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Abstract: This work presents a novel approach to construct surrogate models of parametric 
Differential Algebraic Equations based on a tensor representation of the solutions. The procedure 
consists in building simultaneously, for every output of the reference model, an approximation given 
in tensor-train format. A parsimonious exploration of the parameter space coupled with a compact 
data representation allows to alleviate the curse of dimensionality. The approach is thus appropriate 
when many parameters with large domains of variation are involved. The numerical results obtained 
for a nonlinear elasto-viscoplastic constitutive law show that the constructed surrogate model is 
sufficiently accurate to enable parametric studies such as the calibration of material coefficients.

Keywords: parameter-dependent model; surrogate modeling; tensor-train decomposition; gappy 
POD; heterogeneous data; elasto-viscoplasticity
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1. Introduction11

Predictive numerical simulations in solid mechanics require complex material laws that involve12

systems of highly nonlinear Differential Algebraic Equations (DAEs). These models are essential in13

challenging industrial applications, for instance to study the effects of the extreme thermo-mechanical14

loadings that turbine blades may sustain in helicopter engines [1] and [2].15

These DAE systems are referred to as constitutive laws in the material science community. They16

express, for a specific material, the relationship between the mechanical quantities such as the strain,17

the stress and miscellaneous internal variables, and stand as the closure relations of the physical18

equations of mechanics. Complex constitutive equations are often tuned through a set of parameters19

called material coefficients.20

An appropriate calibration of these coefficients is necessary to ensure that the numerical model21

mimics the actual physical behavior. Numerical parametric studies, consisting in analyzing the22

influence of the parameter values on the solutions, are typically used to perform the identification.23

However, when the number of parameters increases and unless the computational effort required24

for a single numerical simulation is negligible, the exploration of the parameter domain turns into a25

tedious task and exhaustive analyses become unfeasible. Moreover, defining an unambiguous criterion26

measuring the fidelity of the model to experimental data is a challenge for models with complex27

behaviors.28

A common technique to mitigate the aforementioned challenges is to build surrogate models (or29

metamodels) mapping points of a given parameter space (considered as the inputs of the model) to30

the outputs of interest of the model. The real-time prediction of DAE solutions for arbitrary parameter31
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values, enabled by the surrogate model, helps the comprehension of constitutive laws and facilitate32

the conduct of parametric studies. In particular, the robustness of the calibration process can be33

dramatically improved using surrogate model approaches.34

The idea of representing the set of all possible parameter-dependent solutions of ODEs and PDEs35

as a multiway tensor was pioneered with the introduction of the Proper Generalized Decomposition36

(PGD) [3–5]. In this representation, each dimension corresponds to a spatial/temporal coordinate37

or a parameter coefficient. The resulting tensor is never assembled explicitly but instead remains an38

abstract object for which a low-rank approximation based on a Canonical Polyadic decomposition39

[6] is computed. The PGD method further alleviates the curse of dimensionality by introducing a40

multidimensional weak formulation over the entire parameter space, and the solutions are sought41

in a particular form where all variables are separated. When differential operators admit a tensor42

decomposition, the PGD method is very efficient because the multiple integrals involved in the43

multidimensional weak form of the equations can be rewritten as a sum of products of simple integrals.44

Unfortunately realistic constitutive equations or even less sophisticated elasto-viscoplastic models45

admit no tensor decomposition with respect to the material coefficients and the time variables. An46

extension of the PGD to highly nonlinear laws is therefore non-trivial. However, many other tensor47

decomposition approaches have been successfully proposed to approximate functions or solutions of48

differential equations defined over high dimensional spaces. We refer the reader to [7–9] for detailed49

reviews on tensor decomposition techniques and their applications.50

Among the existing formats – CP decomposition [6,10,11], Tucker decomposition [8,12],51

Hierarchical Tucker decomposition [8,13] – this work investigates the tensor-train (TT) decomposition52

[14,15]. The TT-cross algorithm, introduced in [14] and further developed in [16,17], is a sampling53

procedure to build an approximation of a given tensor under the tensor-train format. Sampling54

procedures in parameter space have proven their ability to reduce nonlinear and non-separable DAEs55

by using the Proper Orthogonal Decomposition (POD) [18], the Gappy POD [19], or the Empirical56

Interpolation Method (EIM) [20,21]. These last methods are very convenient when the solutions have57

only two variables, hence they are considered as second order tensors.58

This paper aims to extend the sampling procedure of the TT-cross method to DAEs having59

heterogenous and time-dependent outputs. A common sampling of the parameter space is proposed,60

though several TT-cross approximations are computed to cope with heterogeneous outputs. These61

outputs can be scalars, vectors or tensors, with various physical units. In the proposed algorithm,62

sampling points are not specific to any output although parameters do not affect equally each DAE63

output. The proposed method is named multiple TT-cross approximation. Similarly to the construction64

of a reduced integration domain for the hyperreduction of partial differential equations [22] or for65

the GNAT method [23], the set of sampling points is the union of contributions from the various66

outputs of the DEA. In this paper, the multiple TT-cross incorporates the Gappy POD method and the67

developments are focused on the numerical outputs obtained through a numerical integration scheme68

applied to the DAE.69

2. Materials and Methods70

The parametized material model generates several time-dependent quantities of interest (QoI).71

These quantities can be scalar-, vector- or even tensor-valued (e.g. stress) and are generally of distinct72

natures, namely expressed with different physical units and/or have different magnitudes. Therefore,73

the generated data will be segregated according to the QoI it relates to. It will also be structured in a74

tensor-like fashion to make it amenable to the numerical methods presented in this paper.75

For a given χ = 1, . . . , N denoting an arbitrary QoI, the tensor of order d, Aχ ∈ Rn1×···×nχ
d

(denoted with bold calligraphic letter) refers to a multidimensional array (also called multiway array).
Each element ofAχ identified by the indices (i1, . . . id) ∈ D1 × · · · × Dd−1 × Dχ

d is denoted by:

Aχ(i1, . . . , id) ∈ R

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2018                   doi:10.20944/preprints201811.0308.v1

Peer-reviewed version available at Math. Comput. Appl. 2019, 24, 17; doi:10.3390/mca24010017

http://dx.doi.org/10.20944/preprints201811.0308.v1
http://dx.doi.org/10.3390/mca24010017


3 of 16

where Dk = [1 : nk] for k < d, is the set of natural numbers from 1 to nk (inclusive) and Dχ
d = [1 : nχ

d ].76

The last index is specific to each Aχ, while the other are common to all tensors for χ = 1, ..., N.77

Hence, a common sampling of the parameter space D1 × . . . × Dd−1 can be achieved. The vector78

Aχ(i1, . . . , id−1, :) ∈ Rnχ
d contains all the components of output χ at all time instants used for the79

numerical solution of the DAE and for a given point in the parameter space.80

The qth matricization of Aχ denoted by 〈Aχ〉q consists in dividing the dimensions of Aχ into
two groups, the q leading dimensions and the (d− q) trailing dimensions, such that the newly defined
multi-indices enumerate respectively the rows and columns of the matrix 〈Aχ〉q. For instance, the
elements of 〈Aχ〉1 and 〈Aχ〉2 are given by:

〈Aχ〉1 (i1, j?) = Aχ(i1, . . . , id)

〈Aχ〉2 (i1 + (i2 − 1)n1, j??) = Aχ(i1, . . . , id)

where j? enumerates the multiple indices (i2, . . . , id) and j?? enumerates (i3, . . . , id). Here again, these
matricizations are purely formal because of the curse of dimensionality. In particular, the number of
columns in 〈Aχ〉1 is equal to n2 . . . nd−1 nχ

d . The Frobenius norm is denoted by ‖.‖ without the usual

subscript F . ForAχ ∈ Rn1×...nχ
d , it reads:

‖Aχ‖ =
√

∑
i1,...,id∈D1×···×Dd−1×Dχ

d

Aχ(i1, . . . , id)2

The Frobenius norm of a tensor is invariant under all matricizations of a given tensor.81

In [14], the Singular Value Decomposition (SVD) is considered in the algorithm called TT-SVD.82

Because of the curse of dimensionality, the TT-SVD has no practical use, even if tensors have a low83

rank. More convenient approaches, aim to sample the entries of tensors.84

For instance, in the snapshot proper orthogonal decomposition (POD) [18], the sampling85

procedure aims to estimate the rank and an orthogonal reduced basis for the approximation of a86

matrix A. The method consists in applying the truncated SVD on the submatrix Ã = A(:,Jpod)87

constituted by a selection of columns Jpod of A. Hence the accuracy of the resulting POD reduced88

basis relies on the quality of the sampling procedure that generally introduces a sampling error. This89

sampling procedure seams to be convenient when considering the first matricizations 〈Aχ〉q if the90

product n1 n2 . . . nq and Card(Jpod) are reasonably small regarding the available computing ressources.91

But, for large values of q, the curse of dimensionality makes the snapshot POD alone, intractable.92

A more practical approach to effectively construct an approximate TT decomposition, called the
TT-cross method, is proposed in [14]. The TT-cross consists in dropping the concept of a POD basis
and using the Pseudo-Skeleton Decomposition (PSD) introduced in [24] as low-rank approximation.
Unlike the TT-SVD, the TT-cross enables to build an approximation based on a sparse exploration
of a reference tensor. The Pseudo-Skeleton Decomposition can be used to approximate any matrix
A ∈ Rn×m and is written as:

A = A(:,Jpsd)
[

A(Ipsd,Jpsd)
]−1

A(Ipsd, :)︸ ︷︷ ︸
= Tpsd

+Epsd (1)

where the sets Ipsd and Jpsd are respectively a selection of row and column indices. The definition93

is valid only when the matrix A(Ipsd,Jpsd) is non-singular. In particular, the number s of rows and94

columns has to be identical.95
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This approximation (1) features an interpolation property at the selected rows and columns:

Tpsd(Ipsd, :) = A(Ipsd, :) and Tpsd(:,Jpsd) = A(:,Jpsd) (2)

The Pseudo-Skeleton Decomposition is a matrix factorization similar to the decomposition used96

in the Adaptive Cross Approximation (ACA) [25] and the CUR decomposition [26,27]. Additionally,97

these references provide algorithms to effectively build the factorization. That decomposition has also98

been used in the context of model order reduction, for instance in the Empirical Interpolation Method99

(EIM) proposed in [20,21].100

The condition that A(Ipsd,Jpsd) must be non-singular make difficult to share sampling points for101

various matrices 〈Aχ〉q with χ = 1, . . . , N having their own rank.102

The Gappy POD introduced in [19] aims at relaxing the aforementioned constraint by combining103

beneficial features of the Snapshot POD and the Pseudo-Skeleton Decomposition. Indeed, the Gappy104

POD a) relies on a POD basis that remains computationally affordable, b) requires only a limited105

number of rows of the matrix to be approximated and c) enables to reuse the set of selected rows for106

different matrices. These properties are key ingredients for an efficient, parsimonious exploration of107

the reference tensors. The Gappy POD approximation Tgap of a matrix A ∈ Rn×m is given by:108

A = V[V(Igap, :)]† A(Igap, :)︸ ︷︷ ︸
= Tgap

+Egap (3)

where † denotes the Moore-Penrose pseudo-inverse [28], Igap is a row selection of s rows and where
V ∈ Rn×r is a POD basis matrix of rank r such that :

A(:,Jpod) = V S WT + Epod (4)

In the sequel, because the simulation data inAχ are outputs of a DAE system, it does not make109

sense to sample the last index id during column sampling of 〈Aχ〉q. Each numerical solution of110

the DAE system generates all the last components of each tensorAχ. Hence, the column sampling111

is restricted to indices iq+1, . . . id−1 and is replicated for all values of id in Dχ
d . This special column112

sampling is denoted by J χ
pod. It is performed randomly by using a low-discrepancy Halton sequence113

[29].114

The matrix V(Igap, :) must have linearly independent columns to ensure that the approximation115

is meaningful. Since V is a rank-r POD basis, there exists a set of s rows such that this property holds116

as long as s ≥ r. Here, Igap contains at least the interpolation indices related to V. This latter set117

is denoted by Iχ , such that V(Iχ, :) is invertible. In the numerical results presented hereafter Iχ
118

is the obtained using the Q-DEIM algorithm [30] that was shown to be a superior alternative to the119

better-known DEIM procedure [31, Algorithm 1].120

Unlike the PSD, the Gappy POD enables to select a number of rows that exceeds the rank of the
low-rank approximation:

Igap = I1 ∪ . . . ∪ IN (5)

This make possible to share sampling points between matrices having their own rank. In this case, the121

interpolation property does not hold as in the PSD case (2).122

Tgap is the approximation of A by the product of three matrices: V,
[
V(Igap, :)

]† and A(Igap, :).
The TT-cross approximation can be understood as a generalization of such product of matrices. A
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tensor T ∈ Rn1×···×nd is said to be in tensor-train format (TT format) if its elements are given by the
following matrix products:

T (i1, . . . , id) = G1(i1) . . . Gd(id) ∈ R (6)

where the so-called tensor carriages (or core tensors) are such that for k = 1, . . . , d,:

Gk(ik) ∈ Rrk−1×rk ∀ik ∈ Dk

In the original definition of the tensor-train format [14], the leading and trailing factors123

(corresponding to G1(i1) and Gd(id) for any choice of i1 and id) are respectively row and column124

vectors. Here, the convention r0 = rd = 1 is adopted so that row matrices G1(i1) and column matrices125

Gd(id) can be interpreted as vectors or matrices depending on the context.126

The TT format allows significant gains in terms of memory storage and therefore is well-suited127

to high order tensors. The storage complexity is O(nr̄2d) where r̄ = max(r1, . . . , rd−1) and depends128

linearly on the order d of the tensor. In many applications of practical interest the small TT-ranks rk129

enable to alleviate the curse of dimensionality [14].130

The sequential computational complexity of the evaluation of a single element of a tensor in TT131

format is O
(
dr̄2). Assuming that r̄ is small enough, the low computational cost allows a real-time132

evaluation of the underlying tensor. Therefore, in terms of online exploitation, this representation133

conforms with the expected requirements of the surrogate model. Figure 1 illustrates the sequence of134

matrix multiplications required to compute one element of the tensor train.135

x x x x

Figure 1. Illustration of the evaluation of one element of the tensor train. The entry T (i1, . . . , id) ∈ R is
obtained by multiplying the set of matrices G1(i1), G2(i2) . . . , Gd(id) identified by a darker shade.

The objective of the proposed approach is to build for each physics-based tensor Aχ an136

approximate tensor T χ given in TT format by using a nested row sampling of the simulation137

data. Algorithm 1 provides the set of matrices {Gχ
1 , . . . , Gχ

d } that enable to define the tensor-train138

decompositions and aggregate sets for row sampling. It is a sequential algorithm that navigates from139

dimension 1 to dimension d− 1 of tensorsAχ.140

The method provided by Algorithm 1 is non-intrusive and relies on the numerical solutions of141

the DAEs in a black-box fashion.142

At each iteration k = 1, . . . , d− 1, the Snapshot POD method, used to build the POD reduced143

basis (9), requires to sample a set J χ
k . The column sampling amounts to a parsimonious selection of144

ñk points in the partial discretized parameter domain Dk+1 × · · · × Dd−1 and an exhaustive sampling145

of the last dimension for each tensor Aχ. The considered submatrices Ãχ
k = Aχ

k
(
:,J χ

k
)

are then146

constituted of ñχ
k = ñknχ

d columns (See Figure 2).147

In the row sampling step, specific sets of interpolant rows Iχ
k are first determined independently148

for each output χ but a common, aggregated set Ik (10) is then used to sample the entries of all outputs.149

Indeed, computing the elements of all submatrices Aχ
k (Ik, :) requires mk calls to the DAE system solver150

with: mk = Card(Ik−1) ñk with I0 = D1. Furthermore, the Gappy POD naturally accommodates a151

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2018                   doi:10.20944/preprints201811.0308.v1

Peer-reviewed version available at Math. Comput. Appl. 2019, 24, 17; doi:10.3390/mca24010017

http://dx.doi.org/10.20944/preprints201811.0308.v1
http://dx.doi.org/10.3390/mca24010017


6 of 16

Algorithm 1: Multiple TT decomposition

Input: TensorsAχ ∈ Rn1×···×nd−1×nχ
d for χ = 1, . . . , N associated with a DAE system

Output: Sets of matrices
{

Gχ
1 , . . . , Gχ

d
}

for χ = 1, . . . , N.
Initialization:
For each χ, define the matrix Aχ

1 ∈ R(s0n1)×(n2 ...nd−1nχ
d ) with s0 = 1, as the first matricization of

the tensorAχ:

Aχ
1 = 〈Aχ〉1 (7)

For k = 1, . . . , d− 1 do
Snapshot POD:
Define consistent sets of sampling columns J χ

k and evaluate the DAE to fill the matrices
Ãχ

k defined as:

Ãχ
k = Aχ

k
(
:,J χ

k
)

for χ = 1, . . . , N

Apply the truncated SVD (4) on each Ãχ
k with the truncation tolerance ε to get the rank-rχ

k
matrices:

Ãχ
k = Vχ

k Sχ
k Wχ T

k + Eχ
pod k with

∥∥∥Eχ
pod k

∥∥∥ ≤ ε
∥∥Ãχ

k

∥∥ (8)

Vχ
k ∈ R(sk−1nk)×rχ

k for χ = 1, . . . , N (9)

Row Sampling:
From each χ, select a set of rows Iχ

k applying the Q-DEIM algorithm [30] to the basis Vχ
k .

Define the union of all selected rows and the corresponding row selection matrix:

Ik =
N⋃

χ=1

Iχ
k (10)

and

sk = Card(Ik) (11)

Output definitions:
Compute the matrices Gχ

k ∈ R(sk−1nk)×sk such that:

Gχ
k = Vχ

k
[
Vχ

k (Ik, :)
]†

Tensorization:
Define, formally, the tensorsAχ,(k+1) ∈ Rsk×nk+1×···×nd−1×nχ

d such that:〈
Aχ,(k+1)

〉
1
= Aχ

k (Ik, :) ∈ Rsk×(nk+1 ...nd−1nχ
d ) (12)

Matricization:
Define, formally, the matrix Aχ

k+1 ∈ R(sknk+1)×(nk+2 ...nd−1nχ
d ) as the second matricization of

the tensorAχ,(k+1):

Aχ
k+1 =

〈
Aχ,(k+1)

〉
2

(13)

Finalization:
For each χ = 1, . . . , Nχ, define the matrix Gχ

d ∈ R(sd−1nχ
d )×sd with sd = 1 such that:

Gχ
d = Aχ

d (14)
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Figure 2. Definition of the submatrix Ãχ
k used to construct the POD reduced basis. In the illustration,

the Snapshot POD sample size is ñk = 3.

number of rows larger than the rank rχ
k for each approximation of Aχ

k , and considering a larger sample152

size for each individual χ is expected to provide a more accurate approximation.153

The tensorization and matricization steps are purely formal. No call to the DAE system solver is154

done here. They define the way the simulation data must be ordered in matrices to be approximated155

at the next iteration. The recursive definition of the matrix Aχ
k implies that the latter is equal to the156

kth matricization of a subtensor extracted from Aχ. Equivalently, the matrix Aχ
k corresponds to a157

submatrix of the kth matricization ofAχ, as illustrated in Figure 3.158

Figure 3. Definition of Aχ
k based onAχ. In the illustration, the number of rows selected at the previous

iteration k− 1 is sk−1 = 3.

To quantify the theoretical accumulation of errors introduced at each iteration, Proposition 1 gives159

an upper bound for the approximation error associated with a tensor-train decomposition built by the160

snapshot POD followed by the row sampling steps, when a full column sampling is performed.161

Proposition 1. Consider Aχ ∈ Rn1×···×nd−1×nχ
d and its tensor-train approximation T χ constructed by

Algorithm 1. Assuming that for all k ∈ [1 : d− 1]∥∥∥(I−Vχ
k Vχ T

k

)
Aχ

k

∥∥∥ ≤ ε
∥∥Aχ

k

∥∥ (15)

the following inequality holds:

‖Aχ − T χ‖ ≤
d−1

∑
k=1

ε

σmin
(
Vχ

k (Ik, :)
) k−1

∏
k′=1

min(σmax(V
χ
k′ (Ik′ , :)) + ε, 1)

σmin(V
χ
k′ (Ik′ , :))

‖Aχ‖ (16)

where σmin and σmax refer to the smallest and the largest singular values of its matrix argument.162

The proof is given in [32] (Proposition 12).163

Proposition 1 suggests that the approximation error

‖Aχ − T χ‖

can be controlled by the truncation tolerances ε set by the user. However, the bound (16) tends to be164

very loose and the hypothesis (15) may be diffi cult to verify when the basis Vχ
k stems from a column165

sampling of the matrix Aχ
k . Hence, the convergence should be assessed empirically in practical cases.166
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3. Results167

3.1. Outputs partitioning as formal tensors168

The physical model described in A is represented as the relations between 6 (d = 7) parameters
(inputs of the model) and the time-dependent mechanical variables (outputs of the model)

(n, K, R0, Q, b, C) 7→
(

ε∼(t), ε∼vp(t), σ∼(t), p(t)
)

where ε∼, ε∼vp,σ∼ have six components each and p is a scalar. ε∼, ε∼vp and p have the same units but have169

different physical meanings.170

The surrogate model is defined by introducing N = 4 groups of outputs as tensors Aχ. The171

formal tensorsA1, ... A4 are related to ε∼, ε∼vp,σ∼ and p, respectivelly.172

For each parameter, the interval of definition is discretized by a regular grid with 30 points:

n1 = n2 = n3 = n4 = n5 = n6 = 30

The time interval discretized is the one used for the numerical solution, it corresponds to a regular
grid with nt = 537 points. Then:

n1
7 = n2

7 = n3
7 = 6nt and n4

7 = nt

The Snapshot POD sample sizes are:

ñ1 = ñ2 = ñ3 = ñ4 = ñ5 = 100 and ñ6 = 30

3.2. Performance indicators173

The truncation tolerance is chosen here to be ε = 10−3. The construction of the tensor-train174

decompositions requires to solve the system of DAEs ∑d−1
k=1 sknkñk times with as many sets of parameter175

values. In the proposed numerical example, it amounts to 514 050 solutions. 15 hours are necessary on176

a 16-core workstation to carry out the computations. 98% of the effort is devoted to the solution of the177

physical model and the remaining 2% to the decomposition operations.178

For a single simulation on a personal laptop computer, the solution of the physical model takes179

0.7 s, whereas the surrogate model is evaluated in only 1 ms, corresponding to a speed-up of 700.180

Storing the Multiple TT approximations requires 2 709 405 double-precision floating-point values.181

For comparison purposes, storing a single solution (constituted of the multiple time-dependent outputs)182

of the DAE system involves 10 203 values. Therefore, the storage of the tensor-train decompositions183

is commensurate with the storage of 265 solutions while it can express the approximation of 306
184

solutions.185

For χ = 1, . . . , 4, the rank rχ
k is bounded from above by the theoretical maximum rank rχ

max,k of186

the matrix Aχ
k . More specifically, rχ

max,k corresponds to the case where Aχ
k has full rank and is the kth

187

matricizations of the tensorsAχ. Given the choice of truncation tolerance ε = 10−3, the TT-ranks listed188

in Table 1 show that the resulting tensor trains involve low rank approximations. Table 2 emphasizes189

that in practice rχ
k � rχ

max,k except for k = 1 where rχ
max,k is already “small”.190

3.3. Approximation error191

The accuracy of the surrogate model is estimated a posteriori by measuring the discrepancy192

between its own outputs and the outputs of the original physical model. The estimation is conducted193

by comparing solutions associated with 20 000 new samples of parameter set values randomly selected194

according to a uniform law on each discretized parameter intervals. The difference between the195

surrogate and the physical models is measured based on the following norms:196
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Table 1. TT-ranks of the outputs of interest and theoretical maximum ranks.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
r1

k 7 9 10 24 27 30
r2

k 13 23 29 123 143 134
r3

k 11 17 20 67 90 100
r4

k 9 12 14 24 20 21
r1

max,k = r2
max,k = r3

max,k 30 302 303 304 6× 30nt 6× nt

r4
max,k 30 302 303 302nt 30nt nt

Table 2. Ratio between the theoretical maximum ranks and the TT-ranks of the outputs of interest.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
r1

max,k/r1
k 4.3 1.0× 102 2.7× 103 3.4× 104 3.6× 103 1.1× 102

r2
max,k/r2

k 2.3 3.9× 101 9.3× 102 6.6× 103 6.8× 102 2.4× 101

r3
max,k/r3

k 2.7 5.3× 101 1.4× 103 1.2× 104 1.1× 103 3.2× 101

r4
max,k/r4

k 3.3 7.5× 101 1.9× 103 2.0× 104 8.1× 102 2.6× 101

‖x‖2
[0,T]

=
∫ T

0
x2dt et

∥∥∥X∼

∥∥∥2

[0,T]
=
∫ T

0
X∼ : X∼ dt

where x and X∼ are respectively scalar and tensor time-dependent function.197

For the mechanical variable � (where � can stand for any one of ε∼, ε∼vp, σ∼ and p), �PM and �TT
198

denote the output corresponding respectively to the solution of the DAEs and the surrogate model. A199

relative error is associated with each mechanical variable, namely:200

• Total strain tensor: eε =

∥∥∥ε∼PM−ε∼
TT
∥∥∥
[0,T]∥∥∥ε∼PM

∥∥∥
[0,.]

;

• Viscoplastic strain tensor: eεvp =

∥∥∥∥ε∼PM
vp
−ε∼

TT
vp

∥∥∥∥
[0,T]∥∥∥ε∼PM

∥∥∥
[0,.]

;

• Stress tensor: eσ =

∥∥∥σ∼PM−σ∼
TT
∥∥∥
[0,T]∥∥∥σ∼PM

∥∥∥
[0,.]

;

• Cumulative viscoplastic deformation: ep =
‖pPM−pTT‖

[0,T]∥∥∥ε∼PM
∥∥∥
[0,.]

.

201

Depending on the parameter values, the viscoplastic part of the behavior may or may not be202

negligible as measured by the magnitudes of ‖p‖ and
∥∥∥ε∼vp

∥∥∥ relative to
∥∥∥ε∼

∥∥∥. Hence, in the proposed203

application, the focus is on comparing the norm of the approximation error for ε∼, ε∼vp and p with204

respect to the norm of ε∼.205

The histograms featured on Figures 4a, 4b, 4c and 4d present, for each mechanical variables, the206

empirical distribution of the relative error for all simulation results. The surrogate model given by the207

tensor-train decompositions features a level of error that is sufficiently low to carry out parametric208

studies such as calibration of constitutive laws where errors lower than 2% are typically tolerable.209
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(a) Empirical distribution for eε. The size of
the histogram bucket
is 0.009%.

(b) Empirical distribution for eεvp . The size of
the histogram bucket is 0.008%.

(c) Empirical distribution for eσ. The size of
the histogram bucket
is 0.024%.

(d) Empirical distribution for ep. The size of
the histogram bucket is 0.066%.

Figure 4. Empirical distribution of the errors for every mechanical variables.

3.4. Convergence with respect to the truncation tolerance210

A first surrogate model is constructed from the physical model with the prescribed truncation
tolerance ε = 10−3. Then, this first surrogate model is used as an input for Algorithm 1. Running the
algorithm several times with different truncation tolerances:

ε ∈
{

1× 10−3; 2× 10−3; 4.6× 10−3; 1× 10−2; 2× 10−2; 4.6× 10−2; 1× 10−1
}

generates as many new surrogate models.211

Figures 6a, 6b, 6c and 6d present the evolution of the relative error distribution (for the different212

mechanical variables) with respect to the truncation tolerance based on a random sample of 20 000213

parameter set values chosen as in Section 3.3. Figure 5 details the graphical notations. The results214

empirically show for each mechanical output, the relative error decreases together with ε. It is215

consistent with the expected behavior of the algorithm.216

Q1 Q3

IQR

Q1 - 1.5 x IQR Q3 + 1.5 x IQR

Median

Outliers

Figure 5. The left and right sides are the first and third quartiles (respectively Q1 and Q3). The line
inside the box represents the median. The reach of the whiskers past the first and third quartiles is 1.5
times the interquartile range (IQR). The crosses represent the outliers lying beyond the whiskers.
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(a) Empirical distribution for eε (b) Empirical distribution for eεvp

(c) Empirical distribution for eσ (d) Empirical distribution for ep

Figure 6. Empirical distribution of the relative approximation error for every mechanical variables.

Plots in Figure 7a and 7b show the dependence of the number of stored elements and the number217

of calls to the physical model on ε.218

(a) Dependence of the number of calls to
physical model on ε

(b) Dependence of the number of stored
elements on ε

Figure 7. Dependence of computational cost and memory storage indicators on ε

3.5. On fly error estimation219

Based on the physical model, the surrogate model gives an approximation of each output of220

interest. However, the approximate outputs may be inconsistent with the physics in the sense that221

they may lead to non-zero residuals when introduced into (the discrete version of) the DAE system222

describing the physical model.223

A coherence estimator is an indicator that measures how closely the physical equations are verified224

by the outputs of the surrogate model. It is reasonable to expect the accuracy of the metamodel to be225

correlated with the coherence estimator.226
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Using Equation (A1) let:

σ∼
eq,TT =

E
1 + ν

(
ε∼

TT
e

+
ν

1− 2ν
Tr
(

ε∼
TT
e

)
I∼

)
and define the associated coherence estimator as follows:

ησ =

∥∥∥σ∼
TT − σ∼

eq,TT
∥∥∥
[0,T]∥∥∥σ∼

TT
∥∥∥
[0,T]

(17)

Figure 8 displays the relation between the relative error for σ∼ and the effectivity of the estimator227

ησ/eσ for 20 000 simulation results drawn randomly. The error increases with the final cumulative228

deformation, that is when the material exhibits a more intense viscoplastic behavior.229

Figure 8. Effectivity of the coherence estimator ησ (17) associated with σ. The color scale indicates the
final cumulative deformation.

Furthermore, the plot shows a correlation between the coherence estimator and the relative error.230

In particular, the effectivity tends to be larger than 1 which indicates that the coherence estimator231

behaves like an upper bound of the relative error. Excluding a few outliers, the coherence estimator232

does not overestimate the relative error by more than a factor 7.233

Finally, the effectivity of the coherence estimator empirically converges to 1 (that is, the estimator234

becomes sharper) as the magnitude of the relative error increases.235

This coherence estimator is very cheap to compute and only relies on outputs of the surrogate236

model. The results suggest that the coherence estimator could be used as an online error indicator that237

increases the reliability of the surrogate model at the current point when exploring in real-time the238

parameter domain.239

4. Discussion240

The present work assesses the performance of tensor-train representations for the approximation241

of numerical solutions of nonlinear DAE systems. The proposed method enables to incorporate a242

large number of simulation results (' 500 000 scalar values) to produce a metamodel that is accurate243

over the entire parameter domain. More specifically, numerical results show that the Multiple TT244

decomposition gives promising results when used as a surrogate model for an elasto-viscoplastic245

constitutive law. For this particular application, the surrogate model exhibits a satisfying accuracy246

given the moderate computational effort spent for its construction and the data storage requirements.247

Moreover, the observed behavior of the proposed empirical coherence estimator indicates that the248

latter could be exploited to assess the approximation error in real time.249

The application to more complex material constitutive laws of industrial interest and involving a250

larger number of parameters [32] corroborate the aforementioned results in terms of compactness and251

accuracy of the surogate models. Surrogate models have the potential to transform the way of carrying252

out parametric studies in material science. In particular, [32] demonstrates that the exploitation of253
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models based on the Multiple TT approach simplifies the process of calibration of constitutive laws.254

Future work will investigate the combination of the proposed method with “usual” model order255

reduction techniques such as hyper-reduction [33] in order to take into account the space dimension.256
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The following abbreviations are used in this manuscript:268

269

DAE Differential Algebraic Equation
DEIM Discrete Empirical Interpolation Method
DOAJ Directory of Open Access Journals
EIM Empirical Interpolation Method
PGD Proper Generalized Decomposition
POD Proper Orthogonal Decomposition
PSD Pseudo-Skeleton Decomposition
SVD Singular Value Decomposition
TT Tensor Train

270

Appendix A Elasto-viscoplastic model271

The application case consists of a nonlinear constitutive law in elasto-viscoplasticity [34,35] linking272

the following time-dependent mechanical variables:273

• The strain tensor: ε∼= ε∼e
+ ε∼vp [Dimensionless] (sum of an elastic part and a viscoplastic part);274

• The stress tensor: σ∼ [MPa];275

• An internal hardening variable: X∼ [MPa];276

• The cumulative viscoplastic deformation: p [Dimensionless].277

where ε∼, ε∼e
, ε∼vp, σ∼ and X∼ are second order tensors in R3×3.278

The hypotheses of the infinitesimal strain theory are assumed to hold.279

The model involves eight material coefficients: E, ν, n, K, R0, Q, b and C. The Young and Poisson280

coefficients are set to E = 200 000 MPa and ν = 0.3. Table A1 presents the range of variation of the281

other material coefficients considered as inputs parameters of the model.

Table A1. Parameter range of variations considered in the model. When applicable, the unit is indicated
between brackets.

n K [MPa.s-n] R0 [MPa] Q [MPa] b C [MPa]
Lower bound 2 100 1 1 0.02 150
Upper bound 12 10 000 200 2 000 2 000 150 000

282

Appendix A.0.1 System of equations283

The elastic behavior is governed by:

σ∼ =
E

1 + ν

(
ε∼e

+
ν

1− 2ν
Tr
(

ε∼e

)
I∼

)
(A1)
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The viscoplastic behavior is described by the Norton flow rule (A2) formulated with the von284

Mises criterion (A5). The yield function and the normal to the yield function are given by (A3) and285

(A4). (A6) gives the definition of the deviatoric stress tensor involved in (A5).286

d
dt

ε∼vp = N∼

(
f
K

)n

+
(A2)

f = J
(

σ∼
D − X∼

)
− R (A3)

N∼ =
3
2

σ∼
D − X∼

J
(

σ∼
D − X∼

) (A4)

J
(

σ∼
D − X∼

)
=

√
3
2

(
σ∼

D − X∼
)

:
(

σ∼
D − X∼

)
(A5)

σ∼
D = σ∼−

1
3

Tr
(

σ∼
)
I∼ (A6)

where (.)+ denotes the positive part function.287

The operator : denotes the contracted product defined as:

Z∼1:Z∼2 =
3

∑
i=1

3

∑
j=1

Zij
1 Zij

2 for Z∼1, Z∼2 ∈ R3×3

The nonlinear isotropic hardening is modeled by (A7) where (A8) gives the viscoplastic288

cumulative rate.289

R = R0 + Q
(

1− e−bp
)

(A7)

dp
dt

=

√
2
3

d
dt

ε∼vp:
d
dt

ε∼vp (A8)

Finally the linear kinematic hardening is given by:

X∼ =
2
3

Cε∼vp (A9)

The case of a uniaxial cyclic tensile testing driven by deformation is considered. The loading290

is applied by imposing ε11(t) with the pattern shown in Figure A1 and σ12(t) = σ13(t) = σ23(t) =291

σ22(t) = σ33(t) = 0.292

0 200 400 600 800 1000 1200 1400 1600
t[s]

-1 %

-0.50 %

0 %

0.50 %

1 %

11

Figure A1. The applied strain component ε11(t) consists of a triangular pattern of period 400s with a
peak-to-peak amplitude of 2% centered in 0.
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The initial conditions for the internal variables are:

p(t = 0) = 0 and X∼(t = 0) = 0∼

The model is highly nonlinear. First the isotropic hardening law introduces an exponential293

nonlinearity. The most significant nonlinearity arises from the Norton law (A2) featuring the positive294

part function. Capturing the resulting threshold effect is particularly challenging for surrogate models.295
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