2.5 of [8]):

1. If A ∈ Zn, then τ(A) ∈ σ(A);
2. If A, B ∈ Mn, and A ≥ B, then τ(A) ≥ τ(B), moreover, τ(A) ≤ min{aii};
3. If A ∈ Mn, then there exists a positive eigenvalue of A equal to τ(A) = [ρ(A−1)]−1, where

ρ(A−1) is the Perron eigenvalue of the nonnegative matrix A−1.
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Finally, for convenience, N denotes the set {1, 2, · · · , n} throughout. The sets of all n× n real and
complex matrices are denoted by Rn×n and Cn×n, respectively. The Hadamard product of A = (aij) ∈
Cn×n and B = (bij) ∈ Cn×n is defined by A ◦ B = (aijbij) ∈ Cn×n. As a variant of the Hadamard
product, the Fan product of two real matrices A, B ∈ Zn is denoted by A ? B = C = (cij) ∈ Zn, where

cij =

{
−aijbij, if i 6= j,
aiibii, if i = j.

The remainder of the paper is organized as follows. In Section 2, we mainly exhibit a new ’mixed’
type bound for eigenvalues of the Hadamard and Fan products of two matrices to complement the
corresponding results. In addition, a comparison between the simple type and mixed type bounds is
given in Section 3. In Section 4, we generalize the result of the Fan product of two matrices to the case
of several matrices. Finally, some concluding remarks on further research are given in Section 5.

2. A mixed type bound for eigenvalues of the Hadamard and Fan products of two matrices

In recent years, on the problem of ρ(A ◦ B) of two nonnegative matrices A and B, there exist some
rich results based on the ρ(A) and ρ(B).

• In ([8], p. 358), ρ(A ◦ B) ≤ ρ(A)ρ(B).
• Fang [6] gave an upper bound for ρ(A ◦ B), i.e.,

ρ(A ◦ B) ≤ max
1≤i≤n

{
2aiibii + ρ(A)ρ(B)− biiρ(A)− aiiρ(B)

}
. (1)

• Liu et al. [14] further improved the above results and obtained the following bound

ρ(A ◦ B) ≤ max
i 6=j

1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2

+ 4(ρ(A)− aii)(ρ(B)− bii)(ρ(A)− ajj)(ρ(B)− bjj)]
1
2

}
.

(2)

Recently, Cheng [5] also obtained the following results1 based on the row maximum non-diagonal
elements and the commutative property of Hadamard product.

Theorem 1. Let A = (aij) and B = (bij) be nonnegative matrices, si = max
j 6=i
{aij}, ti = max

j 6=i
{bij}, then

ρ(A ◦ B) ≤

min


max

i 6=j
1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2 + 4titj(ρ(A)− aii)(ρ(A)− ajj)]
1/2
}

,

max
i 6=j

1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2 + 4sisj(ρ(B)− bii)(ρ(B)− bjj)]
1/2
}

.

 .
(3)

This expression is interesting, which is called as a ’simple’ type bound. Motivated by the above
result, one may propose the following result. Here, we call it the ’mixed’ type one.

Theorem 2. Let A = (aij) and B = (bij) be nonnegative matrices, si = max
j 6=i
{aij}, ti = max

j 6=i
{bij}, then

ρ(A ◦ B) ≤ max
i 6=j

1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2

+ 4tisj(ρ(A)− aii)(ρ(B)− bjj)]
1
2

}
.

(4)

1 Note that there exists a little formula spelling mistake in [5].
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Proof. It is evident that the inequality (4) holds with the equality for n = 1. Therefore, we assume that
n ≥ 2 and divide two cases to prove this problem.

Case 1. Suppose that both A and B are irreducible. By Perron-Frobenius theorem in [8], there
exists a positive right Perron vector u = (u1, u2, · · · , un) for any D = diag(d1, d2, · · · , dn), di > 0 such
that

(D−1 AD)u = ρ(D−1 AD)u = ρ(A)u,

i.e.,

∑
j 6=i

aijdjuj

diui
= ρ(A)− aii.

In addition, if D = diag(d1, d2, · · · , dn) is just the right Perron eigenvector of the irreducible
nonnegative matrix B, then we obtain similarly that

∑
j 6=i

bijdjuj

diui
= ρ(B)− bii.

Define U = diag(u1, u2, · · · , un), C = (DU)−1 A(DU), then we see that

C =


a11

d2u2
d1u1

a12 · · · dnun
d1u1

a1n
d1u1
d2u2

a21 a22 · · · dnun
d2u2

a2n
...

...
. . .

...
d1u1
dnun

an1
d2u2
dnun

an2 · · · ann


is an irreducible nonnegative matrix and

C ◦ B = (mij) =


a11b11

d2u2
d1u1

a12b12 · · · dnun
d1u1

a1nb1n
d1u1
d2u2

a21b21 a22b22 · · · dnun
d2u2

a2nb2n
...

...
. . .

...
d1u1
dnun

an1bn1
d2u2
dnun

an2bn2 · · · annbnn

 .

Since (see [8]) (DU)−1(A ◦ B)(DU) = (DU)−1 A(DU) ◦ B = C ◦ B, therefore, ρ(A ◦ B) = ρ(C ◦ B).
By Brauer’s theorem (see [5]) and ρ(A ◦ B) ≥ aiibii (see [1]), for any j 6= i ∈ N, we have

(ρ(A ◦ B)− aiibii)(ρ(A ◦ B))− ajjbjj) ≤ ∑
k 6=i
|mik| ∑

l 6=j
|mjl |

= ∑
k 6=i

dkukaikbik
diui

∑
l 6=j

dlul ajl bjl
djuj

≤
(

max
k 6=i
{bik} ∑

k 6=i

dkukaik
diui

)(
max
l 6=j
{ajl} ∑

l 6=j

dlulbjl
djuj

)
≤ max

k 6=i
{bik}(ρ(A)− aii)max

l 6=j
{ajl}(ρ(B)− bjj)

= tisj

(
ρ(A)− aii

)(
ρ(B)− bjj

)
.

(5)

Thus, by solving the quadratic inequality (5), we get that

ρ(A ◦ B) ≤ 1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2 + 4tisj(ρ(A)− aii)(ρ(B)− bjj)]
1
2

}
≤ max

i 6=j
1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2 + 4tisj(ρ(A)− aii)(ρ(B)− bjj)]
1
2

}
.

i.e., the conclusion (4) holds.
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Case 2. If one of A and B is reducible. We may denote by P = (pij) the n× n permutation matrix
with

p12 = p23 = · · · = pn−1,n = pn,1 = 1,

the remaining pij zero, then both A + εP and B + εP are irreducible nonnegative matrices for any
chosen sufficiently small positive real number ε. Next we substitute A + εP and B + εP for A and B,
respectively in the previous Case 1, and then letting ε→ 0, the result (4) follows by continuity.

Remark 1. Now, we give a comparison between the inequalities (2) and (4). According to the definitions of ti
and sj, if ti + bii ≤ ρ(B) and sj + ajj ≤ ρ(A) (i, j = 1, · · · , n), then tisj ≤ (ρ(B)− bii)(ρ(A)− ajj). Thus,
the inequality (4) is better than the inequality (2).

Example 1. ([14]). Let A and B be the following two nonnegative matrices:

A := (aij) =


4 1 0 2
1 0.05 1 1
0 1 4 0.5
1 0.5 0 4

, B := (bij) =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

By calculation, ρ(A ◦ B) = ρ(A) = 5.7339 and ρ(B) = 4.0. Thus the result of Ref.[8] (see p.358) is that

ρ(A ◦ B) ≤ ρ(A)ρ(B) = 22.9336.

If we respectively apply (1) and (2) to them, according to [14], then

ρ(A ◦ B) ≤ max
1≤i≤4

{
2aiibii + ρ(A)ρ(B)− aiiρ(B)− biiρ(A)

}
= 17.1017,

and
ρ(A ◦ B) ≤ max

i 6=j
1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2

+ 4(ρ(A)− aii)(ρ(B)− bii)(ρ(A)− ajj)(ρ(B)− bjj)]
1
2

}
= 11.6478.

However, if Theorem 2 is used, then the following inequality can be obtained

ρ(A ◦ B) ≤ max
i 6=j

1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2

+ 4tisj(ρ(A)− aii)(ρ(B)− bjj)]
1
2

}
= 8.1897,

which shows that the bound in Theorem 2 is the best among the above bounds.

Corollary 1. If A and B are two stochastic matrices (i.e., probability matrices, transition matrices, or Markov
matrices), then

ρ(A ◦ B) ≤ max
i 6=j

1
2

{
aiibii + ajjbjj + [(aiibii − ajjbjj)

2 + 4tisj(1− aii)(1− bjj)]
1
2

}
≤ max

i 6=j
1
2

{
aiibii + ajjbjj +

[
(aiibii − ajjbjj)

2 + 4(1− aii)
2(1− bii)

2
]1/2

}
.

Since the Fan product of two M-matrices has a lot of similar properties with the Hadamard
product of two nonnegative matrices see [2,5–9,13,14]. Note that if A is an irreducible nonsingular
M-matrix, then there also exist two positive left and right Perron eigenvectors u and v such that
vT A = τ(A)vT and Au = τ(A)u, respectively. Therefore, we may similarly extend the above result (4)
to the case of the Fan product of two M-matrices.
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Theorem 3. If A = (aij) and B = (bij) are nonsingular M-matrices, si = max
j 6=i
|aij|, ti = max

j 6=i
|bij|, then

τ(A ? B) ≥ min
i 6=j

1
2

{
aiibii + ajjbjj − [(aiibii − ajjbjj)

2

+ 4tisj(aii − τ(A))(bjj − τ(B))]
1
2

}
.

(6)

Proof. This proof is completely similar with the previous Theorem 2.

3. Comparisons of the simple and mixed type bounds

Though Theorem 1 and Theorem 2 are similar, they are different in form. Next, we give a simple
comparison.

Theorem 4. Let A = (aij) and B = (bij) be two nonnegative matrices, if for any i 6= j, tisj(ρ(A) −
aii)(ρ(B)− bjj) 6= tjsi(ρ(A)− ajj)(ρ(B)− bii), then Theorem 1 is better than Theorem 2.

Proof. According to (3) and (4), for any i 6= j, we need only compare

max
{

tisj(ρ(A)− aii)(ρ(B)− bjj), tjsi(ρ(A)− ajj)(ρ(B)− bii)
}

:= Mij

with
min

{
titj(ρ(A)− aii)(ρ(A)− ajj), sisj(ρ(B)− bii)(ρ(B)− bjj)

}
:= Sij.

Without loss of generality, let

Mij = tisj(ρ(A)− aii)(ρ(B)− bjj). (7)

We assume that Mij < Sij, i.e.,

tisj(ρ(A)− aii)(ρ(B)− bjj) < min
{

titj(ρ(A)− aii)(ρ(A)− ajj), sisj(ρ(B)− bii)(ρ(B)− bjj)
}

.

Then,
0 ≤ sj(ρ(B)− bjj) < tj(ρ(A)− ajj), (8)

and
0 ≤ ti(ρ(A)− aii) < si(ρ(B)− bii). (9)

Therefore,
0 ≤ tisj(ρ(A)− aii)(ρ(B)− bjj) < sitj(ρ(B)− bii)(ρ(A)− ajj), (10)

which is in conflict with the previous condition (7). Thus we see that Mij ≥ Sij for any i 6= j. This proof
is completed.

By the above discussions, we see that, generally speaking, Mij ≥ Sij for any i 6= j when tisj(ρ(A)−
aii)(ρ(B)− bjj) 6= sitj(ρ(B)− bii)(ρ(A)− ajj). Next, let us consider the case of tisj(ρ(A)− aii)(ρ(B)−
bjj) = sitj(ρ(B)− bii)(ρ(A)− ajj).

Theorem 5. Let A = (aij) and B = (bij) be two nonnegative matrices, if for any i 6= j, tisj(ρ(A) −
aii)(ρ(B)− bjj) = tjsi(ρ(A)− ajj)(ρ(B)− bii) and

tj
sj
=

ρ(B)−bjj
ρ(A)−ajj

, then Theorem 2 is equivalent to Theorem
1.
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Proof. According to the above Theorem 4, let us reconsider the relationship between Mij and Sij for
any i 6= j. For convenience, we define

αj =
sj(ρ(B)− bjj)

tj(ρ(A)− ajj)
.

Obviously,

titj(ρ(A)− aii)(ρ(A)− ajj) = sitj(ρ(B)− bii)(ρ(A)− ajj)
1
αj

,

and
sisj(ρ(B)− bii)(ρ(B)− bjj) = tisj(ρ(B)− bjj)(ρ(A)− aii)αj.

Therefore, if αj 6= 1, then we have always Mij > Sij for any i 6= j under the conditions of this

theorem. However, when αj = 1, i.e.,
tj
sj

=
ρ(B)−bjj
ρ(A)−ajj

, we have Mij = Sij for any i 6= j. Therefore,

Theorem 2 is equivalent to Theorem 1. Thus, the proof is completed.

4. Inequalities for the Fan product of several M-matrices

In the previous sections, we mainly consider the Hadamard product of two matrices. In fact, there
exist also many of similar inequalities for the minimum eigenvalue of Fan product of two M-matrices:

• In (p.359, [8]), R.A. Horn and C.R. Johnson pointed out that

τ(A ? B) ≥ τ(A)τ(B). (11)

• In 2007, Fang gave another lower bound in the Remark 3 of Ref. [6]

τ(A ? B) ≥ min
1≤i≤n

{
biiτ(A) + aiiτ(B)− τ(A)τ(B)

}
. (12)

• In 2009, Liu et al.[14] gave a sharper bound than (12), i.e.,

τ(A ? B) ≥ 1
2 min

i 6=j

{
aiibii + ajjbjj − [(aiibii − ajjbjj)

2

+ 4(bii − τ(B))(aii − τ(A))(bjj − τ(B))(ajj − τ(A))]
1
2

}
.

(13)

Note that the classes of M-matrices and H-matrices are both closed under the Fan product (see
Observation 5.7.2 in [8]). Therefore, we may consider the case of the product of several matrices. For
convenience, we shall continue to use notation employed previously. But, according to Ref. [8], the
definition of the function τ(·) should be extended to general matrices via the comparison matrix. The
comparison matrix M(A) = (mij) of a given matrix A = (aij) ∈ Cn×n is defined by

mij =

{
−|aij|, if i 6= j,
|aii|, if i = j.

Definition 1. ([8]). For any A ∈ Rn×n, τ(A) := τ(M(A)), where M(A) is the comparison matrix of A.

In addition, if A = (ai,j) ∈ Rm×n has nonnegative entries and α ≥ 0, we write A(α) ≡ (aα
i,j) for

the αth Hadamard power of A. Moreover, we use the convention 00 ≡ 0 to ensure continuity in a for
α ≥ 0, see [8].

In [8], it is shown by Theorem 5.7.15 that if A1, . . . Am are n× n H-matrices and α1, α2, . . . , αm ≥ 0
satisfy ∑m

k=1 αk ≥ 1, then

τ(A(α1)
1 ◦ · · · ◦ A(αm)

m ) ≥
m

∏
k=1

[τ(Ak)]
αk , (14)
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where A(α) is again defined as entrywise and any scalar definition of aα such that |aα| = |a|α is allowed
(see [8]). Next, for convenience, we define

aα :=

{
aα, if a ≥ 0,
−|a|α, if a < 0.

(15)

The above theorem (14) provides a beautiful result, which encourages us to continue researching
this problem. Since for any H-matrix A, according to Definition 1, τ(A) = τ(M(A)). Therefore, we
need only consider the M-matrix case.

First, let us recall the following lemmas.

Lemma 1. ([11]). Let A be an irreducible nonsingular M-matrix, if AZ ≥ kZ for a nonnegative nonzero
vector Z, then k ≤ τ(A).

Lemma 2. ([10]). Let xj = (xj(1), · · · , xj(n))T ≥ 0, j ∈ {1, 2 · · · , m}, if Pj > 0 and ∑m
k=1

1
Pk
≥ 1, then we

have
n

∑
i=1

m

∏
j=1

xj(i) ≤
m

∏
j=1

{ n

∑
i=1

[xj(i)]
Pj
} 1

Pj . (16)

Next, according to these lemmas, we generalize the inequality (12) of the Fan product of two
matrices to the Fan product of several matrices.

Theorem 6. For any positive integer Pk with ∑m
k=1

1
Pk
≥ 1, if Ak ∈ Mn for all k ∈ {1, 2, · · · , m}, then

τ(A1 ? A2 · · · ? Am) ≥ min
1≤i≤n

{ m

∏
k=1

Ak(i, i)−
m

∏
k=1

[Ak(i, i)Pk − τ(A(Pk)
k )]

1
Pk

}
. (17)

Proof. It is quite evident that the (17) holds with the equality for n = 1. Below we assume that n ≥ 2.
Case 1. Suppose that Ak (k ∈ {1, 2, · · · , m}) is irreducible, then A(Pk)

k is also irreducible.

Let u(Pk)
k = (uk(1)Pk , · · · , uk(n)Pk )T > 0 be a right Perron eigenvector of A(Pk)

k , and uk =

(uk(1), · · · , uk(n))T > 0, thus for any i ∈ N, we have

A(Pk)
k u(Pk)

k = τ(A(Pk)
k )u(Pk)

k ,

Ak(i, i)Pk uk(i)Pk −∑
j 6=i
|Ak(i, j)Pk |uk(j)Pk = τ(A(Pk)

k )uk(i)(Pk),

i.e.,

∑
j 6=i
|Ak(i, j)Pk |uk(j)Pk =

(
Ak(i, i)Pk − τ(A(Pk)

k )
)

uk(i)Pk . (18)

Denote C = A1 ? A2 · · · ? Am, Z = u1 ? u2 · · · ? um = (Z(1), · · · , Z(n))T > 0, where Z(i) = ∏m
k=1 uk(i).

By the Lemma 2 and (18), we get that

(CZ)i =
(

∏m
k=1 Ak(i, i)

)
Z(i)−

(
∑
j 6=i

∏m
k=1 |Ak(i, j)|

)
Z(j)

=
(

∏m
k=1 Ak(i, i)

)
Z(i)− ∑

j 6=i
∏m

k=1

(
|Ak(i, j)|uk(j)

)
≥
(

∏m
k=1 Ak(i, i)

)
Z(i)−∏m

k=1

{
∑
j 6=i

[|Ak(i, j)|uk(j)](Pk)
} 1

Pk (by the equality (18))

=
(

∏m
k=1 Ak(i, i)

)
Z(i)−∏m

k=1

{
[Ak(i, i)Pk − τ(A(Pk)

k )]uk(i)Pk
} 1

Pk

=
{

∏m
k=1 Ak(i, i)−∏m

k=1[Ak(i, i)Pk − τ(A(Pk)
k )]

} 1
Pk Z(i).
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According to the Lemma 1, we obtain that

τ(A1 ? A2 · · · ? Am) ≥ min
1≤i≤n

{ m

∏
k=1

Ak(i, i)−
m

∏
k=1

[Ak(i, i)Pk − τ(A(Pk)
k )]

1
Pk

}
.

Case 2. If one of Ak (i = 1, 2, · · · , m) is reducible. Similar to the Case 2 of the previous Theorem 2,
let P = (pij) be the n× n permutation matrix with p12 = p23 = · · · = pn−1,n = pn,1 = 1, the remaining
pij zero, then Ak − εP is an irreducible nonsingular M-matrix for any chosen positive real number
ε. Now we substitute Ak − εP for Ak, in the previous Case 1, and then letting ε → 0, the result (17)
follows by continuity.

Remark 2. If we take m = 2 in Theorem 6, one can obtain the following results:

• If p1 = p2 = 1, A1 = A = (aij), A2 = B = (bij), we have

τ(A ? B) ≥ min
1≤i≤n

{
aiibii − (aii − τ(A))(bii − τ(B))

}
,

which is just the inequality (12).
• If p1 = p2 = 2, A1 = A = (aij), A2 = B = (bij), then

τ(A ? B) ≥ min
1≤i≤n

{
aiibii − [a2

ii − τ(A ? A)]
1
2 [b2

ii − τ(B ? B)]
1
2

}
. (19)

In addition, by using the inequalities of arithmetic and geometric means, we know that

a2
iiτ(B ? B) + b2

iiτ(A ? A) ≥ 2aiibii[τ(A ? A)τ(B ? B)]
1
2 ,

so
(a2

ii − τ(A ? A))(b2
ii − τ(B ? B)) ≤

{
aiibii − [τ(A ? A)τ(B ? B)]

1
2

}2
. (20)

Since for any A, B ∈ Mn, τ(A ? B) ≥ τ(A)τ(B) (see [14] or (11)), then, by (20), we know that

aiibii −
[
(a2

ii − τ(A ? A))(b2
ii − τ(B ? B))

] 1
2 ≥ [τ(A ? A)τ(B ? B)]

1
2 ≥ τ(A)τ(B).

That is, the inequality (19) is better than the inequality (11). In addition, the following example shows
that the inequality (19) is also better than the inequality (13).

Example 2. ([14]). Consider the following two 3× 3 M-matrices:

A := (aij) =

 2 −1 0
0 1 −0.5
−0.5 −1 2

, B := (bij) =

 1 −0.25 −0.25
−0.5 1 −0.25
−0.25 −0.5 1

 .

By direct calculation, τ(A) = 0.5402, τ(B) = 0.3432 and τ(A ? B) = 0.9377. According to Ref. [14],
the inequality (13) shows that

τ(A ? B) ≥ 0.7655.

If we apply (19) to them, then

τ(A ? B) ≥ min
1≤i≤n

{
aiibii − [a2

ii − τ(A ? A)]
1
2 [b2

ii − τ(B ? B)]
1
2

}
= 0.8579,

which shows that our result is much closer to the exact value 0.9377.
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• If p1 = 1, p2 = 2, A1 = A = (aij), A2 = B = (bij), then we get

τ(A ? B) ≥ min
1≤i≤n

{
aiibii − [aii − τ(A)][b2

ii − τ(B ? B)]
1
2

}
. (21)

5. Concluding remarks

This paper mainly presents the relationship between the simple type [5] and the mixed type (4), which
perfects the corresponding theory. In addition, we also research the problem on the minimum eigenvalue of the
Fan product of more M-matrices and obtain several interesting results, see the inequalities (17), (20) and (21).
Since for any A ∈ Mn, τ(A ? A) ≥ (τ(A))2, numerical examples and some analyses show that the special
cases (e.g., (20) and (21)) of the inequality (17) improve some known results stated in this paper.

Finally, it is worthy mentioning that there also exist other products in statistics or econometrics, such as
the block Hadamard product [12], Khatri-Rao and Tracy-Singh products [15]. Are there similar results on these
products? It may be still an interesting problem.

Acknowledgments: This work was financially supported by the National Natural Science Foundation of China (11271001,
61370147, 11101071),Fundamental Research Funds for the Central Universities(ZYGX2016J138) and Sichuan Province
Science and Technology Research Project (12ZC1802).

Author Contributions: Conceptualization, Q.G.; Funding acquisition, J.L. and H.L.; Date, Q.G.; Supervision, J.L., H.L.
and C.C.; Writing-original draft, Q.G.; and Writing- review and editing, J.L., H.L. and C.C. .

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Plemmons R J, Berman A. Nonnegative matrices in the mathematical sciences, SIAM Press, Philadelphia, 1979.
2. F.B. Chen, Some new inequalities for the Hadamard product of M-matrices, Journal of Inequalities and Applications

2013, 2013, 581. doi:10.1186/1029-242X-2013-581.
3. S.C. Chen, A lower bound for the minimum eigenvalue of the Hadamard product of matrices, Lin. Alg. Appl. (2004),

378, 159-166.
4. J.L. Chen, Special Matrix, Qing Hua University Press, Beijing, 2000.
5. G.H. Cheng, New bounds for eigenvalues of the Hadamard product and the Fan product of matrices,

Taiwanese Journal of Mathematics (2014),18, 305-312.
6. M.Z. Fang, Bounds on the eigenvalus of the Hadamard product and the Fan product of matrices, Lin.

Alg. Appl. (2007), 425, 7-15.
7. Q.P. Guo, H.B. Li, M.Y. Song, New inequalities on eigenvalues of the Hadamard product

and the Fan product of matrices, Journal of Inequalities and Applications 2013, 2013, 1-11.
doi:10.1186/1029-242X-2013-433.

8. R.A. Horn, C.R. Johnson, Topics in matrix Analysis, Cambridge University Press, Cambridge, UK, 1991.
9. R. Huang, Some inequalities for the Hadamard product and the Fan product of matrices, Lin. Alg. Appl.

(2008), 428 1551-1559.
10. G.H. Hardy, J.E. Littlewood, G. Polya, Inequality (Second edition). Cambridge University Press, 1988.
11. H.B. Li, T.Z. Huang, S.Q. Shen, H. Li, Lower bounds for the minimum eigenvalue of Hadamard product

of an M-matrix and its inverse, Lin. Alg. Appl. (2007), 420, 235-247.
12. M.H. Li, An Oppenheim type inequality for a block Hadamard product, Lin. Alg. Appl. (2014), 452, 1-6.
13. Y.T. Li, Y.Y. Li, R.W. W, Y.Q. W, Some new bounds on eigenvalues of the Hadamard product and the Fan

product of matrices, Lin. Alg. Appl. (2010), 432, 536-545.
14. Q.B. Liu, G.L. Chen, On two inequalities for the Hadamard product and the Fan product of matrices,

Lin. Alg. Appl. (2009), 431, 974-984.
15. S. Z. Liu, Matrix results on the Khatri-Rao and Tracy-Singh products. Lin. Alg. Appl. (1999), 289, 267-277.
16. J.R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statistics and

Econometrics. John Wiley Sons, Chichester.
17. G.P.H. Styan, Hadamard products and multivariate statistical analysis. Lin. Alg. Appl. (1973), 6, 217-240.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 November 2018                   doi:10.20944/preprints201811.0367.v1

Peer-reviewed version available at Mathematics 2019, 7, 147; doi:10.3390/math7020147

http://dx.doi.org/10.20944/preprints201811.0367.v1
http://dx.doi.org/10.3390/math7020147


10 of 10

18. G. Visick, A quantitative version of the observation that the Hadamard product is a principal submatrix
of the Kronecker. Lin. Alg. Appl (2000), 304, 45-68.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 November 2018                   doi:10.20944/preprints201811.0367.v1

Peer-reviewed version available at Mathematics 2019, 7, 147; doi:10.3390/math7020147

http://dx.doi.org/10.20944/preprints201811.0367.v1
http://dx.doi.org/10.3390/math7020147

	Introduction
	A mixed type bound for eigenvalues of the Hadamard and Fan products of two matrices
	Comparisons of the simple and mixed type bounds
	Inequalities for the Fan product of several M-matrices
	Concluding remarks
	References

