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Abstract: In this paper, some mixed type bounds on the spectral radius p(A o B) for the Hadamard
product of two nonnegative matrices (A and B) and the minimum eigenvalue 7(C % D) of the Fan
product of two M-matrices (C and D) are researched. These bounds complement some corresponding
results on the simple type bounds. In addition, a new lower bound on the minimum eigenvalue of
the Fan product of several M-matrices is also presented:

T(A1* Ay x Aw) > min {J ] Ax(i,i) — [ T[Ax(i, i)™ (Algpk)ﬂ

where Ay, ..., A are n x n M-matrices and Py, ..., P, > 0 satisfy } ;' 4 Plk > 1. Some special cases of
the above result and numerical examples show that this new bound improves some existing results.
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1. Introduction

As is well known, the Hadamard, Fan and Kronecker products play an important role in matrix
methods for statistics and econometrics [16,17]. The research on eigenvalues of the Hadamard and Fan
products of matrices is always one of the hot topics in matrix theory see [2,3,5-9,11,13,14,18]. In this
paper, we will continue to research this topic and present some new results.

First, we introduce some notations, see [1]. For two real n x n matrices A = (a;;) and B = (b;),
we write A > B (A > B) if a;; > bjj (a;; > b;) foralli,j € N. If A > 0 (A > 0), we say that Aisa
nonnegative (positive) matrix. The spectral radius of A is denoted by p(A). If A is a nonnegative
matrix, the Perron-Frobenius theorem guarantees that p(A) € ¢(A), where o(A) is the set of all
eigenvalues of A. Moreover, a matrix A is called reducible if there exists a nonempty proper subset
I C N such that ajj = 0,Vi € I,Vj ¢ L. If A is not reducible, then we call A irreducible (see [7]).

In addition, we denote by Z,, the class of all # X n real matrices of whose off-diagonal entries are
non-positive. If A € Z,, then the minimum eigenvalue of A is defined by 7(A) := min{Re(A)|A €
c(A)}. As a special case of Z,, a matrix A = (a;;) € Z, is called a nonsingular M-matrix if A is
nonsingular and A~! > 0 (see [8]). Denote by M, the set of all nonsingular M-matrices. Generally
speaking, the following simple facts are well known (see Problems 16, 19 and 28 in Section 2.5 of [8]):

1. If A€ Z,,then t(A) € 0(A);

2. If A,B € M,,and A > B, then T(A) > 7(B), moreover, T(A) < min{a;};

3. If A € M,, then there exists a positive eigenvalue of A equal to T(A) = [p(A~!)]~!, where
p(A~1) is the Perron eigenvalue of the nonnegative matrix A~1.

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0000-0000-000-000X
http://dx.doi.org/10.20944/preprints201811.0367.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/math7020147

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 November 2018 d0i:10.20944/preprints201811.0367.v1

2 0f 10

Finally, for convenience, N denotes the set {1,2, - - -, n} throughout. The sets of all n x n real and
complex matrices are denoted by R"*" and C"*", respectively. The Hadamard product of A = (a;;) €
C™"and B = (b;j) € C"*" is defined by Ao B = (a;jb;;) € C"*". As a variant of the Hadamard
product, the Fan product of two real matrices A, B € Z,, is denoted by AxB =C = (cij) € Z,, where

o — —ajjby, if i#],
Y ﬂil‘bii/ if 1:]

The remainder of the paper is organized as follows. In Section 2, we mainly exhibit a new ‘mixed’
type bound for eigenvalues of the Hadamard and Fan products of two matrices to complement the
corresponding results. In addition, a comparison between the simple type and mixed type bounds is
given in Section 3. In Section 4, we generalize the result of the Fan product of two matrices to the case
of several matrices. Finally, some concluding remarks on further research are given in Section 5.

2. A mixed type bound for eigenvalues of the Hadamard and Fan products of two matrices

In recent years, on the problem of p(A o B) of two nonnegative matrices A and B, there exist some
rich results based on the p(A) and p(B).

e In ([8], p. 358), p(A o B) < p(A)p(B).
e Fang [6] gave an upper bound for p(A o B), i.e.,

p(AoB) < max {2a;b; + p(A)p(B) — bip(A) — aip(B) }. M

1<i<n
o Liu et al. [14] further improved the above results and obtained the following bound
p(40B) < max E{aibi + ajbj; + [(aibi — ajby;)?

) )
+4(p(A) —a;;)(p(B) — b;i) (0(A) — aj;) (o(B) — bjj)]2 }

Recently, Cheng [5] also obtained the following results! based on the row maximum non-diagonal
elements and the commutative property of Hadamard product.

Theorem 1. Let A = (a;;) and B = (b;j) be nonnegative matrices, s; = m;x{ai]-}, t = m;x{bi]-}, then
J7t J7Ft

p(AoB) <
1/2
| max 3 {ﬂiibii +abjj + [(aiibii — ajib;)” + 4kt (0(A) — a;t) (p(A) — ajp)] } , 3)
min

1/2
max 3 {ﬂiibiz‘ +ajibji + [(aiibis — ajby)” + 4sisj(0(B) — bir) (p(B) — bj;)] } :

This expression is interesting, which is called as a ‘simple’ type bound. Motivated by the above
result, one may propose the following result. Here, we call it the ‘mixed’ type one.

Theorem 2. Let A = (a;;) and B = (b;;) be nonnegative matrices, s; = m;x{ai]-}, t = m;lx{bi]-}, then
J7t J7t

p(AoB) < max; {ﬂiibii + ajibj + [(aiibi — ajibj;)?

i#]

1 4)
+4tisi(p(A) — aii) (p(B) — bj;)]? }

1 Note that there exists a little formula spelling mistake in [5].
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Proof. Itis evident that the inequality (4) holds with the equality for n = 1. Therefore, we assume that
n > 2 and divide two cases to prove this problem.

Case 1. Suppose that both A and B are irreducible. By Perron-Frobenius theorem in [8], there
exists a positive right Perron vector u = (uy,up, - - - ,uy) for any D = diag(dy,dy, - -+ ,dyn),d; > 0 such
that

(D'AD)u = p(D"*AD)u = p(A)u,
ie.,
al]d U;

du; =p(A) — a;;.

j#i
In addition, if D = diag(dq,da, - - ,dy) is just the right Perron eigenvector of the irreducible
nonnegative matrix B, then we obtain similarly that
bidou:
Y % = p(B) — bi;.
jAe T

Define U = diag(uy,uy, - - ,uy), C = (DU)~'A(DU), then we see that

d2u2 . dntin
] a1 T, 412 dyuy, Hn
1, co. dut
dZuZ 21 a22 d2u2 azn
C= )
dyig dyii .
do, Pl g, n2 Ann

is an irreducible nonnegative matrix and

dnu

a11b11 d1u1 2appby - Fotainbin

dyug duu
ap1b axpb L35,
dou, 421021 22022 du 2nb2n
CoB = (my)=| "7 =

diu dou
diu}z an1bm diui anbpp - Annbnn

Since (see [8]) (DU) ' (Ao B)(DU) = (DU)~'A(DU) o B = Co B, therefore, p(A o B) = p(C o B).
By Brauer’s theorem (see [5]) and p(A o B) > a;;b;; (see [1]), for any j # i € N, we have
(0(AoB) —a;b;i)(p(AoB)) —ajb;) < kZ, || Z‘ [mj|

diuga kb " dyjuajbj
D Fal) Dl w73
kZi iz it

dyuga; X M
< (r{lilx{bzk} Z k k k) (r?i]x{aﬂ}lgj djuj] ) (5)
< max{bu(p (A) — a;) r?;]x{aﬂ}(p(B) —bj)

tis; (P(A) - ﬂiz‘) (P(B) - bjj)~
Thus, by solving the quadratic inequality (5), we get that
p(AoB) < {aubu + ajibjj + [(aibii — ajibjj)® +4t;si(p(A) — a;;) (p(B) — bjj)]%}
< max ; {aubu + ajibj; + [(a;ibi; — ajibjj)* + 4t;s;(0(A) — a;;) (p(B) — bjj)]%}-

i.e., the conclusion (4) holds.
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Case 2. If one of A and B is reducible. We may denote by P = (p;;) the n x n permutation matrix
with
Pr2=ps3=""=Po-in=Pn1 =1
the remaining p;; zero, then both A + ¢P and B + ¢P are irreducible nonnegative matrices for any

chosen sufficiently small positive real number . Next we substitute A + P and B + ¢P for A and B,
respectively in the previous Case 1, and then letting ¢ — 0, the result (4) follows by continuity. [

Remark 1. Now, we give a comparison between the inequalities (2) and (4). According to the definitions of t;
and s, if t; +b;; < p(B) and sj +a;; < p(A) (i,j =1,--- ,n), then t;s; < (0(B) — b;;)(p(A) — aj;). Thus,
the inequality (4) is better than the inequality (2).

Example 1. ([14]). Let A and B be the following two nonnegative matrices:

4 1 0 2 1111
1 005 1 1 111 1
A=lag) = o 1 4 o5 |" BEl= 1 1 1
1 05 0 4 1111

By calculation, p(A o B) = p(A) = 5.7339 and p(B) = 4.0. Thus the result of Ref.[8] (see p.358) is that
p(AoB) < p(A)p(B) = 22.9336.

If we respectively apply (1) and (2) to them, according to [14], then

p(A0B) < max {Zaiibﬁ +p(A)p(B) — a;ip(B) — biip(A)} = 17.1017,
and
p(AoB) < max 3 {aiibii + ajibji + [(aibi; — ajjbj)?

+4(p(A) —aii) (p(B) — bii) (p(A) — aj;) (0(B) — bjj)]%} = 11.6478.

Howeuver, if Theorem 2 is used, then the following inequality can be obtained

p(AoB) < max 3 {ﬂiibii + by + [(aiibi; — ajjbj;)?

7]

+4tsi(p(A) — az) (0(B) — bj]-)]%} = 8.1897,
which shows that the bound in Theorem 2 is the best among the above bounds.

Corollary 1. If A and B are two stochastic matrices (i.e., probability matrices, transition matrices, or Markov
matrices), then
1
p(AoB) < Ig’gjx%{ﬂﬁbii + ajibjj + [(aibi; — ajjbjj)® + 4tis;(1 — a;p) (1 = by)] 2 }
< L) b 4 ab: b — ai:bii)2 — a2 (1 — b:)? 12
= T?;Z]x 7\ @iiVii + ajibj; + (aiibii ajj ]]) +4(1—a;)°(1 ii) .

Since the Fan product of two M-matrices has a lot of similar properties with the Hadamard
product of two nonnegative matrices see [2,5-9,13,14]. Note that if A is an irreducible nonsingular
M-matrix, then there also exist two positive left and right Perron eigenvectors u and v such that
T A = 1(A)v! and Au = T(A)u, respectively. Therefore, we may similarly extend the above result (4)
to the case of the Fan product of two M-matrices.
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Theorem 3. If A = (a;;) and B = (b;;) are nonsingular M-matrices, s; = m;zlx laij|, t; = m;x |bij, then
J7 J7

T(A * B) > rgzjn%{aﬁbﬁ + El]]b]] — [(aiibii — a]]b]])z

1 (6)
+4t;sj(a; — T(A))(bjj — T(B))]2 }

Proof. This proof is completely similar with the previous Theorem 2. [

3. Comparisons of the simple and mixed type bounds

Though Theorem 1 and Theorem 2 are similar, they are different in form. Next, we give a simple
comparison.

Theorem 4. Let A = (a;;) and B = (b;;) be two nonnegative matrices, if for any i # j, t;sj(0(A) —
a;;)(0(B) — bj;) # tisi(0(A) —ajj)(0(B) — bj;), then Theorem 1 is better than Theorem 2.

Proof. According to (3) and (4), for any i # j, we need only compare
max {£55(p(4) ~ 0 (p(B) — by, si(p(4) — ) (0(B) ~ bi) } == My
with
min {t;tj(p(A) — a;;)(0(A) — ajj),sisi(p(B) — bji)(o(B) — bjj) } := Sjj.
Without loss of generality, let
M;j = t;si(p(A) — a;;)(p(B) — bj;). 7)

We assume that M;; < Sj;, i.e.,

tisi(p(A) — a;;)(0(B) — bjj) < min {t;tj(0(A) —a;;)(0(A) — aj;),si5;(0(B) — bii) (0(B) — bj;) } -

Then,
0 <s(0(B) = bjj) < tj(p(A) —ajj), ®)
and
0 < ti(o(A) —a;) <si(o(B) — bj). )
Therefore,
0 < t;sj(0(A) —a;;)(o(B) — bj;) <sitj(o(B) — bii)(p(A) —aj;), (10)

which is in conflict with the previous condition (7). Thus we see that M;; > S;; for any i # j. This proof
is completed. O

By the above discussions, we see that, generally speaking, M;; > S;; forany i # jwhent;s;(o(A) —
a;i)(p(B) = bj;) # sitj(0(B) — bii)(p(A) — ajj). Next, let us consider the case of ¢;s;(p(A) — a;;)(0(B) —
bjj) = sitj(p(B) — bii) (0(A) —aj;).

Theorem 5. Let A = (a;;) and B = (b;;) be two nonnegative matrices, if for any i # j, t;s;(0(A) —
t, (B)—b;; , .
;zii)(p(B) —bjj) = tisi(p(A) —aj)(o(B) — b;;) and # = g(A)fa]]-]j’ then Theorem 2 is equivalent to Theorem
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Proof. According to the above Theorem 4, let us reconsider the relationship between M;; and Sij for
any i # j. For convenience, we define

sj(p(B) — bjj).

Obviously,
i (p(4) —a3) (6(4) — a5) = st (p(B) i) ((4) —ay) -

and
si8j(0(B) — bii) (p(B) — bj;) = t;sj(p(B) — bj;) (p(A) — a;;)w;.

Therefore, if a; # 1, then we have always M;; > S;; for any i # j under the conditions of this
G p(B)bj

si— p(A)—aj’
Theorem 2 is equivalent to Theorem 1. Thus, the proof is completed. [

theorem. However, when aj =1, 1ie,

we have M;; = §;; for any i # j. Therefore,

4. Inequalities for the Fan product of several M-matrices

In the previous sections, we mainly consider the Hadamard product of two matrices. In fact, there
exist also many of similar inequalities for the minimum eigenvalue of Fan product of two M-matrices:

e In (p.359, [8]), R.A. Horn and C.R. Johnson pointed out that
T(A*B) > T(A)T(B). (11)
¢ In 2007, Fang gave another lower bound in the Remark 3 of Ref. [6]

7(A%B) > min {biiT(A)—i—uiiT(B) —T(A)T(B)}. (12)

1<i<n

e In 2009, Liu ef al.[14] gave a sharper bound than (12), i.e.,
T(A * B) > %Iggl {aiibii + a]]b]] — [(aiibii — a]]b]])z

(13)

+4(bi — T(B)) (a5 — T(A)) (by; — T(B))(aj; — T(A)] }.

Note that the classes of M-matrices and H-matrices are both closed under the Fan product (see

Observation 5.7.2 in [8]). Therefore, we may consider the case of the product of several matrices. For

convenience, we shall continue to use notation employed previously. But, according to Ref. [8], the

definition of the function 7(+) should be extended to general matrices via the comparison matrix. The
comparison matrix M(A) = (m;;) of a given matrix A = (a;;) € C"*" is defined by

mz‘j:{ —layl, i i

laii, if i=].
Definition 1. ([8]). Forany A € R"*", t(A) := t1(M(A)), where M(A) is the comparison matrix of A.

In addition, if A = (a;;) € R™*" has nonnegative entries and « > 0, we write A = (affj) for
the ath Hadamard power of A. Moreover, we use the convention 0° = 0 to ensure continuity in a for
a >0, see [8].

In [8], it is shown by Theorem 5.7.15 that if Ay, ... Ay are n x n H-matrices and ay, &2, ..., 4, >0
satisfy Y /" ; &y > 1, then

(A oo ALy > T [t(A0])™, (14)
k=1
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where A(®) is again defined as entrywise and any scalar definition of a* such that |a%| = |a|* is allowed
(see [8]). Next, for convenience, we define

a® ifa>0
e = 15
? { —la|®, if a<0. (1)

The above theorem (14) provides a beautiful result, which encourages us to continue researching
this problem. Since for any H-matrix A, according to Definition 1, T(A) = t(M(A)). Therefore, we
need only consider the M-matrix case.

First, let us recall the following lemmas.

Lemma 1. ([11]). Let A be an irreducible nonsingular M-matrix, if AZ > kZ for a nonnegative nonzero
vector Z, then k < T(A).

Lemma 2. ([10]). Let x; = (xj(l),~ . ,xj(n))T >0,je{1,2---,m}, if P; > 0and Yl Plk > 1, then we
have
ST T < TT{ Sy}, (16)
i=1j ' i=1

Next, according to these lemmas, we generalize the inequality (12) of the Fan product of two
matrices to the Fan product of several matrices.

Theorem 6. For any positive integer Py with Y ;" , Pik >1,if Ay € My forallk € {1,2,--- ,m}, then

m
> )P — (Pe)
T(A1*Ag- - x Am) min { HAk i) k];Il A, i) — T(ASM)] k} (17)

Proof. It is quite evident that the (17) holds with the equality for n = 1. Below we assume that n > 2.

Case 1. Suppose that Ay (k € {1,2,---,m}) is irreducible, then A,({Pk) is also irreducible.
Let u,(cpk) = (up(1)%, -+, u(n)%)T > 0 be a right Perron eigenvector of A,((Pk), and u, =
(ur(1),- -+ ,ux(n))T > 0, thus for any i € N, we have

AI((Pk)uI(CPk) _ T(Al(cpk))ul(cpk)’

(uﬂwoﬂ§mmnwwoﬁ—ﬂ&mwmww
] 1

1Ak (i) e () = (A, 1) = T(AL) e (i) (1)
j#
Denote C = Ay x Ay -+ x Am, Z =ty xuy - xty = (Z(1),- -+, Z(n))T > 0, where Z(i) = TT{, uy(i).
By the Lemma 2 and (18), we get that
(€2); = (T Axi))2(0) = ( 2 TR 144 1) 20)
Eall

T A1) 2(0) = 2 TH (1A ) i)

v

T A1) 20) = TR { Z0AKG) ()™} (by the equality (15)

P

IS, Ak(i, i) =TT, [Ak(i/i)Pk - T(A;((Pk))]}i

=
(
(T Ak ) Z(0) =TT { [Ax( i) — T (AL (i)}
{ Z(i).
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According to the Lemma 1, we obtain that
m P 1
T(Arx Az x Aw) = min { [T A, i) = TT[AG, )% = ()] ).

Case 2. If one of Ay (i = 1,2, -+ ,m) is reducible. Similar to the Case 2 of the previous Theorem 2,
let P = (pij) be the nn X n permutation matrix with p12 = p23 = - -+ = py_1, = pu1 = 1, the remaining
pij zero, then Ay — €P is an irreducible nonsingular M-matrix for any chosen positive real number
e. Now we substitute Ay — eP for Ay, in the previous Case 1, and then letting ¢ — 0, the result (17)
follows by continuity. [J

Remark 2. If we take m = 2 in Theorem 6, one can obtain the following results:

e Ifp1=p2=1 A1 = A= (a;), Ao = B = (b;j), we have

T(A * B) > 11;1};1” {aiibii - (uii — T(A))(bii - T(B)) },
which is just the inequality (12).
o prl = p2 = 2, Al =A= (aij)/ Az =B = (bl]), then

7(AxB) > min {ui,-bﬁ — [ —T(Ax A)Z[B2 — T(B* B)]%}. (19)

1<i<

In addition, by using the inequalities of arithmetic and geometric means, we know that

Nl—

a>T(Bx B) + b2T(Ax A) > 2a;b;[t(A* A)T(B* B)]2,

S0 2
(a% = T(A% A)) (0] — T(B*B)) < {aiby — [t(Ax A)T(B*B)] } . (20)

Since for any A,B € My, T(A % B) > t(A)T(B) (see [14] or (11)), then, by (20), we know that

—

a;b;; — [(az-zi — T(A*A))(bz-zi —7(B* B))} 8 > [t(AxA)t(B* B)}% > 7(A)T(B).

That is, the inequality (19) is better than the inequality (11). In addition, the following example shows
that the inequality (19) is also better than the inequality (13).

Example 2. ([14]). Consider the following two 3 x 3 M-matrices:

2 -1 0 1 -025 -0.25
A= (a,-]-) = 0 1 —-0.5 , B:= (bl]) = —-0.5 1 —0.25
-05 -1 2 -025 -05 1

By direct calculation, T(A) = 0.5402, T(B) = 0.3432 and t(A * B) = 0.9377. According to Ref. [14],
the inequality (13) shows that
(A% B) > 0.7655.

If we apply (19) to them, then

7(A%B) > min {aiibii — [ — T(Ax A))2[12 — T(B* B)]%} = 0.8579,
1<i<n

which shows that our result is much closer to the exact value 0.9377.
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o Ifpr=1,p2=2,A1 = A= (a;), A2 = B = (bjj), then we get
. 1
w(AxB) > min {asbi ~[a; — T(A)][6} - T(Bx B} }. (21)

5. Concluding remarks

This paper mainly presents the relationship between the simple type [5] and the mixed type (4), which
perfects the corresponding theory. In addition, we also research the problem on the minimum eigenvalue of the
Fan product of more M-matrices and obtain several interesting results, see the inequalities (17), (20) and (21).
Since for any A € My, T(Ax A) > (t(A))?, numerical examples and some analyses show that the special
cases (e.g., (20) and (21)) of the inequality (17) improve some known results stated in this paper.

Finally, it is worthy mentioning that there also exist other products in statistics or econometrics, such as
the block Hadamard product [12], Khatri-Rao and Tracy-Singh products [15]. Are there similar results on these
products? It may be still an interesting problem.
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