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Abstract: In recent years, Web APIs have become a de facto standard for exchanging
machine-readable data on the Web. Despite this success though, they often fail in making resource
descriptions interoperable due to the fact that they rely on proprietary vocabularies that lack formal
semantics. The Linked Data principles similarly seek the massive publication of data on the
Web, yet with the specific goal of ensuring semantic interoperability. Given their complementary
goals, it is commonly admitted that cross-fertilization could stem from the automatic combination
of Linked Data and Web APIs. Towards this goal, in this paper we leverage the micro-service
architectural principles to define a SPARQL Micro-Service architecture, aimed at querying Web APIs
using SPARQL. A SPARQL micro-service is a lightweight SPARQL endpoint that provides access
to a small, resource-centric, virtual graph. In this context, we argue that full SPARQL Query
expressiveness can be supported efficiently without jeopardizing servers availability. Furthermore,
we demonstrate how this architecture can be used to dynamically assign dereferenceable URIs to
Web API resources that do not have URIs beforehand, thus literally “bringing” Web APIs into the
Web of Data. We believe that the emergence of an ecosystem of SPARQL micro-services published
by independent providers would enable Linked Data-based applications to easily glean pieces of
data from a wealth of distributed, scalable and reliable services. We describe a working prototype
implementation and we finally illustrate the use of SPARQL micro-services in the context of two
real-life use cases related to the biodiversity domain, developed in collaboration with the French
National Museum of Natural History.
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1. Introduction

With the advent of the Big Data era during the last fifteen years, many works have tackled the
challenge of dealing with large volumes of data produced at a high velocity (commonly known as
the first two V’s of Big Data). This has led to the emergence of new types of databases (so-called
NoSQL databases [1]) and new processing paradigms (e.g. MapReduce [2]). But volume and velocity
are just one part of the new issues that we are given to face. The dramatic proliferation of data
sources available on the Web poses an unprecedented challenge upon data integration, i.e. the
techniques involved in combining heterogeneous data residing in different systems and locations,
into a common, consistent view. This is where we have to tackle the third and fourth V’s of Big Data:
variety refers to data syntactic and semantic heterogeneity, while veracity addresses questions such
as data interpretation, bias, uncertainty, provenance and, ultimately, trust.
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Various types of interfaces can enable access to and querying of big data sets. In particular,
Web APIs have gained significant traction during the last decade, to the extent they became a de
facto standard for exchanging data on the Web. They are routinely published by Web portals and
data producers to enable HTTP-based, machine-processable access to their data. Let us illustrate
this with a few examples. As of October 2018, the ProgrammableWeb.com portal was registering over
20,000 Web APIs pertaining to topics as diverse as social networks, entertainment or finance. Many
governments around the world have set up data portals accessible through Web APIs to inventory
open data sets originating from the public sector [3]. In the biodiversity domain, data aggregators and
Natural History museums maintain specialized Web APIs giving access to billions of records about
taxonomies, occurrences and traits of biological organisms [4].

Despite their success in ensuring a relatively uniform access to resource descriptions, Web
APIs fail in making these descriptions interoperable. Indeed, they commonly rely on proprietary
vocabularies that are hardly connected with each other. More importantly, these vocabularies lack
a clear semantic description that is essential to address the variety and (to a lesser extend) veracity
issues. The Linked Data principles [5] specifically seek to address this lack. They propose to publish
data (1) in a common machine-readable format (RDF, the Resource Description Framework [6]),
(2) using shared and linked vocabularies with clearly defined semantics, (3) while linking related
resources throughout datasets. Links bring about the ability to consolidate and make sense of
disparate datasets, thus building a uniform distributed knowledge graph. Similarly to Web APIs,
large amounts of data about all sorts of topics are increasingly being published in compliance with
the Linked Data principles. As of October 2018, over 25,000 Linked Data datasets were inventoried
by LODAtlas!.

Given the complementary goals of Web APIs and Linked Data, it is commonly admitted that
cross-fertilization could stem from their mutual integration. Major initiatives such as Google’s
Knowledge Graph? or Facebook’s Open Graph® leverage these two worlds (alongside other types
of data sources) to come up with vast knowledge graphs. Strikingly enough though, standard
approaches still lack in this domain, as several issues must be overcome:

e Vocabularies: Web APIs typically rely on standard representation formats such as JSON
or XML, but how to invoke a Web API and interpret resource representations is usually
documented in Web pages meant for human readers. By contrast, Linked Data best practices [7]
advocate the use of standard protocols and common, well adopted vocabularies described in
machine-readable formats. Consequently, consuming Web API data and RDF triples alike often
leads to the development of Web API wrappers implementing bespoke vocabulary alignment.

e Resource identifiers: Web APIs commonly name resources using proprietary, internal
identifiers. The downside is that such internal identifiers do not have any meaning beyond
the scope of the Web API itself. Linked Data principles address this issue by using HTTP URIs
to identify resources. Not only URIs are unique on the Web, but they can also improve the
affordance of the resources in that they can be dereferenced to a description of the resource.
Therefore, integrating Web APIs and Linked Data requires a mechanism to associate internal
identifiers to URIs.

e Parsimony: Web APIs frequently consist of many different services (search by
name/tag/group, organize content, interact with contents, etc.). Such that providing a
Linked Data interface for all of these services may require substantial efforts, although a tiny
fraction of them may fulfill the needs of most use cases. Therefore, a more parsimonious,
on-demand approach may be more relevant.

1 LODAtlas: http:/ /lodatlas.Iri.fr/
2 https://goo.gl/BqMC21
3 http://ogp.me/
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o Suitable interface: Controversy exists with respect to the type(s) of interface(s) most suitable to
query Web APlIs in a way that allows for their integration with Linked Data. Each type of Linked
Data interface has its own benefits and concerns. RDF dumps allow in-house consumption
but do not fit in when data change at a high pace; URI dereferencing* provides subject-centric
documents hence lacking query expressiveness. At the other end of the spectrum, SPARQL [8],
the W3C recommendation to query RDF graphs, is more expressive but puts the query
processing cost solely on the server, and studies suggest that allowing clients to run arbitrary
SPARQL queries against public endpoints leads to availability issues [9]. Besides, on-the-fly
SPARQL querying of non-RDF databases proves to be difficult, as attested by the many works
on SPARQL-based access to relational [10,11] or NoSQL [12,13] databases.

In this article, we propose to harness the Semantic Web standards to enable automatic
combination of disparate resource representations coming from both Linked Data interfaces and Web
APIs. Our contribution is threefold. Firstly, we define the SPARQL Micro-Service architecture aimed at
querying Web APIs using SPARQL while assigning dereferenceable URIs to Web API resources (that
do not have URIs beforehand). Secondly, we suggest that leveragning the micro-service architectural
principles [14] could help to design more distributed and modular Linked Data-based applications.
Thirdly, we illustrate the use of SPARQL micro-services in several real-life use cases related to the
biodiversity domain.

The rest of this article is organized as follows. Section 2 introduces background elements
with respect to Web APIs and micro-service architectural principles. Sections 3 and 4 define the
SPARQL micro-service architecture, while sections 5 and 6 present our implementation and the
experimentation we have conducted. This is then complemented in section 7 with the description
of two concrete use cases in the biodiversity area. Related works are discussed in section 8 while the
last section sums up our approach and suggests future leads.

2. Background

2.1. Web APIs

Web APIs are a loosely defined category of services accessed over the Web. Since the term is used
in the literature to refer to somewhat different things, below we outline more precisely what it means
within the context of this article.

Web APIs are invoked over the HTTP /HTTPS protocols. Unlike WSDL-based Web services, they
leverage the HTTP protocol to denote actions, spawning relatively simple interfaces where service
arguments are traditionally passed as regular parameters of an HTTP query string. These APIs
are informally called REST interfaces although they are generally more “REST-like” than RESTful,
i.e. they comply with some of the REST architectural principles [15] (stateless interaction, uniform
interface) but relax others (self-contained response, resources identified with URIs, hypermedia links
to navigate resource states).

Most Web APIs use a standard representation format such as XML and JSON, thereby ensuring
a relatively uniform access to resource descriptions. These descriptions however often rely on
proprietary vocabularies typically documented in Web pages meant for software developers but
hardly machine-readable. This is a major difference with Linked Data best practices [7] that advocate
the use of common, well adopted vocabularies whose semantics is described in machine-readable
format. Some initiatives attempt to make Web APIs documentation machine-readable, such as
OpenAPI® (formerly Swagger). This description however hardly touches upon semantic concerns;

4 Dereferencing a URI consists in looking it up to retrieve a resource representation in a negotiated media type such as one of

the RDF serialization syntaxes.
5 OpenAPI: https:/ / github.com/OAI/OpenAPI-Specification
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it mostly consists of a syntactic description of the operations supported by the interface, and aims to
automate the generation of client-side and server-side code. In this respect, OpenAPI is no different
from what WSDL allowed to do. By contrast, smartAPI [16] extends OpenAPI with an extensive set
of metadata, but the link with vocabularies and ontologies from the Web of Data is still to be defined.

2.2. Micro-Service Architectures

The term micro-service, also called fine-grained SOA, refers to an architectural style where an
application consists of a collection of services that are fine-grained (designed to fulfill a single
function), loosely coupled and independently deployable [14]. There is no standard definition
of micro-services at this point, however a consensus is emerging about commonly agreed upon
principles [17,18]. For instance, a proposition rewords these principles by stating that micro-services
should be elastic, resilient, composable, minimal and complete®. Compared to traditional monolithic
applications, the micro-service architectural style improves modularity by making applications
easier to develop, maintain and test. Development teams are typically geared towards continuous
refactoring, delivery and deployment of the services they are responsible for, independently of other
teams and services. Instead of being constrained to use specific technologies, each team picks the
programming language(s), software stacks and other third-party technologies that it deems most
appropriate for a specific service, hence giving rise to polyglot applications.

Micro-services have been increasingly adopted during the last seven years, not only by major
Web companies who inspired this architecture, but also by many other companies that need to
speed up their development and deployment processes. Micro-services are often associated with
lightweight container technologies such as the popular Docker’. These technologies can underpin
the quick and elastic deployment of applications by enabling on-demand scaling up or down of the
micro-services.

Like any architecture style, the experience shows that micro-services have pitfalls of their own®.
For instance, figuring out the right functional scope of a micro-service so as to keep it minimal and
complete is critical in many aspects. With “too minimal” micro-services, an application may soon
consist of several hundreds of micro-services, far from the intuitive idea of “easily maintainable”.
Furthermore, insofar as complex services are achieved by composing multiple micro-services, “too
minimal” services tend to entail complex dependency networks that, again, cause maintainability
issues.

Still, despite these downsides, we argue that leveraging micro-service principles may help
in the design of distributed, modular Linked Data-based applications structured as a collection
of lightweight, loosely-coupled services. These services would typically be RDF stores, URI
dereferencing services, SPARQL endpoints, Linked Data Platform [19] services etc. The SPARQL
micro-service architecture is a proposition towards this goal.

3. The SPARQL Micro-Service Architecture

3.1. Definition

A SPARQL micro-service S, is a wrapper of a service Sy, of a Web API, that allows querying Sy,
using SPARQL. S, behaves as a regular SPARQL endpoint insofar as it supports the SPARQL Query
Language [8] (including all query forms: SELECT, ASK, CONSTRUCT, DESCRIBE) and the SPARQL
Protocol [20]. Accordingly, a client invokes S, over HTTP/HTTPS by passing a SPARQL query Q
and optional default and named graph URIs (arguments default-graph-uri and named-graph-uri). In

6 https:/ /www.nirmata.com/2015/02/02/microservices-five-architectural-constraints /

7 https:/ /www.docker.com/
8 https:/ /www.infoq.com/news/2014 /08 /failing-microservices
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addition, S, accepts a possibly empty set Argy, of arguments that are specific to the service being
wrapped. In turn, S, invokes S, with the arguments in Argy, and produces a SPARQL result set that
matches Q. Figure 1 illustrates this architecture.

SPARQL
Client SPARQL query:

http://example.org/sparql?query=SELECT...&param1=valuel
k
response SPARQL
http://webapi.org?paraml=valuel&param2=value2 &...

Micro-Service
I'ESPOI'LSE!

Web API

Figure 1. Architecture of a SPARQL micro-service with one argument passed in the query string

How Argy is passed to the micro-service S, is implementation-dependent. The
implementation we describe in section 5 passes the arguments as parameters of the HTTP
query string. Thus, while the URL of a regular SPARQL endpoint is of the form
“http:/ /example.org/sparql”, a SPARQL micro-service is invoked with additional parameters,
like “http://example.org/sparql?paraml=valuel”. Likewise, how the Web API's response is
transformed into a SPARQL result set matching Q is implementation-dependent. In the context of
JSON-based Web APIs, our implementation applies a JSON-LD profile to the Web API response and
executes an optional SPARQL query to yield additional triples. Various other methods may be used
at this point, involving e.g. different flavors of mapping, reasoning or rule processing.

The semantics of a SPARQL micro-service differs from that of a standard SPARQL endpoint
insofar as the SPARQL protocol treats a service URL as a black box, i.e. it does not identify nor
interprets URL parameters in any way. By contrast, a SPARQL micro-service can be thought of as
a configurable SPARQL endpoint whose arguments (Argy) delineate the virtual graph that is being
queried. Consequently, each pair (S, Argy) is a standard SPARQL endpoint.

As we see it, a SPARQL micro-service provides access to a small, resource-centric, virtual graph
that corresponds to a small fragment of the whole dataset served by the Web API. This graph is shaped
by (i) the Web API service that is wrapped by the micro-service; (ii) the set of arguments Argy; and
(iii) the types of RDF triples that the micro-service is designed to produce.

With regards to the micro-service architectural principles, we think of SPARQL micro-services
as lightweight, independent software units being developed along with the arising of needs. A
micro-service development team focuses on one Web API at a time, defines how to wrap the services
of interest for clearly identified use cases, tests and deploys the micro-services. Using a container
infrastructure like Docker, each micro-service is deployed within a dedicated container that can scale
up or down automatically in response to changes in the workload.

3.2. SPARQL Micro-Services as a Linked Data Fragments Interface

The Linked Data Fragments [21] framework provides a tool to analyze and compare different
Linked Data query interfaces. A response to a query against such an interface is called a Linked Data
Fragment (LDF). Different types of LDF can be sorted by the granularity of their querying mechanism,
as depicted on Figure 2: on the left hand-side, querying consists of a mere download operation
and clients bear the full cost of evaluating queries against RDF dumps; on the right hand-side,
SPARQL enables expressing specific queries but endpoints fully bear the evaluation cost. Between
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these two extremes lies a spectrum of intermediate approaches. A Linked Data document results
from a URI dereferencing. A Triple Pattern Fragment [21] (TPF) results from evaluating a single
triple pattern against an RDF dataset. The TPF approach succeeds in balancing the query evaluation
cost between the client and the server, thereby ensuring better server availability than full-fledged
SPARQL endpoints, at the cost of a loss of efficiency. SaGe [22] mitigates this issue with a modification
of the SPARQL protocol. A SaGe server can interrupt the processing of a SPARQL query and send
back to the client the current results alongside the information needed by the server to carry on
processing during a subsequent invocation.

RDF Linked Data Triple Pattern SaGe SPARQL Micro SPARQL

dump Document Fragments result Service result result
ol | | | | L
More generic reqiests More specific requests
Higher client cost Lozwer client cost
Lower server cost Higher server cost

Figure 2. Granularity of different types of Linked Data Fragments

We see SPARQL micro-services as an alternative Linked Data Fragment interface. A SPARQL
micro-service S, provides access to a virtual graph that corresponds to a fragment of the dataset
served by the Web API. By designing it carefully, we can ensure that S, will yield small (typically
resource-centric) virtual graphs. In this context, virtually any query can be processed at low cost. In
other words, full SPARQL Query expressiveness can be supported without jeopardizing the service
availability. Consequently, in Figure 2, SPARQL micro-service results stand nearby SPARQL results
since SPARQL micro-services allow requests as specific (expressive) as SPARQL, and to the right of
SaGe results since they do not put any additional processing cost on the client.

3.3. Caching Strategy

Querying Web APIs is often a time-consuming task, as suggested by the measures we report
in section 6. Thus, when possible, defining caching strategies may be necessary to achieve the
performance expected by some applications. There typically exist many syntactical variants of the
same SPARQL query, hence classic HTTP proxy servers set up between SPARQL clients and servers
fail to reach efficient cache reuse. By contrast, Web API queries allow a lesser syntactical variability.
Therefore, in the context of SPARQL micro-services, enforcing a cache strategy on the Web API side
should ensure better cache reuse. Typically, Web API queries could be used to index either the Web
APl responses or the temporary graphs produced from them.

Furthermore, some Web APIs provide data expiration information (such as the Expires,
Cache-Control and/or Last-Modified HTTP headers) on which a caching system can rely to figure
out a caching strategy. When no such information is provided, a SPARQL micro-service may
authoritatively decide on an appropriate expiration period depending on the type of service being
wrapped.

3.4. Example

Let S;, be a service of Flickr’s Web API”, that retrieves photos posted in a specific Flickr group
and having a specific tag!?. Arg, (the arguments of S;,) comprises two arguments, group_id and tags.

9 https:/ /www.flickr.com/services/api/

10 https:/ /www.flickr.com/services/api/ flickr.groups.pools.getPhotos.html
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https://api.flickr.com/services/rest/?
method=flickr.groups.pools.getPhotos&format=json&per_page=500&
group_id=350343507430N01&tags=taxonomy:binomial=Delphinus+delphis
{ "photos": {
"page": 1, "pages'": "15",
"photo": [
{ "id": "31173091406", "title": "Delphinus delphis 5 (13-7-16 San Diego)",
"owner": "10770266@N04", "ownername": "Barbol",
"secret": "8c7437e970", "server": "5718", "farm": 6 }

1

Listing 1: Invocation of a Flickr’s Web API service (top) and snippet of the JSON response (bottom).

PREFIX s: <http://schema.org/>

<http://example.org/ld/flickr/photo/31173091626>
a s:Photograph;
:name "Delphinus delphis 5 (13-7-16 San Diego)";
:image <https://farm6.staticflickr.com/5718/31173091626_88c410c3f2_z.jpg>;
:mainEntity0fPage <https://flickr.com/photos/10770266@N04/31173091626>;
:author [
s :name "Barbol";
s:url <https://flickr.com/photos/10770266@N04>
1.

Listing 2: Example of RDF graph representing the Web API response in Listing 1, in the Turtle
syntax [24].

Let S, be a SPARQL micro-service that wraps S;, and takes its arguments as parameters on the HTTP
query string.

A client wants to retrieve the URLs of photos of dolphins, posted to the Encyclopedia of
Life Images group'! wherein photos are tagged with the species scientific name formatted as
“taxonomy:binomial=<scientific name>". To do so, the client may execute the SPARQL query below
against any SPARQL 1.1 endpoint, in which the SERVICE clause invokes S;, while passing the group_id
and tags arguments:

PREFIX s: <http://schema.org/>
SELECT * WHERE {
SERVICE <http://example.org/flickr/getPhotosByGroupByTag? \
group_id=8069270@N20&tags=taxonomy:binomial=Delphinus+delphis>
{ SELECT ?7img WHERE { ?photo s:image ?7img. } }
}

Sy invokes Flickr’s Web API Sy, with the arguments in Arg; in addition to technical arguments
required by the Web APIL Listing 1 shows the invocation URL (top) and sketches a snippet of the
response (bottom). S, translates this response into an RDF graph G such as the one depicted in
Listing 2. Remember that how this translation is carried out is implementation-dependent. Finally,
Sy evaluates the client’s SPARQL query against G and returns the response in one of the media types
supported by the SPARQL client (following a regular content negotiation [23]).

1 https:/ /www.flickr.com/groups/806927@N20
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4. Assigning URIs to Web API Resources

Web APIs often provide resource descriptions that rely on internal, proprietary identifiers. For
instance, Listing 1 mentions the photo identifier “31173091406” that has no meaning beyond the scope
of Flickr’s Web API. One may argue that the URL of this photo’s Web page could serve as a URI, but
this would just approve a questionable practice that confuses a resource (a photographic work in this
case) with an HTML representation thereof.

Therefore, bridging Web APIs and Linked Data not only requires to enable SPARQL querying
of Web APIs, but also to dynamically create URIs that identify Web API resources. Furthermore,
according to Linked Data best practices [7], it should be possible to look up these URIs in order to
retrieve a description of the resources in a negotiated media type. Conventionally, dereferencing a
URI returns a set of RDF triples where the URI is either in the subject or object position. This is
typically achieved through a CONSTRUCT or DESCRIBE SPARQL query form.

URI dereferencing can be implemented in a rather straightforward manner with SPARQL
micro-services. First, we need to decide on the domain name and URIs scheme. Following up
on the example in section 3, we may define the URI scheme of Flickr photographic resources as
“http:/ /example.org/ld/flickr /photo/<photo_id>". Second, we need to set up a Web server to deal
with this URI scheme. When the Web server receives a look-up for a URI that matches the scheme,
it rewrites the URI into a query string to invoke the relevant SPARQL micro-service. Technically, the
Web server acts as a reverse proxy: it queries the SPARQL micro-service and transparently proxies
the response back to the client. Figure 3 sketches this architecture.

This way, by smartly designing SPARQL micro-services, we can build a consistent ecosystem
where some micro-services respond to SPARQL queries by translating Web API internal identifiers
into URIs, while some micro-services (possibly the same) are able to dereference these URISs.

Linked Data »  Web Server » SPARQL
Client T (URIrewriting) Micro-Service [* Web AP1
dereferencing

Figure 3. URI dereferencing: a Web server rewrites a URI look-up query into a query to the relevant
SPARQL micro-service.

Example. Let us assume that the getPhotoByld SPARQL micro-service retrieves photos by
their Flickr identifier (argument photo_id). When the Web server receives a look-up query for
URI “http:/ /example.org/1d/flickr /photo /38427227466, it invokes getPhotoByld with the following
inputs: (i) the photo identifier passed as argument photo_id; (ii) a SPARQL query to retrieve a
graph representing the resource, typically a DESCRIBE query on the URI being looked up; (iii) the
Accept HTTP header from the look-up query, so that content negotiation be achieved end-to-end.
An invocation URL is exemplified below (using the SPARQL’s query via GET method, yet the POST
methods can be utilized alike [20]):

http://example.org/flickr/getPhotosById?
photo_id=38427227466&
query=DESCRIBE\’%20\%3Chttp\%3A\/%2F\/2Fexample.org\%2F1d \
\%2Fflickr\%2Fphoto\%2F38427227466\%3E

The Web server finally proxies the response back to the client in one of the negotiated media types.

If the SPARQL query is more verbose that in the example above (e.g. a large CONSTRUCT
query), the Web server rewriting configuration may become cumbersome and more difficult to
maintain. The implementation described in section 5 mitigates this issue by allowing each
micro-service to provide a CONSTRUCT query that shall be used to produce the answer to the URI
dereferencing query.
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SPARQL Micro-Service HTTP
1) (2) query
SPARQL Client < > Service Logj(js B »  Web API
“) T (3) JSON
I‘E'SpOIlSE'

Lo {1}
Triple ~ SPARQL  JSON-LD
store INSERT Profile

Figure 4. Prototype implementation of SPARQL micro-services. A JSON-LD profile interprets the
Web API JSON response as a temporary graph G stored in the local RDF triple store. An INSERT
query optionally augments G with RDF triples that JSON-LD cannot yield. Lastly, the client’s query
is evaluated against G.

5. Implementation

To evaluate the architecture proposed in section 3, we have developed a prototype
implementation written in the PHP language and available on Github!? under the Apache 2.0 license.
This prototype targets Web APIs able to return a JSON response. This pragmatic choice stems from
the fact that most modern Web APIs support JSON. Nevertheless, it would be easy to extend the
prototype with respect to other formats such as XML. Also, the prototype requires that the arguments
Argy of a micro-service S, be passed as parameters on the HTTP query string (as exemplified in
section 3.4). Alternative to this choice are discussed in section 5.4.

5.1. Processing SPARQL queries

A SPARQL micro-service evaluates a query against an RDF graph built at run-time from data
obtained from the Web APL The steps involved in this evaluation are depicted in Figure 4, and we
describe them further on in Algorithm 1 (the algorithm’s step numbers match those in Figure 1).

Algorithm 1 Evaluation of a SPARQL query by a SPARQL micro-service S,.

1. Sy receives a SPARQL query Q along with the arguments in Argy.

2. Sy invokes the Web API service with the arguments in Argy along with other parameters
possibly required by the Web API.

3. Sy translates the Web API response (formatted in JSON) into an RDF graph: first, it applies a
JSON-LD profile to the response and loads the resulting graph G into a triple store; then, it runs
an optional SPARQL INSERT query that enriches G with additional triples.

4. S, evaluates Q against G and returns the result to the client.

Example. To illustrate this algorithm, we follow up on the example introduced in section 3.4.
Steps 1 and 2 are as exemplified in Listing 1. In step 3, let us assume that the getPhotosByGroupByTag
micro-service provides the JSON-LD profile below, that turns each JSON field name into an ad
hoc RDF predicate within name space “http://sms.i3s.unice.fr/schema/” (note that any arbitrary
complex profile may be used at this point):

{ "Q@context": {

"@vocab": "http://sms.i3s.unice.fr/schema/"
13

12 https:/ /github.com/frmichel /sparql-micro-service/tree/0.1.0/


https://github.com/frmichel/sparql-micro-service/tree/0.1.0/
http://dx.doi.org/10.20944/preprints201811.0337.v1
http://dx.doi.org/10.3390/info9120310

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2018 d0i:10.20944/preprints201811.0337.v1

10 of 27

PREFIX api: <http://sms.i3s.unice.fr/schema/>
PREFIX s: <http://schema.org/>

INSERT {
?photoUri a s:Photograph;
s:name 7title;
s:image 7img
s:mainEntity0fPage 7page;
s:author [ s:name 7authorName; s:url 7authorUrl ].

}
WHERE {
?photo api:id 7id; api:secret 7secret;
api:server 7server; api:farm 7farm;
api:title 7title; api:owner 7owner; api:ownername 7authorName.
BIND (IRI(concat ("http://example.org/ld/flickr/photo/", 7id)) AS 7photoUri)
BIND (IRI(concat ("https://flickr.com/photos/", 7owner, "/", 7id)) AS 7?page)
BIND (IRI(concat ("https://flickr.com/photos/", 7owner)) AS 7authorUrl)
BIND (IRI(concat ("https://farm", 7farm, ".staticflickr.com/",
?server, "/", ?7id, "_", 7secret, "_z.jpg")) AS 7img)
}

Listing 3: Insertion of RDF triples based on well-adopted vocabularies (Schema.org, FOAF, Dublin
Core).

The resulting graph G is temporarily stored in the local triple store. It exhibits proprietary,
technical predicates such as servers and farms identifiers, that are likely irrelevant for a Linked
Data representation. The Flickr API documentation describes how to reconstruct photos and user
pages URLs from these fields, but this involves the concatenation of values from distinct fields, that
JSON-LD is typically not expressive enough to describe. Therefore, the micro-service provides an
INSERT query shown in Listing 3, that augments G with triples based on the Schema.org vocabulary.
Listing 4 shows the graph obtained after completing both steps. The two blank nodes correspond to
the application of the JSON-LD profile, while the other triples result of executing the INSERT query.

Finally, the client’s SPARQL query is evaluated against G and the response is returned to the
client. In the example, it consists of a solution binding for variable ?img, presented below in the
SPARQL Results JSON format [25]:

{ "head": {

"vars": [ "img" 1 %},

"results": {

"bindings": [

{ "img": {
"type": "uri",
"value":
"https://farm6.staticflickr.com/5718/31173091626_88c410c3f2_z. jpg" }

113

5.2. URIs dereferencing

In the URIs dereferencing solution portrayed in section 4, the Web server’s URL rewriting
engine appends a SPARQL query to the SPARQL micro-service invocation. While this can easily be
maintained when the query consists of a simple “DESCRIBE <uri>", some use cases require richer
CONSTRUCT queries to produce various triples. Since the query must be URL-encoded, this method
may become cumbersome and difficult to maintain.
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PREFIX api: <http://sms.i3s.unice.fr/schema/>
PREFIX s: <http://schema.org/>
_:b123
api:page 1; api:pages 15;
api:photo _:b456.
_:b456
api:id "31173091406"; api:title "Delphinus delphis 5 (13-7-16 San Diego)";
api:owner "10770266@N04"; api:ownername "BioDivLibrary";

api:secret "8c7437e970"; api:server "5718"; api:farm 6.

<http://example.org/ld/flickr/photo/31173091626>
a s:Photograph;
s:name "Delphinus delphis 5 (13-7-16 San Diego)";
s:image <https://farm6.staticflickr.com/5718/31173091626_88c410c3f2_z.jpg>;
s:mainEntity0fPage <https://flickr.com/photos/10770266@N04/31173091626>;
s:author [
s:name "Barbol";
s:url <https://flickr.com/photos/10770266@N04>
1.

Listing 4: RDF graph produced from the Web API response in Listing 1 by applying successively a
JSON-LD profile and the INSERT query in Listing 3.

To cope with this issue, our prototype proposes a more flexible and maintainable alternative:
each micro-service may provide a CONSTRUCT query that shall be used to answer a URI
dereferencing query. In addition, a micro-service checks an optional parameter query_mode whose
values may be sparql (the default value) or Id. The latter instructs the micro-service to ignore any
SPARQL query passed as parameter and instead return the result of the CONSTRUCT query.

For instance, when a client looks up URI “http:/ /example.org/1d/flickr/photo/38427227466",
the Web server rewrites this into an invocation to the appropriate micro-service, for instance:

http://example.org/flickr/getPhotosById?photo_id=38427227466&query_mode=1d

5.3. Deployment

Deploying a new SPARQL micro-service. Within our prototype, deploying a new SPARQL
micro-service simply consists of provisioning four files among which two are optional:

e config.ini: a configuration file that declares the arguments expected by the micro-service and the
Web API invocation query string.

o profile.jsonld: the JSON-LD profile used to interpret the Web API response as an RDF graph;

o insert.sparql (optional): used to augment the graph with additional triples;

o construct.sparql (optional): used to produce the response to URI dereferencing queries.

In our experience, deploying a new SPARQL micro-service is a matter of just a few hours. The
most time-consuming tasks lie in reading the Web API documentation and deciding on the mapping
towards domain vocabularies. Thence, a developer defines the API query string and the arguments
passed to the SPARQL micro-service. Lastly, she writes the [SON-LD profile and the optional INSERT
and CONSTRUCT queries that carry out the mappings.
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If a Web API requires specific actions that cannot be described using the config.ini configuration
file (e.g. intermediate query, authentication process), the developer can customize a simple script'?,
allowing for more flexibility.

Caching Strategy. Querying Web APIs typically takes in the order of 0.5 to 1 second. Therefore,
when a SPARQL query invokes several SPARQL micro-services in sequence, the overall time it takes
to consolidate the results may be quite long. To improve performances, we enforce a simple cache
strategy where each Web API response is stored in a cache database, indexed with a hash of the Web
API query, and annotated with an expiration period that can be configured on a per-micro-service
basis. Our live deployment utilizes the MongoDB document store as a cache database, yet using any
other database may be achieved with little changes.

Docker Deployment. In addition to the code available on Github, we have created a Docker
image published on Docker hub!*: it provides an Apache Web server configured with the SPARQL
micro-services described in section 6. Note that, for the sake of simplicity, we have defined a
single image hosting several micro-services. Nevertheless, more in line with common micro-service
practices, it would make sense to define one image per service, enabling the independent deployment
of each service. As instructed in the Github README, a single command is sufficient to deploy this
image on a Docker server. The deployment comes along with two more images: the Corese-KGRAM
in-memory triple store [26] used to store temporary RDF graphs, and the MongoDB database used as
a cache for previously executed Web API queries.

5.4. Discussion

In this implementation, a design decision is to pass the arguments of Argy to S;, as parameters of
the HTTP query string. Arguably, other solutions may be adopted. Below we discuss the respective
benefits and drawbacks of some alternatives we identified.

A first alternative consists in defining one predicate for each argument, e.g. api:group_id and
api:tags below:

PREFIX api: <http://sms.i3s.unice.fr/schema/>
PREFIX s: <http://schema.org/>
SELECT 7img WHERE {
SERVICE <http://example.org/flickr/getPhotosByGroupByTag>
{ ?photo s:image 7img;
api:group_id "806927@N20";

api:tags "taxonomy:binomial=Delphinus+delphis".

}

At a first sight, making the arguments explicit can seem compelling since they can be used in other
triples of the graph pattern. Besides, such a SPARQL micro-service is a standard SPARQL endpoint
since there is no more variable part in the service endpoint URL. Several concerns should be pointed
out however. (i) This solution requires that each SPARQL micro-service be defined along with its
own bespoke terms, whereas we seek a solution wherein only terms of well-adopted vocabularies
would be exposed. (ii) In this example, the group_id and tags arguments are meaningful for the
end user. But some services may require more technical arguments that we typically do not want
to define as ontological terms. (iii) Furthermore, this solution questions the nature of the subject to
which the arguments are associated. Again, in this specific example, declaring the group_id and
tags as properties of the photographic resource 7photo is an acceptable choice, but this would be
inappropriate with internal or technical service parameters.

13 https://github.com/frmichel /spargl-micro-service/tree/0.1.0/src/sparqlms/manual_config_example/service.php

14 https:/ /hub.docker.com/u/frmichel/
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This issue can be solved by associating the arguments to a separate resource depicting the service
itself. This is exemplified in the second alternative that, furthermore, defines a vocabulary to pass the
arguments in a uniform manner. Note that existing vocabularies may be tapped for that matter,
such as Hydra [27] or the Schema.org actions vocabulary!®. In the example below, additional triple
patterns define an instance of the hypothetical api: Service class, that takes arguments declared with
the api:param predicate.

SELECT 7img WHERE {
SERVICE <http://example.org/flickr/getPhotosByGroupByTag>

{ ?photo s:image 7img.

[] a api:Service;
api:param [ api:name "group_id"; api:value "806927@N20" 1];
api:param [ api:name "tags"; api:value 7tag 1].

}

A slight variation could state that the service URL itself is an instance of api:Service; the arguments
would then configure an execution of this service with predicate api:execution, e.g.:

<http://example.org/flickr/getPhotosByGroupByTag>
a api:Service;
api:execution [
api:param [ api:name "group_id"; api:value "806927@N20" ];
api:param [ api:name "tags"; api:value 7tag 1].

1.

While these alternatives avoid defining new predicates for each micro-service, the additional triples
bear a somewhat artificial semantics: they provide the service with information as to how to process
the other parts of the graph pattern, but they do not actually refer to nor describe the photographic
resources that the graph pattern aims to match.

In a third alternative, the service arguments are passed as SPARQL variables with pre-defined
names, e.g. 7group_id and 7tags in the example below:

SELECT 7img WHERE {
SERVICE <http://example.org/flickr/getPhotosByGroupByTag>
{ 7?photo s:image 7img.

BIND ("806927@N20" AS 7group_id)
BIND ("taxonomy:binomial=Delphinus+delphis" AS 7tags)

}

Similarly to the previous alternative, variables ?group_id and 7tags are somewhat artificial insofar
as they provide the service with information as to how to process the other parts of the graph pattern.

The solution proposed in this article is a trade-off meant to satisfy certain goals. Above, we have
discussed some alternative solutions, and others may probably be figured out. We believe that further
discussions should be engaged to assess the benefits and concerns of these alternatives with respect
to the contexts and goals.

6. Experimentation

To evaluate the effectiveness and efficiency of our approach, we conducted a series of tests
related to the biodiversity domain. We wrote several SPARQL micro-services to wrap Web APIs

15 Schema.org actions: https:/ /schema.org/docs /actions.html


https://schema.org/docs/actions.html
http://dx.doi.org/10.20944/preprints201811.0337.v1
http://dx.doi.org/10.3390/info9120310

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2018 d0i:10.20944/preprints201811.0337.v1

14 of 27

providing various kinds of information about living species (all the services mentioned in this section
are available on the project’s Github repository):

1. bhl/getArticlesByTaxon retrieves scientific articles mentioning a given species name from the
Biodiversity Heritage Library (BHL)'°.

2. flickr/getPhotosByGroupByIng, already described in section 3, is used to search the Encyclopedia
of Life Images Flickr group!” for photos of a given species. Photos of this group are tagged with
the scientific name of the species they represent, formatted as “taxonomy:binomial=<scientific
name>".

3. macaulaylibrary/get AudioByld retrieves audio recordings for a given species identifier from
the Macaulay Library'®, a scientific media archive related to birds, amphibians, fishes and
mammals.

4. musicbrainz/getSongByName searches the MusicBrainz music information encyclopedia!® for
music tunes whose title match a given name with a minimum confidence of 90%.

Test Environment. The tests were performed on a CentOS Linux 7.5 server running on a
virtual machine equipped with 4 CPU cores and 32 GB of RAM. The SPARQL micro-services were
served by an Apache 2.4 Web server. The server also hosted two additional services required for
the experimentation: the Corese-KGRAM RDF triple store used to store temporary graphs and the
MongoDB document store used as a cache database.

6.1. Performance of individual SPARQL Micro-Services

Each SPARQL micro-service was individually invoked using the curl command. The point was
always the same: retrieve information about the common dolphin species (Delphinus delphis). The
SPARQL query passed to the service was simply meant to retrieve all the triples generated during the
execution: CONSTRUCT WHERE 7s ?p 7o. During each invocation, a metrology service implemented
in the SPARQL micro-service carried out two measures: (i) the time it takes to execute solely the
Web API query, and (ii) the time it takes to complete the SPARQL micro-service invocation (the latter
encompasses the earlier).

Table 1 reports the execution time for each SPARQL micro-service with no cache, averaged over
ten runs. Figure 5 depicts the same measures in a more synthetic way. Column “Triples produced” of
Table 1 gives the number of triples generated by applying subsequently the JSON-LD profile to the
API response and the optional INSERT query (to spawn additional triples). It is interesting to notice
that the overhead imposed by the SPARQL micro-service (in orange in Figure 5) always remains low,
ranging from 25ms to 80ms. It accounts for 4.11% of the total time for Macaulay library’s API to 25.5%
for MusicBrainz’s API which is by far the fastest of the four APIs.

We then performed a second run of the same queries using the cache database. The cache
expiration duration was set to several days and a warm-up run was executed to ensure systematic
cache hits. Table 2 reports the execution time for each SPARQL micro-service without and with cache,
and the last column gives the percentage of time reduction obtained when using the cache. Not
surprisingly, the reduction is substantial since there is no more invocation of the Web APIs, only a
document fetch operation from the local MongoDB database. The reduction ranges from 31.7% for
MusicBrainz” API to 91.5% for Macaulay Library’s API. Figure 6 depicts the same measures where
the orange part represents the SPARQL micro-service execution with a cache database, while the blue
part represents the additional time taken by the cacheless execution.

16 http:/ /biodiversitylibrary.org/

17" https:/ /www.flickr.com/ groups/806927@N20
https:/ /www.macaulaylibrary.org/

https:/ /musicbrainz.org/
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Table 1. Cache-less query execution time (in seconds) against a SPARQL micro-service. The last
column is the overhead (in %) imposed by the SPARQL micro-service compared to a direct Web API

query.

Triples SPAR.QL Web API Overhead
Web API y-service . Overhead
produced . exec. time (percentage)
exec. time
Biodiversity | 1151 | 950 + 0,049 | 0.870 £ 0.048 | 0.080 £ 0.004 | 9.24% + 0.44
Heritage Lib.
Flickr 336 0.607 + 0.039 | 0.564 £+ 0.039 | 0.044 4+ 0.008 | 7.74% + 1.45
Macaulay 87 0.642 4 0.050 | 0.617 £ 0.005 | 0.025 == 0.004 | 4.11% = 0.07
Library
MusicBrainz 1160 0.391 £ 0.011 | 0.312 & 0.009 | 0.079 £ 0.004 | 25.5% 4+ 1.22
11
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2 08 B SPARQL
o 0,7 u-service
.E 0,6 — ] overhead
S 05 Web API
g o =
3]
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= 0.2
g
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Figure 5. Overhead imposed by a SPARQL micro-service invocation as compared to a direct Web API

invocation.

Table 2. Query execution time (in seconds) against a SPARQL micro-service without/with cache. The

last column is the percentage of time reduction obtained when using the cache.

SPARQL pi-service SPARQL poservice | oo 4 ction
Web API exec. time exec. time (percentage)
without cache with cache p 8
Biodiversity 0.950 + 0.048 0.264 + 0.015 72.3%
Heritage Lib.
Flickr 0.607 £ 0.039 0.080 4 0.012 86.9%
Macaulay 0.642 + 0.050 0.547 + 0.010 91.5%
Library
MusicBrainz 0.391 £+ 0.011 0.267 £+ 0.027 31.7%
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Figure 6. Impact of a cache database on the query execution time (in seconds) against a SPARQL

micro-service.

6.2. Performance when Invoking Multiple SPARQL Micro-Services

After comparing the performance of individual SPARQL micro-services with the performance of
the Web APIs they wrap, we designed more realistic tests aimed to gather information simultaneously
from several SPARQL micro-services. In particular, we wrote a SPARQL query that invokes the
four SPARQL micro-services introduced above within dedicated SERVICE clauses. It retrieves 7
articles from BHL, 15 photos from Flickr, 27 audio recordings from the Macaulay Library and 1
music tune from MusicBrainz. We evaluated the query against two SPARQL engines: the standalone
Corese-KGRAM v4.0.1 triple store that embeds a SPARQL client and a SPARQL server (we used a
separate instance from that used to store temporary graphs, installed on a different machine), and the
Virtuoso OS Edition v7.20 server?.

We tested two versions of the query: in Q; (Listing 5), the micro-service endpoint URLs are
provided statically, while in Q, (Listing 6), they are built dynamically and bound to SPARQL
variables. Corese-KGRAM could properly evaluate the two queries. Conversely, Virtuoso could
evaluate Q; (static service URLs) but failed on Q, due to the variable service endpoints. Note
that the support of this feature is not in the normative part of the SPARQL 1.1 Federated Query
recommendation [28]. An implementation is free to support it or not, but the semantics is not formally
defined.

Table 3 compares the execution times of query Q; on Corese-KGRAM and Virtuoso, with or
without cache, averaged over ten runs. Strikingly, it highlights the difference between the two
SPARQL engine strategies: the time it takes for Virtuoso to complete the query execution is bigger
than that of Corese-KGRAM by a factor 53 with cache (Imn30s vs. 1.68s) and a factor 112 without
cache (6mb51s vs. 3.66s). A detailed analysis of the query log revealed that Corese-KGRAM performed
4 invocations (one for each SERVICE clause as one would expect) whereas Virtuoso performed 424
invocations. In chronological order the MusicBrainz micro-service was invoked once, Macaulay
Library once, Flickr 27 times and BHL 395 times. We discussed this issue with Virtuoso’s developers?!
who could not bring a clear explanation so far. Nevertheless, further tests with two or three SERVICE
clauses suggested that each SERVICE clause is invoked one time for each solution retrieved from
previously evaluated SERVICE clauses. This ends up with a very inefficient multiplication of the
invocations.

20 Virtuoso OS Edition: http:/ /vos.openlinksw.com /owiki/wiki/VOS/
21 Virtuoso Github issue: https:/ /github.com/openlink/virtuoso-opensource/issues /724
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PREFIX s: <http://schema.org/>
CONSTRUCT {
<#>
s:mainEntity0fPage 7article;
s:image 7photo;
s:audio 7audio;
s:subject0f ?mbzPage.
} WHERE {
SERVICE <http://example.org/bhl/getArticlesByTaxon?name=Delphinus+delphis>
{ 7article s:name 7articleTitle; s:author 7articleAuthorName. }

Biodiversity Heritage Library
Flickr
Macaulay Library

#
#
#
# MusicBrainz

SERVICE <http://example.org/flickr/getPhotosByGroupByTag? \
group_id=8069270N20&tags=taxonomy:binomial=Delphinus+delphis>
{ ?photo s:contentUrl ?7img. }

SERVICE <http://example.org/macaulaylibrary/getAudioByTaxon? \
name=Delphinus+delphis>
{ 7audio s:contentUrl 7audioUrl. }

SERVICE <http://example.org/musicbrainz/getSongByName? \
name=Delphinus+delphis>
{ [ s:sameAs ?mbzPage; s:name ?7mbzTitle. }

Listing 5. Query Qp uses four SPARQL micro-services to retrieve data related to species Delphinus
delphis from the Biodiversity Heritage Library, Flickr, the Macaulay Library and MusicBrainz.

PREFIX s: <http://schema.org/>
CONSTRUCT {
<#>

s:mainEntity0fPage 7article;

s:image 7photo;

s:audio 7audio;

s:subject0f 7?mbzPage.
} WHERE {

BIND ("Delphinus+delphis" as ?species)

Biodiversity Heritage Library
Flickr
Macaulay Library

#
#
#
# MusicBrainz

BIND (IRI (concat ("https://example.org/bhl/getArticlesByTaxon? \
name=", encode_for_uri(?species))) as 7bhl)

BIND (IRI (concat ("https://example.org/flickr/getPhotosByGroupByTag \
7group_id=806927@N20&tags=taxonomy:binomial=", \
encode_for_uri (?species))) as 7flickr)

BIND (IRI (concat ("https://example.org/macaulaylibrary/getAudioByTaxon? \
name=", encode_for_uri (?species))) as 7macaulay)

BIND (IRI (concat ("https://example.org/musicbrainz/getSongByName? \
name=", encode_for_uri(?species))) as ?7mzbrnz)

SERVICE ?bhl { 7article s:name 7articleTitle; s:author 7author. }
SERVICE 7flickr { ?photo s:contentUrl ?7img. }

SERVICE ?macaulay { 7audio s:contentUrl 7audioUrl. 1}

SERVICE 7?mzbrnz { [] s:sameAs 7mbzPage; s:name 7mbzTitle. }

Listing 6. Query Q,. Invocation of a SPARQL micro-service using a variable endpoint URL: variables
?bhl, ?flickr, ?macaulay and ?mzbrnz are built dynamically using the species name in variable

?species
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Table 3. Execution time (in seconds) of query Q; on Corese-KGRAM and Virtuoso OS Edition, without
or with cache database.

SPARQL engine | Exec. time without cache | Exec. time with cache

Corese-KGRAM 3.66 +£ 0,10 1.68 4 0.04

Virtuoso 411 +1 903+ 1

The evaluation of Q1 by Corese-KGRAM took an average 3.66s without using the cache database,
while the four individual invocations sum up to 2.59s (2nd column of Table 2). Similarly, the
evaluation took an average 1.68s when using the cache while the individual invocations sum up
to 1.16s (3rd column in Table 2). The overhead of 1.07s and 0.52s respectively can be attributed to the
query processing by Corese-KGRAM’s SPARQL engine as well as networks overheads. The log also
revealed that the SERVICE clauses are evaluated sequentially, although they could be evaluated in
parallel since they are independent from each other. We discussed this question with the developers
who confirmed that, as of today, Corese-KGRAM does not support parallel evaluation of independent
SERVICE clauses.

7. Biodiversity-Related Use Cases

7.1. Aggregating Various Types of Data Related to Biological Taxa

Many existing data aggregators in the biodiversity domain consolidate data with respect to
a certain perspective (species occurrences, life traits, taxonomy etc.) from multiple sources. Yet,
orthogonal approaches lack, that would allow biologists to aggregate and visualize data spanning
these different perspectives. To address this need, we have designed an application that provides
biologists with a convenient way to get a quick outlook at the various types of data collected by
independent biodiversity programs about a given taxon.

In a joint initiative with the French National Museum of Natural History, we have produced a
dataset called TAXREF-LD [29], a Linked Data representation of TAXREF [30], the French taxonomic
register for fauna, flora and fungus®?. It models 236.000+ biological taxa along with the 509.000+
scientific names used to refer to the taxa. TAXREF-LD is accessible through a public SPARQL
endpoint?3, and the URIs of all taxa and scientific names are dereferenceable.

In the application we present here, a SPARQL CONSTRUCT query?* first retrieves from
TAXREEF-LD the information available about the taxon that bears a given scientific name. Then, it
enriches TAXREF-LD’s taxon description with data from five SPARQL micro-services: BHL, Flickr
and MusicBrainz already described in section 6, and two additional services:

1. macaulaylibrary/getAudioByTaxon is very similar to macaulaylibrary/getAudioByld previously
described, but retrieves audio recordings for a taxon by scientific name, not by identifier.

2. eol/getTraitsByTnxon retrieves life traits related to a taxon’s scientific name from the Encyclopedia
of Life trait bank [31].

The RDF graph resulting from this query exhibits URIs identifying each BHL article, each Flickr photo
and each Macaulay audio recording. These URIs are built upon the Web API’s internal identifier.
They are made dereferenceable according to the mechanism we described in section 5.2: while the

22 https://inpn.mnhn.fr/programme /referentiel-taxonomique-taxref?lg=en
2 TAXREF-LD public SPARQL endpoint: http:/ /taxref.mnhn.fr/sparql
24 The full query is available at https://github.com/frmichel /sparql-micro-service/tree /0.1.0/demo/ query/query.rq
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micro-services invoked in the SPARQL query retrieve information by scientific name, complementary
micro-services retrieve information by Web API’s identifier. To do the wiring, the Web server is
configured to rewrite a look up query on one of those URIs into the relevant micro-service invocation.

In a next step, the result RDF graph is transformed into an HTML page using the
SPARQL Template Transformation Language (STTL) [32]. For each resource retrieved by SPARQL
micro-services (e.g. a photo, an article), a SPARQL Template query fetches data from the result graph
and passes it on to an HTML template tailored for the resource type. In turn, the latter produces the
piece of HTML code necessary to properly display the resource?. For instance a photo is rendered
as one element of a carousel while an audio recording is rendered using an HTML5 audio player. A
global template assembles the partial HTML snippets to form the final HTML page. Figure 7 depicts
a part of the HTML page generated for species Delphinapterus leucas.

7.2. Assisting Biologists in Editing Taxonomic Information

Taxonomic registers are key tools to comprehend the diversity of nature and develop natural
heritage conservation strategies. They are used as the backbone of biodiversity programs and
aggregators such as the Global Biodiversity Information Facility?® (GBIF) and the Encyclopedia of
Life?” (EoL) that aggregate over 50 data sources each. Unfortunately, there does not exist a single
register of the taxonomic knowledge that would mark global consensus. Instead, multiple taxonomic
registers cover complementary and often overlapping regions, epochs or domains, while possibly
disagreeing on the circumscription of some taxonomic concepts. It is therefore of utmost importance
for biologists to be able to confront the knowledge they have about a taxon with related data coming
from the manifold data sources available in the biodiversity area.

To tackle this issue, the French Museum of Natural History has developed the TAXREF-Web
application” enabling biologists to edit biological taxa’s information available in TAXREF. The
application offers forms not only to edit TAXREF’s database, but more importantly to display data
collected from other programs, compare it with TAXREF’s data and provide biologists with the ability
to add, remove or amend data accordingly. To do so, TAXREF-Web’s developers have to write
a specific piece of code to query each Web API of interest and manually align the data elements
within its results with the corresponding data elements within the results of the other Web APIs. For
instance, TAXREF's Web API codes the habitat wherein a species lives as an integer (e.g. 1 stands for
marine environment, 2 for fresh water). By contrast, the World Register of Marine Species?® (WoRMS)
codes the same information as multiple Boolean fields (e.g. isMarine, isFreshwater). Therefore,
TAXREF-Web’s code must carry out a cumbersome alignment to convert from one representation into
the other. This approach is time-consuming in terms of development and maintenance, and hardly
scales to many more Web APIs.

In its current status, the TAXREF-Web application queries the following programs: WoRMS,
Fishbase®?, Index Fungorum3!, Pan-European Species directories Infrastructure®? (PESI) and World
Spider Catalogue®. Depending on the programs, the Web interface may simply present a link to
the program’s corresponding Web page, point out a disagreement, or point out a disagreement along

25 The code of the STTL transformations is available on Github under https://github.com/frmichel /sparql-micro-service/

tree/0.1.0/demo
2 http:/ /gbif.org/
27 http:/ /eol.org/
28 https:/ /taxref. mnhn.fr/taxref-web/
2 http://www.marinespecies.org
30 http://fishbase.org
51 http:/ /www.indexfungorum.org/
52 http://www.eu-nomen.eu/pesi/
33 https://wsc.nmbe.ch/
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Figure 7. Partial HTML rendering of the RDF graph describing the beluga (Delphinapterus leucas),
constructed by querying Linked Data and multiple SPARQL micro-services. Available at http://sms.
i3s.unice.fr/demo-sms?param=Delphinapterus+leucas.
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PREFIX dwc: <http://rs.tdwg.org/dwc/terms/>
PREFIX tn: <http://rs.tdwg.org/ontology/voc/TaxonName#>

<#> dwc:scientificName "Acetabularia crenulata";
tn:authorship "J.V.Lamour., 1816";
tn:rank <http://rs.tdwg.org/ontology/voc/TaxonRank#Species>;
dwc:taxonomicStatus "accepted".

Listing 7: RDF graph produced by invoking the TAXREF micro-service at

http://example.org/taxref/getNameDetails?name=Acetabularia+crenulata.

with the means for a biologist to update TAXREF accordingly. The considered disagreements pertain
to taxonomic information in the following situations:

e Synonymy disagreement. A taxon may be associated with a reference name (the preferred name
used to refer to the taxon) and a set of synonyms. A disagreement may occur when a program
states a reference name that is considered as a synonym in TAXREF, or when they disagree on

the synonyms.

o Taxonomic rank disagreement: a taxon or name has different taxonomic ranks in different
programs. For instance, a taxon is considered as a species in TAXREF but as a sub-species
in WoRMS.

o Author disagreement: different author names or different spellings and/or abbreviations.

e Habitat disagreement.

We are currently developing a new implementation of TAXREF-Web based on SPARQL
micro-services, covering the set of Web APIs considered so far in TAXREF-Web and extending it
with the Web APIs of GBIF, EoL, Zoobank3#, the International Plant Names Index3® (IPNI), Flickr and
the Macaulay library. Furthermore, we intend to extend the functional perimeter so as to address the
following situations:

e Bibliographic references: retrieve bibliographic references currently unknown in TAXREF, or
point out and fix inconsistent references.

o Life traits: query WoRMS, Fishbase and EoL for life traits not referenced in TAXREEF, or point
out and fix inconsistencies.

e Multimedia material: display material available in TAXREEF, suggest adding links to photos in
Flickr and audio/video recordings in the Macaulay library.

Our point is to demonstrate that, once the Web APIs are wrapped in SPARQL micro-services
relying on common vocabularies, the integration task is amply simplified: data aggregation
and comparison essentially consist of writing the appropriate SPARQL queries, thus significantly
alleviating the development and maintenance efforts.

Example. We now illustrate the use case sketched above in the context of a synonymy
disagreement, exemplified in the case of taxon Acetabularia crenulata. Let us assume that we have
defined SPARQL micro-services for TAXREF and WoRMS Web APIs*®, whose invocations produce
the graphs depicted in Listings 7 and 8 respectively. According to TAXREE, Acetabularia crenulata
is a reference (or “accepted”) name, whereas according to WoRMS, it is a synonym name and the
reference name should be Acetabularia (Acicularia) crenulata instead.

Detecting this disagreement can be achieved easily using SPARQL query Q3 in Listing 9. The
query searches solutions where Acetabularia crenulata would have status accepted in TAXREF and a

34 http:/ /zoobank.org/
35 http:/ /www.ipni.org/
36 TAXREF’s Web API allows gerying TAXREF's database. It is exploited by the TAXREF-Web application.
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PREFIX dwc: <http://rs.tdwg.org/dwc/terms/>
PREFIX tn: <http://rs.tdwg.org/ontology/voc/TaxonName#>
<#> dwc:scientificName "Acetabularia crenulata";
tn:authorship "J.V. Lamouroux, 1816";
tn:rank <http://rs.tdwg.org/ontology/voc/TaxonRank#Subspecies>;
dwc:taxonomicStatus "unaccepted";
dwc:acceptedNameUsage "Acetabularia (Acicularia) crenulata".
Listing 8: RDF graph produced by invoking the WoRMS micro-service at

http://example.org/worms/getNameDetails?name=Acetabularia+crenulata.

PREFIX dwc: <http://rs.tdwg.org/dwc/terms/>
SELECT ("Acetabularia crenulata" as 7taxrefRefName) ?wormsRefName WHERE {

SERVICE <http://example.org/taxref/getNameDetails?name=Acetabularia+crenulata>
{ [] dwc:taxonomicStatus "accepted". }

SERVICE <http://example.org/worms/getNameDetails?name=Acetabularia+crenulata>
{ [] dwc:taxonomicStatus 7s2;
dwc:acceptedNameUsage 7wormsRefName.
FILTER 7s2 != "accepted"
}
}

Listing 9: Query Q3 detects the disagreement between TAXREF and WoRMS with respect to the status
(reference vs. synonym) of Acetabularia crenulata.

different status in WoRMS. If Q3 returns a non-empty solution set, then both sources disagree and the
solution provides the reference name according to WoRMS. In turn, the Web application must point
out this disagreement and provide the user with a way to accept or dismiss this change. Figure 8
depicts an extract of TAXREF-Web’s edition page where this option is denoted by the red button “MA]
REF” (update reference name). A similar SPARQL query (not shown here) can detect a disagreement
with respect to the author’s name spelling, “J.V.Lamour.” in TAXREF and “J.V.Lamouroux” in
WOoRMS. The red button “MAJ AUTEUR” (update author) allows to acknowledge this change in
TAXREE

Let us finally mention that example query Q3 may be invoked on the Web server side, as part of
the HTML page generation process, as well as on the client side using asynchronous queries processed
in JavaScript. An advantage of the latter is to alleviate the load required to generate the page on the
server’s side.

8. Related Works

Abundant literature has been concerned with the integration of disparate data sources since
the early 1990’s [33]. Classically, wrappers implement the mediation from the models of multiple
data sources towards a target vocabulary or ontology. A query federation engine handles a user
query, determining which data sources might have relevant information for the query, deciding on
a query plan and recombining the partial results obtained from the multiple sources. Our work
is concerned with the wrapping of Web APIs into SPARQL endpoints, but the federation of such
wrapped data sources is out of the scope of this paper. Yet, existing federated query technologies
could be adapted to rewrite parts of a client’s SPARQL query into SERVICE clauses querying relevant
SPARQL micro-services or regular SPARQL endpoints.
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728202

Acetabularia crenulata JN.Lamour., 1816 :
depuis v8.0

| TAXREF | | Notes H Localité-type H Hislorique| ‘ Utilisation INPN || Photos ‘ | fiche INPN | | Statuts || Groupes | | Phénologie|

Biota » Plantae » Viridaeplantae » Chlorophyta » Ulvophyceae » Dasycladales » Polyphysaceae » Acetabularia »
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Figure 8. TAXREF-Web suggestions for editing taxon Acetabularia crenulata.

In the Semantic Web community, works aiming to translate heterogeneous data sources into
RDF triples started very early®’. In [34] for instance, a triple store contains semantic descriptions that
are used to semantically annotate Web services, explaining how to invoke them and what kind of
information can be obtained by invoking them.

Approaches specifically concerned with Web APIs are often ad hoc solutions. For instance,
Flickcurl®® is a hardwired wrapper for Flickr’s Web API services. Twarql [35] wraps Twitter’s Web
API to enable filtering and analysis of streaming tweets. It encodes tweets content in RDF using
common vocabularies and enables SPARQL querying. Yet, this approach is very specific to the Twitter
and micropost content in general.

With a similar rationale, Hydra [27] is a vocabulary aimed to describe Web APIs in a
machine-readable format. It puts a specific focus on the generation of hypermedia controls so as
to enable the generation of truly RESTful interfaces. Hydra, used in conjunction with JSON-LD,
forms a basis to build hypermedia-driven Linked Data interfaces [36]. This basis can be harnessed to
turn existing Web APIs into RESTful Linked Data interfaces whose documentation can be interpreted
at run time by a generic Hydra client. Our incentive with SPARQL micro-services is to provide
client applications with the whole expressiveness of the SPARQL Query language, which would
be more difficult to achieve using a Hydra-described REST interface. Closer to our work, Linked
REST APIs [37] is a framework dedicated to the semantic annotation of Web APIs and the automatic
specification of SPARQL query execution plans that invoke these Web APIs. A major difference with
our approach is that the framework requires the deployment of a middleware that stores the Web
APIs descriptions and their mapping towards domain ontologies, and computes and enacts query
execution plans. The SPARQL micro-services architecture, on the other hand, relies on a totally
distributed architecture wherein independent service providers may publish SPARQL micro-services
usable by regular SPARQL clients. Yet, a key point for the SPARQL micro-services architecture to
scale up easily will be to address the description of micro-services. In the last section, we suggest
several leads in this respect.

SPARQL-Generate [38] extends SPARQL 1.1 to enable querying RDF graphs along with
non-RDF documents. A SPARQL-Generate query relies on several extension functions to fetch and
parse documents in different data formats, and defines the shape of RDF triples to be produced
thenceforward. As such, it could be used to query a Web API in a way similar to that of a
SPARQL micro-service. Two main differences can be observed though. (i) SPARQL-Generate is

37 See the list hosted on W3C’s Web site: https:/ /www.w3.org/wiki/ConverterToRdf
3 http://librdf.org/flickcurl/
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an extension of SPARQL, hence, by definition, it is not supported by engines strictly complying
with the SPARQL Query language. By contrast, our vision is that multiple service providers
could publish independent SPARQL micro-services, thereby building up an ecosystem of services
all complying with standard SPARQL. (ii) SPARQL-Generate offers the advantage that querying
remote data sources is performed within a single language. On the one hand, this only requires
skills with Semantic Web technologies. On the other hand, this entails that a significant part
of the whole process is left to the SPARQL client: querying the data source while providing
necessary arguments, and translating its proprietary vocabulary into RDF triples aligned on common
vocabularies. Consequently, as illustrated by authors’ examples, the additional syntactic sugar
required can make queries considerably cumbersome and difficult to maintain. We take a different
option where this complexity is hidden from the client and handled by the SPARQL micro-service
developer.

An approach very similar to SPARQL-Generate is proposed in [39]. It is based on the BIND_API
clause, an extension of the SPARQL BIND clause, that binds a set of variables with values extracted
from a Web API response. It suffers the same pitfalls as SPARQL-Generate with respect to our goals:
the use of non standard SPARQL Query Language and the cumbersome syntactic sugar left to the
SPARQL client.

ODMTP [40], On-Demand Mapping using Triple Patterns, is an attempt to query non-RDF
datasets as Triple Pattern Fragments. The authors have implemented a prototype to query Twitter’s
Web API, that can process triple pattern queries over the whole Twitter’s dataset. Conversely,
SPARQL micro-services support arbitrary SPARQL queries over restricted fragments of the Web
API dataset. Besides, unlike SPARQL micro-services, ODMTP cannot assign dereferenceable URIs
to Web API resources. Nevertheless, ODMTP offers the TPF's paging mechanism that SPARQL
micro-services should regard as a valuable extension within future works (see the discussion in
section 9).

Our implementation of SPARQL micro-services maps a Web API response to RDF triples in two
steps: the response is first translated to JSON-LD, then a SPARQL INSERT or CONSTRUCT query
complements the process for cases where JSON-LD is not expressive enough. Alternatively, we could
rely on a mapping description language such as RML [41] and xR2RML [42], but they require the
developer to learn the mapping language. By contrast, in our proposition we strove to rely only on
existing standards.

Let us finally mention the Apache Marmotta project™”, a comprehensive Linked Data application
framework that implements the Linked Data Platform W3C recommendation [19]. Among others, it
provides client modules that wrap the Web APIs of several Web portals such as Vimeo, Youtube
and Facebook. Hence, it should be relatively easy to implement SPARQL micro-services on top of
Marmotta. However, the examples show that the Web API wrapping and the mapping towards RDF
triples are mostly hard-coded within the client libraries. Our point is to make the deployment of new
SPARQL micro-services as simple as writing a SPARQL query and a configuration file.

39

9. Conclusion and Perspectives

The SPARQL Micro-Services architecture proposes a lightweight type of Linked Data Fragment
interface that enables combining Linked Data with data from non-RDF Web APIs. SPARQL
querying and URI dereferencing are supported against a virtual graph delineated by the Web API
service being wrapped, the arguments of this service and the types of RDF triples that a SPARQL
micro-service is designed to spawn. Complying with the micro-service architecture principles, a
SPARQL micro-service should typically be loosely coupled (deployed independently of other services
using e.g. light container technologies such as Docker), fine-grained (fulfill a simple function

39 http:/ /marmotta.apache.org/


http://marmotta.apache.org/
http://dx.doi.org/10.20944/preprints201811.0337.v1
http://dx.doi.org/10.3390/info9120310

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2018 d0i:10.20944/preprints201811.0337.v1

25 of 27

by providing access to a small graph centered on a specific resource such as a photograph, a
tweet or the temperature of a room). Furthermore, the prototype implementation that we propose
is lightweight and simple (configuration-based provisioning, alignment with common/domain
vocabularies carried out using a simple SPARQL query).

We think that this approach could promote the emergence of an ecosystem of SPARQL
micro-services published from independent service providers, allowing Linked Data-based
applications to glean pieces of data from a wealth of distributed, scalable and reliable services. For
such an ecosystem to arise however, several crucial issues shall be tackled. Firstly, to enable services
discovery, SPARQL micro-services should provide machine-processable self-describing metadata
such as the expected arguments, the way they are passed to the micro-service (e.g. as HTTP query
string parameters), and the typical graph that may be generated. Secondly, writing SPARQL queries
invoking a handful of SPARQL micro-services is easily achieved manually. By contrast, considering a
larger number of services should involve the automatic composition of micro-services. The latter may
be achieved only if micro-services provide a functional description of the operation they carry out.
In this respect, the many works on automatic semantic services composition should be leveraged.
Thirdly, although we envision SPARQL micro-services as a way to access small fragments, it should
be possible to retrieve such fragments by smaller pieces using a paging mechanism.

To tackle those issues, Verborgh et al. advocated that Linked Data Fragments should provide
self-describing, uniform interfaces consisting not only of data triples but also metadata and
hypermedia controls. Hypermedia controls contain the information needed to interact further on
with a resource. In particular, they allow a client to navigate from one fragment (or a page thereof)
to another one [21]. Following up on this idea, the interface of SPARQL micro-services could be
extended to return regular SPARQL results alongside additional triples (or quads more generally)
representing metadata and control information. In the case of CONSTRUCT and DESCRIBE queries,
metadata and controls would be provided as additional triples possibly embedded within a dedicated
graph, as proposed in the Triple Pattern Fragments. The case of ASK and SELECT queries may seem
less obvious since these do not return triples nor quads but variable bindings. Yet, the SPARQL
Results specifications (in XML [43] and JSON [25]), mention the optional /ink header meant to “to
refer for further information”. This header could be used to link the results to the URI of a graph or
a document providing metadata and control triples separately. We can think of this solution as some
sort of Graph Pattern Fragment interface, i.e. a generalized TPF interface that accepts regular graph
patterns instead of only triple patterns, but still complies with the TPF metadata and hypermedia
controls specification.

Let us finally mention that, in this article, we have focused specifically on consuming Web APIs
data with SPARQL. In a broader picture, the micro-service architectural principles could be applied
to other types of APlIs, so as to enable Semantic Web applications to reach out to other data sources.
Furthermore, many APIs provide read-write access, empowering users to interact with contents,
other users, etc. Hence, an interesting perspective would be to think of SPARQL micro-services as
a way to support distributed SPARQL Update over Web APlIs, thus eventually contributing to build
an actual read-write Web of Data.
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