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Abstract: In this paper, by extending some results of informational genomics, we present a new
randomness test based on the empirical entropy of strings and some properties of repeatability
and unrepeatability of substrings of certain lengths. We give the theoretical motivations of our
method and some experimental results of its application to a wide class of strings: decimal
representations of real numbers, roulette outcomes, logistic maps, linear congruential generators,
quantum measurements, natural language texts, and genomes. It will be evident that the evaluation of
randomness resulting from our tests does not distinguish among the different sources of randomness
(natural, or pseudo-casual).
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1. Introduction

The notion of randomness has been studied since the beginning of Probability Theory (“Ars
Conjectandi sive Stochastice” is the title of famous Bernoulli’s treatise). In time, a lot of connections
with scientific concepts were discovered, and random structures have become crucial in many fields,
from randomized algorithms to encryption methods. However, very often the lines of investigation
about randomness appear no clearly related and integrated. In the following we outline a synthesis
of the main topics and problems addressed in the scientific analysis of randomness, for a better
understanding of the approach presented in the paper.

1.1. Mathematical Definitions of Randomness

The attempts to provide mathematical definitions agreeing with the intuitive meaning of this
concept have a very long and complex history [6,19]. According to the Algorithmic Information
Theory [5,7,10,13,20,26,29] a finite string is random if it is incompressible, that is, the length of any
program generating it is always longer than the length of the string (decreased by an additive constant
independent from the length of the string). This definition opens a wide spectrum of analyses relating
randomness to computation and complexity. Algorithmic Information Theory puts in evidence a
strong link relating computation with randomness. This link was also a key point of Martin-Löf’s
approach to randomness for infinite strings [17]. In particular, a theoretical notion of statistical test was
developed by him in terms of computability theory. A sequence is defined random when it passes all
recursively enumerable tests by escaping from fulfilling any computable “peculiar” property of strings.
In this sense a random string has to be typical, or amorphous, or generic. Already Shannon, in his
famous booklet [27] founding Information Theory, used typicality in the proof of his second theorem,
by finding that when the string lengths increase the number of non-typical sequences vanishes. Just
the lack of any peculiarity of typical sequences is responsible of their incompressibility. However,
though, incompressibility and typicality represent significant achievements toward the logical analysis
of randomness, they suffer of applicability to real cases. In fact, incompressibility and typicality are
not computable properties.
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In 1872 Ludwig Boltzmann in the analysis of thermodynamic concepts inaugurated a probabilistic
perspective that is the beginning of a new course changing radically the way of considering physical
systems. The following theory of quanta developed by Max Plank [28], can be considered in the
same line of thought, and quantum theory as it was defined in years 1925-1940 [25] and in the more
recent developments [1], confirms the crucial role of probabilistic and entropic concepts in the analysis
of physical reality. According to quantum theory, what is essential in physical observations are
the probabilities of obtaining some values when physical variables are measured, that is, physical
measurement are random variables, or information sources with peculiar probability distributions,
because measurements are random processes. This short mention to quantum mechanics want to
stress the importance that randomness play in physics and in the whole science, and consequently
the relevance of randomness characterizations for the analysis of physical theories. In this paper,
we will show that Shannon entropy, related to Boltzmann’s H function [15], is a key concept in the
development of an new approach to the randomness of finite strings.

1.2. True Randomness

“True randomness” concerns with the more intuitive notion of random process as it emerges
from nature or from games, such as coin tosses, urn extractions, dices, play cards, and so on. In
physics, many phenomena have been discovered, such as Brownian motions of colloidal particles, or
measurements in quantum systems, where physical parameters are generated without any apparent
rule and with a lack of any pattern. The properties of these phenomena are considered random for
their total unpredictability, or for their chaotic behavior.

For example, let us consider a Bernoulli process [8] generated by extractions from a urn containing
the same number of white and black balls completely indistinguishable in their physical properties,
apart the color, which has no relevance in the extractions from the urn (blind extractions). If we
represent a sequence of extractions from the urn (by inserting again the extracted ball in the urn) by
means of a 0/1 sequence where 1 stands for white (success) and 0 for black (failure), then we can say
that the boolean sequence generated in a Bernoulli process is a true random sequence. In fact the
unpredictability of this process is based on the assumption that at any extraction 0 and 1 have the
same probability of occur. For analogous arguments, Brownian motions or quantum systems exploit
mathematical models that exhibit analogous kinds of statistical homogeneity. The more appropriate
term for both such kinds of randomness is “Stochasticity” (from a Greek root with the original meaning
of guess). A process where we can only guess events does imply the lack of any underlying rule, but
only ignorance or uncertainty about this rule, which we do not know because it is secret or because it is
too complex to be managed in a reliable way. This is probably the original intuition about randomness.

In stochastic processes we can define random variables (variable assuming values according to a
probability distribution) that follow normal distributions or other distributions related to the normal
one. For example, the probability of having k times 1 in a Bernoulli sequence of length n is given by a
distribution that for n very large approximates to a normal distribution. Many actual randomness tests
are based on agreement with statistical distributions [11].

1.3. Pseudo-Randomness and Deterministic Chaos

A line of research, very important from the applicative point of view, is the Theory of
pseudo-random generators that is aimed at providing deterministic algorithms generating sequences
appearing as true random sequences [11,12], with applications going from bank transaction protocols,
to Monte Carlo algorithms, or to criptography. In [11], a detailed and updated historical account of
random number generators is given. Surprisingly, the most part of investigations about mathematical
characterization of randomness (incompressibility and typicality) are unrelated with the practical
methods for producing or testing randomness.

In the second part of 20th century, within the theory of Chaos, another important class of random
processes of deterministic nature was discovered, where, despite determinism, an intrinsic kind of
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chaos was inherent in their dynamics [18]. Deterministic algorithms were found generating sequences
hardly distinguishable from true random processes. Today, many classes of deterministic chaotic
algorithms are well-known and applied in many different contexts. Chaotic Dynamics easily transform
in random strings. In fact, numbers are generated according to some number representation, therefore
there are many ways of extracting strings from these dynamics.

1.4. Empirical Randomness

In conclusion, we have mathematical randomness (incompressibility, typicality and more technical
specializations of them), true or stochastic randomness, and pseudo-randomness. But how can we
judge, in a safe way, when a given string is random according to the considered definitions? In the
line of research inaugurated in [9], there are now a great number of randomness tests [11,12,16,21,30].
Almost all of them are of statistical nature and implicitly assume the probabilistic nature of true
randomness. Therefore, a string is empirically random when it passes a given set of randomness tests.
In this case, randomness can be assessed along a spectrum of possibilities related to the number of
passed tests and on the specific measures of randomness assigned by each test. Of course, tests show a
good level of credibility only if they judge random what the other criteria qualify accordingly.

In the discussion developed so far we encountered a lot of properties that seem to be related
with the intuition of randomness (etymology of “random” is a Latin root for an asymmetric object for
hitting in a very irregular and uncontrolled way). Many other notions and subtle differences could be
considered. One of them, individuated by a pioneer in the mathematical analysis of random sequences
[4,11], is the periodicity/aperiodicity, or more generally, the repeatability/unrepeatability of proper
parts. This aspect is the key point of the analysis that we will develop in the next sections. A sequence
of m digits is k-distributed if any of the mk possible k-mers appears with the same frequency in the
long run. We say it is ∞-distributed if it is k-distributed for any k > 1. Borel [4] called normal to base m
a real number whose expansion in base m is ∞-distributed. He proved the that almost all real numbers
(with respect to the uniform measure) are normal to any base. Normality implies that any possible
substring occurs infinitely, but in an aperiodic way, therefore normal numbers are irrational.

Many are the randomness tests that are based on repetitiveness phenomena [11]. However, in this
paper we show that certain precise relationships hold between the length of strings and the lengths of
k-mers that present some specific properties of repeatability and unrepeatability. In this regard, the
values lgm n and 2 lgm n play a critical role, which can be used for evaluating the randomness of strings
of length n. Moreover, 2 lgm n has a natural interpretation in terms of Shannon’s entropy based on the
distributions of k-mers.

2. Informational indexes of strings

Given a string α over an alphabet A of m symbols, then we denote by D(α) the set of all substrings
of α and by Dk(α) the set of k-mers of α, that is, the strings of D(α) of length k. The function multα(β)

gives the number of occurrences of substring β in α. Two important classes of k-mers are repeats
and hapaxes. The k-mer β is a repeat of α if multα(β) > 1, whereas β is a hapax of α if multα(β) = 1
(the word hapax comes from a Greek root meaning once). In other words, hapaxes are unrepeatable
substrings of α.

If β is a repeat of α, then every substring of β is a repeat of α too. Analogously, if β is a hapax of α,
then every string including β as substring is a hapax of α too.

In terms of repeats and hapaxes we can define the following indexes that we call informational
indexes because they are associated to a string viewed as Information Source in the sense of Shannon’s
Information Theory. These indexes are very useful in understanding the internal structure of strings.

The index
mrl(α)
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(maximum repeat length) is the length of the longest repeats occurring in α, while

mhl(α)

(minimum hapax length)is the length of the shortest hapaxes occurring in α. Moreover,

mcl(α)

(maximum complete length) is the maximum length k such that all possible k-mers occur in α.
Indexes LG and 2LG, called Logarithmic length and Double logarithmic length are defined by the

following equations, where |α| denotes the length os string α (m is the number of different symbols
occurring in α):

LG(α) = lgm(|α|)

2LG(α) = 2 lgm(|α|).

When α is given by the context, we simply write: mcl, mhl, mrl, LG, 2LG instead of
mcl(α), mhl(α), mrl(α), LG(α), 2LG(α), respectively. The following propositions follow immediately
from the definitions above.

Proposition 1. For k > mrl all k-mer of α are hapaxes.

Proposition 2. For k < mhl all k-mer of α are repeats.

Proposition 3. For any string α, mhl ≥ mcl.

Proposition 4. For any string α of length n: Dk(α) ≤ n− k + 1 and if Dk(α) = n− k + 1, then all the
elements of Dk(α) are hapaxes of α.

Proposition 5. In any string the following inequality holds:

mcl ≤ dLGe.

By using mult we can define a probability distributions over Dk(α),by setting p(β) =

multα(β)/(|α| − k + 1). The Empirical k-Entropy of the string α is given by Shannon’s Entropy with
respect to the distribution p of k-mers occurring in α (we use the logarithm in base m for uniformity
with the following discussion):

Ek(α) = − ∑
w∈Dk(α)

p(w) lgm p(w).

It is well-known [27] that Entropy reaches its maximum for uniform probability distributions.
Therefore, when all the k-mers of a string α of length n occur with the uniform probability 1/(n− k+ 1).
This means that the following proposition holds.

Proposition 6. If all k-mers of α are hapaxes, then Ek(α) reaches its maximum value in the set of probability
distributions over Dk(α).

3. A “positive” notion of random string

It is not easy to tell when a string is a random string, but it is easy to decide when a given
string is not a true random string. A “negative” approach to string randomness could be based on a
number of conditions C1, C2, . . . each of which implies non-randomness. In this way, when a string
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does not satisfies any of such conditions, we have a good guarantee of its randomness. In a sense,
mathematical characterizations of randomness are “negative” definitions based on infinite sets of
conditions. Therefore, even if these sets are recursively enumerable, randomness cannot be effectively
stated.

Now, we formulate a principle that is a sort of Borel’s normality principle for finite strings. It
expresses a general aspect of any reasonable definition of randomness. In informal terms, at this
principle says that any substring has the same probability of occurring in a random string, and for
substring under a given length, the knowledge of any prefix of a random string does not give no
information about their occurrence in the remaining part of the string. In this sense, a random string is
a global structure where no partial knowledge is informative about the whole structure.

Principle 1 (Random Log Normality Principle (RLNP)). In any finite random string α, of length n over m
symbols, for any value of k ≤ n, all possible k-mers have the same a priori probability 1/mk of occurring at
each position i, for 1 ≤ i ≤ n− k + 1. Moreover, let us define the a posteriori probability that a k-mer occurs
at position i as the conditional probability of occurring when the prefix of α[1, i− 1] is given. Then, for any
k < 2dLGe, at each position i of α, for 1 ≤ i ≤ n− k + 1, the a posteriori probability of any k-mer occurrence
has to remain the same as its a priori probability.

The reader may wonder about the choice of the 2dLGe bound that appears in RLNP principle
stated above. It is motivated by Proposition 7 that is proved by using the first part of RLNP principle.

In the following, a string is considered to be random if it satisfies the RLNP principle. Let us
denote by RNDm,n the set of random strings of length n over m symbols, and by RND the union of
RNDm,n for n, m ∈ N:

RND =
⋃

n,m∈N
RNDm,n.

For individual strings, in general, RLNP can hold only admitting some degree of deviance from
the theoretical pure case. This means that randomness of an individual string cannot be assessed as
a 0/1 property, but rather, in terms of some measure expressing the closeness to the ideal cases (for
example the percentage of positions where RLNP fails).

According to this perspective, RLNP, may not exactly hold in the whole set RNDm,n. Nevertheless,
the subset of RNDm,n on which RLNP fails has to approximate to the empty set, or better to a set of
zero measure, as n increases. In other words, random strings are “ideal” strings by means of which
the degree of similarity to them can be considered as a “degree of membership” of individual strings
to RND. This lack of precision is the price to pay for having a “positive” characterization of string
randomness.

The following proposition states an inferior length bound for the hapaxes of a random string.

Proposition 7. For any α ∈ RNDm,n if:
k ≥ d2LGe

then all k-mers of α are hapaxes of α.

Proof. Let us consider a length k such that:

mk ≥ n− k + 1.
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According to RLNP, the probability that a k-mer occurs in α ∈ RNDm,n is given by the following
ratio (the number of available positions of k-mers is n− k + 1):

Prob(α ∈ Dk(α)) =
(n− k + 1)

mk (1)

but, if all k-mers are hapaxes in α, then their probability of occurring in α is also given by:

Prob(α ∈ Dk(α)) =
1

(n− k + 1)
(2)

then, if we equate the right members of the two equations above (1) and (2), we obtain an equation
that has to be satisfied by any length k ensuring that all k-mers occurring in α are hapaxes in α:

(n− k + 1)2 = mk (3)

that implies:

2 lgm(n− k + 1) = k. (4)

In order to evaluate the values of k, we solve the equation above by replacing k in the left member of
Equation (4) by the whole left member of Equation (4):

2 lgm(n− 2 lgm(n− k + 1) + 1) = k (5)

now, the equation (5) implies that:

2 lgm(n− 2 lgm(n)) ≤ k ≤ 2 lgm(n) (6)

but the difference between the two bounds of k is given by:

2 lgm(n)− 2 lgm(n− 2 lgm(n)) = 2 lgm
n

n− 2 lgm(n)
= 2 lgm(1 +

2 lgm n
n− 2 lgm n

)

where the right member approximates to zero as n increases. In conclusion:

k ≈ 2 lgm(n).

This means that for:
k ≥ d2 lgm(n)e = d2LGe

all k-mers of α are hapaxes, that is, d2LGe is a lower bound for all unrepeatable substrings of
α ∈ RNDm,n.

The following proposition follows as a direct consequence of previous proposition and Proposition
1.

Proposition 8. If α ∈ RND then:
mrl + 1 = d2LGe.

In conclusion we have shown that in random strings 2LG is strictly related to mrl index.

According to the proposition above the index 2LG has a clear entropic interpretation: il is the
value of k such that the empirical entropy Ek of a random string reaches its maximum value.
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We have seen that in random strings all substrings longer than d2LGe are unrepeatable, but what
about the minimum length of unrepeatable substrings? The following proposition answers to this
question, by stating a upper bound for the length of repeats in random strings

Proposition 9. If α ∈ RND then:
mhl ≤ dLGe

Proof. Let us consider k = dLGe. If some of such k-mers is a hapax, the proposition is proved.
Otherwise, if no k-mer is a hapax of α, then all k-mers of α are repeats. But, this fact is against the
Random Log Normality Principle (RLNP). Namely, in all the positions i of α such that in α[1, i] a k-mer
β occurs once (these positions necessarily exist), the a posteriori probability that β has of occurring in a
position i + 1 of α after is 1/(n− k− i), surely greater than 1/mk (where n = |α|). Hence, in positions
after i the a posteriori probability would be different from the a priori probability. In conclusion, if
α ∈ RND some hapaxes of length dLGe have to occur in α, thus necessarily mhl ≤ dLGe.

Our analysis shows that in random strings there are two bounds given by dLGe and 2dLGe.
Under the first one we have only repeatable sub-strings, while over the second one we have only
unrepeatable sub-strings. The agreement with these conditions and the degrees of deviance from them
give an indication about the randomness degree of a given string.

Figure 1. The logarithmic bounds of Randomness.

It is easy to provide examples of strings where these conditions are not satisfied, but what is
interesting to remark is that the conditions hold with a very strict approximation for strings that pass
usual randomness statistical tests, moreover for “long strings”, for example genomes, the bounds hold,
but in a very sloppy way because usually mrl + 1 is considerably greater than d2LGe and mhl − 1 is
considerably smaller that dLGe.

In our findings reported in Section 5, the best randomness was found for strings of π decimal
digits, for quantum measurements and for strings obtained by pseudo-casual generators[24]. In next
sections we discuss our experimental data about our randomness parameters.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 November 2018                   doi:10.20944/preprints201811.0357.v1

Peer-reviewed version available at Entropy 2018, 20, 934; doi:10.3390/e20120934

http://dx.doi.org/10.20944/preprints201811.0357.v1
http://dx.doi.org/10.3390/e20120934


8 of 12

4. Log Bounds Randomness Test

The Log-Bounds-Test (LBT), based on the analysis developed in the previous sections, essentially
checks , for a given string, the logarithmic bounds for its prefixes, and in the average (with the standard
deviation). We apply LBT to a wide class of strings, in order to verify if it correctly guesses the
randomness of strings traditionally judged random, and at the same time, if it does not give such an
evidence in the cases where it is not appropriate. The results confirm a discrimination capability with
a complete accordance with our expectations.

For our analyses we have taken into account different types of strings that are commonly
considered as random strings, available in public archives.

A first category of random strings is extracted from a real numbers such as π and Euler’s constant
e. In this case, the number is converted into a string over the alphabet of decimal digits, and a given
number of digits of the number e are extracted. Digits were download at https://www.angio.net/pi/
digits/pi1000000.txt and https://apod.nasa.gov/htmltest/gifcity/e.2mil.

Quantum physics generated data based on the non-determinism of photon arrival times, provide
up to 150 Mbits/s in the form of series of bytes, available at http://qrng.physik.hu-berlin.de/.

Another category of random data is given by mathematical functions that provide chaotic
dynamics, such as the logistic map with parameter in [3.8, 4].

Linear congruential generators of the form xn+1 = cxn + b generate pseudo-random numbers
[11,12] that we converted into strings of suitable alphabets of different sizes by applying discretization
mechanisms.

Another category is given by random series related to roulette spins, cards, dices, and Bernoulli
urns. In particular, we took into account 3 million consecutive roulette spins produced in the Spielbank
Wiesbaden casino, at the website https://www.roulette30.com/2014/11/free-spins-download.html.
As it is already recognized by several authors, randomness of roulette data is not true randomness,
and this was also confirmed by our findings.

For comparisons we used non-random data given by the complete works of Shakespeare available
at http://norvig.com/ngrams/shakespeare.txt. These texts were transformed in order to extract from
them only letters by discarding other symbols.

We used another comparison text given by the complete genome of the Sorangium cellulosum
bacterium, downloaded from the RefSeq/NCBI database at https://www.ncbi.nlm.nih.gov/nuccore/
NC_010162.1 (with a length of around 13 millions nucleotides).

5. Analysis of the experimental results

When the informational indexes mhl and mrl + 1 will result to coincide with LG± 1 and 2LG± 1
respectively, we consider this coincidence as a positive symptom of randomness and we will mark
this fact by writing 3on the right of the compared values (or 7in the opposite case). The more these
coincidences are found for prefixes of a string, the more the string passes our test (a more precise
evaluation could consider not only the number of coincidence, but also how much the values differ,
when they do not coincide). As tables in the next section show, Our findings agree, in a very significant
way, with the usual randomness/nonrandomness expectations. Tables are given for different categories
of strings. Informational indexes were computed by a specific platform for long string analysis [3]. In
Table 1, from 100.000 up to 30 Millions of decimal expansions of π are considered. The agreement with
our theory is almost complete, whence very high level of randomness is confirmed, with only a very
slight deviance.

Other tables are relative to decimal expansions of other real numbers: Table 2 for Euler’s constant,
Table 3 for

√
2 and Table 4 for Champernowne’s constant, a real transcendent number obtained by

a non-periodic infinite sequence of decimal digits (the concatenated decimal representations of all
natural numbers in their increasing order).It is interesting to observe that Euler’s constant and

√
2

have behaviors similar to π, whereas Champernowne’s constant has values indicating an inferior level
of randomness.
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Table 5 concerns with strings coming from the pseudo-casual Java generator (a linear congruential
generator). The randomness of these data, with respect to our indexes, is very good.

Table 6 is relative to strings generated via the logistic map. In these cases randomness is not so
clearly apparent, due to a sort of tendency to having patterns of periodical nature, which agree with
already recognized behaviors due to the limits of computer number representations [22].

Table 7 provides our indexes for quantum data [24], by showing a perfect agreement with a
random profile.

Finally, Table 9 and Table 10 are relative to a DNA bacterial genome, and to texts of natural
language (Shakespeare’s works) respectively. In these cases, as expected, our indexes of randomness
reveal low levels of randomness.

6. Conclusions

In this paper we presented an approach to randomness that extends previous results on
informational genomics (information theory applied to the analyses of genomes [2,14]), where the
analysis of random genomes was used for defining genome evolutionary complexity. A general
analysis of randomness has emerged that suggests a line of investigation where a theoretical approach
is coupled with a practical and experimental viewpoint, as required by the application of randomness
to particular situations of interest. Randomness has an intrinsic paradoxical, and at same time vague,
nature. In fact, mathematical rigorous definitions of randomness are intrinsically uncomputable, and
algorithmically testable properties are not exhaustive.

We introduced Random Log Normality Principle, which resembles Borel’s Normality [11], but it
is formulated, for finite strings, in terms of a priori and a posteriori probabilities. This principle allows us
to define two logarithmic bounds that state precise links between the length of strings and the lengths
to which specific phenomena of substring repetitiveness must or cannot hold.

A possible continuation of our investigation could be addressed to extend similar principles
and tests for finite structures, such as tree or graphs. In fact, in many applications it would be very
useful having reliable and simple tests for finite mathematical structures commonly used in data
representations.

7. Tables

n MHL dLGe Check MRL + 1 d2LGe Check
100,000 4 5 3 10 10 3

1,000,000 5 6 3 13 12 3

2,000,000 6 7 3 13 14 3

5,000,000 6 7 3 13 14 3

10,000,000 6 7 3 15 14 3

20,000,000 7 8 3 15 16 3

50,000,000 7 8 3 16 16 3

Table 1. Decimal digits of π.

n MHL dLGe Check MRL + 1 d2LGe Check
100,000 4 5 3 10 10 3

200,000 5 6 3 12 12 3

500,000 5 6 3 12 12 3

1,000,000 5 6 3 13 12 3

1,200,000 5 7 7 13 14 3

1,500,000 6 7 3 13 14 3

2,000,000 6 7 3 13 14 3

Table 2. Decimal digits of Euler’s constant e.
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n MHL dLGe Check MRL + 1 d2LGe Check
10,000 4 4 3 8 8 3

20,000 4 5 3 8 10 7

50,000 4 5 3 10 10 3

100,000 4 5 3 11 10 3

200,000 5 6 3 11 12 3

500,000 5 6 3 11 12 3

1,000,000 5 6 3 12 12 3

Table 3. Decimal digits of
√

2.

n MHL dLGe Check MRL + 1 d2LGe Check
10 1 2 3 2 3 3

100 2 2 3 3 4 3

1,000 3 3 3 6 6 3

10,000 4 4 3 9 8 3

100,000 5 5 3 12 10 7

1,000,000 5 6 3 15 12 3

10,000,000 6 7 3 18 14 7

Table 4. Decimal digits of Champernowne’s constant.

n MHL dLGe Check MRL + 1 d2LGe Check
100 2 2 3 4 4 3

1,000 3 3 3 6 6 3

10,000 4 4 3 8 8 3

100,000 4 5 3 10 10 3

1,000,000 5 6 3 12 12 3

10,000,000 6 7 3 14 14 3

Table 5. Pseudo-random decimal numbers generated by Java linear congruential generator.
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