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Abstract: Detection of the region of interest (ROI) is a critical step in laryngeal image analysis for 
the delineation of glottis contour. The process can improve both computational efficiency and 
accuracy of the image segmentation task, which will facilitate subsequent analysis and 
characterization of the vocal fold vibration as it correlates with voice quality and pathology. This 
study aims to develop machine learning based approaches for automatic detection of ROI for glottis 
image sequences captured by high-speed video-endoscopy (HSV), a clinical laryngeal imaging 
modality. In particular, we first applied the supporting vector machine (SVM) method using 
histogram of oriented gradients (HOG) feature descriptor, and second, trained a convolutional 
neural network (CNN) model for this task. Comparisons are made for both approaches in terms of 
accuracy of recognition and computation time.  

Keywords: High-speed video-endoscopy, laryngeal image processing, glottis delineation, Machine 
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1. Introduction 

Laryngeal imaging of voice production and subsequent image-based analysis of vocal fold 
vibrations are essential components of approaches to understand the mechanism of phonation and 
develop quantitative tools for the assessment of voice disorders1,2. The vast amount of video 
recordings produced from the HSV need to be processed to deliver useful, clinically relevant 
information. The ROI detection is important for the glottis image segmentation task since the process 
can significantly reduce computational cost while improve the accuracy of the segmentation results, 
key to the success of subsequent characterizations of the vocal fold vibration as it correlates with 
voice quality and pathology.  

Vocal folds are deformable and the glottis images captured may differ in scale depending on 
both the HSV specifications and the examination procedure, and furthermore, the non-uniform 
illumination from the high-speed camera is expected that will fluctuate the image intensity, thereby 
imposing a challenge to the effective detection of the ROI.  

Several issues are important in the detection of ROIs for glottis images, first being scale 
invariance. Our classifier model needs to be compatible with various datasets acquired from HSV 
systems with output images of different resolutions. Indeed, our datasets contained recordings from 
three different cameras with spatial image size of 512 by 512, 256 by 120, and 140 by 120 respectively.  
(Figure.1). 

 

Figure 1. Representative image datasets with different pixel sizes. 
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Moreover, the scale of the vocal folds depends on how the examiner captures the images even 
with the same HSV system.  

The second issue is brightness; several recordings exhibited strong light exposure, and the 
intensity variation among the recordings caused by non-uniform illumination is noticeable. Figure 2 
shows two image frames selected from HSV recordings of two different patients where one of them 
(left) is overexposed to light. Such brightness difference may complicate the recognition task. For 
example, 

histogram is widely used to describe feature characteristics that helps us understand color 
distributions of the objects, but it may not work in such environment. Thus, we must generate an ROI 
recognition model with robustness against brightness variation. 

 
Figure 2. Different Brightness. 

The third issue relates to the vocal fold deformation. While successful applications in broad areas 
of object recognition have been reported, the detection of the glottis region has not been developed. 
The fact that the vocal folds are deformable presents a challenge to the detection task. 

To address the above mentioned issues, we propose a preprocessing step to generate new image 
sequences from the original recording based on motion cues. The preprocessed image sequences are 
then used to train both the SVM and the CNN classifiers. 

2. Image Preprocessing 

The new image sequences are binary and are constructed by first subtracting an image frame at 
time t from a frame at time t+1 (Figure 3.(a)), and then applying Otsu's thresholding method (Figure 
3.(b)) so that the new binary image sequences are not influenced by brightness3. The new binary 
image has pixel values of 1 or 0, representing the region "in motion" or "static" respectively. Next, we 
generate a gray-scale image sequence containing motion cue, in particular, reflecting the range of the 
motion, by averaging each image with the subsequent images (up to 40 frames) (Figure 3.(c)).  Figure 
4 shows representative frames from five original video recordings (top) as well as the motion cue 
images generated (bottom). The original images were captured with an acquisition rate of 8000 fps 
(for first three) and 4000 fps (for the remaining two) respectively, and with various spatial resolutions 
(512 by 512, 256 by 120 and 120 by 140). The motion cue image sequences take into consideration both 
the deformation and the shape, thereby making the recognition task easier. Some images have noise, 
however, we can confirm that the movement of vocal folds is expressed in one image. 

 

Figure 3. Motion Cue Images. 
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Figure 4. Representative image frames from original recordings and the corresponding motion cue 
images generated. 

3. Detection of ROI using Machine Learning 

After the pre-processing, we will perform the ROI recognition task using the motion cue images. 
Generally, there are two representative machine learning approaches for the object recognition: 
histogram of oriented gradient (HOG) feature descriptor, and convolutional neural networks 
(CNNs)4,5. Both methods have attracted attention from many researchers, and have shown high 
performance in terms of recognition accuracy and computation time. Here, we will explore which 
method is more appropriate for our application.  

3.1. Histogram of Oriented Gradient (HOG) 

HOG is one of the most representative feature descriptors in the field of image processing, and 
it is generally used for pedestrian detection. 

Here, we provide a brief description of HOG and its application. As illustrated in Figure 5, the 
HOG calculates gradients and magnitudes in two filtered images (with X-gradient and Y-gradient 
filters).  

 

Figure 5. Magnitude and Gradient calculations in HOG. 

The X gradient image (𝑔𝑔𝑥𝑥) and Y gradient image (𝑔𝑔𝑦𝑦) are expressed as follows: 

 𝑔𝑔𝑥𝑥(𝑖𝑖, 𝑗𝑗) = 𝐼𝐼(𝑖𝑖, 𝑗𝑗) ∗ 𝑓𝑓   (1) 

 𝑔𝑔𝑦𝑦(𝑖𝑖, 𝑗𝑗) = 𝐼𝐼(𝑖𝑖, 𝑗𝑗) ∗ 𝑓𝑓𝑡𝑡    (2) 
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Where, I is the input image, and f = [-1,0,1] is the kernel. 𝑔𝑔𝑥𝑥 and 𝑔𝑔𝑦𝑦 emphasize the vertical and 

horizontal lines in the image respectively.  
Using the two filtered images, the Magnitude and Gradient images are constructed as follows:  

Magnitude(i, j) = �gx(i, j)2 + gy(i, j)2  (3) 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖, 𝑗𝑗) = 𝐺𝐺𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺
𝑔𝑔𝑦𝑦
𝑔𝑔𝑥𝑥

  (4) 

Next, we generate the histogram of the local gradients using magnitude and gradient images by 
dividing an image into cells each of 8 by 8 pixels.  

 
Figure 6. Calculate histograms 

For instance, an image of pixel size 64 by 40 is divided into 40 cells of 8 by 8 pixels (Figure 6.(a)). 
We assign magnitude into a histogram for every angle (0 ~ 180 degrees) with an increment of 20 
degrees. The calculated histograms for all cells are then normalized within the 4 by 4 cells (Figure 
6.(b)). The HOG features consist of 1008 vector components for the image size of 64 by 40, which 
apparently contains information, however, two issues need to be considered. 

First, the curse of dimensionality. It is known that recognition accuracy decreases as the number 
of feature vectors increase because significant information in higher dimension space for recognition 
is only a couple of components. Therefore, recognition accuracy may decrease because machine 
learning models consider redundant information if we apply high dimensional data.    

Second, computational problem. To generate machine learning models such as SVM or K-NN, a 
number of vector components cannot be applied in terms of memory 6,7. To address these issues, we 
applied Principle Components Analysis (PCA) to map HOG feature vectors into a lower dimensional 
space. Next, we generate a machine learning model to perform the recognition task in the reduced 
dimension. Many types of machine learning methods have been developed, and we chose SVM 
because of its favorable performance. Unlike K-NN or simple Neural Networks, SVM calculates 
distances from the function to the input data, and thus 
the computation is relatively faster in comparisons.  

3.2. Convolutional Neural Networks 

Numerous studies using CNN in the field of image processing have been reported following the 
ImageNet Large Scale Visual Recognition Competition（ ILSVRC） in 2012. Figure 7 shows the 
proposed CNN model consisting of two convolution and two max pooling layers and one fully 
connected layer for the ROI detection using the motion cue images as the inputs. The number of filters 
used for the two convolution layers is 32 and 64 respectively. We apply zero padding to both 
convolution layers, and a random dropout (50%) is implemented for the fully connected layer8. 
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Figure 7. CNN used for ROI detection 

4. Results 

The true and false ROI datasets consisted of 15900 and 100 images respectively and were 
acquired from a variety of video recordings from male and female subjects with normal voice 
conditions or  voice pathologies. Scales of vocal folds captured from video recordings are different 
each other. For instance, the vocal folds in the ROI dataset we used consists of from 40 by 25 up to 
200 by 125. It would not be realistic to prepare machine learning models at each image sizes because 
it requires us to collect numerous dataset. Although resize processing may make images blur, we 
resized the ROI dataset that comprises the different image sizes to generate a machine learning model 
that is able to recognize the different scale of the ROI. We adopt a PC contribution ratio of over 80 
and an RBF kernel for the SVM. The parameters of SVM were determined by eight cross-validation 
tests. The true and false ROI datasets are randomly selected (100 images from each category) for the 
testing. Tables 1&2 show the results of the recognition in terms of the accuracy and the computation 
time per image on average. Image size shows the resized size when we trained the models and 
recognized the test dataset. In terms of memory, we could not generate machine learning models 
with high resolutions. Therefore, we resized the ROI dataset up to 80 by 50. 

Table 1. Recognition Accuracy[%]. 

Image size 

Feature                    
40 by 25 48 by 30 56 by 35 64 by 40 72 by 45 80 by 50 

HOG 99.5 99.5 100 100 100 100 

CNN 99.5 99.5 100 100 100 100 

 

Table 2. Computation Time[sec]. 

Image size 

Feature                    
40 by 25 48 by 30 56 by 35 64 by 40 72 by 45 80 by 50 

HOG 0.12 0.15 0.23 0.3 0.39 0.51 

CNN 1.30 1.57 2.26 3.07 3.53 4.53 

 
The recognition rate was shown to slightly decrease for the reduced image sizes (40 by 25 and 

48 by 30). As the resized image enlarged, the recognition accuracy reached perfection and the 
calculation time increased accordingly.  

5. ROI Identification 

Following the ROI recognition with SVM or CNN performed on the motion cue image sequences, 
we need to select the optimal ROI from all possible regions that are recognized as true ROIs. This 
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process is illustrated in Figure 8 where the recognized ROIs are mapped onto the original image 
sequences. 

 

Figure 8. Processing for detecting ROI 

For the recognition task using SVM or CNN, first, we slide windows by every 8 by 8 pixels, and 
an image inside the window is resized up to 64 by 40. The reason for limiting the window to this size 
is that the recognition accuracy no longer increases with further enlargement. The window is 
recognized as true ROI when it approaches the region where vocal fold motion occurs. We repeat the 
same process with a bigger window from the uppermost left until it reached the lowermost right of 
the image. This process recognizes ROI for multiple window sizes, so finally we need to determine 
the one window size and the coordinates. We determine the window size by choosing the median 
window size from the results. For example, we choose 80 by 50, if the windows of 64 by 40, 80 by 50, 
and 96 by 60 are all recognized as true ROI.  

Once the window size is selected, we determine its location by calculating the average of the 
recognized coordinates. Figure 9 shows the detected ROIs using HOG (blue box) and CNN (red box) 
respectively. For comparisons, there is no significant difference between the two methods in terms of 
accuracy in recognition. Both correctly recognized the ROIs with high accuracy, although the HOG 
based recognition ran ten times faster than that using the CNN model.  

5. Conclusion 

For effective and practical ROI detection for the large glottis image datasets, we proposed to use 
the motion cue images for the recognition task. The ROI was detected using HOG based method or 
the CNN classifier. Both methods achieved high recognition accuracy, while the former requires 
much less computation time (about 10%) compared with the latter. This result would suggest that the 
HOG based method is a better choice for the ROI detection for glottis images considering the 
computational cost. Moving forward, we plan to further test the method on larger datasets. In the 
meantime, we will also explore applying deep CNNs to the laryngeal image-based classification of 
voice pathologies. 
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Figure 9. Result of detected ROI 
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