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Abstract

The constraint equations in Maxwell theory are investigated. In analogy
with some recent results on the constraints of general relativity it is shown,
regardless of the signature and dimension of the ambient space, that the “di-
vergence of a vector field” type constraints can always be put into linear first
order hyperbolic form for which global existence and uniqueness of solutions to
an initial-boundary value problem is guaranteed.

1 Introduction

The Maxwell equations, as we know them since the seminal addition of Ampere’s law
by Maxwell in 1865, are [3]

∇×H = J + ∂tD ∇× E + ∂tB = 0 (1)
∇ ·D = ρ ∇ ·B = 0 , (2)

where E and B are the macroscopic electric and magnetic field variables, which in
vacuum are related to D and H by the relations D = ε0E and H = µ−1

0 B, where
ε0 and µ0 are the dielectric constant and magnetic permeability, and where ρ and J
stand for charge and current densities, respectively.

The top two equations in (1) express that the time dependent magnetic field
induces an electric field and also that the changing electric field induces a magnetic
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field even if there are no electric currents. Obviously there have been plenty of brilliant
theoretical, experimental and technological developments based on the use of these
equations. Nevertheless, from time to time some new developments (for a recent
examples see, for instance, [2, 4]) have stimulated reconsideration of claims which
previously were treated as text-book material in Maxwell theory.

In this short note the pair of simple constraint equations on the bottom line in
(2) are the centre of interest. These relations for the divergence of a vector field
are customarily treateds as elliptic equations. The main purpose of this letter is to
show that by choosing basic variables in a geometrically preferred way the constraints
in (2) can also be solved as evolutionary equations. This also happens in the more
complicated case of the constraints in general relativity [5].

Once the Maxwell equations (1) and (2) are given it is needless to explain in
details what is meant to be the ambient spacetime (tacitly it is assumed to be the
Minkowski spacetime) or the initial data surface (usually chosen to be a “t = const”
hypersurface in Minkowski spacetime). As seen below the entire argument, outlined
in more details in the succeeding sections, is very simple. In addition, it applies with
almost no cost to a generic ambient space (M, gab), with a generic three-dimensional
initial data surface Σ. We shall treat the generic case. This allows us to apply our
new results to the solution of “divergence of a vector field type constraints”,

∇ · L = ` , (in index notation) DiL
i = ` , (3)

for a vector field L or (in index notation) Li with a generic source `, on an arbitrary
fixed curved background, which may have various applications.

Note that for the Maxwell system, given by (1) and (2), the two divergence of a
vector field constraints decouple so it suffices to solve them independently. Note also
that it is easy to see that all the arguments presented in the succeeding subsections
generalize to an arbitrary n ≥ 3 dimension of Σ. Nevertheless, for the sake of simplic-
ity, our consideration here will be restricted to the case of three-dimensional initial
data surfaces.

Since the constraints are almost exclusively referred to as elliptic equations in
text-books, one may question the point of putting them into evolutionary form. We
believe that the appearance of time evolution in a Riemannian space could itself be
of interest on its own right. Nevertheless, it is important to emphasize that there are
valuable applications of the proposed new method. For instance, it may offer solutions
to problems which are hard to solve properly in the standard elliptic approach. An
immediate example of this sort arisises in the initialization of the time evolution of
point charges governed by the coupled Maxwell-Lorentz equations. As pointed out
recently in [2], unless suitable additional conditions are applied in addition to the
Maxwell constraints, the electromagnetic field develops singularities along the light
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cones emanating from the original positions of the point charges. It is important to
be mentioned here that analogous problems arise in the context of binary black hole
configurations which can, however, be properly initialized by applying the superposed
Kerr-Schild metric and the evolutionary form of the constraints in general relativity
[6]. Based on this observation we expect that the problem raised in [2] in the context
of Maxwell-Lorentz systems could also be treated using the hyperbolic form of the
constraints.

An additional, and not the least important, potential advantage of the proposed
new method is that it offers an unprecedented flexibility in solving the constraint
equations. This originates from the fact that neither the choice of the underlying
foliations of the three-dimensional initial data surface Σ nor the choice of the evolu-
tionary flow have any limitations. This makes the proposed method applicable to a
high variety of problems that might benefit from this new approach to solving the
constraints.

Another advantage of this new approach constraints is that, regardless of the
choice of foliation and flow, the geometrically preferred set of variables constructed in
carrying out the main steps of the procedure always satisfy a linear first order symmet-
ric hyperbolic equation. Considering the robustness of the approach, it is remarkable
that, starting with the “divergence of a vector field constraint”, the global existence of
a unique smooth solution for the geometrically preferred dependent variables (under
suitable regularity conditions on the coefficients and source terms) is guaranteed for
the linear first order symmetric hyperbolic equation (see, e.g. subsection VIII.12.1
in [1]).

2 Preliminaries

The construction starts by choosing a three-dimensional initial data surface Σ with
an induced Riemannian metric hij and its associated torsion free covariant derivative
operator Di. Σ may be assumed to lie in an ambient space (M, gab) whose metric
could have either Lorentzian or Euclidean signature. More importantly, Σ will be
assumed to be a topological product

Σ ≈ R×S , (4)

where S could be of a two-surface with arbitrary topology. In the simplest prac-
tical case, however, S would have either planar, cylindrical, toroidal or spherical
topology. In these cases, we may assume that there exists a smooth real function
ρ : Σ→ R whose ρ = const level sets give the Sρ leaves of the foliation and that its
gradient ∂iρ does not vanish, apart from some isolated locations where the foliation
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may degenerate. 1

The above condition guarantees (as indicated in Fig.1) that locally Σ is smoothly
foliated by a one-parameter family of ρ = const level two-surfaces Sρ . Given these

Σ

S
ρ

Figure 1: The initial data surface Σ foliated by a one-parameter family of two-surfaces Sρ is
indicated.

leaves, the non-vanishing gradient ∂iρ can be normalized to a unit normal n̂i =
∂iρ/

√
hij(∂iρ)(∂jρ), using the Riemannian metric hij. Raising the index according to

n̂i = hijn̂j gives the unit vector field normal to Sρ. The operator γ̂ij formed form
the combination of n̂i and n̂i and the identity operator δij,

γ̂ij = δij − n̂in̂j (5)

projects fields on Σ to the tangent space of the Sρ leaves.
We also apply flows interrelating the fields defined on the successive Sρ leaves. A

vector field ρi on Σ is called a flow if its integral curves intersect each of the leaves
precisely once and it is normalized such that ρi∂iρ = 1 holds everywhere on Σ. The
contraction N̂ = ρjn̂j of ρi with n̂i and its projection N̂ i = γ̂ij ρ

j of ρi to the leaves
are referred to as the “lapse” and “shift” of the flow and we have

ρi = N̂ n̂i + N̂ i . (6)

The inner geometry of the Sρ leaves can be characterized by the metric

γ̂ij = γ̂ ki γ̂
l
j hkl (7)

induced on the ρ = const level surfaces. It is also known that a unique torsion free
covariant derivative operator D̂i associated with the metric γ̂ij acts on fields intrinsic

1If, for instance, Σ has the topology R3, S3, S2 × R or S2 × S1 and it is foliated by topological
two-spheres then there exists one, two or, in the later two cases, no points of degeneracy at all. If
point charges are involved it may be preferable to place the associated physical singularities at the
location of these degeneracy. Note also that we often shorthand partial derivatives ∂/∂xi by ∂i.
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to the Sρ leaves, e.g. acting on the field Nl = γ̂plNp obtained by the projection of
Np according to

D̂iNj = γ̂ki γ̂
l
jDk [ γ̂plNp ] . (8)

It is straightforward to check that D̂i is indeed metric compatible in the sense that
D̂kγ̂ij vanishes.

Note also that the exterior geometry of the Sρ leaves can be characterized by the
extrinsic curvature tensor K̂ij and the acceleration ˙̂ni of the unit normal, given by

K̂ij =
1

2
Ln̂γ̂ij and ˙̂ni = n̂lDln̂i = −D̂i ln N̂ , (9)

where Ln̂ is the Lie derivative operator with respect to the vector field n̂i and N̂ is
the lapse of the flow.

3 The evolutionary form the constraints

This section is to put the divergence type constraint (3) into evolutionary form. This
is achieved by applying a 2 + 1 decompositions where, as we see below, the main
conclusion is completely insensitive to the choice of the foliation and of the flow.

Consider first an arbitrary co-vector field Li on Σ. By making use of the projector
γ̂ ij defined in the previous section we obtain

Li = δ j i Lj = (γ̂ j i + n̂jn̂i)Lj = λ n̂i + Li , (10)

where the boldfaced variables λ and Li are fields intrinsic to the individual Sρ leaves
of the foliation of Σ. They are defined via the contractions

λ = n̂l Ll and Li = γ̂ j i Lj . (11)

By applying an analogous decomposition of DiLj we obtain

DiLj = δ kiδ
l
jDk [ δ pl Lp ] = (γ̂ ki + n̂kn̂i)(γ̂

l
j + n̂ln̂j)Dk [ (γ̂ pl + n̂pn̂l)Lp ] , (12)

which, in terms of the induced metric (7), the associated covariant derivative operator,
the extrinsic curvature and the acceleration (9), can be written as

DiLj =
[
D̂iλ + n̂i Ln̂λ

]
n̂j + λ (K̂ij+ n̂i ˙̂nj) + D̂iLj − n̂in̂j ( ˙̂nlLl)

+
{
n̂i Ln̂Lj − n̂i LlK̂ l

j − n̂j LlK̂ l
i

}
. (13)
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By contracting the last equation with the inverse hij = γ̂ ij + n̂in̂j of the three-metric
hij on Σ, we obtain

DlLl = hijDiLj = (γ̂ ij + n̂in̂j)DiLj = Ln̂λ + λ (K̂ l
l) + D̂lLl + ˙̂nlLl . (14)

In virtue of (3) and in accord with the last equation, it is straightforward to see that
the divergence of a vector field constraint can be put into the form

Ln̂λ + λ (K̂ l
l) + D̂lLl + ˙̂nlLl = ` . (15)

Now, by choosing arbitrary coordinates (x2, x3) on the ρ = const leaves and by
Lie dragging them along the chosen flow ρi, coordinates (ρ, x2, x3) adapted to both
the foliation Sρ and the flow ρi = (∂ρ)

i can be introduced on Σ. In these coordinates,
(15) takes the strikingly simple form in terms of the lapse and shift of the flow,

∂ρλ− N̂K∂Kλ + λ N̂ (K̂L
L) + N̂

[
D̂LL

L + ˙̂nLL
L
]

= ` . (16)

Some remarks are now in order. First, (16) is a scalar equation whereby it is
natural to view it as an equation for the scalar part λ = n̂iL

i of the vector field
Li on Σ and to solve it for λ. All the coefficients and source terms in (16) are
determined explicitly by freely specifying the fields LL and `, whereas the metric hij
and its decomposition in terms of the variables N̂ , N̂ I , γ̂IJ , is also known throughout
Σ. Thus (16) can be solved for λ. Note that (16), is manifestly independent of the
choice made for the foliation and flow, and (16) is always a linear hyperbolic equation
for λ, with ρ “playing the role of time”. As it was emphasized in the introduction,
the global existence of unique smooth solutions (under suitable regularity conditions
on the coefficients and source terms) is always guaranteed to such linear first order
symmetric hyperbolic equations. This makes it tempting to consider applications of
this evolutionary equation for the geometrically distinguished scalar field λ, which
has been motivated by the constraints of Maxwell theory.
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